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Abstract

We provide an innovative theory-based explanation for the positive relation-
ship between firms’ R&D intensity and their degree of R&D cooperation. We
show that, when oligopolistic firms decide on long-term R&D investment before
forming research clusters among competitors, investment incentives are increased
by the desire to become a member of an attractive cluster. This can result in
over-investment compared to the welfare optimum and compared to a scenario
where research clusters are ex-ante fixed. Thereby, as a theoretical contribution,
we fully characterize the equilibria of the unanimity game on cluster formation
with heterogeneous firms.
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1 Introduction

R&D Cooperations between competing firms' play a crucial role in many industries
(see e.g. Hagedoorn, 2002; Powell et al., 2005; Roijakkers and Hagedoorn, 2006). Firms
cooperate on R&D by e.g. forming research joint ventures, exchanging information, or
sharing laboratories and facilities. The main motivations for firms to enter such R&D
cooperations are knowledge and technology transfers from the partners and therefore

*The authors would like to thank Francis Bloch, Fernando Vega Redondo, Adam Szeidl, Paul
Omerod, Marc Roberts, Yves Zenou, and two anonymous referees for helpful comments.

tDepartment of Business Administration and Economics and Center for Mathematical Eco-
nomics, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany. Email: hdawid@wiwi.uni-
bielefeld.de.

fCorresponding Author: Department of Economics, University of Southampton, Highfield Campus,
Southampton SO17 1BJ, United Kingdom. Email: t.hellmann@soton.ac.uk.

! Although empirical studies show that many R&D cooperations between firms are vertical (i.e. with
suppliers or customers), also a large number of horizontal cooperations between competing firms is
observed, where this type of cooperation is most frequent in high-technology sectors (see Miotti and
Sachwald, 2003). Examples for horizontal R&D cooperations include the Global Hybrid Cooperation
between GM, Daimler, Chrysler, and BMW for the development of hybrid cars, the cooperation
between Sony and Samsung for the development of TEFT-LCD screens, or the cooperation between
Lenovo and NEC to develop tablet computers.



the choice of the partners is of crucial importance (see Cassiman and Veugelers, 2002;
Miotti and Sachwald, 2003; Krammer, 2016; Li et al., 2019).

Concerning partner choice, an important trade-off has been documented across many
industries: on the one hand, firms which are far from the technological frontier, have a
high incentive to enter R&D cooperations, as pointed out e.g. in Belderbos et al. (2004);
on the other hand, the R&D capabilities? of firms have significant positive impact on
their rate of participation in R&D consortia, as demonstrated in Sakakibara (2002)
based on Japanese data. These R&D capabilities are directly related to investments in
R&D. Relying on empirical observations in different industries Maritan (2001) describes
the build-up of such capabilities through investments related to skill upgrading and
improving the flexibility and quality of equipment. Also, the investments in physical
equipment and training associated with the establishment of an R&D lab can be seen as
capability enhancing long-term investments. Spillovers arising in an R&D cooperation
strongly depend on the capabilities of the involved firms (e.g. Jo and Lee, 2014)),
which means that the size and direction of such spillovers in many instances depend
on investment decisions made by firms before the consortium was built.> This might
explain why, those firms which invest a lot in R&D also engage in more cooperations,
although firms with lower R&D capabilities potentially have more to gain from R&D
cooperations and hence should have larger incentives for joining them.

We explore this phenomenon by developing a theory of long-term investments in
R&D in the presence of the opportunity to form R&D cooperations with horizontally
related firms. Our model is characterized by two crucial features: first, we explicitly
focus on long term investments in R&D, or expressed differently, investments which
enhance R&D capabilities, and thereby taking place before firms engage in R&D co-
operations. Second, we assume that firms are in control of their cooperation structure,
meaning that access to their research can be limited to the respective cooperation part-
ners. We provide a theoretical analysis of which research clusters form and how the
structure of clusters is affected by the (long-term) investments in R&D. Furthermore
we show how both, cluster structure and R&D investments in equilibrium, compare to
the welfare optimum and to the case of cluster structures which are exogenously given
and unaffected by the investment choice.

The theoretical literature on R&D investments instead has solely focused on a dif-
ferent aspect of R&D: short term investments which are adapted to the environment, in
particular to the size of the spillover parameter and the cooperation structure. Standard
models of innovation incentives in the presence of knowledge spillover to competitors
(see e.g. D’Aspremont and Jacquemin, 1989; Kamien et al., 1992) predict that an in-
crease in the intensity of the knowledge exchange (typically captured by a spillover
parameter) reduces the R&D investments of the firms.* The intensity of the knowledge

2See Mitchell and Skrzypacz (2015) for a recent treatment of the importance of firm capabilities
for their success in innovation.

3This is confirmed, for example, by Okamuro et al. (2011) using data from Japanese start-ups.
They show that the experience of the start-up founder with product or process innovation and the
level of R&D expenditures at start-up have a significant positive impact on the firm’s propensity to
enter an R&D cooperation with another firm.

4Consistent with the literature on R&D networks, to be reviewed below, in this paper we interpret
R&D cooperations as an agreement to share (parts of) the R&D results with the partners. The
literature on R&D joint ventures initiated by D’ Aspremont and Jacquemin (1989); Kamien et al. (1992)
typically also considers the effect of cooperating by jointly determining the level of R&D investments of



exchange can also be explicitly modeled by the number of cooperating partners where
again a negative correlation to (short term) R&D investments is predicted (see e.g.
Goyal and Moraga-Gonzalez, 2001; Greenlee, 2005). The reason for this negative corre-
lation predicted in theoretical models is that firms when deciding on R&D investments
before determining competition strategies take into account the effects their R&D has
on other firms’ competition strategies. The more R&D partners, the more spillovers
are created, hence the smaller each firm’s investment.?

These theoretical results, seem at odds with empirical findings: Studies based on
data from numerous countries and sectors have consistently found a positive relation-
ship between the R&D intensity and the degree of R&D cooperation of firms (see e.g.
Veugelers, 1997; Kaiser, 2002; Becker and Dietz, 2004; Franco and Gussoni, 2014), as
well as between R&D capability and R&D cooperation (Sakakibara, 2002). To explain
these empirical findings, theory often reverts to absorptive capacity of firms. For in-
stance, by extending their previous model assuming that the absorptive capacity of
firms is positively influenced by own R&D, Kamien and Zang (2000) show that an
increase in the spillover parameter leads to stronger R&D incentives as long as the elas-
ticity of the absorptive capacity with respect to own R&D is sufficiently large. In light
of these results and, more generally, in the extensive literature on absorptive capacity
started by Cohen and Levinthal (1989), the empirical evidence about the positive rela-
tionship between R&D investments and R&D cooperation has been mainly interpreted
as evidence that firms need own R&D activities to profit from R&D cooperations.

However, the formation of an R&D cooperation typically requires the agreement of
all partners®, which means that the R&D capability of a firm, determined by previous
R&D expenditures, does not only influence the incentives of the firm to enter R&D
cooperations, but also determines whether potential partners are willing to enter such
an agreement with the firm. This aspect of the formation of R&D cooperations has so
far been neglected in the theoretical literature and this paper makes a first step to fill
this gap. In particular, in line with our discussion above concerning the role of R&D
capabilities for cluster formation, we consider a Cournot oligopoly where firms make
an R&D investment before they form R&D clusters. Firms within the same cluster
receive spillovers from all cluster members and the sum of own R&D and incoming
spillovers determines the marginal production costs of a firm. Although in the main
body of the paper we restrict attention to cost reducing process R&D, which is in
accordance with the majority of the theoretical literature on R&D cooperation, we
show in Appendix A that all our findings also apply to a model in which firms engage
in quality improving product innovation such that the type of innovation (cost reduction
or quality improvement) is not important for our results.

all partners with the goal of maximizing joint profits of the partners. In the empirical literature these
different types of cooperations usually cannot be distinguished. Many studies are based on European
Community Innovation Survey (CIS) data and in CIS questionnaires cooperations are defined in a
broad sense including an informal exchange of information.

SWhen firms, instead, jointly choose R&D and competition strategies, then only the direct (cost
reducing) effects of R&D on own quantities (and not the effects on other’s competition strategies) are
considered which in turn leads to a positive correlation between R&D investments and the degree of
R&D cooperation, see e.g. Hsieh et al. (2018) and Konig et al. (2019).

6Note that knowledge spillovers between firms might also arise without the consent of the knowledge
source, e.g. through labor flows; see Gersbach and Schmutzler (2003) for a treatment of this channel
in a setting related to ours.



The main innovative aspect of our analysis is that we explicitly consider interplay
between the firms’ R&D decisions and the process by which the R&D clusters among
potentially heterogeneous firms with respect to R&D investments are formed. In the
main part of our analysis we consider a scenario in which only such clusters are formed
where all members agree to the membership of all other firms in the cluster. Our
approach captures that firms choosing a high level of R&D investment do not only
thereby reduce their production costs, but become more attractive for potential partners
since members of a cluster with high investing firms will receive a larger amount of
spillovers. Thereby the empirically observed phenomenon that R&D capabilities of
firms have significant positive impact on their rate of participation in R&D consortia
while low investors have a larger incentive to enter these consortia is well captured by
our model. In order to focus on this aspect of the choice of own R&D investment, we
abstract from any dependence of a firm’s absorptive capacity on own R&D spending.

1.1 Main Findings and Policy Implications

Formally, we consider a non-cooperative three stage game. In the first stage firms
choose between two levels (high/low) of cost-reducing R&D investments. The endoge-
nous cluster formation is modeled in the second stage. To capture a process in which
agreement of all firms is needed for the establishment of a cluster, we employ a non-
cooperative game which is a version of the unanimity game first introduced in Bloch
(1995)7. Knowledge spillovers occur in all clusters® and firms compete with respect to
quantities in the third stage.

The timing of the model is motivated by the fact that we focus on long-term (irre-
versible) investments in R&D which enhance R&D capabilities. Because of this nature
of R&D investments, we assume that the cluster structure can adjust to these invest-
ments and therefore the cluster structure is formed after the choice of R&D investments.
In Section 5.2 we allow R&D investments to be increased after the formation of clusters
which does not affect the outcomes of the game. In line with most of the literature, we
assume that quantities are easiest to adjust and are therefore chosen after R&D invest-
ments and cluster structure have been settled. The timing of the game therefore reflects
the nature of our long term R&D investments in the presence of cluster formation and
quantity competition.

Our model allows for a closed form analytical solution of subgame perfect equilibria.
We find that with respect to the emerging structure of the R&D clusters and under weak
conditions,” all firms are arranged in exactly two clusters, where one of these clusters
may be heterogeneous, i.e. consisting of both low and high investors. Investing high
increases the probability to participate in the more attractive cluster consisting of a
larger number of high investors and thereby to profit from the corresponding spillovers.

"Our reason for using the unanimity game for modeling the cluster formation process is that it is
one of the few non-cooperative coalition formation games in the literature, which, on the one hand,
captures the need for agreement by all cluster members and, on the other hand, allows for generically
(almost) unique equilibrium predictions about the shape and size of the emerging clusters.

8In line with the focus of our analysis on the effect of endogenous cluster formation and consistent
with much of the related literature we use a simple reduced form representation of spillover generation
and abstract from issues related to the governance of the interaction in R&D cooperations (see e.g.
Bhaskaran and Krishnan (2009); Bhattacharya et al. (2015)).

9We show in Appendix B that many of our results also hold when the weak assumptions are relaxed.



For a large range of the number of high investing firms in the population, this effect
is stronger the more other firms in the industry choose a high R&D level, and, based
on this effect, strategic complementarities between the R&D investment decisions of
the firms arise. However this holds only up to a threshold where a large fraction of
the industry engages in high R&D investments. Beyond this point an increase of the
number of R&D intensive competitors reduces the return on investment in R&D of a
firm. In such a heated market scenario, where competitor’s invest heavily in R&D,
choosing low own R&D investment and relying on spillovers from the other firms in the
cluster can be more profitable for a firm, although this implies that the firm will end
up in the less attractive cluster. The dominant effects determining the firm’s optimal
R&D strategy in this range are the decrease in the firm’s market share induced by
increased R&D activities of the competitors, as well as the fact that due to the large
number of firms with high R&D activity, several of these firms are also present in the
less attractive cluster.

With respect to industry-level patterns, we show that whereas for sufficiently small
and sufficiently large investment costs a unique equilibrium pattern with all respectively
none of the firms investing high arises, for a large intermediate range of investment costs
a no—investment equilibrium co-exists with an equilibrium where a large fraction or even
all firms choose high level of R&D.

Because of the impact of investment on cluster membership, we find that firms
have substantially higher investment incentives compared to scenarios where the cluster
structure is exogenously given. In particular, there is a range of investment cost values
such that in the unique equilibrium of the game with exogenous consortia no firm invests
although the only equilibrium profile under endogenous formation of consortia implies
full investment. Our baseline model assumes for reasons of simplicity that the level of
R&D investment cannot be adjusted after the cluster formation stage, however we also
show that our results stay intact if we add another investment stage to the game, such
that firms have another opportunity to invest after the profile of R&D clusters has been
determined.

Comparing equilibrium outcomes with the welfare optimum, it turns out that the
emerging clusters are too small from a welfare perspective. Due to the strategic comple-
mentarity between firms’ R&D decisions, distortions of investment incentives relative
to the social optimum in both directions can occur. On the one hand, for a considerable
range of investment costs over—investment arises in a sense that there is an equilibrium
with high investment of all or at least a large fraction of the firms, whereas no invest-
ment would be optimal from a welfare perspective. On the other hand, for smaller
values of investment costs, profiles without any investment can emerge in equilibrium
although welfare is maximized if all firms choose a high R&D level.

In order to examine the importance of the institutional framework underlying the
cluster formation, we complement the analysis of cluster formation under the unanimity
game with a variant of the model that treats cluster formation as an open membership
game. The important difference between these approaches is that under the open
membership game, contrary to the unanimity game, a firm cannot restrict the set of
firms joining its cluster. We show that in such an institutional setting all subgame
perfect equilibria induce the formation of a single cluster containing all firms. Due to
this, the investment incentive stemming in our baseline model from the desire of a firm
to join the more attractive cluster is not present under the open membership game and



we show that the incentives to invest are substantially lower than in a setting where
cluster formation is determined by the unanimity game. Hence, the ability of a cluster’s
members to restrict entry of other firms is a crucial factor for our results.

Recognizing the potential distortions of R&D incentives in both directions together
with the insight that endogenous R&D cluster formation induces strategic complemen-
tarities between firms’ R&D investments, gives rise to several policy implications. First,
our results suggest that in the case of under—investment, sketched above, a small change
in investment costs, e.g. due to R&D subsidies, can induce an abrupt increase in the
level of R&D investment and vice versa. Second, our insight that the process through
which clusters are formed is crucial for determining R&D incentives, has important
implications for the design of public programs aiming to foster the formation of R&D
cooperations. In particular, our results suggest that public measures facilitating unre-
stricted highly competitive formation of R&D clusters (e.g. by providing information
about potential partners or providing public support programs imposing weak eligibil-
ity criteria on the consortia), in general increase the incentives for R&D investments in
that industry.

