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Merging Cu-catalysed C-H functionalisation and intramolecular 
annulations: computational and experimental studies on an 
expedient construction of complex fused heterocycles 
Timothy L. Wootton,§a Jack A. Porter,§a Karmjit S. Grewal,§a Paula G. Chirila,a Sarah Forbes,a Simon 
J. Coles,b Peter N. Horton,b Alex Hamilton*a and Christopher J. Whiteoak*a 

Intramolecular annulation reactions provide a powerful opportunity to access complex heterocyclic compounds with higher 
complexity than intermolecular conversions. This report details how, previously unknown fused dihydrobenzofuran-
isoquinolone compounds, exhibiting an unusually strained shared aromatic unit, can be readily obtained from simply 
prepared benzamide derivatives bearing a tethered alkyne moiety, using copper C-H bond functionalisation catalysis. The 
mechanism has been proposed based on detailed DFT and topological analysis studies, and shows that the two key 
heterocycles are formed during distinct mechanistic steps; the dihydrobenzofuran arises from a migratory insertion and the 
isoquinolone from the following reductive elimination, resulting in an efficient Double Annulation Reaction (DAR). Actually, 
the results present an unprecedented migratory insertion of alkynes with benzamides when using copper as catalyst with 
the 8-aminoquinoline directing group and also study why the intermolecular variant is not operative.

Introduction 
Over recent years there has been a surge of interest in the 
development of new synthetic protocols based on direct C-H 
bond functionalisation, either as a late or early stage synthetic 
tool.1,2 Of these approaches, the field of metal-mediated C-H 
bond functionalisation has drawn significant attention, with 
recent major breakthroughs being highly prized using abundant 
3d transition metals in place of more expensive and less 
abundant 4d and 5d analogues.3 In general, these protocols fall 
into two distinct categories; (a) linear additions where a C-H 
bond is simply elaborated with a new functional group and (b) 
Single Annulation Reactions (SARs) which result in the 
formation of useful single heterocyclic compounds which are 
often otherwise challenging to synthesise.4 One particular 
substrate which has attracted significant attention is the 
benzamide bearing a bidentate 8-aminoquinoline directing 
group (Scheme 1a),5 which was originally introduced by 
Daugulis in the mid-2000’s.6 In terms of annulation reactions 
with this aforementioned substrate, one of the most common 
coupling partners reported to date are alkynes, which have 
been used to efficiently synthesise highly prized isoquinolone  

 
Scheme 1 Intermolecular annulation of alkynes to benzamides bearing the 8-
aminoquinoliine directing group and in intramolecular variants using alkenes an alkynes. 

and isoindolinone derivatives with a range of 3d and 4d 
catalysts.7-10 Isoquinolone and its derivatives are considered to 
be privileged scaffolds in medicinal chemistry and as a result, 
new methods for their preparation as well as the development 
of novel derivatives has potential to make significant impact.11   

Current research in our group focuses on the development 
of protocols for rapid access to heterocyclic compounds 
through the use of cheap and readily available benzamide 
starting compounds, using C-H functionalisation as the key  
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Table 1 Optimisation studies.a 

 

Entry Deviation from standard conditions Yield of 2a (%)b 
1 none 77 
2 nitrogen atmosphere 6 
3 Mn(OAc)3.2H2O instead of Mn(OAc)2.4H2O trace 
4 AgOAc instead of Mn(OAc)2.4H2O trace 
5 NaOAc instead of NaOPiv.xH2O 37 
6 CsOPiv.H2O instead of NaOPiv.xH2O 41 
7 KOPiv.H2O instead of NaOPiv.xH2O 57 
8 60 oC instead of 80 oC trace 
9 100 oC instead of 80 oC 61 

10 Co(acac)3 instead of Cu(OAc)2 n.d. 
11 Co(OAc)2 instead of Cu(OAc)2 n.d. 
12 1,2-DCE instead of TFE n.d. 
13 no Cu(OAc)2 n.d. 
14 no Mn(OAc)2.4H2O 30 
15 2.0 mmol scale reaction 68c 

16 
intermolecular reaction: N-(quinolin-8- 
yl)benzamide and 1-phenyl-1-propyne 

n.d. 

