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ABSTRACT 23 

Alzheimer’s disease (AD) is the most common form of dementia, affecting two-thirds of people 24 
with dementia in the world. To date, no disease-modifying treatments are available to stop or delay the 25 
progression of AD. This chronic neurodegenerative disease is dominated by a strong innate immune 26 
response, whereby microglia plays a central role as the main resident macrophage of the brain. Recent 27 
genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms (SNPs) 28 
located in microglial genes and associated with a delayed onset of AD, highlighting the important role 29 
of these cells on the onset and/or progression of the disease. These findings have increased the interest 30 
in targeting microglia-associated neuroinflammation as a potential disease-modifying therapeutic 31 
approach for AD. In this review we provide an overview on the contribution of microglia to the 32 
pathophysiology of AD, focusing on the main regulatory pathways controlling microglial dynamics 33 
during the neuroinflammatory response, such as the colony-stimulating factor 1 receptor (CSF1R), its 34 
ligands (the colony stimulating factor 1 and interleukin 34) and the transcription factor PU.1. We also 35 
discuss the current therapeutic strategies targeting proliferation to modulate microglia-associated 36 
neuroinflammation and their potential impact on peripheral immune cell populations in the short and 37 
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long-term. Understanding the effects of immunomodulatory approaches on microglia and other 38 
immune cell types might be critical for developing specific, effective and safe therapies for 39 
neurodegenerative diseases.  40 

 41 

1 INTRODUCTION 42 

Alzheimer´s disease (AD) is a chronic neurodegenerative disease and the most common form of 43 
dementia in the world, contributing to 60-70% of cases.  It is estimated that currently over 50 million 44 
people are affected by dementia worldwide, according to the World Health Organisation and the recent 45 
report published by Alzheimer´s Disease International (ADI) (International, 2019). The total number 46 
of people with dementia is predicted to reach 82 million by 2030 and 152 million by 2050, causing an 47 
estimated economic burden of 2 trillion US$ globally (International, 2019). AD is mostly diagnosed in 48 
people over 65 years-old, termed as late onset AD (LOAD), with around 5% of AD cases being 49 
diagnosed in individuals under the age of 65, classified as early onset AD (EOAD) (Mendez, 2012). 50 
Despite these alarming figures, no disease-modifying treatment is currently available and the cause of 51 
sporadic AD is still unclear.  52 

Clinically, AD manifests as a gradual decline in cognitive functions including loss of memory, 53 
dyspraxia, disorientation and aphasia, accompanied by behavioral changes such as irritability, 54 
aggressiveness, anxiety and social withdrawal (Atri, 2019). Patients are usually diagnosed based on 55 
cognitive assessments, assuming that AD neuropathologic changes will be found post-mortem. 56 
However, from 10% to 30% of patients clinically diagnosed as AD do not show AD neuropathological 57 
changes at autopsy (Jack et al., 2018), suggesting that cognitive symptoms are not the ideal method to 58 
diagnose AD. According to the updated National Institute of Aging and Alzheimer´s Association 59 
Research Framework, AD should be diagnosed by the detection of biomarkers indicative of 60 
neuropathologic changes, independently of clinical symptoms (Jack et al., 2018). This characterization 61 
is possible using PET imaging and/or assessment of biomarkers present in cerebrospinal fluid (Jack et 62 
al., 2018), although these methods are not currently being used broadly for individuals with symptoms, 63 
instead limited to early-onset, rapidly progressive or atypical cases (Atri, 2019). The main features of 64 
the pathology of AD are the accumulation of extracellular amyloid-beta (Aβ) plaques and intracellular 65 
neurofibrillary tangles of hyperphosphorylated Tau, dystrophic neurites, neuronal loss and brain 66 
atrophy (Gjoneska et al., 2015). In the last decades, several hypotheses have been explored to explain 67 
the pathogenesis of AD, being the amyloid cascade hypothesis the prevailing mechanistic theory so 68 
far. This hypothesis postulates that the neurodegeneration in AD is caused by an abnormal 69 
accumulation of Aβ protein plaques in several regions of the brain, such as the pre-frontal cortex, 70 
temporal and parietal lobe and hippocampus, causing memory and cognitive impairment and 71 
eventually leading to dementia (Hardy & Higgins, 1992; Karran, Mercken, & De Strooper, 2011). 72 
Many drugs targeting this pathway have been developed and entered clinical trials in recent years. 73 
However, none of these therapies have yet been successful in preventing the development or 74 
progression of the disease. This is possibly due to the existence of alternative pathways that are 75 
disrupted in AD and not directly considered in the amyloid cascade hypothesis, which present a high 76 
therapeutic potential as alternatives or in combination with the current strategies.  77 