1.2 Contributions to the Literature

The present paper substantially extends the theoretical literature on R&D coopera-
tions since it is the first contribution to provide a general analytical characterization
of emerging R&D cooperation structures in an oligopoly setting where firms choose of
R&D efforts before competing in the market.

There is a body of literature which studies the formation of cooperation structures
between competitors. Most closely related to our model are Goyal and Moraga-Gonzalez
(2001) and Greenlee (2005) who also consider settings where both the choice of R&D
effort and the formation of cooperation structures are endogenous. Goyal and Moraga-
Gonzalez (2001) restrict attention to binary cooperations and characterize stable R&D
networks in this setting under the assumption that all firms have an identical number
of cooperation partners. A general analysis, not relying on the assumption of a regular
R&D network, is provided only for the special case of three firms. Greenlee (2005),
instead, provides a partial analytical characterization together with a numerical analysis
of the shape of R&D consortia generated through the unanimity game in a setting where
firms endogenously choose their R&D effort.

Such models where R&D investments are chosen before quantities in the competition
stage, therefore, have analytical tractability issues. Some papers in this context sidestep
these problems, and are then able to focus on the formation of the cooperation structure.
Konig et al. (2019) assume that after the R&D network is formed, R&D efforts and
quantities are chosen simultaneously. In a similar setting, Hsieh et al. (2018) study
a model where quantities are chosen before the determination of R&D efforts. In
both cases R&D efforts do not strategically influence Cournot quantities which are
characterized to depend only on the Bonacich centrality of the network. Konig et al.
(2019) then show that all equilibrium networks are nested split graphs while Hsieh et al.
(2018) provide equilibrium selection by analyzing stochastically stable networks. The
local complementarities arising from cooperation ensure a positive correlation between
R&D efforts and size of cooperation.

All these contributions differ from our setup by assuming that the firm’s choice



of R&D investment occurs after the cooperation structure has been settled. In this
sense these papers deal with short term R&D decisions (with different adjustment
assumptions), whereas we are concerned about the decision about long term capacity
enhancing investments. Thereby we study the strategic effects of such R&D investments
on the cooperation structure and competition.

Our contribution also extends the paper by Bloch (1995), where the outcome of the
unanimity game is characterized in a Cournot oligopoly setting where marginal costs
of a firm are entirely determined by the pure size of its consortium. In particular,
investments in R&D are not modeled in Bloch (1995). In our setting, the analysis in
Bloch (1995) corresponds to a scenario where all firms have identical levels of R&D
investment. We show in the more general case of firms with potentially heterogeneous
investments that different structures emerge, but reproduce the findings of Bloch (1995)
as a special case of our analysis. Incorporating endogenous and potentially heteroge-
neous investment levels, our results can also be used to understand the robustness of
the qualitative insights from Bloch (1995) with respect to heterogeneity of firms’ in-
vestments. More generally, we extend the analysis of equilibria in the unanimity game
to a setting with heterogeneous players.

Moreover, there are several studies on the formation of bilateral R&D collaborations
between homogeneous firms which abstract from endogenous determination of R&D
investments. It is shown in Goyal and Joshi (2003), Konig et al. (2012) and Dawid and
Hellmann (2014) that group structures (where all firms within a group are connected)
emerge which resembles the structure that emerges from the cluster formation cases.
In an analogous framework, Westbrock (2010) studies efficient networks and concludes
that the welfare maximizing structures may have similar structures where, however, the
sizes of groups differ from the stable structures.

The paper is organized as follows. Our model is introduced in Section 2, in which we
also characterize the equilibrium outcome of the Cournot competition stage. Section 3
provides an analysis of the equilibria in the cluster formation stage and the resulting
equilibrium investment patterns are examined in Section 4. In Section 5, we compare
our findings to the case of exogenously given clusters and show that our results are
robust with respect to the addition of a second investment stage after cluster formation.
In Section 6 we provide a welfare analysis of our findings and in Section 7 we consider
the scenario in which cluster formation is done according to the open membership game.
We conclude in Section 8. In Appendix A we briefly outline a variant of our model where
firms invest in product rather than process innovation, to which our results also apply.
We elaborate on the robustness of our results when the assumption of two investment
levels (which do not differ too much) is relaxed in Appendix B. All proofs are given in
Appendix C.

2 The Model

An oligopoly of a set N = {1,...,n} of ex ante identical'® firms engage in a three stage
game. Firms first choose permanent R&D efforts, then form R&D clusters and finally

10A¢t the end of Section 4 we briefly discuss the effect of heterogeneous investment cost £.



compete in the market by choosing quantities of a homogeneous product.!!

When investing in R&D, firms make long-term and irreversible investment decisions,
like building facilities, investing in a lab, or committing a budget to a permanent R&D
fund. For simplicity, we assume that the investment decision is binary, such that firms
can either invest high or low.'> We denote by z(i) € {z,z} the R&D effort of firm «.
Choosing to invest high, z(i) = z > z > 0, implies costs of £ > 0, whereas the costs of
low effort z are normalized to zero. In what follows we denote by x = (x(1),...,z(n))
the profile of R&D effort.

Firms may cooperate with other firms to lower their production costs. To do so,
firms form clusters where research is shared. Each firm can only participate in one such
cluster, or can stay single. Hence, the cluster structure or profile of R&D clusters'?,
denoted as A = (Ay,...,Ak), is a partition of the set of firms, ie. Ay C N Vk =
1., K, Ax=N, A,nA;j=0k,j=1,... K, j#k The cluster to which firm
i belongs will be referred to as A(1).

We assume that the marginal production cost is constant and that R&D has a cost
reducing effect and is shared within the respective clusters. That is, incoming spillovers
in their cluster contribute to the cost reduction of firms. Thus the marginal cost of firm
¢ is given by

c(i,x, A) ::E—’y(:c(i)—i-ﬁ Z x(j)), i=1,.,n, (1)
where ¢ is the base cost (pre-innovation cost) level, the parameter v > 0 measures the
marginal effect of R&D effort on marginal costs and 0 < f < 1 captures the intensity
of knowledge exchange within a cluster. We assume that the difference between the
reservation price on the market a and marginal costs in the absence of R&D spillovers
and high investments ¢ — z is large enough to ensure that firms produce strictly positive
quantities in equilibrium for any pattern of R&D investments and any set of clusters,
i.e. we assume a — (¢ —xz) > y(n — 1) (14 B(n — 2)Z — z)."* Whenever the context is
clear, we will also denote ¢(i) = ¢(i,x, A) to save notation.

Producing quantities of the homogeneous product ¢(7), i € N, firms face a linear
inverse demand given by

P(Q):OZ—Q, Oé>0,

where P denotes the price and @ = > | ¢(i) total quantity.
Since we focus on long-term or permanent R&D investments, cluster formation can
adapt much faster. Hence, we model the timing by the following three stages.

Stage 1: Effort Choice

When we interpret R&D as product innovation rather than process innovation, products are dif-
ferentiated while marginal costs are homogeneous, see Appendix A. Both model formulations lead to
the same results.

12In Appendix B we show that our main findings can also be derived in settings with a continuous
range of investment choices.

13In order to avoid confusion with the variables denoting firms’ marginal cost we denote the clusters
by Ay rather than Cy. This notation is motivated by Bloch (1995), where what we call clusters is
denoted as associations.

14To see that this assumption indeed guarantees positive Cournot quantities for all investments and
clusters, observe that (2) becomes minimial, if c(4, x, A) is maximal and }_,; ¢(j,x, A) is minimal
which is obtained if ¢ stays singleton and invests z, while all others join one cluster and invest . The
assumption ensures that even in this worst case, firm ¢ still produces strictly postive quantities.



All firms simultaneously choose their R&D effort x(i) € {z,z}. The effort profile x
becomes public knowledge at the end of the stage.

Stage 2: Cluster Formation

Firms non-cooperatively form R&D clusters. To model the cluster formation process
we employ the unanimity game introduced in Bloch (1995). The unanimity game
models the cluster formation process as a sequential game where firms propose clusters
according to a given rule of order. We assume that the rule of order, i.e. a permutation
of firms p: N — N, is chosen from the set II = {p: N — N|p(i) < p(y) if (i) > z=(j)}
with equal probability.'> The lowest firm in order p then proposes a set of firms as the
first cluster. All firms included in the proposal are then asked according to the order
p whether they agree to join the cluster. If all firms in the proposal agree to join, the
cluster forms, the firms leave the game, and the lowest remaining firm in the order p
proposes the next cluster. If one of the firms in the proposal disagrees to join, then all
firms remain in the game and the next proposal is made by the firm who first disagreed
to join. This procedure is repeated until all firms have joined a cluster. The resulting
cluster profile A becomes public knowledge. Furthermore, for sake of simplicity we
abstract from discounting between stages of the unanimity game.

Stage 3: Quantity Choice

Firms simultaneously choose quantities given the profile of marginal costs determined
by the R&D effort choices and the formed clusters, see (1). Standard calculations yield
that under the assumption of a sufficiently large o the Cournot equilibrium in the 3rd
stage is given by

= (Tl + 1)C<i,X, A) + ZjeN C(j7X7 A)
n+1

q (i, %, A) = (2)
and the profits read 7(i,x, A) = (¢*(i,%, A))?> — €l,)=z. To abbreviate notation we
will also denote firm ¢’s quantities and profits by ¢*(¢), and 7*(7), respectively.

In order to analyze the game described above we focus on the subgame perfect
equilibria of the game and therefore apply backward induction. With respect to the
unanimity game in general, Bloch (1996) shows that there exists a subgame perfect
equilibrium with the property that all firms always accept a proposal as long as rejecting
would not result in a strictly higher payoff.' In what follows we restrict attention to
this type of subgame perfect equilibrium in the unanimity game.

5Qur assumption that firms with high R&D effort propose clusters before low investors, substantially
simplifies the following analysis without changing much of the results. To see this suppose a low
effort firm is the first proposer and the first proposal is different from the first equilibrium cluster
characterized by Proposition 1. Note that any firm included in this proposal can reject and propose
instead the first cluster according to Proposition 1. Hence only if the intersection of the first proposal
by the low effort firm and the equilibrium cluster according to Proposition 1 is empty, then such a
proposal can be accepted (since the first proposal of Proposition 1 is optimal for both involved types
of firms). Thus, the first proposal of a low investor must be a subset of the second equilibrium cluster
(if it is different from the first cluster of Proposition 1). Intuition tells us that this cannot be optimal
when only two clusters form. Hence the main insights will not change while relaxing this assumption
would greatly complicate analysis because of the many additional subgames to be considered.

16T his observation follows from Proposition 2.4 in Bloch (1996) where it is shown that every subgame
perfect equilibrium of the unanimity game with discounting is also a subgame perfect equilibrium in
the game without discounting if the discount factor is sufficiently close to 1.



3 Cluster Formation

When forming the R&D clusters according to the unanimity game, interesting effects
arise. Firms face the trade-off between achieving a cost advantage through the incoming
spillovers and allowing other firms a cost advantage by reducing the cost of other cluster
members while sharing the research within the cluster. This tradeoff is also present in
Bloch (1995). In our model, because firms are heterogeneous with respect to their R&D
effort chosen in the first stage, the net effect under this tradeoff depends on the profile
of the cluster and the investment level of the considered firm.

To understand above effects, let us inspect the payoff implied by the Cournot quan-
tities in the third stage (2), resulting from a given pattern of investment x and given
cluster structure A. In what follows we denote by h respectively [ the number of high
(low) investors in the firm population. Whenever we refer to these numbers exclud-
ing firm ¢ we indicate this as h™%, respectively [=%, while a subscript A restricts the
respective numbers to cluster A € A. Plugging (1) into (2) and simplifying, we get,

7(i) = o [a — e+ y(na(i) — b7z — 7'z)

+ 7ﬂ<(n — Bty = Gl YRt @+ Lyt ) + b (& — (i) — L (2(0) — 2)

- ' (hAk((hAk - 1)‘/Z + lAkZ) + lAk(h’Ak‘i. + (lAk - 1)@)) ]2 - ’S]lx(i):ic- (3)

Since Cournot quantities are anticipated in the third stage, firms try to optimize (3) in
the cluster formation process. A closer inspection of (3) turns out to be very useful for
understanding the logic of the cluster formation process. First, note that the expression
on the right hand side of the first line only captures the effects of the direct cost
reductions generated by the R&D investments of all firms and as such is independent
from the cluster profile. The effects of spillovers on the profit of firm ¢ is given in the
second and third line. The second line corresponds to the spillovers arising in the cluster
of firm ¢, and consists of a positive term stemming from spillovers received by firm ¢ and
two negative terms describing the spillovers obtained by the other firms in the cluster.
Finally, the third line depicts the effects of the spillovers in all other clusters on firm
i’s profit, having a cost reducing effect for other firms and, via the price channel, a
negative effect for firm ¢’s profit. Moreover, the third line also includes the costs of
investment and therefore contains only negative terms.

When a firm ¢ € N is selected to propose a cluster and contemplates which firms to
include in the proposal, the marginal effect of adding an additional firm which otherwise
might end up in a different cluster plays a crucial role. Hence, consider the impact of
moving one firm j from a cluster A(j) # A(7) to cluster A(¢). Since such a move does
not affect investment costs of firm ¢ and profit net of investment costs is the square of
firm 4’s quantity we can restrict attention to the induced change in equilibrium quantity
q*(7). This change in quantity in response to a move of firm j from A(j) to A(i) can
be calculated to be

Ag(i) = ,]—fl(nx(j)—(hA@HA(z-)—Dx(y’)—<hA<z->:f+lA<z->z>+<hgzj>+l;{j>>x<j>
+(hl l;{j)g)) . (4)
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Adding firm j from a cluster A(j) to A(7) has an effect on both i’s and j’s spillovers, as
well as on all firms’ spillovers within the respective clusters. First, firm ¢ experiences
additional spillovers by adding j where the size depends on the R&D effort of j captured
by the first term in the brackets of (4). However, all other firms within i’s cluster are
also enjoying these spillovers which are given by the second term and firm j receives
the spillovers from the whole cluster (third term). These two terms are negative since
a cost reduction of other firms lead to higher quantities of these firms, thus, lower the
price and decrease the equilibrium quantities (and hence profit) of i. Note that both of
these terms increase in absolute value with the size of A(4) since increasing the number
of firms in ¢’s cluster means that more firms receive the additional spillovers and j
receives more spillovers from those firms. The last two terms of (4) describe the effects
of the reduction in spillovers for the remaining members of cluster A(j) and of firm j
loosing spillovers from its former cluster. These two effects are positive for the profit
of firm 4 and their size increases with the size of cluster A(j).