aConditions: benzamide (0.10 mmol), Cu(OAc)2 (20 mol%, 0.02 mmol), 
NaOPiv.xH2O (1.5 equiv., 0.15 mmol), Mn(OAc)2.4H2O (2.0 equiv., 0.20 mmol) in 
TFE (1.0 mL) at 80 oC under air for 18 h. bYields of 2a calculated from 1H NMR of 
crude reaction mixture using mesitylene as internal standard. cIsolated yield. n. d. 
= not detected. 

tool,12,13 a field which is attracting a lot of attention.14 One 
method to potentially and easily achieve even higher molecular 
complexity is to include the coupling partner as part of the 
substrate, thus operating through an intramolecular approach 
and providing the opportunity for Double Annulation Reactions 
(DAR’s). In this context, a novel route towards fused 
dihydrobenzofuran-dihydroisoquinolone compounds from 
benzamides with tethered olefins, operating through a DAR 
approach, was reported independently by the groups of Rovis 
and Glorius in late 2013/early 2014 utilising relatively expensive 
rhodium catalysts (Scheme 1b).15 Surprisingly, in both of these 
reports no efforts were made to convert benzamides with 
tethered alkynes, thus realising the corresponding analogous 
fused dihydrobenzofuran-isoquinolones. 

To this end, the recent report by Maji, applying cobalt C-H 
functionalisation catalysis for an intramolecular SAR approach 
to the synthesis of benzofurans and benzofuranones was of 
significant interest (Scheme 1c).16 In this work, for the first time, 
benzamides with tethered alkynes were used as substrate in 
combination with a 3d transition metal, although the products 
with a DAR, as with the previous work from Rovis and Glorius, 
were not achieved. As a result, we surmised that through use of 
the stronger bidentate 8-aminoquinoline directing group, 
pioneered by Daugulis, in combination with cobalt catalysis, it 
would be possible to extend the work of Maji and provide a 
route towards previously unreported fused dihydrobenzofuran-
isoquinolone compounds, thus expanding chemical space. As 
will be described herein, an unexpected copper-catalysed C-H 
functionalisation DAR approach has actually been developed for 

the synthesis of the target fused dihydrobenzofuran-
isoquinolone compounds (Scheme 1d), which is complimented 
with a full study of the unique mechanistic complexities through 
a DFT investigation. 

Results and discussion 
With substrate 1a in hand (which can be readily prepared in high 
yield), our initial approach was to transfer the cobalt-catalysed 
conditions from the intermolecular SAR of benzamides bearing 
the 8-aminoquinoline substrate and alkynes reported by 
Daugulis.7a However, to our dismay, these initial reactions failed 
to provide any of the desired fused heterocyclic product (2a). 
When Co(OAc)2 was replaced with Cu(OAc)2, to our surprise a 
77 % yield of target compound 2a could be obtained (Table 1, 
entry 1). This result was unexpected as migratory insertion 
reactions of internal alkynes with the intermolecular variant of 
this reaction are currently unknown, except with highly reactive 
arynes in copper-catalysis (Scheme 2). Indeed, previously, only 
isoindolinones and not isoquinolines have been prepared using 
copper catalysis and terminal alkynes (Scheme 2).17 It should 
also be noted that the reaction takes place in the presence of 
air, making this a very appealing and easily applied protocol. 
However, in the absence of oxygen (nitrogen atmosphere; Table 
1, entry 2), the reaction is significantly retarded, indicating that 
oxygen form air acts as the terminal oxidant as has been 
previously observed by Daugulis for the intermolecular Co(II) 
catalysed variant of this reaction.7a Upon further changing the 
reaction conditions, in order to attempt further optimization, 
no further improvement in the yield could be made (Table 1). 
Notably, it was still possible to obtain 30 % yield in the absence 
of the Mn(OAc)2.4H2O additive, although when Mn(OAc)3.2H2O 
was used instead of Mn(OAc)2.4H2O, only trace product was 
observed (Table 1, entry 2), which is in line with the cobalt-
catalysed intermolecular work reported previously by 
Daugulis.7a The procedure was also attempted on a 2.0 mmol 
scale, where it was found to be amenable to larger scale and a  