Neuroinflammation associated to AD was long considered a consequence of the pathology. 78 
However, it is now well accepted that neuroinflammation is a key player in several neurodegenerative 79 
diseases, including AD. The neuroinflammatory process that takes place in these diseases is 80 
characterised by a strong activation of the innate immune system, in which microglia plays a central 81 
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role as the main resident macrophages in the brain (Simon, Obst, & Gomez-Nicola, 2019). Microglia 82 
are able to respond to harmful stimuli in the brain including Aβ proteins, acting as the main regulators 83 
of the neuroinflammatory response associated with brain disease (Gomez-Nicola & Perry, 2015). In 84 
response to damage, microglia shows an activated phenotype accompanied by an increase in their 85 
proliferation and increased expression of inflammatory markers (Olmos-Alonso et al., 2016). This 86 
activation process is critical and postulated to play a beneficial role in the acute neuroinflammatory 87 
response, resulting in the engulfment of debris and dead cells to minimize and repair the brain damage 88 
(Cai, Hussain, & Yan, 2014; Calsolaro & Edison, 2016). However, the sustained activation of microglia 89 
observed in neurodegenerative diseases leads to a chronic neuroinflammatory response and an 90 
overproduction of inflammatory mediators, such as pro-inflammatory cytokines and reactive oxygen 91 
species, which are known to cause damage and neurodegeneration (Cai et al., 2014; Calsolaro & 92 
Edison, 2016; Lyman, Lloyd, Ji, Vizcaychipi, & Ma, 2014). The generated damage keeps microglia in 93 
an over-activated state, thus preventing these cells from returning to their homeostatic and beneficial 94 
functions and worsening the disease. It has been shown that TREM2 is critical in regulating the balance 95 
between the homeostatic and the disease-associated microglial states (Nichols et al., 2019), stimulating 96 
phagocytosis and suppressing cytokine production and inflammation (Guerreiro et al., 2013). Genetic 97 
studies have recently identified mutations of this receptor strongly associated with risk of AD 98 
(Guerreiro et al., 2013; Jonsson et al., 2013), supporting the idea of a causative link between 99 
inflammatory cells and neurodegeneration. It has been suggested that non-steroidal anti-inflammatories 100 
have a protective role in the onset or progression of AD (Hoozemans, Veerhuis, Rozemuller, & 101 
Eikelenboom, 2011), although most clinical trials to date have failed to show this beneficial effect. 102 
However, this idea is strongly supported by recent genome-wide association studies (GWAS), which 103 
have identified new single-nucleotide polymorphisms (SNPs) in immune-related genes associated with 104 
AD risk, such as the above cited Trem2 (Efthymiou & Goate, 2017; Hansen, Hanson, & Sheng, 2018; 105 
Huang et al., 2017; Verheijen & Sleegers, 2018). Most of these SNPs encode for proteins that are 106 
mainly expressed in microglia, strongly supporting a causal involvement of microglial cells in the 107 
development and progression of AD. These findings have attracted the effort of drug discovery 108 
programs aimed at targeting microglia-associated neuroinflammation as a potential disease-modifying 109 
therapeutic approach for AD. In this review we provide an overview of the main pathways controlling 110 
microglial activation and proliferation during the neuroinflammatory response and their contribution 111 
to the pathophysiology of AD. We also summarize the current therapeutic strategies to modulate 112 
microglial-associated neuroinflammation through targeting proliferation and highlight their potential 113 
impact on other immune cell populations in the systemic compartment. 114 

 115 

2 REGULATION OF MICROGLIAL PROLIFERATION AND 116 
NEUROINFLAMMATION IN HEALTH AND AD  117 

In recent years, GWAS studies have identified over 25 genetic loci associated with risk of LOAD, 118 
many of them related to neuroinflammation and mainly expressed in microglial cells, such as ApoE, 119 
Spi1 and Trem2 (Corder et al., 1993; Guerreiro et al., 2013; Huang et al., 2017; Jonsson et al., 2013). 120 
These findings directly implicate microglial and immune genes as key players in the development and 121 
progression of AD (Efthymiou & Goate, 2017). The neuroinflammatory response in AD is 122 
characterized by increased number of microglia cells showing an activated phenotype (Akiyama et al., 123 
2000; Edison et al., 2008; Heneka, Golenbock, & Latz, 2015; Olmos-Alonso et al., 2016), increased 124 
expression of pro-inflammatory cytokines and chemokines (Dickson, Lee, Mattiace, Yen, & Brosnan, 125 
1993; Fernandez-Botran et al., 2011) and an impairment in their phagocytic activity and Aβ clearance 126 
(Cai et al., 2014; Wendt et al., 2017).  127 
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2.1 Targeting CSF1R in AD  128 

The main system controlling the differentiation, maintenance and proliferation of microglia in 129 
both healthy and pathological conditions is the colony-stimulating factor 1 receptor (CSF1R) pathway. 130 
CSF1R is encoded by the c-fms proto-oncogene (Sherr et al., 1985) and belongs to the type III tyrosine 131 
kinase family (Pixley & Stanley, 2004). This receptor is highly expressed by myeloid cells and its 132 
activation through the phosphorylation of the tyrosine residues stimulates many downstream signaling 133 
pathways (Pixley & Stanley, 2004; Rojo, Pridans, Langlais, & Hume, 2017; Stanley & Chitu, 2014; 134 
Wang & Colonna, 2014). CSF1R genetic variants have been found by genetic screening in 135 
neuropathologically confirmed AD patients and these mutations are strongly associated to LOAD 136 
susceptibility (Sassi et al., 2018). Moreover, CSF1R upregulation and an increase in microglial 137 
proliferation have been found in post-mortem samples from patients with AD (Akiyama et al., 1994; 138 
Gomez-Nicola, Fransen, Suzzi, & Perry, 2013; Olmos-Alonso et al., 2016). Studies published by our 139 
group showed that microglial proliferation increases progressively in proximity to Aβ plaques in the 140 
APP/PS1 murine model of AD, suggesting that microglial activation and proliferation is triggered by 141 
Aβ deposition (Olmos-Alonso et al., 2016). It has also been shown that the pharmacological inhibition 142 
of the tyrosine kinase (TK) activity of CSF1R decreases microglial proliferation and impedes the 143 
degeneration of synapses, ameliorating the progression of the disease without modifying the levels of 144 
Aβ in the APP/PS1 model (Olmos-Alonso et al., 2016). Similar effects have been also shown in several 145 
experimental models of neurodegenerative disease, including prion disease (Gomez-Nicola et al., 146 
2013) and amyotrophic lateral sclerosis (ALS) (Martinez-Muriana et al., 2016). These results are also 147 
observed after administration of a potent CSF1R inhibitor leading to partial depletion of the microglial 148 
population in the 3xTg (Dagher et al., 2015) and 5xFAD models (Sosna et al., 2018; Spangenberg et 149 
al., 2016) of AD-like pathology. Microglial depletion strategies were also tested in aged Tg2510 mice 150 
with no effect on tau pathology (Bennett et al., 2018). However, a recent study from our group has 151 
validated the inhibition of CSF1R as a disease-modifying mechanism in the P301S mouse model of 152 
tauopathy. This report demonstrates that inhibition of CSF1R reduces the expansion of the microglial 153 
population and the expression of pro-inflammatory cytokines such as IL-1β and TNFα at mRNA and 154 
protein levels (Mancuso et al., 2019). Blockade of microglial proliferation and the repolarization of 155 
these cells to a homeostatic phenotype attenuate neuronal degeneration and ameliorate tau pathology 156 
(Mancuso et al., 2019). This repolarization of the microglial inflammatory profile to a homeostatic 157 
phenotype has been also observed after the inhibition of CSF1R in the APP/PS1 model of AD (Olmos-158 
Alonso et al., 2016) and other models of neurodegenerative diseases such as multiple sclerosis (Nissen, 159 
Thompson, West, & Tsirka, 2018) and a model of Parkinson´s disease (PD) (Neal et al., 2020). 160 
Together, these studies provide evidence that reducing the number of microglia, or depleting them, 161 
have advantageous consequences, independently of the Aβ load, demonstrating that a disease-162 
modifying approach for AD is achievable through targeting microglia alone.  163 