Three important observations can be made. First, it is easy to see that Ag*(7)
is independent of z(i), implying that whenever it is optimal for a firm to invite an
additional firm to its cluster, the same also holds true for all other firms in the same
cluster, regardless of their choices of R&D effort. Second, Ag*(i) is an increasing
function of x(j), which means that all firms in A(7) prefer to invite a firm j with high
R&D effort compared to a member of A(j) with low R&D effort. Third, the incentive
to invite a firm j to the own cluster decreases with the size of the own cluster but
increases with the size of the current cluster of firm j.

The three observations discussed above provide a clear intuition for the potential
structure of the cluster profile in equilibrium.'” Due to the fact that firms always prefer
high R&D firms to join their cluster compared to low R&D firms, it is intuitive that
low R&D firms are only included in a cluster proposal if no more high R&D firms
are available. Hence, there can be at most one cluster containing heterogeneous firms,
i.e. containing both high and low investors. Furthermore, using (4) it can be easily
derived that any homogeneous cluster not limited by the number of available firms (i.e.
a cluster where the proposal would not change even if an additional firm of that type
would become available) will consist of at least (”T“] members, which immediately
implies that there cannot be more than one such homogeneous cluster. Together with
the observation that there can be at most one mixed cluster this implies also that there
cannot be more than three clusters forming in equilibrium.

To simplify the following analysis we from now on assume that the heterogeneity
between firms with respect to their R&D investment is not too large. As will be shown
in Proposition 1, only two clusters emerge under this assumption.

Assumption 1. The ratio of RED effort between high and low investors (Z/xz) is
bounded above by 2.

Given that we only consider firms who are active in R&D and (apart from their
R&D choice) are symmetric, restricting the analysis to scenarios where the variance in
R&D levels is not too large does not seem to be overly restrictive. Furthermore, as
demonstrated in Appendix B, although the technical complexity would substantially

17 Although the intuition is very straightforward, the derivation of the subgame equilibria of the
unanimity game is quite involved, see proof of Proposition 1.
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increase, the qualitative mechanisms driving our results would hardly be affected if we
relax Assumption 1.

Proposition 1. For any profile of investment x, there exists a stationary SPE of the
cluster formation game. All SPE result in the formation of two clusters A = (Ay, As).
The number of high and low investors in each cluster are generically unique and are a
function of the total number of high investors h such that

h ifh<h
hAl (h) = ’7(2n+h—ll)é+(n—h)g—‘ else
(3(n—h)—l)g—hf—‘ iFh<h
lAl (h) = ’V i f B
0 else
where h = %, h = % Furthermore, ha,(h) = h — ha,(h) and l4,(h) =
n—h—la(h).

Proposition 1 implies that essentially three different types of cluster constellations
can emerge. If the number of high investors is small, then all these high investors
together with a subset of the low investors form the first cluster and all remaining low
investors join for the second cluster. If, on the contrary the number of high investors
is sufficiently large, then the first cluster contains only high investors and the second
cluster is mixed between high and low investors. For an intermediate range of the
number of high investors the two types of investors sort into two homogeneous clusters.
It is quite intuitive that the thresholds separating the first scenario from the case where
all high investors join the same cluster decreases with the size of the ratio z/z since
the incentives for high investors to include a low investor in their cluster decrease.
Similarly, the threshold separating the case with two homogeneous clusters from the
scenario where the second cluster is mixed, also decreases with Z/x. The intuition for
this observation is that the incentives of the members of the first cluster to include an
additional high investor, thereby preventing this high investor from receiving spillovers
from the low investors in the second cluster, decreases as Z/x becomes larger.

In order to gain some additional intuition about the implications of a change in
the number of high investors for the size and structure of the emerging clusters let
us distinguish between the cases where the homogeneous cluster consists only of low
respectively high investors. First, if the homogeneous cluster has only low investors
and the other cluster is mixed, an increase of the number of high investors reduces the
number of low investors in the mixed cluster, where this reduction is so strong that
the overall size of that cluster is weakly'® reduced. The fact that the inclusion of one
additional high investor in the cluster might trigger a reduction of the number of low
investors by more than one can be explained as follows. The outgoing spillovers of the
low investors in the cluster remain the same, whereas the spillovers they receive increase
due to the exchange of a low with a high investor. Hence, the incentive to have the
low investors in the cluster decreases. Secondly, considering the cases where a mixed

8Due to the fact that all cluster sizes are integers they change in discrete steps. Throughout the
paper we refer to stepwise decreasing (increasing) functions as weakly decreasing (increasing).
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Figure 1: The size of the first cluster (black line) and the number of high investors in
that cluster (blue line).

cluster coexists with a homogeneous cluster of high investors, an increase of the number
of high investors induces a (weak) increase in the size of the homogeneous cluster and
a (weak) decrease of the number of high investors in the mixed cluster. The underlying
rationale is similar to above, namely that due to the exchange of a low investor with a
high investor in the mixed cluster, the incentives for members of the homogeneous high
investment cluster to transfer one additional high investor to their cluster also increase.
The size and structure of the first cluster as a function of the number of high investors
is illustrated in Figure 1.1

Finally, we note that for the case where all investments are homogeneous (i.e. either
T =z or h =0 or h = n) the size of the first cluster is given by [3"4_1W, which
corresponds to the findings in Bloch (1995), where coalition formation in homogeneous

populations is analyzed.

4 Effort Choice

In the investment stage, all firms simultaneously choose their R&D effort. In general,
the profit of a firm induced by a certain investment profile x is stochastic due to our
assumption that all sequences of proposal orders in the cluster formation game, which
satisfy the assumption that high investors propose prior to low investors, have equal
probability. Denoting by E(7 (7, x(i), h™*) the expected profit of firm ¢ with investment
level z(i) € {z,z} if h™" of its competitors choose high R&D investment, it is optimal
for firm i to invest high if and only if Aw(h™%) := E(x(i,z, h ")) — E(7w (i, 2, h ")) > &.
Two main effects determine the investment incentives of a firm: first, the implica-
tions of own investment for the expected attractiveness of the firm’s cluster, and second,
the expected profit increase for a given cluster allocation. Proposition 1 highlights that
under our Assumption 1 two clusters emerge. Taking this into account, the expected

19Tn all figures in this paper we use the default parameter setting: n = 20, = 35,6 =4,8=0.2,y =
02,z=1,z=2.
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payoff difference between high and low investment can be written as
AT(h™) =pa, (@, 27" + D)ra (7,27 + 1) + (1= pay (7,07 +1))ma, (7,07 + 1)
= pay (@ 7w, (@ ) = (U= pay (2, b)) ma, (2, h7°),

where py, (x,h) denotes the probability of a firm with investment x to end up in the
cluster A; and wa(x,h) gives the profit in cluster A of a firm with investment z, if a
total number of h firms have chosen high investment. We can rearrange to get

Ar(h™") = (pa, (B, h "+ 1) —pa,(z, b)) (7a, (T, R+ 1) — 74, (T, R+ 1)) (5)
+Ep, @ni) (M2, 07+ 1)) = By, @ny (w2, h77)) + 2ma, (2, h7°).

Here, the term E,, (7(x,h)) = pa,ma, (7, h) + (1 — pa,)7a,(z, h) denotes the expected
payoff of investing x for a given (fixed) probability p4, to end up in cluster A;.

The first of the two main effects is captured in the first line of (5). Ceteris paribus,
firms prefer to become a member of the larger cluster with more high investors (i.e.
Ta, —Ta, > 0), since this generates stronger incoming spillovers for a firm compared to
the smaller cluster with fewer high investors. Clearly, the probability p4, for a firm to
end up in this preferred cluster A;, depends both on the level of investment of the firm,
as well as, the investment pattern of all its competitors. The probability for a firm to
end up in the more attractive cluster A; can be directly derived from Proposition 1.

pa, (T, h" 4+ 1) =1, pa,(z,h™) = % if k= < h
pa, (T, 41) =1, pa, (z,h™) =0 if h<h™<h (6)
pa, (T, h" 4+ 1) = %@H) pa,(z,h™) =0 if b= > b,

where ha,,l4,, h, and h are given in Proposition 1. It is easy to see that both I4, (h~%)/(n—
h™")) and ha, (h™" +1)/(h™" + 1) are (weakly) decreasing functions of h~*. This estab-
lishes that pa, (Z, h'4+1)—pa, (z, h7?) is a weakly increasing function of A~ for b~ < h,
but (weakly) decreasing for h™* > h. Hence, the increase in the probability of ending
up in the more attractive cluster, which is induced by high investment, becomes larger
the more competitors choose high investment as long as this number does not become
so large that high investors might end up in the second cluster. For this range of com-
petitors with high investment the consideration of the probability to become a member
of the stronger cluster introduces strategic complementarities into the R&D investment
choice of the firms.

However, investment incentives are not entirely driven by the effect of R&D invest-
ment on the probability to join the stronger cluster. The expected change of firms’
market profit for a given probability to end up in A; respectively A, influences in-
vestment incentives as well. Formally, this is expressed by B, (- (7(2,h7" + 1)) —
E (m(z,h™")) > 0, see (5). The strength of this second effect essentially depends on the
expected change in firms’ output due to high investment and also the expected level of
output, because investment reduces the firm’s unit costs of production.

The following Proposition shows that the strategic complementarity sketched above
is indeed the dominant force in a sense that for a large range of investment costs extreme
patterns (no investment or full investment) prevail in equilibrium and that such extreme
equilibria might also co-exist.
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Figure 2: Best response and equilibria on the investment stage.

Proposition 2. If § := (4—2 < B < 1/2, then there exist thresholds &, §,§ with

- _ n+6)z+z
max[¢, €] < € such that

o For & < & there is a unique equilibrium (up to permutation of firms) where the
number of firms investing T is given by h(§) > 0. The function h is constant in {
with h(&) =n for € < & and weakly decreasing (step-function) in & for € > €.

o foré <¢< E an equilibrium where h(§) firms invest T co-exists with an equilib-
rium where all firms invest x.

o For& > § there 1s a unique equilibrium where all firms invest z.

The proposition is illustrated in Figure 2, which depicts the best response for a
firm on the investment stage depending on the number of high investors among the
competitors for different values of investment costs £&. In particular, the black dots
indicate the values of Ar(h™) for all ™" = 0,..,n—1. A green arrow to the left indicates
that low investment is the best response, whereas an arrow to the right stands for a best
response of high investment. The red lines correspond to equilibria in the investment
stage, i.e. combinations of £ and h values for which the investment decision of all firms is
optimal.?® The black increasing step-function indicates the minimal value of A~ above
which for a given value of ¢ investing high becomes optimal. The figure shows that
the qualitative properties of the profit difference Am(h~%) is indeed closely related to
the difference in the probability to end up in the more attractive cluster. In particular,
it can be seen that the incentive to invest increases with h=" for h < h and decreases
for ™" > h where h and h are the boundaries from Proposition 1. Whereas £ <€
holds for the illustration in Figure 2, in general this inequality cannot be established
and therefore Proposition 2 has been formulated without assuming any order between

€ and €.

20Tt should be noted that when interpreting the red solid lines the argument on the horizontal axis
is the total number of high investors in the population h, rather than h™".
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Taken together, Propositions 1 and 2 also allow to characterize the equilibrium
cluster structure under endogenous investment. If ¢ & [€,€] then all firms choose
the same investment and the first cluster is of size (3”4_ 1}, while the other cluster is

composed of the remaining firms. The high investment equilibrium exists as long as
¢ < £ while the no-investment equilibrium exists for ¢ > £. For ¢ € [€,€], additional
to the no-investment equilibrium, there is an equilibrium consisting of one cluster with
high-investing firms with size smaller than (%W and a second cluster containing either
only low investors or a mix of firms with both investment levels. Hence, only in this
case it is possible to observe a cluster composed of firms with heterogeneous investment
levels.

Proposition 2 assumes that the spillover parameter f§ is in an intermediate range
(8 < B < 1/2). To understand the implications of a very low spillover parameter § <<
/3 on the investment incentives, one can consider the extreme case of 3 = 0. In such a
scenario, R&D investment decreases only the firm’s own marginal production costs but
generates no spillovers to other firms. It is well known (see e.g. Qiu, 1997) that under
Cournot competition with process innovation, investments are strategic substitutes.
Hence, for sufficiently small 8 the firms’ investment incentives are decreasing in A% and,
hence, generically a unique equilibrium emerges. On the other hand, if the spillovers
become very large (8 >> 1/2), then the incentives stemming from the spillovers in the
first (larger) cluster become dominant as the difference in spillovers between the two
clusters increase. In such a scenario the main effect of an increase in h~* is that the
number of high investors in the first cluster grows. Hence, an increase in A" increases
the spillovers in the larger cluster, where the size of that effect is increasing in 3. Thus,
investing high becomes more profitable the larger A~ since it increases the probability
of being included in the large cluster. For large  this effect is so strong that strategic
complements are satisfied over the whole range of h~*. In this case, only equilibria
with no investment and with full investment exist (and they might also co-exist). The
most interesting case of the spillover parameter 8, which allows also for equilibria with
partial investment, is covered in Proposition 2.

In Appendix B we show numerically that the qualitative insights of Proposition 2
about the potential co-existence of low and high investment equilibria still apply also if
Assumption 1 is violated, although for very large ratios between z and z three clusters
might emerge in equilibrium. Furthermore, we also show analytically in Appendix B
that our characterization of equilibria carries over to a variation of the game with a
continuous range of R&D effort [z,Z] and an appropriate effort cost function x(z).
This shows that our assumption of a binary choice of effort level is not essential for our
results. However, as becomes clear from the discussion in Appednix B, the shape of
the cost function has an important effect on the equilibrium constellations arising, if
continuous effort is considered.
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5 Extensions

5.1 Comparison with Effort Choice under Exogenously Given
Clusters

The discussion above suggests that the desire to end up in the more attractive larger
cluster is the main driving force for the investment behavior of firms. To further illus-
trate this point we compare the investment incentives in our model in which cluster
formation is endogenous with such incentives in a setting in which the allocation of
firms to the two clusters is ex-ante fixed. We assume that at most two clusters form,
and focus on the maximal possible investment incentives across all possible cluster
structures. Formally, we define by 7 ; (z, A,X(—i)) the market profit of a firm with

investment level z in cluster Ay, k = 1,2 if the profile of clusters is A = ([11, Ag) and
the investment profile of firm i’s competitors x(—i). The maximal possible investment
incentives of a firm given a number h~¢ of other high investors can be written as

Afr(h_i) = max T i, (z, A, x(—1i)) — ﬁgl(g,A,X(—i))

Xop—i o p—i i
A.hA1+hA2—h v

Although an analytical characterization of these maximal investment incentives un-
der exogenous cluster allocation of firms is very involved, in Figure 3(a) they are com-
pared numerically to the incentives under endogenous cluster formation. It can be
clearly seen that the incentives are substantially larger under endogenous cluster for-
mation. The gap is so large that for a certain range of investment costs £ the best
response of the considered firm under exogenous cluster allocation is to choose x re-
gardless of the investment pattern of the competitors, whereas under endogenous cluster
formation it is 7 for all values of h~*. Extensive numerical robustness checks have shown
that the property, that the maximal investment incentives under exogenous cluster al-
location are always below the minimal investment incentives under endogenous cluster
formation, holds across the entire admissible parameter space, i.e. for all parameter
constellations satisfying Assumption 1 and yielding non-negative marginal costs and
non-negative quantities for all possible investment patterns and cluster profiles.