 
Scheme 2 Reported intermolecular annulations of benzamides with 8-aminoquinoline 
substrates with alkynes. 
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Scheme 3 Scope and isolated yields of the copper-catalysed intramolecular 
annulation reaction. Conditions: benzamide (0.50 mmol), Cu(OAc)2 (20 mol%, 0.10 
mmol), NaOPiv.xH2O (1.5 equiv., 0.75 mmol), Mn(OAc)2.4H2O (2.0 equiv., 1.00 
mmol) in TFE (5.0 mL) at 80 oC under air for 18 h. aObtained as a mixture of two 
inseparable isomers, 2m and 2m’ (see Supporting Information). n. d. = not 
detected.  

68 % isolated yield was achieved (Table 1, entry 14). The 
intermolecular variant using 1-phenyl-1-propyne was tested for 
completeness and found not to work with this new copper-
catalysed protocol, whilst operating successfully when cobalt 
catalysis is employed (Scheme 2 and Table 1, entry 15). This final 

result indicates the complementarity and importance of the 
newly developed procedure to the already reported 
intermolecular cobalt work. 

The following step was to study the wider applicability of the 
developed protocol. As the target of our research programme is 
to provide access to increased molecular complexity thorough  
the use of readily available reagents, the logical substrate scope 
was to make derivatives based on variation at the aromatic 
moiety of the tethered alkyne. These modifications can be easily 
affected through a Sonogashira coupling to the terminal alkyne 
(see supporting information for details). Pleasingly, it was 
possible to convert a variety of different substrates with both 
electron-withdrawing and electron-donating substituents being 
tolerated (Scheme 3). However, there are a several exceptions; 
the phenolic substrate (1k) could not be converted, although 
protection of this compound as the benzyl ester (1l) provided a 
route towards the derivative product (2l) in good yield. In the 
case of conversion of naphthyl substituted substrate (1m), an 
inseparable mixture of the two possible optical isomers was 
obtained (see supporting information for full information). 
Finally, the terminal alkyne (1o) could not be converted. This 
latter observation is not surprising as with the intermolecular 
variants of this reaction with cobalt, the alkyne preferentially 
inserts to give the substituted end of the terminal alkyne next 
to the amide,7 which is not accessible with the intramolecular 
tethered example described here. To further confirm the 
structural motif of the fused heterocyclic compounds, a crystal 
structure of the methyl substituted product (2p) was obtained 
(Scheme 3). Interestingly, the 3 fused rings result in some 
significant distortions from idealised geometries. Studies with  

 

Figure 1 Top: Calculated structure (PBE0-D3BJ/def2-tzvp) for complex A and 
complex Ai. Middle: The Reduced Density Gradient (RDG) isosurface plot 
(value of 0.5). Bottom: Plot of the RDG versus sign(λ2)ρ, highlighting Non-
Covalent Interactions (NCI) for each structure. 
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Table 2 QTAIM topological analysis and tabulated parameters highlighting line 
critical points for the stabilizing non-covalent interactions in A. No comparative 
interactions were located for Ai. 

 

 Line critical points (lcp) 
QTAIM 1 2 3 4 5 

ρ 0.017 0.015 0.006 0.005 0.005 
∇2ρ 0.051 0.049 0.021 0.015 0.015 
V(r) -0.012 -0.009 -0.003 -0.002 -0.002 
G(r) 0.013 0.011 0.004 0.003 0.003 
H(r) 0.0002 0.002 0.001 0.001 0.001 

 

Mogul20 suggested that eight of the angles were unusual (see 
Figure S106, Supporting Information). Of particular note is the 
internal angle of the nitrogen (angle “a”) of 126.42(12)°, that is 
more obtuse than any of the known suggested similar 
structures (121.85-125.40°). Similarly, the external angle to the 
5-member ring (angle “b”) of 135.42(12)° vs 126.21-130.62° is 
unexpected. Further, looking at the 3 angles around C2 (angles 
“c-e”; ideally should all be 120°) of 116.59(11), 116.91(13) and 
126.48(12)°. These type of distortions of the benzene rings have 
been previously well studied by Taddei.21 Pleasingly, these 
distorted angles are also present in the calculated structures 
arising from the following DFT study (see coordinates in the 
Supporting Information). 