Two independent ligands can activate CSF1R with high affinity, the colony stimulating factor 1 164 
(CSF-1) (Stanley & Heard, 1977) and interleukin 34 (IL-34) (H. Lin et al., 2008). Both ligands have 165 
been shown to promote microglial proliferation (Gomez-Nicola et al., 2013) but also show differential 166 
spatiotemporal expression patterns and have complementary biological functionality (Nandi et al., 167 
2012; Wang et al., 2012). Mice lacking IL-34 (Il34LacZ) displayed an acute reduction of microglial 168 
cells in the brain and Langerhans cells in the skin, showing that IL-34 is crucial for the development 169 
and maintenance of these populations (Greter et al., 2012; Wang et al., 2012). However, the 170 
administration of anti-CSF-1 and anti-IL-34 antibodies during development or in postnatal ages 171 
revealed that CSF-1 is necessary for the colonization and maintenance of microglia population in the 172 
embryonic brain, whereas IL-34 is mainly required for microglial maintenance later during adult life 173 
(Easley-Neal, Foreman, Sharma, Zarrin, & Weimer, 2019). In adulthood, CSF-1 is widely expressed 174 
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and produced by many different mesenchymal and epithelial cell types (Dai et al., 2002; Jones & 175 
Ricardo, 2013), whereas the expression of IL-34 is more tissue-restricted, mainly produced by 176 
keratinocytes located in the epidermis and neurons in the brain (Wang & Colonna, 2014), showing  177 
minimal overlap with the expression pattern of CSF-1 (Nakamichi, Udagawa, & Takahashi, 2013; Wei 178 
et al., 2010). The role of IL-34 and CSF-1 in the maintenance of microglial cells during adulthood has 179 
been investigated in several studies during recent years. IL-34 was first shown to be required for the 180 
maintenance of microglia in the adult brain, whereas CSF-1 seemed to be mainly involved in replacing 181 
microglial cells after inflammation (Greter et al., 2012; Wang et al., 2012). However, two recently 182 
published reports have shown different effects on the microglia population after peripheral 183 
administration of specific anti-IL-34- and anti-CSF-1- monoclonal antibodies in adult mice. In the first 184 
one, Lin et al. conclude that IL-34 is crucial for the maintenance and differentiation of microglial cells 185 
in the grey matter of adult mice, whereas CSF-1 is a key player in maintaining macrophage homeostasis 186 
in several peripheral tissues such as colon and liver (W. Lin et al., 2019). However, Easley-Neal et al. 187 
show that the blockade of both molecules leads to the depletion of different microglia populations in 188 
the brain of adult mice. The anti-CSF-1 blocking antibody depleted the microglia located in the white 189 
matter more effectively, while the anti-IL-34 blocking antibody depleted the microglia in the grey 190 
matter more efficiently, phenocopying the regional expression pattern of each ligand (Easley-Neal et 191 
al., 2019). Taking together, all this evidence suggests that CSF-1 and IL-34 are required differentially 192 
during development and for the maintenance of the microglial population in the adult brain. In AD and 193 
AD-like transgenic mice, CSF-1 was shown to be upregulated and played an essential role in the 194 
proliferation of microglia occurring as a consequence of the pathological activation in disease (Murphy, 195 
Zhao, Yang, & Cordell, 2000; Vincent, Selwood, & Murphy, 2002). Regarding IL-34, Mizuno et al. 196 
showed that IL-34-treated microglia attenuate the neurotoxic effects of Aβ in neuron-microglia co-197 
cultures by promoting microglial uptake and metabolism of Aβ (Mizuno et al., 2011). The 198 
neuroprotective role of IL-34 in this system seemed to be regulated by transforming growth factor beta-199 
1 (TGFβ-1). The inhibition of TGFβ-1 receptor results in an increased microglial proliferation driven 200 
by IL-34 and the suppression of the observed neuroprotective effect of IL-34-treated microglia. These 201 
observations suggest that TGF-β produced by these cells acts as a negative regulator of microglial 202 
proliferation, improving the neuroprotective feature of microglia (Ma et al., 2012). In the APP/PS1 203 
model of AD, the administration of IL-34 in the brain ameliorates the impairment of associative 204 
learning (Mizuno et al., 2011). These studies provided evidence that modulation of these cytokines 205 
may also be an approach to control the microglia population in the context of neurodegenerative 206 
diseases, as an alternative method to CSF1R modulation. 207 