In order to allow for a more thorough comparison between scenarios with endoge-
nous and exogenous cluster formation, in what follows we will sometimes refer to a
scenario with ex-ante given clusters, where the cluster sizes are identical to the ones
emerging as equilibrium size under endogenous cluster formation. Given the strategic
complementarity between R&D investments of firms in the same cluster (for sufficiently
large [3) three potential equilibrium constellations might arise under such an exogenous
cluster scenario. In addition to equilibria with no investment respectively full invest-
ment we can also have equilibria where all firms in the larger cluster A; invest, whereas
all firms in the smaller cluster Ay choose x = z. The number of the high investors in
the different types of equilibria under endogenous and exogenous cluster formation is
illustrated in Figure 3(b). The figure shows that also under exogenous cluster alloca-
tion different equilibria might co-exist. Furthermore, the figure highlights that there is
a range of investment cost values for which the unique equilibrium under endogenous
cluster formation is high investment for all firms, but if clusters of identical size were
fixed before the investment stage, then the unique equilibrium would be that all firms
choose low investment.
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Figure 3: Investment incentives (a) and equilibrium number of high investors (b) under
endogenous (black) and exogenous (blue-dashed) cluster formation.

5.2 Adding an Ex-Post Investment Option

So far, we have assumed that firms can decide about their investment only before the
cluster formation stage. In some contexts it might be reasonable to assume that the
high investment can still be implemented after the R&D cluster has been formed, but
before firms compete on the market. In particular, the literature on R&D investments
(see e.g. Goyal and Moraga-Gonzalez, 2001; Greenlee, 2005) consider only such short
term, flexible investments after cooperations have been formed. Although we rather
think of long term investments, we now want to allow for an additional investment
opportunity after cooperations have formed to see whether firms actually have an in-
centive to commit to investments before formation of the cooperation structure. Thus,
we consider an extension of our game where all firms which have chosen low investment
in Stage 1 are given the opportunity to revise their investment decision in an additional
stage added between the cluster formation stage and the quantity choice stage. The
new stage structure reads:

Stage 1’: Initial Effort Choice, z; € {z, T}

Stage 2: Cluster Formation

Stage 3: Effort Adjustment Stage, if ; = z then firm 7 has the option to switch
to T, = T.

Stage 4”: Quantity Choice

The cost of high effort is &, regardless of whether the high effort is invested in Stage 1’
or Stage 3’. The reason that we only consider upwards changes in the investment level
at the Effort Adjustment Stage is that we interpret the firms’ investment as sunk once
it has been carried out, as discussed in the Introduction. For reasons of simplicity we
stick to a setting with two investment levels, which means that high investors cannot
increase their R&D level at the adjustment stage.

In order to understand the implication of the Effort Adjustment Stage on equilib-
rium behavior, it should be noted that all clusters have been formed before the second
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investment opportunity arises. Hence, the investment incentives of firms at this stage
correspond to that with exogenous cluster allocation discussed in the previous subsec-
tion where we considered the maximal investment incentives for any exogenous coalition
structure by numerical analysis. In particular, investment in Stage 3’ can only arise if
the costs of effort, £, is below the investment incentives under exogenous cluster forma-
tion. Given the insight from the previous subsection, that these incentives are always
below the minimal incentives under endogenous cluster formation, the addition of Stage
3’ can influence equilibrium behavior only if £ is in a range where in the equilibrium of
the original game all firms invest high, see Figure 3(a).

In such a scenario, full investment in the Initial Effort Choice Stage is also the
unique equilibrium of our extended game. The main reason for this observation is the
insight that even with a second investment opportunity at the cluster formation stage,
competitors always prefer a high investor from Stage 1’ to a low investor, which might
invest in Stage 3, to be included in their cluster. This is due to the fact that the high
investor already committed to investment and hence would strengthen the competing
cluster while a low investor might not invest if ending up in the smaller cluster. Thus
even if the number of firms in the own cluster, which end up with high investment after
Stage 3’ remains unchanged due to investment in Stage 3’, replacing a high investor
with a low investor is not desirable for a firm. Hence, no firm has an incentive to deviate
from the high investment in Stage 1’, since any such deviation would imply that the firm
would end up in the small cluster for sure, which reduces the firm’s expected payoft.
Therefore, the additional effort adjustment stage keeps the equilibria identified in our
original game intact regardless of the considered parameter setting.

5.3 Heterogenous Firms

Finally, let us briefly consider a scenario where, contrary to our baseline setting, firms
are heterogeneous with respect to the R&D investment cost level £&. Such heterogeneity
might, for example, be based on differences with respect to the level of past R&D
activities. For simplicity, let us consider the case where n < n firms have investment
costs & whereas the investment costs of the remaining n — n firms is given by & > &;.
In what follows we argue that such heterogeneity may lead to an additional type of
equilibrium compared to those described in Proposition 2. Such an equilibrium occurs
when all firms with £ = & have incentives to invest high if they assume that n — 1
competitors choose Z whereas all firms with £ = & have incentives to invest low if
they assume that 7 competitors choose high R&D. In this equilibrium 7 firms with
low investment costs choose z and no other firm invests high. If n is not too large
this implies that in equilibrium the large cluster A; consists of high and low investors,
whereas the small cluster As contains only firms with low R&D level. Such a scenario
cannot occur as equilibrium outcome for homogeneous investment costs. Considering
Figure 2 the scenario sketched here corresponds to a value of & below the inverse U-

shaped step-function for h=* = i — 1 and & above the value of that step-function for
h™" = .
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6 Welfare Analysis

In light of the different investment patterns and cluster profiles emerging under endoge-
nous and exogenous cluster formation the question arises how welfare, consumer surplus
and firm profits are affected and how these patterns compare to the social optimum.
Given our linear demand function consumer surplus is given by

CS = (i q(i)) -1 (i q(i)> 2 - P (zn: q(i>>

i=1 =1 =1

and we obtain for the social welfare function

W= Zﬂ(i) +C5 = Z (a(8))* — hé + (Z q(@')) /2. (7)

Maximizing this function with respect to the investment pattern and the profile of
clusters yields the following Proposition.

Proposition 3. The following characterizes consumer surplus and welfare maximizing
outcomes:

(i) Consumer surplus is maximal if and only if all firms invest T and all join the
same cluster.

(i) If o — ¢ sufficiently large, then for all & the unique welfare mazimizing cluster
contains all firms.

(113) If € is sufficiently low, then social welfare is mazximized if and only if all firms
mvest & and all join the same cluster.

(iv) If € is sufficiently large, then social welfare is mazimized if and only if all firms
wmvest x and all join the same cluster.

Consumer surplus is maximized if the market price is minimized, which under
Cournot competition corresponds to the minimization of average marginal costs. Hence,
for consumer surplus to be maximal, R&D effort and spillovers must be maximized.
Therefore, a single cluster in which all firms invest high is optimal from a consumer
surplus perspective (point (i) of Proposition 3).

Considering welfare, the trade-off between the costs of R&D investments and their
return in terms of cost reduction has to be considered. If all firms have identical R&D
efforts, then from a social perspective the total cost reduction is clearly maximal if all
firms join the same cluster, which maximizes spillovers. This explains parts (iii) and (iv)
of Proposition 3. If firms are heterogeneous with respect to their R&D effort, including
low investors in a cluster of high investors has not only the spillover induced positive
effect discussed above, but also induces a larger output for the low investor compared
to a scenario where it would stay in isolation.?! Hence, it is no longer obvious that
a single cluster is welfare maximizing. However, part (ii) of Proposition 3 shows that

21This effect is closely related to the well-known fact that reduction of marginal costs of firms with
low market shares in Cournot competition can be welfare reducing, see Lahiri and Ono (1988).
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Figure 4: Maximal welfare (green) and welfare under equilibria with endogenous (black)
and exogenous (blue-dashed) cluster formation.

the direct spillover effect always dominates if the market size is sufficiently large and
therefore under such a condition the generation of a single cluster always maximizes
welfare.

Combining Proposition 3 with Proposition 1 shows that the profile of clusters emerg-
ing in equilibrium is generically inefficient. This insight is also illustrated in Figure 4,
in which the welfare maximum is compared to social welfare of the different types of
equilibria under exogenous and endogenous cluster formation. Equilibrium welfare is
always strictly below the maximum and it is obvious that this inefficiency stems from
the profile of clusters since at least for very low and very high investment costs the
welfare maximizing investment pattern coincides with that arising in equilibrium.

Comparing the welfare generated in equilibria with endogenous and exogenous clus-
ter formation, Figure 4 shows that the effect of endogenous cluster formation on welfare
is ambiguous. On the one hand, as discussed above, there is a range of investment cost
values where under endogenous cluster formation there exists a unique equilibrium
with high investment whereas under exogenous cluster formation only low investment
is done. In such a scenario welfare is substantially larger under endogenous cluster
formation. On the other hand, there is also a range of investment cost levels where
under exogenous cluster allocation of firms only the firms in the large cluster invest
high whereas all other invest low. Such an investment profile generates higher welfare
compared to the full investment profile emerging under endogenous cluster formation
because a large share of output is produced by the low cost firms in the larger cluster
and for the relatively low output produced in the small cluster the saved investment
costs outweigh the aggregate reduction in production costs that would result from full
investment of the small cluster firms.

Furthermore, Figure 4 shows that in the upper range of investment cost levels, for
which an equilibrium with high investment exists under endogenous cluster formation,
such an equilibrium generates welfare which is not only substantially below the welfare
maximum but also below that of the unique equilibrium under exogenous cluster for-
mation, which corresponds to the zero investment equilibrium. Welfare maximization
requires zero investment in this parameter range, which means that endogenous cluster
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Figure 5: Consumer surplus (a) and total firm profits (b) under welfare maximizing
choice of investments and profile of clusters (green) as well as under equilibria with
endogenous (black) and exogenous (blue-dashed) cluster formation.

formation can yield massive over-investment in equilibrium. Intuitively this inefficiency
is triggered by the tournament like structure. All firms have strong incentives to end
up in the larger cluster due to the endogeneity of the difference in payoffs between the
clusters driven by the strategic complementarity.??

Figure 5(b) shows that total industry profit, and therefore also average firm profit,
is for a certain range of {-values strictly larger if firms are ex-ante allocated to clusters
than if clusters are formed endogenously. This is quite intuitive, because under ex-
ogenous cluster allocation firms avoid the strategic over-investment, which arises under
endogenous cluster formation. Hence, in principle, by cooperatively determining the
cluster and investment profile and committing to transfers between firms allocated to
the more and to the less attractive cluster, firm could increase their ex-ante expected
profit compared to a scenario with endogenous cluster formation?*. However, such a
scenario, in which all firms in the industry cooperatively determine the amount each of
them invests in long term R&D capabilities and firms in the large cluster commit to long
term transfers to firms in the small cluster, which keep their capabilities low, would not
only be highly problematic from an anti-trust perspective, but also seems to require too
much commitment from the involved parties to be feasible and strategically stable.?*

2L azear and Rosen (1981) show in the framework of labor contracts that tournament schemes, in
which the firm chooses the price structure and prices are independent from workers’ investment, can
induce efficient investment. In a related setting with endogenous determination of the price structure
and asymmetric information about investment Zabojnik and Bernhard (2001) show that underinvest-
ment in equilibrium results. The main difference between our setting and these contributions is that
the payoffs obtained in the two clusters are positively affected by own investment and marginal returns
from investment are larger in the cluster generating higher payoffs.

231t should be noted that, as in the previous figures, the dashed blue line in Figure 5(b) refers to
the exogenous cluster profile with the largest investment incentive for firms, which in general differs
from the cluster and investment profile maximizing total industry profit. Numerical evidence suggests
that the total industry profit under the profit maximizing profile is strictly larger than that under
equilibrium cluster and investment profiles for all considered values of the investment cost .

24Without a full commitment of the firms in the large cluster not to accept an additional firm, even
if it has high capability, firms which according to the chosen cluster allocation should invest low and
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From a consumer perspective, as should be expected, the high investment incentives
under endogenous cluster formation are desirable and consumer surplus is for all values
of investment costs (weakly) larger in the case of endogenous cluster formation (see
Figure 5(a)) than with exogenous clusters.

7 Open Membership

So far we have assumed that firms are able to exclude competitors from their cluster.
To examine how important this feature is, we now consider an institutional setting in
which firms cannot limit access to their cluster. In such an environment, the open
membership game introduced in Yi (1997, 1998) may be the accurate way to model the
cluster formation process of the second stage. In the open membership game, the firms
simultaneously pick one of n possible addresses. All firms announcing the same address
form one cluster.

Formallly, the set of pure strategies of each firm (in the second stage) is given by
S = {a,...,a,} and payoff is obtained from (3). The cluster profile resulting from a
profile s7 € ™! of the competitors of i is denoted by AM(s7).

To distinguish equilibrium quantities and efforts of the open membership game from
the unanymity game, we denote these vectors by x°™, and q®™, respectively. Solving
for the third stage, we obviously get that equilibrium quantities g7 (i, x9M A9M) can
be calculated according to (2).

To analyze cluster formation according to the open membership game, we use (3)
to calculate the best response of firm i € N with R&D investments z; € {z,z} given

the choices of other firms s~ resulting in a cluster structure A= = (A;",..., A=) by,
BROM(s™) = {a; | j € argmax(n(h & + 1—iz) — (b + 1)) }. (8)
je{1,..,n} J J J J

Taking into account that the payoff of joining a cluster is an increasing function of
the number of high respectively low investors in that cluster (under our condition that
T < 2z), it is therefore straightforward to see that in any equilibrium, all high investors
choose the same cluster and all low investors choose the same cluster. The following
proposition establishes that it is indeed the unique equilibrium of the second stage (up
to permutation of addresses) that all firms, independently of their investment in the
first stage, choose the same cluster.

Proposition 4. For any profile of investment X, all firms choose the same cluster in
the open membership game.

In the proof of Proposition 4, we show that it is not an equilibrium that all high
investors choose one cluster and all low investors choose a different cluster if (2n—1)z >
Z which is obviously implied by our Assumption 1 that z < 2z. From the structure of
the best replies (8) the result then immediately follows.