Next, in order to fully understand the experimental 
observations and elucidate the unusual mechanism, we turned 
to DFT calculations (see supporting information for 
computational details). Recent work by Duan and Zhang9b on a 
related copper-catalysed C-H activation of acrylamides using in-
situ formed arynes as coupling partners, calculated the initial 
acetate assisted N-H deprotonation to form the resulting 
bidentate complex (equivalent to complex A, Figures 1 and 2), 
with a barrier of only 7.2 kcal mol-1. Based on this low barrier of  

 
Figure 2 Calculated free energy surface (ΔG298K), PBE0-D3BJ/def2-tzvp, for the mechanism of the copper-catalysed intramolecular annulation reaction. Note: Structure of the 
transitions state for the Mn(II) assisted migratory insertion step is highlighted in the blue box. 
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activation we choose to start our mechanistic investigation 
from this resulting complexed species. Complex A is the regio-
determining intermediate, with the potential for C-H activation  
at either of the distinct ortho-positions. Calculation of 
complexes A and Ai (Figure 1) sheds light on an interaction 
which enhances the regioselectivity for the C-H activation step, 
with complex A being 2.9 kcal mol-1 more stable. This increase  
in stability, and reactivity in what would be considered the more 
sterically congested and thus less-favoured position, is due to 
the increased non-covalent interactions between the directing 
group quinoline ring and phenyl of the intramolecular coupling 
partner. Additionally and significantly, which sheds light on why 
this intramolecular reactions occurs, the conformation of the 
alkyne group leads to a closer Cu···H interaction for A (2.39Å 
compared to 2.67 Å in Ai) and a long-range hydrogen bonding 
(2.7Å) interaction between the CH2 of the tethered alkyne 
moiety and the copper bound acetate oxygen (line critical 
points 1 and 3 in Figure 2). The Reduced Density Gradient (RDG)  
isosurface and NCI plots (Figure 1) as well as Quantum Theory 
of Atoms in Molecules (QTAIM) topological analysis, using the 
Multiwfn software,22 highlights and quantifies these stabilizing 
interactions (Table 1). The low-density low gradient spikes in 
the plot of the RDG versus sign(λ2)ρ for complex A, in Figure 1, 
show a significant increase in stabilising non-covalent    
interactions, in the range of ±0.005 (π···π interactions) and -0.02 
(hydrogen bonding), compared to complex Ai.23 Analysis of the 
line critical points in Table 2 highlights the strength and 
characteristics of the non-covalent interactions, with lcp 1, 2 
and 3 (hydrogen bonding) being the dominant interactions 
compared the weaker π···π interactions (lcp 4 and 5). 

With an inspection of the regioselectivity in hand, we turned 
our attention to full elucidation of the reaction mechanism 
(Figure 2). From complex A an acetate assisted Concerted 
Metallation Deprotonation (CMD) step produces the five- 
membered metallocycle intermediate, complex B, via tsA-B, with 
a free energy (ΔG298K) barrier of 23.1 kcal mol-1. The observed 
regioselectivity is also again accounted for by the higher barrier 
for tsAi-Bi of ΔΔG‡

298K of 0.6 kcal mol-1. Direct oxidation of 
complex A to the Cu(III) variant was found to be energetically 
unfeasible via both a SET mechanism (37.2 kcal mol-1) and 
addition of AcO- (63.5 kcal mol-1). The exergonic and 
entropically favourable loss of AcOH from complex B leads to 
intermediate complex C, which has the intramolecular tethered 
alkyne occupying the already vacant coordination site of the 
copper centre. Migratory insertion of the tethered alkyne, 
passing via tsC-D, forms the 5-membered dihydrobenzofuran 
part of the heterocycle, related to the intermediate resulting in 
the work of Maji,16 to form complex D. From the calculated 
surface, this step is the rate determining step of the mechanism, 
with a barrier of 27.8 kcal mol-1. This differs from the 
intermolecular study of Duan and Zhang using arynes9b where it 
was implicated that C-H activation was the rate determining 
step. This difference can be accounted for due to the increased 
reactivity of aryne species compared to the more common and 
less reactive internal alkynes. The addition of the Mn(OAc)2 
additive was studied and the results indicate that it has an 
important effect on the turnover determining step (tsC-D), 