2.2 Role of PU.1 in the modulation of microglial proliferation and activation  208 

The transcription factor PU.1 is also an important player in the development, proliferation and 209 
maintenance of microglia. PU.1, encoded by the gene Spi1, belongs to the ETS-family of transcription 210 
factors, and is a master regulator of myeloid and lymphoid development and function (Dakic et al., 211 
2005; McKercher et al., 1996; Scott, Simon, Anastasi, & Singh, 1994). This transcription factor binds 212 
to a purine-rich DNA sequence (PU.1-box) located upstream of the promoter of its targets and activates 213 
the expression of a great number of downstream genes (Pham et al., 2013). PU.1 has been shown to be 214 
necessary for the correct development and functional maintenance of the microglial population since 215 
it is continuously expressed from erythromyeloid progenitors to adult microglia (Kierdorf et al., 2013; 216 
Smith et al., 2013). In fact, PU.1-deficient mice show a complete loss of microglia and other myeloid 217 
cell types such as macrophages and monocytes, indicating that PU.1 regulates key genes involved in 218 
the differentiation and the maturation of hematopoietic cells and also microglia (Beers et al., 2006; 219 
McKercher et al., 1996). Satoh et al. identified 5,264 Spi1 target protein-coding genes in the mouse 220 
microglial cell line BV2 by chromatin immunoprecipitation (ChIP)-seq analysis, including Spi1 itself, 221 
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the transcription factors Irf8 and Runx1, Aif1 (Iba1), Csf1r and its ligands Csf-1 and Il-34. Interestingly, 222 
two-thirds (63%) of the genes that define the microglial sensome are PU.1 targets, suggesting that PU.1 223 
plays a pivotal role in the regulation of specific microglial functions (Satoh, Asahina, Kitano, & Kino, 224 
2014) such as cell survival, phagocytosis, antigen presentation, and morphology. Recently, a GWAS 225 
study has identified a common haplotype, rs1057233 (G), located in a previously reported AD risk 226 
locus (CELF1), which displays a reduced expression of PU.1 in human myeloid cells associated to 227 
delayed age of onset of AD (Huang et al., 2017). In fact, the alteration of PU.1 levels in mouse and 228 
human microglial cells affected the expression of many AD risk genes (Huang et al., 2017) and their 229 
phagocytic activity (Huang et al., 2017; Rustenhoven et al., 2018; Smith et al., 2013). The activation 230 
of microglia through PU.1 has been shown to be critical for the progression of Alzheimer’s disease 231 
(Gjoneska et al., 2015), emphasising the role of microglia at the onset of the disease. Similarly, the 232 
activation of microglia through PU.1 is observed in response to mutant Huntingtin aggregates present 233 
in Huntington´s disease, hypoxic-ischaemic insults and traumatic injury-induced neurodegeneration 234 
(Crotti et al., 2014; Walton et al., 2000; Zhou, Liu, Sun, Cao, & Yang, 2019). Moreover, a recent study 235 
published by Litvinchuk et al. demonstrated that PU.1 and the transcription factors Irf8 and Runx1 236 
were significantly upregulated in FACS-isolated microglia in the PS19 mouse model of tauopathy and 237 
AD (Litvinchuk et al., 2018). Together, these findings suggest that changes in the expression level of 238 
PU.1 may be a shared feature underlying several neurological disorders and highlight its modulation 239 
as a potential mechanism to control neuroinflammation. Studies using PU.1-/- mice have shown that 240 
complete loss of function of PU.1 results in stem cell failure (Antony-Debre et al., 2017), multiple 241 
hematopoietic abnormalities  and, ultimately, developmental mortality (McKercher et al., 1996), 242 
highlighting the importance of achieving partial inhibition of PU.1 in order to understand its potential 243 
roles in disease. Newly described pharmacological PU.1 inhibitors have been recently developed 244 
(Munde et al., 2014; Stephens et al., 2016) and tested in murine and human acute myeloid leukemia 245 
(AML) (xeno) transplantation models, decreasing leukemia progression without affecting normal 246 
hematopoietic differentiation (Antony-Debre et al., 2017). These small molecules disrupt the 247 
interaction of PU.1 with its binding sites next to the promoters of target genes and lead to the 248 
downregulation of PU.1 transcriptional targets, holding a high potential as tool compounds for 249 
evaluating the role of PU.1 in neurodegenerative diseases.  250 

3 CURRENT THERAPEUTIC STRATEGIES TARGETING MICROGLIA DYNAMICS 251 
AND POTENTIAL SIDE EFFECTS ON PERIPHERAL POPULATIONS 252 

To date, drugs available for AD are restricted to relieve its symptoms, with no treatments able to 253 
stop or delay the progression of this disease. The cognitive problems in early-to-moderate AD are 254 
treated with Acetylcholinesterase inhibitors (Donepezil, Rivastigmine and Galantamine) which block 255 
the degradation of acetylcholine and enhance cholinergic neurotransmission, deficient in AD. 256 
Additionally, patients are treated with Memantine which protects against the glutamate excitotoxicity 257 
seen in neurodegenerative disorders such as AD. Currently, there are an estimated number of 132 258 
agents in clinical trials for the treatment of AD, 30 in phase I of development, 74 in phase II and 28 in 259 
phase III. Among these agents, 96 (73%) are disease-modifying therapies; 38 (40%) and 17 (18%) of 260 
these have amyloid and tau as the primary target, respectively (Cummings, Lee, Ritter, Sabbagh, & 261 
Zhong, 2019). However, multiple failures to stop AD using similar strategies in the past have 262 
considerably increased the interest in other targets, such as those related to neuroinflammation, with 3 263 
agents currently in phase II and 2 agents in phase III clinical trials (Cummings et al., 2019). In addition, 264 
recent genetic evidence clearly link microglia function to AD pathogenesis, placing the spotlight on 265 
microglia as a potential target to treat AD.    266 
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Several microglial genes identified as robustly-associated with risk of LOAD are now under 267 
investigation as potential targets for drug development, such as APOE, TREM2, CD33 and CR1, 268 
amongst others (for review see (Biber et al., 2019; Hemonnot, Hua, Ulmann, & Hirbec, 2019). Despite 269 
the importance of the above cited targets and their strong link with AD pathogenesis, here we focus on 270 
those related to the modulation of the dynamics of the microglial population. Microglial cells share 271 
many functions, genes and developmental lineage with other cells of the myeloid lineage across 272 
different organs (Hoeffel & Ginhoux, 2018), which are required for the proper functioning of the 273 
immune system (Figure 1). Because these gene expression signatures are conserved, it is extremely 274 
important to evaluate the impact of anti-neuroinflammatory agents on the broader immune system. The 275 
therapeutic benefit of influencing a given cellular function in a given pathology may result in the 276 
alteration of the natural balance of the broader immune system, with unknown consequences frequently 277 
not taken into consideration. Here, we review the potential side effects of manipulating immune-related 278 
pathways on other populations of immune cells, located in different organs of the systemic 279 
compartment. 280 