Comparing this proposition with part (ii) of Proposition 3 shows that the clus-
ter profile emerging under the open membership game is always socially optimal. In
particular, this implies that under very small and very large investment costs, when

stay in the small cluster, would have incentives to deviate and to invest high in order to join the large
cluster (and firms in that cluster would have incentives to let the high capability firm join the cluster).
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investment profiles under the open membership game coincide with the welfare maxi-
mizing profile (i.e. no investment respectively full investment) the equilibrium outcome
under the open membership game is efficient.

Thus, independent of the investment in the first stage, one cluster comprising all
firms always forms. For the investment incentives in the first stage of the open mem-
bership game, this means that there is no uncertainty concerning cluster member-
ship. We can then directly calculate the investment incentives, by Ar9M(h~%) :=
7OM (i, 2, h™h) — 7OM (i, 2, h™?), where mOM (i, 2(i), ™) := 7(i,x, A) with A = {N}
and x is such that h~% other firms invest high, n — 1 — A~ other firms invest low, and
firm ¢ invest x(7).

Compared to the unanimity game, see (5), this implies that one of the two effects
determining the investment incentives in the first stage vanishes: increasing the invest-
ment, when the open membership game follows in the second stage, does not affect
cluster membership and hence does not increase the probability to become a member
of a more attractive cluster. Since the observed complementarity of investments in
the first stage was due to the probability effect, we may expect that investments are
strategic substitutes when open membership game follows the investment stage. This
is confirmed in the following corollary.

Corollary 1. Let 3 < 1/2. Then Ax°M(h™%) is decreasing in h™".

We can also compare the magnitude of the investment incentives when the open
membership game is used for cluster formation to those when the unanimity game is
played in the second stage. Because of the missing positive incentives due to investment
dependent cluster membership, we may expect lower investments in the first stage
when cluster formation is according to the open membership game. This also becomes
immediate from Figure 3(a) where the investments incentives in the unanimity game
are compared to maximal investments under exogenous clusters (where the maximum is
taken over all cluster structures yielding one or two clusters). Since the cluster structure
of the open membership game is invariant to investments in the first stage (and yields
one cluster), the investment incentives must be below the maximal investments under
exogenous clusters in Figure 3(a). This immediately implies that incentives under the
open membership are always lower than under the unanimity game.

To summarize, endogenous cluster formation per se does not induce higher invest-
ment compared to the ones under exogenously given cluster membership. It is crucial
whether firms are able to exclude others from their clusters. Hence, there is a trade-off
in terms of innovation when going from an exclusive to open membership institutional
setting: on the one hand, spillovers are maximized in the open membership game since
the complete cluster of all firms always forms. On the other hand, the incentives to
invest in R&D are considerably reduced. This reasoning implies that for values of the
investment costs, for which the induced investment patterns under the unanimity game
and the open membership game coincide, welfare is larger under the open membership
game. For intermediate values of ¢ the trade-off between higher investment incentives
and smaller cluster size under the unanimity game does not allow for general statements
about the relative size of welfare under the two cluster formation regimes.
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8 Conclusions

The main contribution of this paper is to improve our understanding of the strategic
relationship between firms’ (long term) R&D investment decisions and their participa-
tion in R&D clusters. From a theoretical perspective, we go beyond the current state
of the literature by developing and analyzing a framework which allows to character-
ize the equilibrium profiles of both R&D investment and R&D cluster formation in
a setting where R&D efforts have a strategic effect on thne competition stage. Our
analysis shows that in equilibrium generically unique cluster profiles emerge which are
characterized by a strong heterogeneity between clusters with respect to size and R&D
investment while within clusters, the heterogeneity of R&D levels is small. In partic-
ular, it is shown that in case of heterogeneous firm investments the majority of high
investors is always included in the largest cluster. Overall, our model predicts a positive
relationship between the level of firms’ (long term) R&D activity and the number of
cooperation partners, and therefore is able to provide a theory-based explanation for a
large set of empirical findings pointing towards such a positive relationship (e.g Veugel-
ers, 1997; Becker and Dietz, 2004).?5 Aditionally, our model makes the empirically
testable prediction that R&D cooperations are stratified in a sense that the variance of
R&D levels within clusters is lower than that in the entire population.

Furthermore, we show in this paper that the endogenous cluster formation pro-
cess implies stronger investment incentives, compared to a scenario where allocation
of firms to clusters is ex-ante fixed, and generates strong strategic complementarities
with respect to the firms’ investment decisions. These long term investements (before
the cooperation structure is formed) have a strategic effect which is not modelled in
the literature so far. By choosing high R&D investments firms increase the probability
to participate in the more attractive cluster resulting in some cases in overinvestment
as a strategic device. A similar effect occurs in Petrakis and Tsakas (2018) where
R&D cooperation formation can be used as a strategic device to prevent market entry
of another firm even though R&D cooperation itself is not beneficial. In our model,
firms choose high R&D investments because of the strategic implications for coalition
formation.

The strategic complementarities in our model imply that for a large range of invest-
ment cost values a no-investment equilibrium co-exists with an equilibrium in which
(almost) all firms choose a high R&D level. Welfare maximization would require a
full investment profile for a substantial part of the investment cost range where the
no-investment equilibrium exists. These insights have clear managerial and policy im-
plications.

From a managerial perspective our analysis highlights that endogenous cluster for-
mation is an important driver of strategic complementarity between competitors’ R&D
activities. Hence, for a firm to choose the level of its R&D investments and to decide on
its strategic reaction to the (long-term) R&D activities of its competitors, it is crucial
to have a clear understanding of how flexible the R&D cooperation structures in the
industry are, i.e. whether the cooperation structures are essentially fixed or there is still
room for endogenous formation of R&D clusters.

From an innovation policy perspective the observation that firms which anticipate

2For short term R&D efforts, where these investments do not affect quantities a similar finding has
been established already in e.g. Hsieh et al. (2018) and Konig et al. (2019).
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that their R&D level influences their cluster membership invest more, provides a po-
tential justification for policy measures, like technology and cooperation platforms,
which foster the exchange of information between firms and the continuous adjustment
of cooperation structures. Furthermore, this observations suggests that public sup-
port schemes for R&D cooperations that restrict the freedom of choice of cooperation
partners through restrictive eligibility conditions in general reduce incentives for (long-
term) R&D investments. Furthermore, our analysis suggests that in scenarios where
no-investment and full investment equilibria coexist, the introduction of a (potentially
small) public R&D subsidy, which moves the level of R&D investments required from
the firms below the threshold € can have a strong positive effect by inducing a transition
to the equilibrium where all firms invest high.

Our analysis is based on a number of simplifying assumptions whose implications
should be critically examined. If we would allow firms to enter individual cooperation
agreements with selected competitors rather than joining a cluster, the resulting analysis
would require the characterization of equilibrium network structures among general
profiles of heterogeneous firms. This technically and conceptually demanding task is
left for future research. Also, in this paper we have abstracted from the effects of R&D
investment on a firm’s absorptive capacity. Considering such effects might substantially
affect the qualitative findings obtained here. Again, future work should be able to
address this issue.
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Appendix
A An Oligopoly Model with Product Innovation

Here, we briefly outline an oligopoly model where products are vertically differentiated
and R&D activities of firms lead to changes in product quality due to product innova-
tion. We show that this simple model formulation yields equilibrium profit functions
of firms which have a completely analogous functional form as the ones resulting from
the process innovation model used in the main body of the paper. Hence, all results
concerning firm investment and formation of clusters derived in the paper are also valid
in this product innovation setting.

Like in the main body of the paper, we consider an oligopoly of a set N = {1,...,n}
of ex ante identical firms which engage in a three stage game. Firms first choose
permanent R&D efforts, then form R&D clusters and finally compete in the market by
choosing quantities of their product. The R&D effort x(i) € {x,Z} of firm 7 is invested
in product innovation and influences the quality of the product. Choosing to invest
high, (i) = £ > z > 0, implies costs of £ > 0, whereas the costs of low effort z are
normalized to zero. Firms form clusters in the same way as described in Section 2 and
the quality of the product of firm ¢ is then given by

uli) = TH—W(as(i) +5Y a:(j)). i=1,.,n, 9)
J€A)

To simplify notation we normalize u to zero. Marginal production costs of the firms,
which are assumed to be constant and identical across firms, are denoted by ¢ > 0.

Demand on the market is generated by a representative consumer with the utility
function (expressed in monetary units)

U(q(1),....q(n) =Y (a+u(i)q(j) — % (Z Q(J‘)) = p)ali),

JEN JjEN JEN

where quality and prices are given parameters from the consumer’s perspective.

In the third stage of the game all product qualities are common knowledge and firms
simultaneously choose their quantities. Prices are then adjusted such that the market
clears, which means that the vector of chosen quantities (¢(1),...,¢(n)) maximizes the
consumer’s utility function. The corresponding first order conditions yield

p(i) = a+uli) = > q(j).
jEN
Taking this into account, the market profit of firm ¢ can be written as
(i) = (a +u() = q(j) - 5) q(i)
JEN
and standard calculations yield the equilibrium quantities

o a—et (n+ Duli) = 3oy ulf)
q (i) = ——
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and market profits

(a —c+ (n+Dul) = Xjen “(j)>2

(i) = (n+1)?

Inserting (9) into this expression yields that the overall profit of the firm is given by (3)
and hence coincides with the one derived in the process innovation model considered
in the main body of the paper. Therefore, all derived results also hold for the product
innovation model sketched here.

B Robustness

B.1 Large ratio of 7/x

In order to derive our analytical results, we have restricted our analysis to scenarios
where in equilibrium only two clusters emerge. This is ensured by the condition x < 2z,
stated in Assumption 1. In this part of the appendix, we check numerically in how far
our main results (qualitatively) stay intact if we allow for higher values of the ratio
z/xz. Our numerical procedure first determines in a given parameter setting for all
combinations of the number of high investors, h, and sizes of the first cluster, n; = |A;]
the equilibrium number of high and low investors in the second cluster (hg,ly) and
in a potential third cluster (hs,l3).2® These values are then used to determine the
equilibrium size of the first cluster for any value of h. The resulting equilibrium cluster
constellations are used to determine the expected payoffs of agent ¢ under x; = ¥ and
x; = x for any given number h_; of high investors among its competitors, which then
yields the investment incentives of agent ¢ as a function of h_;. In our robustness check
we keep all parameter values at their default values apart from z and «. The value of
a has to be increased in order to guarantee that also for values of z > 2z the Cournot
equilibrium quantities of all firms stay positive regardless of the investment pattern and
cluster constellation (see Footnote 14). In particular, we increase the market size from
the default value o = 35, used in the body of the paper, to a = 140.

In Figure 6 we show the sizes and numbers of high investors in all equilibrium clusters
as well as the investment incentives for this enlarged market size and the default value
T = 2. As can be seen in panel (a) changing « has no impact on the constellation of
equilibrium clusters, such that for = 2 we obtain exactly the same pattern as depicted
in Figure 1. Comparing panel (b) to Figure 2 shows that the investment incentives are
scaled up compared to the default case, but the structure of the best response function of
agent ¢ and the resulting equilibria are qualitatively the same. This is hardly surprising
since under this parameter constellation Proposition 2 still applies.

In Figures 7 and 8 we depict the equilibrium cluster constellations and best response
functions for z = 3 and ¥ = 6. In both cases three cluster emerge for certain numbers
of high investors. As expected, the third cluster always consists only of agents with
low investments. Considering the best response functions, it becomes clear that in
both considered parameter settings for certain ranges of the investment costs there are
equilibria of the game with three clusters. In particular, for £ = 3 there is an equilibrium

26Note that maximally three clusters can form in equilibrium.
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Figure 6: (a) Sizes (n;, black lines) and number of high investors (h;, blue lines) of all
clusters, and (b) the best response function for a = 140 and z = 2.

Figure 7: (a) Sizes (n;, black lines) and number of high investors (h;, blue lines) of all
clusters, and (b) the best response function for a = 140 and = 3.

Figure 8: (a) Sizes (n;, black lines) and number of high investors (h;, blue lines) of all
clusters, and (b) the best response function for o = 140 and = = 6.
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with A = 18 and a cluster constellation ny = hy = 13,1, = 6,hy = 5,n3 = 1, hy = 0.
Similarly, for # = 6 an equilibrium with h = 15 and three cluster exists, where n; =
hy = 13,ny = 6,hy = 2,n3 = 1, hg = 0. Intuitively, for such large values of z the high
investor proposing the second cluster has lower incentives to include low investors into
the own cluster, which implies that a third small cluster of low investors might emerge.
In spite of the fact that for £ > 2z there can be equilibria with three clusters, the main
qualitative properties of the equilibrium investment patters, as described in Proposition
2, still apply. In particular, also for z = 3 and = 6 for low values of investment costs
¢ there is a unique equilibrium with full investment, whereas for large values of ¢ the
unique equilibrium induces no investment. Furthermore, there is an intermediate range
of & such that the no-investment equilibrium co-exists with an equilibrium where either
all or at least a large fraction of agents invest high.?” The number of high investors in
the high investment equilibrium weakly decreases with &.

Another assumption underlying our analysis is that firms choose between two pos-
sible investment levels. Relaxing this assumption implies that the potential number of
equilibrium clusters increases, in particular for k investment levels up to 2k — 1 clusters
might emerge.?® A full analysis of the equilibrium cluster constellations in such settings
with large k, even by numerical means, seems hardly feasible.

B.2 Continuous range of investment choices

In this section we show that the equilibrium constellations characterized under the
assumption of binary investment choices caries over to settings with a continuous in-
vestment range under appropriate investment cost functions. In particular, we assume
that z; € [z, z] for all firms i = 1,...,n and the investment cost function is characterized
by fixed costs F' of investing above z. In particular, we assume a cost function of the
form x(x) = sign(x —z)F + x(z — z) with F < £ and )2% > 0. Hence, x(z) =0 and
x(Z) = &. If we interpret z as the standard level of R&D that can carried out without
a dedicated R&D lab, F' can be interpreted as the fixed costs of establishing dedicated
R&D facilities.

First, we consider a scenario where ¢ is such that under our default setting with
binary choice there is a no-investment equilibrium. This means that A7(0) < 0, or,
put differently

T, (‘fa O) - 5 < PA T A (£7 0) + (1 - pA1>7TA2 (&, 0)7 (10)

where A is the resulting first cluster in a scenario with h = 1 and (A;, A,) is the
equilibrium cluster constellation for ~ = 0. Analogous to the notation in the proof of
Proposition 2, we denote by m(x, k") the Cournot profit of a firm with investment x in
cluster A if A~ other firms choose z; = Z and n — h™" — 1 choose x; = z. Furthermore,
we assume that

F > my(2,0) —ma,(z,0). (11)

2TAs can be seen in Figure 8 for z = 6 there is a range of &-values where the low investment
equilibrium co-exists with two different high investment equilibria.