reducing the barrier height by approximately 3.0 kcal mol-1 
(Figure 2). This improved reactivity with the inclusion of 
Mn(OAc)2 is observed experimentally (Table 1; entries 1 and 
14), with an increase in yield upon inclusion of Mn(OAc)2.4H2O. 
Furthermore, for completeness, the analogous intermolecular 
alkyne insertion for the copper-catalysed system described in 
this work has a barrier height of 41.6 and 42.6 kcal mol-1 for 1-
phenyl-1-propyne and 3-phenyl-2-propyn-1-ol respectively (see 
Figure S1), suggesting the intramolecular migratory insertion for 
the newly developed protocol is energetically less demanding. 
The increase in energy requirements for the intermolecular 
reaction is due to the unfavourable entropic contributions from 
the incoming external coupling partner. Isomerization of 
complex D to the more stable complex E, prior to 
disproportionation with Cu(OAc)2, leads to the Cu(III) 
intermediate complex F. A barrierless reductive elimination 
step then occurs, through tsF-G, resulting in complex G, which 
then produces the fused heterocyclic product and the catalyst 
can then also regenerate via another disproportionation 
reaction. Cu(III) barrierless reductive elimination pathways have 
previously been reported by Roithová and Ribas.24 Finally, direct 
reductive elimination from complex E, a Cu(II) to Cu(0) process, 
was explored with and without explicit TFE solvent 
coordination. Both reaction barriers, tsE-H, were calculated to be 
approximately 8.0 kcal mol-1 higher in energy than the discussed 
Cu(III) to Cu(I) reductive elimination step (see Figure S2). 
Cu(I)/Cu(II)/Cu(III) catalytic cycles have previously been 
proposed by Zeng and Zhao, albeit operating through a radical 
process, but encompassing the key Cu(II)/Cu(III) step confirmed 
in this study.25 

Overall, based on the DFT study, the mechanism depicted in  
Scheme 4 is proposed to be operative. Initially, the copper 
coordinates to the substrate, which is followed by C-H bond 
activation through a CMD step. This organometallic complex 
results in the alkyne being in close proximity to the Cu(II) centre,  
 

 
 

Scheme 4 Proposed mechanism for the copper-catalysed intramolecular 
annulation reaction producing the fused heterocyclic compounds. Note: the 
migratory insertion step is enhanced by the presence of Mn(II). 
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which leads to weak coordination to the vacant coordination 
site. Thereafter, the alkyne reacts with the organometallic 
complex through a migratory insertion, resulting in the 
formation of the dihydrobenzofuran heterocycle. 
Disproportionation of the Cu(II) species to a Cu(III) species 
provides an unstable organometallic complex which thereafter 
undergoes a facile reductive elimination forming the 
isoquinolone heterocycle and thus the target novel fused 
heterocyclic product. 

Conclusions 
In conclusion, we have developed a novel and easily applied 
copper-catalysed protocol for the preparation of previously 
undescribed complex fused heterocyclic compounds, where 
oxygen from air appears to be the terminal oxidant. This work 
demonstrates the power of C-H functionalisation technologies 
for realising new previously unexplored/inaccessible chemical 
space. The equivalent intramolecular protocol is not operative 
under cobalt catalysis, in contrast to the previously reported 
intermolecular variant of this reaction. Full mechanistic 
understanding from DFT calculations gives an insight into the 
intriguing copper-catalysed reaction and also why the 
intermolecular reaction does not proceed with copper. 
Interestingly, the observed selectivity for the C-H activation step 
is directed via unusual non-covalent interactions, which have 
been further explored by topological analysis. The reaction 
described here is, to the best of our knowledge, the first 
example of a copper-catalysed migratory insertion of an alkyne 
to a benzamide with an 8-aminoquinoline directing group, likely 
possible due to the intramolecular interactions disclosed in the 
DFT study. 
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