Importantly, people with dementia usually have co-morbidities ranging from two to eight health 281 
conditions (Nelis et al., 2019). It is accepted that people with dementia have an average of 4 co-282 
morbidities, compared to an average of 2 in people without dementia of similar age (Poblador-Plou et 283 
al., 2014). A recent study across various care settings has reported that 61% of the people with AD had 284 
three or more co-morbidities (Nelis et al., 2019). Over 90% of people with dementia have at least 1 co-285 
morbidity, with some of these being often undiagnosed (Browne, Edwards, Rhodes, Brimicombe, & 286 
Payne, 2017). Some of the main co-morbidities significantly associated with dementia are cardiac 287 
arrhythmia, hypertension, congestive cerebrovascular disease, diabetes and depression (Nelis et al., 288 
2019). A common feature of several co-morbidities is a dysfunctional immune response. For example, 289 
obesity-related metabolic disorders, which are also risk factors for AD, are associated with alterations 290 
in the inflammatory status (Nguyen, Killcross, & Jenkins, 2014; Saltiel & Olefsky, 2017). Similarly, 291 
increasing evidence in recent years has demonstrated the important role of inflammation in the 292 
pathophysiology of diabetes (Tsalamandris et al., 2019), an age-related chronic disorder highly 293 
prevalent in AD patients (Nelis et al., 2019; Newcombe et al., 2018). Two of the most prevalent 294 
conditions associated to normal aging and dementia are cardiovascular disease and hypertension, both 295 
closely related to the above cited metabolic disorders (Lopez-Candales, Hernandez Burgos, 296 
Hernandez-Suarez, & Harris, 2017; Nelis et al., 2019). Similar to those, recent studies have supported 297 
the causal role of chronic inflammation in the development of these cardiovascular conditions (Lopez-298 
Candales et al., 2017; Ruparelia, Chai, Fisher, & Choudhury, 2017). Also, incidence of systemic 299 
infections, such as urine tract infection (UTI) and gum disease, is increased in Alzheimer’s, further 300 
accelerating the cognitive deterioration (Dominy et al., 2019; Doraiswamy, Leon, Cummings, Marin, 301 
& Neumann, 2002). Psychiatric disorders with elevated prevalence in AD, such as depression, have 302 
also been related to peripheral and central chronic inflammation, which seem to drive changes in 303 
neurotransmitters leading to depressive symptoms (Felger, 2019). On the opposite spectrum, a growing 304 
body of evidence suggests an inverse link between the incidence rates of cancer and AD, even though 305 
both are age-related disorders with significant immune involvement (Majd, Power, & Majd, 2019). 306 
Taken together, this evidence highlights the fact that the co-existence of age-related comorbidities is a 307 
crucial aspect to consider in the development of immunomodulatory therapeutic strategies for treating 308 
AD, which in turn may compromise the responsiveness and immune control of these co-morbidities.   309 

3.1. Inhibiting CSF1R in AD: target validation studies 310 

The therapeutic potential of inhibiting CSF1R has been proposed for inflammatory diseases, 311 
autoimmune disorders, bone diseases and cancer (Burns & Wilks, 2011). Targeted inhibition of CSF1R 312 
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signalling has the potential to treat a wide variety of neurodegenerative diseases associated with chronic 313 
neuroinflammation such as AD, PD, Huntington's disease, ALS, multiple sclerosis and psychiatric 314 
disorders. CSF1R can be blocked by at least two different approaches, i) using small-molecule 315 
inhibitors targeting the TK activity of the receptor or ii) antibodies that bind the receptor and block the 316 
interaction between CSF1R and CSF-1/IL-34. The first neutralising monoclonal antibody against 317 
CSF1R, AFS98, was produced by Sudo et al. (Sudo et al., 1995) and was shown to be effective in the 318 
control of CSF1-related functions in pathology. Some examples of its effectiveness are the reduction 319 
of macrophage accumulation in atherosclerotic lesions and diabetic nephropathy, the reduction of 320 
infiltrating macrophage proliferation in renal allografts and damaged skeletal muscle (for review see 321 
(Hume & MacDonald, 2012), and the local inhibition of microglial proliferation in the prion disease 322 
model ME7 (Gomez-Nicola et al., 2013). In contrast with these results, prolonged treatment with a 323 
different monoclonal anti-CSF1R antibody, M279, selectively removed tissue macrophages, including 324 
macrophages inside the tumours, but had no protective effect in several models of inflammation 325 
(MacDonald et al., 2010). This antibody is incapable of crossing the blood brain barrier (BBB), 326 
depleting microglia in the retina but not affecting the brain (Hume & MacDonald, 2012). It has also 327 
been shown that after prolonged treatment with M279 bone density and trabecular volume are increased 328 
due to the ablation of osteoclasts, preventing the reduction in bone mass observed in female mice with 329 
age. This long-term effect on bone remodelling suggests that M279 could potentially be used as a 330 
treatment for osteoporosis (Sauter et al., 2014). Importantly, a side effect of CSF1R blocking antibodies 331 
is related to the role of CSF1R in the clearance of CSF-1 from the circulation by endocytosis (Hume 332 
& MacDonald, 2012). CSF1R blockade causes a massive increase in the concentration of circulating 333 
CSF-1, and rebound monocytopoiesis (Hume & MacDonald, 2012). However, this effect does not 334 
occur when the TK activity of the receptor is blocked by kinase inhibitors, since this activity is not 335 
required for the internalization of CSF-1 (Hume & MacDonald, 2012). One of the most important 336 
features of kinase inhibitors, compared to antibodies, is that small molecules are able to block autocrine 337 
actions of endogenous CSF-1, which is highly expressed in some mouse inflammatory macrophages 338 
and drives the expression of inflammatory cytokines (Hume & MacDonald, 2012). One of the most 339 
selective and best characterized of the available TK inhibitors probably is GW2580. GW2580 inhibits 340 
the growth of CSF1-dependent tumour cells (Conway et al., 2005) and the recruitment of macrophages 341 
into growing tumours (Priceman et al., 2010). It has also been shown to exhibit antitumor activity in 342 
AML by blocking paracrine production of hepatocyte growth factor and other cytokines signalling 343 
from support cells (Edwards et al., 2019). GW2580 has beneficial effects, by blocking microglial 344 
proliferation, in several experimental models of multiple sclerosis (Crespo et al., 2011), prion disease 345 
(Gomez-Nicola et al., 2013), AD (Olmos-Alonso et al., 2016), ALS (Martinez-Muriana et al., 2016), 346 
spinal cord injury (Gerber et al., 2018) and PD (Neal et al., 2020). Using the APP/PS1 model of AD-347 
like pathology, we found diminished synaptic degeneration and improved behavioural and 348 
performance and learning after chronic inhibition of CSF1R with GW2580 (Olmos-Alonso et al., 349 
2016). A different CSF1R inhibitor with significant in vivo data available is Ki20227. This inhibitor 350 
has been shown to reduce the number of macrophages and associated pathology in models of 351 
inflammatory arthritis (Ohno et al., 2008) and encephalomyelitis (Uemura et al., 2008). However, 352 
Ki20227 reduced the numbers of Ly6G+ granulocytes, an effect that generates concerns about its 353 
specificity. There are some other TK inhibitors that block CSF1R but also have affinity for other 354 
kinases, as the orally available JNJ-28312141 (Hume & MacDonald, 2012). This inhibitor has 355 
specificity against CSF1R but also the related receptor FLT3 and has been shown to reduce 356 
macrophage numbers and limit tumour growth in several models of transplanted tumours as well as in 357 
a FLT3-dependent subset of AML (Manthey et al., 2009). Despite J&J had JNJ-28312141 in phase II 358 
clinical trials for the treatment of rheumatoid arthritis (RA), this was discontinued and replaced by JNJ-359 
40346527. This CSF1R inhibitor has been recently shown to repolarise microglia to a homeostatic 360 
phenotype and attenuate tau-induced neurodegeneration resulting in functional improvement in the 361 
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P301S mouse model of tauopathy (Mancuso et al., 2019). Currently, JNJ-40346527 is in phase II 362 
ongoing trials for AML (NCT03557970) and in phase Ib ongoing trials for AD (NCT04121208). 363 
Recently, a novel family of inhibitors developed by Plexxicon has been described to have a potent 364 
activity over CSF1R. PLX3397 (Pexidartinib) was shown to inhibit the survival of microglia and cause 365 
a fast depletion of the population in the healthy brain (Elmore et al., 2014). PLX3397 was shown to 366 
prevent neuronal degeneration, improving cognitive functions in the 5xFAD model of AD-like 367 
pathology (Sosna et al., 2018; Spangenberg et al., 2016). Similar results were obtained using the 368 
inhibitor PLX5622 in the 3xTg AD model (Dagher et al., 2015). However, PLX3397 also causes a 369 
potent inhibition of c-kit and PDGFRβ (Patwardhan et al., 2014), which may confound the observed 370 
effects on the microglial population. The inhibition of PDGFRβ and loss of PDGFβ signalling would 371 
affect the survival of NG2 pericytes, consequently damaging the BBB and influencing 372 
neurodegeneration (Montagne, Zhao, & Zlokovic, 2017). Despite the unknown side effects of these 373 
molecules in brain disease, PLX3397 is currently in phase II ongoing trials for several types of tumours 374 
such as sarcoma and glioblastoma (NCT01790503; NCT02584647). Another small molecule in 375 
development for AD is Masitinib, a pan-kinase TK inhibitor. AB Science SA is using Masitinib in 376 
phase III trials for patients with mild to moderate AD (NCT01872598), a wide variety of tumours such 377 
as gastrointestinal stromal tumours (NCT01694277), ALS (NCT02588677; NCT03127267) and 378 
multiple sclerosis (NCT01433497), based on the activity of the compound over CSF1R or c-kit, 379 
depending on the specific disease mechanism. In summary, many approaches have been designed to 380 
target the activity of CSF1R under neuroinflammatory conditions, and in coming years the field will 381 
collect valuable clinical information about their potential efficacy in AD.  382 