28This upper bound for the number of potential clusters follows from our observation that any
homogeneous cluster whose size is not restricted by the number of firms with equal investment has a
size of at least [”THW and clusters never include firms with a certain investment level as long as firms
with higher investment would still be available to be included in that cluster.
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Under this assumption we have

PayTa, (2,0) + (1 — pa, )ma,(2,0) > 74, (2,0) — F = limeo(ma, (z+€,0) — x(z +€)).

Furthermore, since A; is the optimal cluster for a low investor in a population with
h = 0, it follows by continuity that this is also the optimal cluster for a firm ¢ with
x; = x + € under h; = 0 if € is sufficiently small. Therefore

PA T A (&, 0) + (1 - pAl)TrAQ (£7 0) > lime—>0(7r,fll (E + €, 0) - X(g + 6)) (12)

for any cluster A,. Furthermore, for any fixed cluster A; the profit 74 (,0) is convex
in 2 and, due to the linearity of x(z) and x(z) = &, it follows that

m4,(7,0) — x(7) < max[m; (7,0) — &, limeo(my, (2 +¢€0) — x(z +¢€)]

for all z € (z,Z]. Since A; is the optimal cluster under = = Z we have 74, (2,0) =& >
m4,(7,0) — £ for any cluster A;. Together with (10) and (12) this implies

Da,Ta, (&, O) + (1 - pA1)7TA2 (gv O) > max [(WAl (JZ, 0) - X(l‘)]

z€(z,7]

for any cluster A,. Hence, x; = z is the optimal investment of firm ¢ if A; = 0, and
therefore the no-investment constellation with A = 0 is an equilibrium.

Second, we consider a scenario where x; is such that there exists an equilibrium
with h = n under the setting with binary investment choice. Any deviation of a single
firm to an investment level x; < Z implies that this firm will end up in the second
smaller cluster and the convexity of m4,(z,n — 1) with respect to z implies that, if such
a deviation is profitable, the optimal deviation is to choose x; = x. The fact that h =n
is equilibrium in the binary choice scenario however implies that such deviation is not
profitable. Hence h = n is also an equilibrium under continuous effort choice.

Third, we consider a scenario where ¢ is such that there exists an equilibrium with
|A1] < h < n under the setting with binary investment choice. For the h firms choosing
xr; = T the same arguments just used for the case of h = n show that there is no
profitable deviation also in the case with continuous effort. For a firm ¢ choosing x; = =
we know from the analysis with binary choice that a deviation to x; = ¥ is not profitable.
Any deviation to x < Z would still imply that the firm with probability 1 will end up
in the second cluster Ay. Convexity of wa,(z, h) — x(x) with respect to x again implies
that no effort choice in (z, Z) can be optimal and therefore z; = z is the optimal choice
for firm 1.

Finally, using again the convexity of ma(z,h) — x(z), it is easy to see that no
equilibria exist where some firms invest x; € (z,Z). So, overall we have shown that
under the considered cost structure and the assumption in (11), the equilibria under
continuous effort choice coincide with those we have characterized under binary choice.
Clearly the shape of the cost function y is crucial for obtaining this result. In particular,
it is easy to see that in the absence of fixed costs of investing above z, i.e. for F' = 0,
there is no equilibrium with A = 0 since in such a setting it is always a profitable
deviation for a firm to invest marginally above z, which guarantees that this firm in
the cluster formation stage obtains a spot in the larger first cluster. The equilibria with
h > 0 however also exist in the absence of fixed costs.
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C Proofs

Proof of Proposition 1. We show the result in three steps. First, in Lemma 1 we use
backward induction to calculate the number m such that all remaining firms join one
cluster and deduce from that the maximial number m such that a proposal is made
which (upon acceptance) results in a number of remaining firms smaller or equal m
implying that two coalitions form. That proposal is made under the assumption that
all other firms will join one coalition. Second, we show in Lemma 2 that any rational
proposal is accepted by all firms included in the proposal. Finally, we show in Lemmas 3
and 4 that it is indeed optimal to propose a cluster such that all remaining firms join
one coalition if the difference between high and low effort firms is bounded, i.e. 7 < 2z.
In particular it is shown, that it is not profitable for the proposer to suggest a smaller
cluster in order to induce the remaining firms to split up into more than one cluster
after formation of the proposed cluster. This implies that under Assumption 1 always
two clusters form. The size of these clusters and the number of high and low investors
in each of them then follow directly from setting m = n and h,, = h in Lemma 1.

Lemma 1. Assume that all cluster proposals are accepted. Then, for m remaining firms

such that among these h,, invest high and L, invest low and numbers *(hpy,l,) =

(n—1—hm+2m)z—hmT * L (n—142hm+lm)T+HImz
{ = and B (L) = ~

proposed under the assumption that all players outside the proposal join one cluster.

, the following cluster is

e IfO<h, < (”_;—Tilm)g, then a coalition of all remaining players is proposed.

o If (n—1- QZ’”)“” < h, < (”1+%” then a coalition of h,, high investors and I* low
zm}estors is proposed.

m+r
low investors is pr’oposed

, then a coalition of h,, high investors and no

o If w < hy, then a coalition of h* high investors and no low investors
18 pmposed.

e Ifh,=0andl, < (”TH] a coalition of all remaining players is proposed.

e Ifh,=0andl, > (” 1

o

W a coalition I* of low investors is proposed.

Proof of Lemma 1. Suppose n—m firms have already formed clusters and let it be firm
’s turn to propose the next cluster. Denote the cluster structure that has been formed
before i proposes by A(—i). Since by assumption all proposals have been accepted and
because it is assumed that the rule of proposal order p is such that high effort firms
have a lower rank than low effort firms, 7 is either a high investor or there are only low
investors left in the game.

First, suppose that h,, > 0, i.e. 7 is a high investor. Since by assumption the firms
outside the proposal form one cluster, i faces the optimization problem to propose an
optimal cluster A(i) consisting of h high investors and [ low investors such that the
other m—h—1 > 0 firms form one cluster, denoted by A such that the cluster structure

is given by A = (A(—i), A(i), A).
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Since maximizing profit is equivalent to maximizing quantities and, in the maxi-
mization problem, quantities of ¢ are only influenced by the spillovers from the last two
clusters A(i) and A, we get

argmax 7m(i,x,A) = argmax q¢(i,x,A)
A()CN\A(—i) A()CN\A(—4)
= argmax [n((ﬁ —Dz+1z) — (h—1)((h— 1Dz +1z)) —I(hz + (I — 1)z)
h<hm [<lm

(= 1) (B — b= D)2 + (I — D) = (Lo — D) (i — 2)T + (g — 1 — 1)@} .

The proposer chooses first from the high effort firms and then from the low effort
firms since a high effort firm is always preferred to a low effort firm and it is assumed
that the remainding firms form one cluster.

Suppose first that the proposal includes only high effort firms, i.e. A(i) = (hag),0)
which implies A = (hm, — hag), lm). Since marginal profit of adding other firms to
the own cluster A(7) is decreasing in the size of the cluster |A(7)|, we get the optimal
number of high effort firms in A(%) is the largest integer h* such that marginal profit of
adding the last firm is positive. Thus, we get h* as the largest integer satisfying,

7(i,x, (R*,0), (hy — B, 1)) — (i, x, (" — 1,0), (hy, — R* 4+ 1,1,,))) > 0
& n:z—( —2)@ (h* =1z + (2(hpm — h") + l)T + Lz >0
& 4—1:l_ca:(n+3+2hm+lm)+lm§>h*.

Hence, the optimal coalition size is given by

h* o (n_1+2hm+lm)j+lm£
T 4z

To be consistent with the assumption that no low investors are selected, we need
h* < h,, which is equivalent to (n_HQh"glm)erg < h,, since h,, is an integer. Hence,

(n—1+1n)T+lnz _ 3
2% o

Thus, for h,, > h3 , i proposes the cluster A(i) = (h*,0).

Now consider the case that h* < h,,. Therefore, choosing hA* high investors for
the cluster A(7) is no longer feasible. Since high effort firms are more attractive as
partners, ¢ will, hence, select all high effort firms. Additionally low investors may also
be included. Again, since marginal profit of adding other firms to the own cluster A(7)
is decreasing in the size of the cluster |A(7)|, we get the optimal number of low effort
firms [* by solving,

(1, X, (i, 1+ 1), (0, b = 17 = 1)) = 7(i, X, (o, 17), (0, b — 1)) = 0
& ne — (hyp +0" =1z —hpo — Uz +2(l,, — 1" — 1)z =0
& ﬁ(n—l—hm—i—%m)g—hmf:l*

< hpy, & hy >

Thus, the optimal coalition size is given by

I = (n—1—hm+2m)z—hmT
= iz
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To ensure that the number selected is feasible, we need 0 < I* < [,,, which is equivalent
to 0 < ("_1_hm2ilm)£_hmz <, since 0 and [,, are integers. Hence,

(n =142,z

0<l*sh, < — ::hfn
r+x
2x
o (@t a) (1= 2
2x - 2x
an,>mZ1z2z
r+x

Thus, for hl < h,, < h2,, i proposes the cluster A(i) = (hy,,1*). It follows that for
hy,, > h2, no low effort firms are included in A(z), which implies that for A2, < h,, < h3,
i proposes the cluster A(i) = (h,,,0). On the other hand, for h < hl  4’s proposal
includes all remaining firms, i.e. A(i) = N \ A(—i). To see this we determine under
which conditions a singleton low effort firm j with |A(j)| = 1, is accepted in a cluster of
size |A(i)] = m — 1. Note that this corresponds to the case where the incentive to add
j is minimal since by (4) the incentive is decreasing in the size of A(i) and decreasing
in the investment x(j) while increasing in the size of A(j). Hence, we get from (4) that
Ag*(7) > 0 if and only if

m< 22— by (2-1). (13)

Direct calculations show that this inequality is satisfied for h < hl .

Finally, the case where there are no high effort firms, h,, = 0 corresponds to the
case when there are no low effort firms since in both cases all firms are symmetric,
completing the proof of Lemma 1.

[]

Lemma 2. Suppose that N C N have already formed clusters and it is i’s turn to
propose the next cluster. If firm i proposes a payoff maximizing cluster A(i) C N,
in the sense that i's payoff is mazximized among all continuation payoffs following any
accepted proposal A(z) C N, then proposal A(i) is accepted by all firms j € A(i).

Proof. Suppose that at some point of the game a firm ¢ is to propose a cluster. In other
words, either ¢ is the first to propose or it proposes after the clusters Ay,..., A; have
already been formed. Now, firm ¢, which is the first of the remaining firms according to
the rule of order, proposes a cluster A(7), which upon acceptance results in a continua-
tion subgame with a set N C N of firms. Furthermore, we assume that A(i) is chosen
in a way that it maximizes the profit for firm ¢ induced under the assumption that
its current proposal is accepted and the subgame perfect equilibrium is followed in the
continuation subgame. For further reference we observe that this optimality property
implies that ¢(i;x, A) > q(i; x, A), where A denotes the cluster profile induced by A(37)
and A a cluster profile induced by some alternative proposal fl(z) at the current stage.

Consider now a firm j € A(i), j # ¢ with (i) = x(j). Clearly, the payoff of j under
this proposal is identical to that of 7. Assume that j rejects the proposal. This would
only be rational if j could obtain a strictly higher payoff by offering an alternative
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proposal A(7).2 If i € A(j) then the payoff of i in this alternative proposal would be
identical to that of j, which implies that the original proposal A(7) would not be optimal
for ¢, which is a contradiction to our assumption. If ¢ & fl( j) then consider instead the
proposal A(i) = A(j)\{j}U{i} by firm i. Comparing the subgames after A(5) and A(7)
have been accepted, it turns out that both are identical up to permutation of players,
since the number of high and low effort firms remaining are identical, and the rule of
order is preserved since we assumed that high effort firms have a lower rank than low
effort firms. Hence, we can conclude that the payoff of i in A(7) is identical to the
payoff of j in A(j). This again yields a contradiction to the assumption that A(7) is
the optimal proposal for firm .

Consider now a firm j € A(7), j # @ with x(i) # (). Given our assumption that
high investors propose before low investors in the rule of order we must have x(i) =
and z(j) = z. Assume that j rejects the proposal. This would only be rational if j
could obtain a higher payoff by offering an alternative proposal fl( 7). Similar to above
we distinguish between the cases where i € A(j) and i & A(j).

In case i € fl( j) let us denote by A and A the unique® cluster profiles induced by
the acceptance of proposals A(i) and fl(]) Further, denote by Aq(i) := ¢(1, x, A) —
q(i,x, A), respectively Aq(j) the differences in quantities for the two firms between the
cases where A(j) is accepted and A(7) is accepted. Since j rejects A(i), it must strictly
prefer the outcome induced by A(j) and since profits (net of investment costs) are given
by the square of the quantities, we must have Ag(j) > 0.

Thus,

(n+1)Aq(i)
= —n(c(i;x, A) —c(i;x, A)> +c(jix,A) —c(jix, A) + Z c(m:x, A) — ¢(m;x, A)

m%#i,J
= 0 [_n((hA(j) -+ Ligz — (haw@y — )7 — lA(i)@) + (hg(j)f + (lg(j) — Dz
—ha@® — (lag) — 1)@)} + Z c(m:x, A) — c¢(m;x, A)

m##i,j

= ~f [—(n - 1)<(hA(j) — ha@)T + Lz — lA(i))l)] - Z c(m;x, A) — ¢(m; x, A)

mi,j

= (n+1)Aq(j) > 0.

Therefore, we obtain a contradiction to the assumption that proposing A(7) is optimal
for firm .

As a next step we consider the case where i ¢ A(j), but there exists a firm k € A(j)
with (k) = z. In case k € A(i) we immediately obtain Ag(k) < 0 since k is of
the same type as ¢ and therefore A(7) must have been optimal for k. This implies
that also Ag(j) < 0, which contradicts the optimality of A(j) for j. Consider now
the case where k ¢ A(i). For proposal A(j) to be strictly preferred by firm j to

2Note that is shown in Bloch (1996) that there exists a subgame perfect equilibrium with the
property that all firms always accept a proposal as long as rejecting would not result in a strictly
higher payoff (see Proposition 2.4 in Bloch (1996)).

30By unique, we mean up to a permutation of firms which invest identically. Thus quantities of i and
j are uniquely determined. We get the uniqueness by backward induction and acceptance of proposals
in case of indifference.
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A(i) we must have Ag(j) > 0. Analogous to above, this implies Ag(k) > 0, where
Aq(k) denotes the difference in quantity for firm k between proposal A(j) and proposal
A(k) = (A(i) \ {i}) U {k}. Hence A(k) would not be optimal for firm k, but since firm
k is of the same type as firm ¢ this would contradict that A(é) is optimal for firm 4.

Finally, consider the case where i ¢ A(j) and there does not exist k € A(j) with
z(k) = z. In other words, the counter proposal consists of only low effort firms. As
above denote by N the remaining firms (before i’s proposal) and h and [ the number of
high respectively low remaining investors. Assume that h is low enough such that ¢’s
optimal proposal A(7) (conditional on acceptance) also contains low investors (otherwise
a homogeneous coalition is proposed which is always accepted, see above).

We show that no counterproposal A(j) with (k) = z for all k € A(j) increases j's
payoff by induction over the remaining low investors / for given h. Clearly for I = 1 such
an A(j) yields |A(j)| = 1 and thus lower profits. In what follows, we show that under
the assumption that for [ low investors with [ < [ no such profitable counterproposal
A(j) exists, no profitable counterproposal A(j) also exists for [ low investors. To the
contrary, suppose that for [ = [ there is a profit increasing counterproposal A( /) which
is hence accepted. After formation of 121( ) all proposals are accepted by assumption
above and, hence, cluster sizes are given by Lemma 1. It is easy to see that with
N\ A(j)| > n/2 the profit of the members of A(j) would increase if they add a high
investor to their cluster. Following identical arguments to above this would imply that
the profit of j in A(i) would be higher than in A(j).

Based on this we restrict attention to the case where [N \ A(j)| < n/2. Again, by
induction hypotheses, after formation of A( /), all proposals are accepted and we are
in the case of Lemma 1. If all firms in N \ A(j) join one cluster A(i) = N\ A(j),
then A(j) clearly cannot be optimal since (A(j) \ {k} U {i}) yields higher profits for
all firms in A(j) \ {k}. This follows from the fact that z(k) = z for all k € A(j)
and z(7) = T and the observation that for any firm exchanging a low investor in the
own cluster with a high investor from another cluster increases the firm’s quantity.
Since we know that A(i) generates the highest profits for ¢ (and, hence, for j) among
all mixed clusters, this implies that A(i) yields higher profits compared to A(j) for
firm j. Hence, consider the formation of two clusters among the firms in N \ A(j).

Lemma 1 then implies that these are Ay := (h,1*(1)) where I*(I) := (n=1-h+2(-D)z-h

4x
and Az := (0,1 —1—1*(])). Let A := (A, A, A3) denote the resulting cluster structure
in the game of remaining firms N induced by the proposal Ay == A(j) = (0,1). Consider
the alternative counterproposal A’(j) = (1,1 — 1) which results in the cluster structure
A’ = (A}, Ay, Ay) with A} == A'(j). Hence by Lemma 1, A := (h — l,l*(j— 1) and
Az = (0,1—1—1*(l—1)). Note that from Lemma 1 we get that F(I-1) =1 () +3+12.
Calculating Aq(j) := q(J, x, A) —q(j,x,A’), we get:

Aq(j) =D (ns(j, x,A) — Z s(k,x,A) — Z s(k,x, A) — Z s(k,x,A)

k€A1 k#j keAy keAs
—ns(x AN Y slhx AN+ Y sk A) + Y sl x,A))
ke Ay k] keAl ke Al
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where s(i,x, A) = B 1c a1y ©(k) denotes the spillovers experienced by i € N in an
cluster structure A. We get for the difference in total spillovers in each cluster:

AS(A) =ns(j,x, A) — Y s(k,x,A) —ns(jx, A+ > s(kx,A)
k€ Ay k] ke Al k#j

=8(n(l =z~ (1= 1% —n(( - 2z + )

+(-2)((-2)z+7)+ -1z
= —Bn—1+2)(z - z)
AS(Ag) :=— s(k,x, A) + s(k,x, A’)
== B(h((h— 1)z +*(Dz) + (*(1) — 1) (hz + (I*(l) — D)z)
+(h=1)((h-2z+0"(-1z)+ (1 -1) - 1)((h— 1)z

Thus we get:

Aq(j) :(nL) (AS(Ay) + AS(As) + AS(A3))

:it@<—4n+ﬁ( —3)4+6l—2—1—

1818
1818

)

Thus, for % — 3 < 4 the above bracket is clearly negative since n > h + [ and

1
2

[ > [. Hence, if Z is not too large, in particular # < 7z, then Ag(7) < 0 and thus
the counterproposal cannot have been optimal, implying that for small enough z every
proposal will be accepted.

[]

Lemma 3. Ifh < (anl" , then every equilibrium of the unanimity game results in the

formation of two clusters.

Proof. First note that by assumption on the rule of order, the first proposer is a high
investor. Further by assumption of the Lemma, h < ("T’q, implies that all high

investors will be included in the first proposal, since otherwise marginal utility of adding
a high effort firm is always positive which cannot be optimal since all proposals are
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accepted, see derivation in (13). This implies, that at most three coalitions form, since
after all high effort firms joined the first cluster A;, there are only low effort firms left
which form at most two coalitions, see also Bloch (1995). Since there may be also
low effort firms included in the first proposal, we get the following cluster structure:
A = (Ay, Ay, A3) with Ay = (h, 1), Ay = (0,13) and Az = (0,13). We show here that
the last cluster is empty, i.e. I3 = 0 for z < 2z.

Given [ — [, remaining low effort firms after the first coalition forms, we can calculate
the size of Ay to be the largest integer such that

a, (zx A) T, (ZX (A, Ay — (0,1), A3 + (0, 1))) >0

2(1—1)—1
”JF(ZTM)—‘, see Lemma 1.

and therefore the optimal value of I, is given by l3(l;) := {

Note that 5 = [ — 1y — I3(l1). It is easy to see that, given [ — [; remaining firms
after the first proposal, if [;(ly + 1) < [;(l1), i € {2,3}, then [7(l; + 1) = [3(l;) and
Gl +2) <l + 1) as well as [7(l; +2) = [;(li + 1) j € {2,3}, j # i. Thus, when
firms are added to the first cluster and A; and As are non-empty, then these firms are
added in alternating order from A, and As.

Hence the first firm ¢ in order p (implying (i) = &) chooses [; as the largest integer
such that

TA (Z.,X, ((h7 ll)v A27 A3)> — TA, (i,X, ((h7 ll - 2)a AQ + (07 1)7 AS + (07 1))) >0
& 2(nz—h(Z+x) — 24z + lex + I3z +32) >0

This implies
11 (h) = max {o, [ rehipaste | | (14)

which is solved by substituting I3 = [ — [; — l5. Note that it is necessary for three
coalitions to form that I5(h) = n—h —{(h) — I5(I7(h)) > 0 which implies that n — h —

l;(h) =n—|A;] > [%] (compare also to Lemma 1). Note that (14) implies that the

size of Ay, given by h+[j(h) = [%ﬁ@)-‘, is decreasing in h (for an illustration, see

also Figure 1). Hence choosing h maximal under the assumption h < (”T’q yields the
n—2

minimal size of A; which implies 2 = “7= and n is even for |A;| to be minimal under

our assumption. We then get this size of A; by calculating [5(h):

5t = max {0, [5(n— 5532 (541) +n-252) )
= max{0[1(20+2) - (2) (n-2)) |}

which ist obviously positive due to T < 2z, see Assumption 1. Hence |A;| = h+1*(h) >

(”T_l and hence no three cluster outcome can be supported as an equilibrium for

h< [21].
L]

Lemma 4. If h > {"7_11, then every equilibrium of the unanimity game results in the
formation of two clusters.
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Proof. First, note that for ("—q <h< [ 17 the first cluster A; will include all high
effort firms (see Lemma 1 by setting [, = n — h and using £ > z), implying that no
high effort and only I, < n — [25] = [%+] low effort firms remain after the first
proposal. These form one coalition by Lemma 1, see also derivation in (13). Hence,
three coalitions are only possible if h > [”’TH} such that the first proposal does not
include all high effort firms.

Thus, consider the formation of three clusters A;, A,, and Az such that A; consists

of only high effort firms A; = (hy,0) with hy > [®H] and, hence, h — hy < 251 <

%. Therefore, A3 cannot include any high effort firms by Lemma 1.

To summarize, the only way that three coalitions can be supported in equilibrium
is to have Al = (th), A2 = (h - hl,lg) and Ag = (07l3) if h Z "nT—l"I To the
contrary, suppose that these three coalitions indeed form. Denoting by hs(hy), lo(hy),
and I3(hy) the number of high respectively low effort firms in coalition 2 and 3 for
a given hy, we get (trivially) ha(hy) = h — hy and, in equilibrium, by Lemma 1,

lo(hy) = {<”—1—<"—’“Qj”@—(h—hl)ﬂ and, trivially, ls(h1) = n — h — lo(h1). Again for

A = (A4, Ay, A3) to be an equilibrium outcome, the first proposal must be such that it
maximizes payoff under the expectation that these three coalitions form. Note that the
quantity of the proposing firm i (lowest ranked firm in order p) choosing h; is given by

nvfl [n(fu — 1)Z — (h1 — 1)°F — ho(h1) [(ha(h1) — 1)T + l5(ha)a]

= la(hn) ha(h)E + (la(hn) = D)) = by () (la(k) — | + C.

where C' is a constant which is independent from the cluster profile A. Since profit is
strictly increasing in the quantity, the optimal choice of h; is determined by the first
order condition

ga, (Z7 X, A) -

dqa, (i,x,A) —0
Ohy -
& 0=nz —2(h — 1)Z+ (h— h1)[Z — ZZ] + [(h — by — 1)Z + lo(h1)z]
— T2 (h = h)T + l(h)z — z] + () [2 — 2] +2(1 — b(h)) 52 —
& 0=(n-+ 1- 2h)z + (h — hy) [4z — 22 ‘H‘r] +lo(hy) [z — A2 + 7] 4 21522
& 0 =(n h)(ﬂ%)—(h—1):z+<h—h1>[4x—%]
& WD) =ty (0= W@+ 5F) = (h=1)7] +h
And hence,

As pointed out above, we need hi(h) > 0if h > ”T_l, in order to have A as an equilibrium
outcome. Hence,

= h (15)

Moreover, we must have h} > hl = (";:jl)g in order to have A3 non-empty, see
Lemma 1. Using [ = n — h, we get the condition

h5(h) = by = = g [(n— W)@+ 52) — (h— Dg] — L=l20hiz 5 g (16)

16zz+ (T4 Ttz

(3z+z)n+27
& h >=—7—
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The left-hand side of (16) is non-increasing in h if

0>3fe _plomtlta) 2 o 33>z
Hence, for 3z > z, (15) and (16) cannot be simultaneously satisfied. To see this, note
we must have h > h by (15) and we get hi(h) = 0 implying that the left-hand side of
(16) is negative for h = h. Since it is, moreover, decreasing in h for 3z > 7, (16) can
then not be satisfied. Thus, for 3z > z and h > ”T_?’, there cannot exist three coalitions
which are supported by a subgame perfect equilibrium. O

To wrap up, we have first characterized optimal cluster profiles for m remaining firms
if firms expect all other firms to join one cluster. That proposals are indeed accepted by
all players is shown by backward induction in Lemma 2 under the condition that 7x > z.
Finally, in Lemmas 3 and 4, it is shown that for 2z > z, three (and trivially also more)
clusters cannot be supported by a subgame perfect equilibrium. Hence, any subgame
perfect equilibrium consist of two clusters, and, hence, the sizes and composition of
these two clusters are given in Lemma 1. Setting i, = h, l;,, = n—h in Lemma 1 yields

the expressions for the cluster sizes as well as l~1, h in the Proposition. This completes
the proof.
m

Proof of Proposition 2. We show the proposition in three steps by considering the in-
vestment incentives of ﬁrms i.e. the marginal return on investment. First, if the number
of other high effort firms A% is low then incentives are increasing in h~* for large enough
values of 3 which is shown in Lemma 5. For large values of ™, the investment incen-
tives are decreasing (Lemma 6) if 3 is not too large, while for intermediate values, there
is a unique maximum (Lemma 7). Together these Lemmas imply the Proposition.

Lemma 5. ]fﬂ>ﬁ m,
ment is increasing in h™°.

3(n=1)z .
then for h=t < %t 1 expected return on invest-

Proof. Tt follows from (6) that for h= < ( ) — 1 all high investors participate in the

first cluster, i.e. pa, (Z,h~"+1) = 1. Since l1 = lAl(h ' +1), the profit of a high investor
is given by:

(0 17) =gty — 2+ 20 = h) @ — )+ 5w+ 98 (0 — 075 + )
() E A (= Dz) — (=B — 1y — 1) — b~ — 1y — 2)@}2 o

The derivative with respect to h™* yields:

onlah ) :f,jj(f;l(f—g)[— 1+ §<n+h—i(§ —1)+6+ gﬂ

where ¢(z) denotes the optimal quantity of a high investment firm. If instead firm i

chooses low investment, she will join A; with probability p4, (z, h™) = n_ll,i and A,

with probability 1 — pa, (z, h™") = % The resulting payoft from low investment

in A; weighted with the probability of being in A; is hence

A ™, Ay =grgepan (@, h ) [ = e = 3h (@ = @)+ 9z +98((n = (0 = D)+ (0~ )

43



—hH((F =Dz +hz) —(n—hT =L =1)(n—hT =l - 2)z>r’

where [; = 4, (h™"). The derivative of 7t(z, h™", A;) with respect to h™" yields:

or x,h_i,A —_ —i —i/F
) o Lo — o)pay (2, h (e, A | = 1+ 2 (n+ A2 = 1) +7)]
o z,h~?
- —pAg,(j_i Lg(z, Ap)?

where g(x, A1) denotes the quantity produced by a low effort firm in A;. Considering
now the payoff from low investment in A,, weighted with the probability of being in
Ay, we obtain

ﬁ(&a h’ii: A2) :m(l — DAy (£7 hil)) |:CY —C— Pyhil(i‘ - i) + 9z
+98(n = (=" = = D)(n— A~ 1~ D))

— (R = D)7+ ha) — (ke (L — wﬂ :

where, again, I; = l4,(h™"). The derivative of #(z, h™*, Ay) with respect to h™* yields,

oz ) —9 (T — 2)(1 — pa (z, h))a(z, As) [ —1+G(—n+hr(E 1)+ 5)]

0 z,h~
- pAé;(;i )Q(la A2)2

Note that expected payoff from choosing low investment is given by E(W(g, h_i)) =
7z, h™" Ay)+7(z, h™, Ay). Thus the expected return on investment Ar := 7(z, h™*) —
E(7(z, h™")) changes with h™" according to

Oh—* = Oh* Oh—" T~ Oh

OAr _ Om(z,h™Y) BE(W(M*")) _ om(@hTh) [ 0r(z,h Tt AL n O (z,h ", Ag)
oh—t Oh—t

(@~ 2) [ (a(@) - Blg@)) (— 1+ 5 (n + 07

+pa, (D gz, ADE(E = 1) + (1= pay(z b)) a(z, A2)2(2n + 1)}

1818

—1)+6+12)

z

o] x,h~?
- % (q<£7 A1>2 - Q(L A2>2)

where E(q(z)) = pa, (z, h")q(z, A1)+ (1 —pa, (z, ")) q(z, As) is the expected quantity

of a low effort firm. We clearly have that the quantity produced by a high effort firm in