3.2. Systemic impact of CSF1R inhibition: can selectivity and safety be improved? 383 

According to the above cited studies, blocking the expansion of the microglial population 384 
results in a significant reduction of neuronal degeneration, leading to an improvement in the disease 385 
symptoms and survival. These results provide strong evidence of the potential application of CSF1R 386 
tyrosine kinase inhibitors as a promising approach to tackle microglial proliferation in 387 
neurodegeneration. However, although many CSF1R inhibitors are progressing to clinical trials, little 388 
is known about the impact of these approaches on the innate immune system. CSF1R is expressed in 389 
many cell types of the myeloid lineage, including tissue-resident macrophages, dendritic cells and their 390 
precursors (Chitu & Stanley, 2017). Therefore, the inhibition of CSF1R would not only affect 391 
microglia, but also other tissue-resident myeloid populations, possibly causing an immunosuppressive 392 
effect. 393 

A potential approach to block this pathway more selectively is by modulating the binding of its 394 
ligands, CSF-1 and/or IL-34, to increase tissue specificity and reduce side effects. This approach is 395 
based on the differential tissue-selectivity and functions of CSF-1 vs. IL-34, reported in the literature 396 
and discussed previously. The blockade of both ligands can be achieved by the use of specific 397 
antibodies directed against these cytokines, with beneficial effects in murine models of arthritis, colitis 398 
and ileitis (W. Lin et al., 2019). However, blockade of both ligands, separately or in combination, leads 399 
to altered macrophage homeostasis in healthy mice, reducing the numbers of macrophages in the 400 
intestine, liver, kidney, skin, bone marrow and microglia in the brain (Easley-Neal et al., 2019; W. Lin 401 
et al., 2019). In contrast to these observations, a recent study from our group shows that monocyte and 402 
macrophage populations in peripheral tissues were not affected after the selective blockade of IL-34 in 403 
healthy mice , except for the skin-resident Langerhans cells (Obst et al., 2020). However, the number 404 
of monocytes and macrophages were significantly decreased after blockade of CSF1R, in accordance 405 
with the wider expression of the receptor. Despite the microglial population was not affected after 406 
systemic administration of anti-IL-34 antibodies, due to their low brain penetrance, we observed a local 407 
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reduction of microglia proliferation after the intracerebral injection of anti-IL-34 antibodies in mice 408 
infected with prion disease, showing that IL-34 is a key driver of microglial proliferation in the context 409 
of neurodegenerative disease (Obst et al., 2020). Our results support that modulation of the microglial 410 
response via IL-34 blockade could be a potential and more selective therapeutic approach in 411 
neurodegenerative diseases (Obst et al., 2020). A similar therapeutic approach modulating the 412 
granulocyte-macrophage colony stimulating factor (GM-CSF) instead of targeting its receptor is 413 
currently in a phase II clinical trial for AD (NCT01409915), which has been recently completed 414 
although no results have been published yet. Testing of this recombinant human factor, named as 415 
Sargramostim, for AD is based on published results regarding GM-CSF role in AD mouse models, in 416 
which GM-CSF seems to reduce brain amyloidosis and reverse cognitive impairment by increasing 417 
microglial density and their activation state (Boyd et al., 2010; Kiyota et al., 2018). However, some 418 
studies have reported an increased expression of GM-CSF in AD patients (Tarkowski, Wallin, Regland, 419 
Blennow, & Tarkowski, 2001) and a beneficial role of blocking this factor using an anti-GM-CSF 420 
antibody in a mouse model of AD (Manczak et al., 2009). Nevertheless, the potential side effects of 421 
this approach on other myeloid populations are unknown, supporting the idea that more studies are 422 
necessary to understand the effects of modulating these molecules in neurodegenerative diseases and 423 
their potential on-target effects on tissue resident macrophages. 424 