A exceeds the expected quantity of a low effort firm, i.e. ¢(Z) > E(q(z)). Hence, 227

Az ) Opa, (@h=1) (:’>+§)(n—h,—i)—411
et (h D E—) Snce e = — L) < 0. Expected
(n—Dz

. . . . . . _s 3
return on investment is hence increasing in A=" for h™* <

is positive if § > (

— 1 and 2z > T under

3z+x
the condition of 5 > ——— H:_% TG Lhis expression is maximized for h=t =0
yielding 3 := (n;é%. Note that the latter is only a sufficient condition. m

—i (2n—1)Z+nx . .
Lemma 6. If 5 < 1/2, then for h™" > e expected return on investment is

decreasing in h™".
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Proof. If =% > M then by Proposition 1, we have that two clusters A; = (hy,0)

+
and Ay = (h — hy, 1) form with hy := hg,(h) = @nth=li+(n=h)z | = \When j chooses
1 4z
x(i) = ¥, she will be included in A; with probability pa, (Z,h™" + 1) = % (see

(6)). In this case the payoff of a high investor in A; weighted with the probability of
being in A; will be

7(z, Rt A, ) =pa,(zZ,h"* 4 1)(n+1) [a —c+vy(n— h—l)@ —z)+z
498t = (b = 1)t = D7 = (07 + 1) = k) (B = )+ (0 — b~ = D))
b = D) 1= h)E 4 (= B - 2)@))}2 (4 1)E

Taking the derivative with respect to h= yields,

OHERLA) —p (3, h 7+ D2ER (G - 2) |~ 14+ 2 (n(E = 2) + A7 (1= ) +6 - £)]
0 z,h7"+1 _
4 %(Q(% Ay)? =€)

When i chooses (i) = Z, she could also end up in A; which happens with probability
1 —pa, (Z,h~" +1). In this case the expected payoff will be

7@, 0 Ag) =(1— pa, (2,57 + 1)) gy [ ety —h(E —2) Fz
+ 75((71 — T ) (W = hy)z+ (n— b7 — 1)z)
B (= b+ DT+ (0= b 2)z) — hu(hy 1);5)]2
(1 —pa,(F R 1))E
Taking the derivative with respect to h~" yields,
DA (1 — pa, (7, h 4 1) 22402 (7 — ) [~ 14 8 (nZ 4+ 571 - 2) 48 2]

Opa- (Bh—i4+1) [
_ %(q(m,/ﬁ) _ 5)

Finally, if i invests low, she will be in A, for sure, i.e. p4, (z, h~%) = 0. Payoff is then
given by

w2, ) =gt o — e = 9h 7 (@ = 2) 4y B+ D - )3
+(n—hT = Da) — (b = hy) (B = by — )T + (n — h™)z) — hy(hy — 1)x>]2
Taking the derivative with respect to h~% yields,
aﬂéi’f;l) —quli’?)fy(x — ) [ -1+ g(n(%) +hT(1—2)+ 7)]

Note that expected payoff from choosing high investment is given by E(r(z,h™%)) =
7(Z,h™", Ay)+7(Z, h", Ay). Thus the expected return on investment Ar := E(m(z, h™%))—
m(z, h™") changes with h™ according to

0An _OE(n(@:h7Y)) _ Om(xh7h) _ OR(@hTNA1) | OR(TATLAy) _ Om(zh7Y)
Oh=T T Oh~? oh=T T T Bhi Oh—T Oh—T
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=(E(¢(2)) - a(@)) G (@ — 2) [ -1+ §< —(n=hT) (1% +8~ %>]
~ G (E - )k [pAl(a’c, A+ 1)q(z, A1) (n+2) — (1 — pa, (&, h" 4+ 1))q(z, Ax)n

gz, A)(n+ 1= £)] + ZUELD (g5, 4,)% — g7, 4,)?)

T

(E(g(@)) — () r2er(@ — o) [~ 1+ 4( = (n = h7)(1 =

1) z,h _ _
+ % (Q(xa A1)2 - Q(‘r7 AQ)Q)

(*)

|18

)+8-1)]

where, again E(¢(z)) is the expected quantity produced by a high effort firm. The
last inequality (x) holds since ¢(z, A;) > ¢(Z, As) and, furthermore, the fact that
pa, (T,h™" + 1) is decreasing in h™* and, hence, for all A" < n — 1 it holds that
pa (T, R+ 1) > pa,(T,n) = [22] > 1 - [2221] > 1 —pa, (7, h7" 4 1) (see Propo-
sition 1). Thus, if 8 < 1/2 then all terms above are non-positive which implies the
statement of Lemma 6. O

Lemma 7. For h™% € [3(37;2% (Q”Ejff;@ - 1} the expected return on investment is

increasing in h™" on the entire interval, decreasing in h™" on the entire interval or has
a unique local maximum in the interior of the interval.

Proof. In order to show the claim of the proposition we prove that the change of the
return on investment is concave in A~ on the considered interval. It follows from

Lemma 1 that for A= € 3(37;1122, m";;f;@ — 1] there are two clusters where all high

investors are in the first and all low investors are in the second cluster. Taking this into
account the return on investment is given by

Ar =m(z,h +1,A)) —7m(z, h™", Ay)
— o o = e+ = h )@ = @)+ + B (= )z — (0= BT = 1)(n— AT - 2)@}2
— Gt |a— e b (@ = 2) + 9z AB(n — )T = (T = D)a = (- AT - 1)%] }
Considering the derivative with respect to A~ and collecting terms yields
e [ — (7 = 2)(q(z, A1) — q(z, A9)) + 5(%’((1(@ Ar) + q(z, A2))
+((2n = 3)z — 207 (@ +2)(a(@, A1) — a(z, A2)) + (7 — 2)a(z, 4>))|

Furthermore, we have
Wt — —y(F —z) =Bz + (20 = 1)T—2(n — b~ = 1)z) <0,

because h™ > 3:,5;—;;) implies (nz + (2h™" — 1)z — 2(n — h™" — 1)z) > 0. Moreover,

6((1@”45,);[‘3(@,142)) =-29(Z —2) —vB((n —4h™" + 1)z + (3n — 4h™" — 5)z) < 0,

3(n—1)

where ((n —4h™" + 1)z + (3n — 4h™" — 5)z) < 0 again follows from h™" > ZE—2 in

combination with z < 2z. Finally,

8(q(9‘E,A$2;‘Z_Z(%A2)) = fyﬁ((ﬂ — 1)(5Z' + l) > 0.
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Taking these observations into account we obtain

2AT = z,A z,A2) (z,A z,A2
8(?h5‘)2 :(nz—ZI) — (T —z) Xalz 5) fa) "'B( él)z—t?(i )
>0 >0 <0
(20 = 3)z - 207 (7 + o)) Qndgiogladil) o (7 ) Ut )
. ~~ - N’
>0 >0 <0
<0,
where we have used that A" > (”—Jrl) induces ((2n — 3)z — 2T + z)) < 0. O

Lemmas 5-7 then imply that the investment incentives have the shape that is de-
picted in Figure 2 such that the investment incentives have a unique local maximum. For
the sake of the argument, we denote the number of firms which invest high as h* where
this local maximium of 7(z,h™" + 1) — 7(z, h™") is attained. Hence, if costs ¢ are low,
ie. £ <& :=m(x,1)—7(z,0) then because return of investment dominates its cost, even
if no other firm invests, there is a unique equilibrium. The equilibrium is such that A (&)
firms invest high and n— h(¢) invest low, where h(¢) = nif € < € := w(z,n)—n(z,n—1)
or h(€) solves min{h € {h*,...,n} : w(Z,h + 1) — w(z,h) < &} else. For & > ¢ there
is also an equilibrium where no firm invests, since 7(z,1) — 7(2,0) < . Finally, if
¢ > & :=7(z,h* + 1) — 7(x, h*), then there is no equilibrium where h(¢) firms invest
high, since investment cost exceed the maximal gains of investment for all values of h~¢,

which concludes the proof.
]

Proof of Proposition 3. (i) Suppose that there are K clusters Ay, k € {1, ..., K} and
denote X := ZleNx( i)y Xk = D ica, (i), and a; := [Ay[. Thus, Z,I:l ar = n.
Note that maximizing consumer surplus CS = @Q?*/2 is equivalent to minimizing
the sum of all marginal costs C(x,A) = > | ¢(i,x,A), since (n + 1)Q(x,A) =
na — C(x, A). Then we get for total cost:

n

C(X,A)ZZ(C—’}/J,‘ —~B Z ) :nc—vX—vﬁzI(:((ak)g—l)Xk.

=1 JEA(R),j 7

Clearly C'is minimized if z(i) = Z for all i € N and further a; = n. Thus, a single
cluster where all firms choose high investments is maximizing consumer surplus.

(ii) Fix some profile of investment x = (z(1),...,x(n)) and denote by 5(i,x,A) =
Y(@(2)+8 X2 e @iy £(J)) the cost reduction of firm ¢ due to own R&D investment
and incoming spillovers for a profile of clusters A € A. Thus, ¢(i,x,A) = ¢ —
5(i,x,A)). Denote by S(x,A) := > ien 8(d,x,A) and, as above, C(x,A) =
> jencld,x, A). This implies that given an investment profile x, we can write
welfare, consisting of the sum of firm profits and consumer surplus, for a cluster
structure A € A as

W= Z (i,x,A))* — hé + Q*(x, A) /2
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:ﬁ Z (a — (n+ De(i,x, A) + C(x,A)* + (na — O(x, A))2/2] — h&

=t |2 (o= ety (0 D) + 560% A) = S0, A)) )+ (nla = ) + 5x, A)/2
— hé o

=gz | (0 4 2)(a — 8)5(x, A) + n(a = &)*(1+n/2) — S(x, A)*(n +3/2)

n

+(n+1)*> 5(i,x, A)?

=1

_h’é"

Considering the last expression and taking into account that $(i,z, A) < vz(1 +
B(n—1)) it is obvious that for sufficiently large (ov—¢) maximizing W is equivalent
to maximizing S (x,A). Since every member of a cluster generates spillovers to
all cluster members, we have

S(X,A>:7<Z +5Z<k—12(¢))> (Z WZ )

Jj=1 i€EAL Jj=1

and therefore maximizing S(x, A) is equivalent to maximizing > (a(i) — 1)2(4)
over all profiles of clusters A € A. It is straightforward to see that

Z a(i)x(i) <n Z x(i

i=1 i=1
and, since the right hand side corresponds to the case of a single cluster containing
all firms, we have shown that welfare is maximized for such a cluster.

(iii) We show that a single cluster with full investment strictly maximizes welfare for
& = 0, which by continuity implies the claim of this part of the Proposition. For
¢ = 0 welfare can be written as

W(x,A) =UQ(x,A)) = Y cli,x, A)g(i,x, A),
i=1
where U(.) is the utility function of the representative consumer. Denote by
% = (7,...,7) the investment profile where all firms invest high and by A the
cluster structure in which all firms are in the same cluster. Since under (%, A) each
firm has maximal own R&D investment as well as maximal incoming spillovers,
it is easy to see that

Z C(j, )_(, A) = NCpin < Z C(j’ X, A)
JEN JEN

for all (x,A) # (X,A), where ¢ = c(j, %, A) ist the minimal marginal cost
value that can be reached by any firm. Note that ¢(j,X, A) is identical across all

firms j. Due to Q(x, A) = 24 — 25 ",y ¢(j, X, A) we conclude that

Q(x,A) > Q(x,A).
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Furthermore, U'(Q) = p(Q) > Cpin, for all Q € [Q(x,A),Q(X,A)] and therefore

W()_(> A) = U(Q(iv A)) - CminQ(}_(> A)
> U(Q(X7 A)) - CminQ(X7 A)
Z U(Q(X7 A)) - Z C<j7 X, A)Q(]a X, A)

JEN

for all (x,A) # (X, A), where the last inequality follows from c(j, X, A) > Cpnin
for all j € N.

(iv) For & large enough, any benefit of investment is dominated by the costs, hence all
firms must invest low in the welfare maximum. Given this investment pattern, it
is easy to see that no profile of clusters can generate a lower value of marginal
production costs than what is obtained by all firms if a single cluster is formed.
Taking this into account, an analogous argument to that used in the proof of
part (iii) establishes that the generation of a single cluster containing all firms

maximizes welfare.
O

Proof of Proposition 4. Since the expression on the right hand side of (8), determining
the best response, is increasing both with respect to h a7 and [ A5t the open membership
game is a coordination game such that the pure strategy Nash equilibria are such that
all investors of the same type choose the same address. Wlog let high investors choose
A; and note that by (8) it is always an equilibrium if all low investors also choose A;.
It remains to show, that it is not an equilibrium that all low investors choose a different
address, say wlog A,. Suppose to the contrary that all low investors choose A,. For the
strategy profile supporting this cluster structure to be an equilibrium, no high investor
i € Ay shall have profitable deviation by switching to Ay, which, by (8), is equivalent
to,

m(i,x, (A1, A2)) = 7(i,x, (A1 \ {i}, A U {i}))
sn—1)(h—1)7 > n(n—h)z — (n— h)7)

n’z—%
= h > (n—2)Z+nz "

Further, no low investor j € A, shall have profitable deviation by switching to A;
which, by (8), is equivalent to,

m(J, X, (A1, Az)) = m(j,x, (AL U{j}, A2\ {5}))
<(n—1)(n—h—1)z > nhx — hx

(n—1)’z
= h < nZ+(n—2)zx
It is easy to see that both conditions cannot hold simultaneously if %(n —1)%z <
n?z — Z which is implied by (2n — 1) > Z which holds by assumption for n > 2. Hence
all firms choose the same address in equilibrium of the second stage. O]

Proof of Corollary 1. Since by Proposition 4 the complete cluster always forms we can
calculate the investment incentives by:

ATOM(BT) = O (3, B = O (B — €, (17)
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where ¢ (z(i), h™*) is the equilibrium quantity of a firm investing z (i) while all firms
belong to the same cluster, i.e. A = {N} and h™* other firms invest high. From
Equation 2, we then get that ¢“(z,h™") = ¢ (z,h™") + 25 (n — B(n — 1))(7 — z),
From (17) it then follows that,

ArOM (1) = APl D) (2000 (g, h) + g (n — Bln — 1))@ —2)) — € (18)

Quantities of a low investor in the grand cluster simplify to,
"M (z,h") = A (a—c—vh7 (@ — 2)(1 - 28) + yz(1 + (n— 1)B)).

Hence for A7?M(h=%), we get from (?7),

ArOM (i) = WP )52 (50— ) — (z — ) (2h7(1 — 28) —n + Bln — 1)

+2yz(1+ (n - 1)B)) - &.

Taking the derivative with respect to h~% then gives

aAﬂ'OMUZ_i) 2(G—z)2
o = 2 (1-28) (n = Bn — 1))
which is obviously negative for § < 1/2. O
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