The functions of CSF-1, IL-34 and CSF1R in monocyte-macrophage differentiation have been 425 
demonstrated through the study of specific genetic mutations in mice, rats and humans (Chitu & 426 
Stanley, 2017; Hume & MacDonald, 2012). Mice and rats with Csf-1 loss-of-function mutations have 427 
deficiencies in many tissue macrophage populations and are severely osteopetrotic, due to the lack of 428 
osteoclasts (Dai et al., 2002). Pleiotropic effects including severe postnatal growth retardation, 429 
neurological and reproductive deficiencies, highlight the important trophic roles of CSF1-dependent 430 
macrophages (Wynn, Chawla, & Pollard, 2013). By contrary, IL-34 mutation is less severe, only 431 
depleting microglia and Langerhans cells, consistent with its restricted regional expression (Wang et 432 
al., 2012). CSF1R knockout mice display a severe phenotype characterised by limited survival after 433 
the weaning phase (Chitu, Gokhan, Nandi, Mehler, & Stanley, 2016). Interestingly, a recent study has 434 
shown that genomic deletion of FIRE, a highly conserved Csf1r enhancer, ablates specifically 435 
microglia and resident macrophages in some tissues such as the skin, kidney, heart and peritoneum 436 
(Rojo et al., 2019). They demonstrate that Csf1rΔFIRE/ΔFIRE mice are healthy and fertile, not showing the 437 
severe postnatal growth retardation and developmental abnormalities observed in Csf1r−/− rodents 438 
(Rojo et al., 2019). In humans, the hypomorphic mutation in CSF1R causes hereditary diffuse 439 
leukoencephalopathy with spheroids, a disease originated from the loss of myelin and the destruction 440 
of axons (Wynn et al., 2013). Homozygous mutations in CSF1R in human leads to premature death, 441 
linked to severe brain abnormalities including hydrocephaly, hypomyelination and abnormal bone 442 
growth (Oosterhof et al., 2019). Given the central role of macrophages in fighting infection (Figure 1), 443 
long-term blockade of the CSF1R/CSF-1/IL-34 axes could compromise the response to infection. In 444 
fact, mice infected with Listeria monocytogenes and treated with antibodies against CSF-1/IL-34 were 445 
more susceptible to the bacterial infection, showing that these approaches might be immunosuppressive 446 
in the rodent Listeria model (W. Lin et al., 2019). Similar results were obtained in a model of viral 447 
encephalitis, where the inactivation of CSF1R using a tyrosine kinase inhibitor reduced circulating 448 
antigen-presenting cells in the blood leading to a higher susceptibility to lethal West Nile virus 449 
infection (Funk & Klein, 2019).  This study shows the importance of CSF1R in myeloid cell responses 450 
that involve the restriction of viral replication, and the local restimulation of recruited antiviral T cells 451 
within the CNS (Funk & Klein, 2019). On the other hand, a different CSF1R TK inhibitor showed a 452 
good safety and tolerability profile after 3 months treatment in patients with RA, causing only an 453 
alteration in Kupffer cell function (Figure 1) (Genovese et al., 2015). Kupffer cells may have a role in 454 
clearing several serum enzymes, including alanine aminotransferase and aspartate aminotransferase, 455 
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which are often used as indicators of hepatic  injury during medical tests and clinical trials (W. Lin et 456 
al., 2019; Radi et al., 2011). The reduction in the population of Kupffer cells after treatment with anti-457 
CSF-1/IL-34 antibodies correlated with an increase of these enzymes in the serum of rodents and 458 
monkeys, although no histopathological evidence of liver injury was observed (W. Lin et al., 2019; 459 
Radi et al., 2011). Importantly, the detection of high liver enzyme activity, unrelated to hepatocellular 460 
injury, may compromise clinical monitoring of liver injury, an aspect to take into consideration with 461 
therapeutics that target macrophages (W. Lin et al., 2019). Bone formation and resorption is also a 462 
process influenced by CSF1-CSF1R signalling (Figure 1). CSF-1 is produced in the bone marrow by 463 
osteoblasts, binding to CSF1R located on the surface of osteoclast precursors, giving rise to the 464 
formation of osteoclasts (El-Gamal et al., 2018). Mice lacking CSF-1 are unable to generate 465 
osteoblasts, leading to low bone density and osteoporosis (El-Gamal et al., 2018). However, CSF1R 466 
inhibition would likely lead to increased bone density and abnormal bone growth due to a decrease in 467 
osteoclast numbers. This may result in the development of Paget´s disease, which is characterised by 468 
enlarged and misshapen bones. Another effect of CSF-1 deficiency in the macrophage-deficient 469 
Csf1op/Csf1op model is an insulin mass deficit due to the reduction of pancreatic β cell proliferation 470 
and abnormal islet morphology in the pancreas (Banaei-Bouchareb et al., 2004). In fact, the addition 471 
of CSF-1 to embryonic pancreas explants caused a higher differentiation of β cell and increased 472 
production of insulin (Geutskens, Otonkoski, Pulkkinen, Drexhage, & Leenen, 2005). However, 473 
macrophage ablation in the pancreas and adipose tissue after long-term anti-CSF1R treatment (Figure 474 
1), had no effect on average size or distribution of β cells within islets of Langerhans, detected by 475 
immunostaining for insulin (Sauter et al., 2014).  Despite the decrease in tissue resident macrophages 476 
in many organs after the treatment with an anti-CSF1R antibody, Sauter et al. did not observe any overt 477 
pathology in hematoxylin and eosin sections of different organs (Sauter et al., 2014). In summary, 478 
CSF1R/CSF-1/IL-34 blocking strategies have different effects on tissue-resident macrophages and 479 
other cell types of the systemic compartment, leading to a dysregulation of the tissue homeostatic 480 
functions (Figure 1). Likewise, any therapeutic approach directed against potential microglial targets, 481 
e.g. TREM2, inflammasome, among others, is expected to have a comparable impact on peripheral 482 
immune cell populations and organ function. Therefore, we need further investigation of the potential 483 
side effects of manipulating immune-related pathways to modulate the microglial population during 484 
neuroinflammation, in order to design and develop highly specific therapeutic agents.   485 

4 CONCLUSION 486 

Over recent years the field of study of the contribution of neuroinflammation to AD has 487 
undergone a revolution. The number and quality of preclinical studies has increased, leading to some 488 
very promising early clinical studies, using agents directed against neuroinflammatory targets. In 489 
coming years this field will finally start to collect some critical clinical data, which will allow, once 490 
and for all, to address the hypothesis that neuroinflammation is a driver of neurodegeneration in AD. 491 
These early promising studies should not distract the field from trying to find better, more refined, 492 
approaches, to overcome the anticipated significant impact over the broader immune system. In the 493 
meantime, it is crucial to start to understand the impact of targeting key neuroinflammatory pathways 494 
on the function of other tissue-resident macrophages, and the key organ functions they are responsible 495 
for. If any of the postulated anti-neuroinflammation agents succeeded to progress to longer trials or 496 
eventually to enter market, it is anticipated that the AD target population would be exposed for very 497 
prolonged periods of time to agents influencing their immune balance. Considering AD patients are 498 
often multimorbid, this would have unknown consequences over their responsiveness to infection or 499 
the control of their immune-related co-morbidities.  500 

 501 
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 972 

Figure 1. CSF1R/CSF-1/IL-34-dependent tissue-resident macrophage key functions.  973 

CSF1R-, CSF1- and IL-34-dependent macrophage populations perform key functions to maintain 974 
homeostasis in different organs. Microglia, the main resident macrophages in the brain, are responsible 975 
for many critical functions during development and adulthood including support of neurogenesis, 976 
synaptic formation and pruning, and phagocytosis of apoptotic neurons and debris in the extracellular 977 
space (Colonna & Butovsky, 2017; Li & Barres, 2018). In the lungs, alveolar macrophages are 978 
responsible of the clearance of inhaled pathogens and particles (Davies, Jenkins, Allen, & Taylor, 2013; 979 
Maus et al., 2002), and they also play a critical role in the maintenance of alveolar homeostasis by 980 
clearing lipoprotein-containing alveolar surfactant produced by alveolar epithelial cells (Dranoff et al., 981 
1994; T'Jonck, Guilliams, & Bonnardel, 2018). Kupffer cells, the resident macrophages in the liver, 982 
are involved in many immune and homeostatic functions such as clearing gut-derived toxins and 983 
pathogens from the blood, removal of damaged erythrocytes, as well as iron, bilirubin and cholesterol 984 
metabolism (Ganz, 2012; T'Jonck et al., 2018). The spleen contains multiple subsets of macrophages 985 
such as red pulp macrophages, located in the red pulp of the organ. They play a vital role in the 986 
clearance of senescent red blood cells and iron recycling (Kurotaki, Uede, & Tamura, 2015; T'Jonck 987 
et al., 2018). Next to red pulp macrophages, the spleen also contains marginal zone macrophages which 988 
are involved in the detection of antigens present in the bloodstream (den Haan & Kraal, 2012; Kierdorf, 989 
Prinz, Geissmann, & Gomez Perdiguero, 2015). Adipose-associated macrophages, present in the 990 
pancreas and adipose tissue all over the body, fulfil different functions such as removal of dead 991 
adipocytes, regulation of adipocyte lipolysis, storage and release to the bloodstream of excessive 992 
adipocyte-released lipids, and participation in the control of insulin sensitivity (Boutens & Stienstra, 993 
2016; Odegaard et al., 2007; T'Jonck et al., 2018). Macrophages in the gastrointestinal tract 994 
continuously interact with the intestinal microbiome and maintain intestinal homeostasis regulating the 995 
immune response to commensals and defending the tissue against pathogens (Davies et al., 2013; 996 
Zigmond & Jung, 2013). Langerhans cells are resident macrophages in the skin, involved in tissue 997 
surveillance, and uptake and transport of antigens to the skin-draining lymph nodes (Chorro & 998 
Geissmann, 2010; Kierdorf et al., 2015; T'Jonck et al., 2018). Renal macrophages play several roles 999 
such as surveillance of the environment, phagocytosis of pathogens and debris present in the 1000 
extracellular matrix as well as support for nephrogenesis (Nelson et al., 2012). Circulating Ly-6Clo 1001 
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monocytes are the predominant macrophage subset in the blood, acting as “intravascular housekeepers” 1002 
in the clearance of endothelial cell debris as well as entering other tissues for the replenishment of 1003 
tissue macrophage populations (Carlin et al., 2013; Gordon, Pluddemann, & Martinez Estrada, 2014). 1004 
Finally, different types of macrophages play critical roles in the bone. Osteoclasts are large 1005 
multinucleated macrophages in charge of maintaining bone homeostasis and structure by resorption of 1006 
the bone matrix produced by osteoblasts (Davies et al., 2013; T'Jonck et al., 2018), whereas bone 1007 
marrow macrophages support erythropoiesis and maintain hematopoietic stem cells in stem cell niches 1008 
(Chow et al., 2013; Chow et al., 2011; Davies et al., 2013). Considering the shared myeloid lineage of 1009 
all these macrophage populations, it is anticipated that the immune and homeostatic key functions 1010 
above described are susceptible to be affected by the immunomodulatory strategies to reduce 1011 
neuroinflammation.    1012 
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