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Abstract

Environmental enteric dysfunction (EED) is associated with chronic undernutrition. Efforts

to identify minimally invasive biomarkers of EED reveal an expanding number of candidate

analytes. An analytic strategy is reported to select among candidate biomarkers and sys-

tematically express the strength of each marker’s association with linear growth in infancy

and early childhood. 180 analytes were quantified in fecal, urine and plasma samples taken

at 7, 15 and 24 months of age from 258 subjects in a birth cohort in Peru. Treating the sub-

jects’ length-for-age Z-score (LAZ-score) over a 2-month lag as the outcome, penalized lin-

ear regression models with different shrinkage methods were fitted to determine the best-

fitting subset. These were then included with covariates in linear regression models to obtain

estimates of each biomarker’s adjusted effect on growth. Transferrin had the largest and

most statistically significant adjusted effect on short-term linear growth as measured by

LAZ-score–a coefficient value of 0.50 (0.24, 0.75) for each log2 increase in plasma transfer-

rin concentration. Other biomarkers with large effect size estimates included adiponectin,

arginine, growth hormone, proline and serum amyloid P-component. The selected subset

explained up to 23.0% of the variability in LAZ-score. Penalized regression modeling

approaches can be used to select subsets from large panels of candidate biomarkers of

EED. There is a need to systematically express the strength of association of biomarkers

with linear growth or other outcomes to compare results across studies.
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Author summary

Childhood undernutrition is widespread throughout the world and has severe, long-last-

ing health impacts. Substances measured in blood, urine and stool could be used as bio-

markers to identify children undergoing growth failure before these impacts occur.

However, it is not yet known which of the many markers that can be identified are accu-

rate and clinically useful predictors of poor growth in infants and children. This study

used a large number of candidate biomarkers of immune activation, metabolism and hor-

mones and applied statistical methods to narrow them down from 110 different sub-

stances, to the 36 best predictors of growth in 258 Peruvian infants. It also estimated how

large the effect of each of these markers was on height two months later. The biomarker

with the largest effect was transferrin, a glycoprotein that can be measured in blood sam-

ples. 15-month old children with elevated transferrin were around two thirds of a centi-

meter taller on average at 17 months than those with low levels. Transferrin and other

proteins, glycoproteins, hormones and antibodies that this study identified, can be mea-

sured easily and affordably in standard laboratories making them feasible to be used

broadly as prognostic markers as part of child health and nutrition programs in under-

resourced settings.

Introduction

Chronic undernutrition affects around one in three children under age five, rendering them

susceptible to prolonged and more severe infections and putting them at increased risk of mor-

tality [1]. Growth faltering in undernourished children begins to accrue early in life, is gener-

ally irreversible and leads to chronic sequelae such as impaired cognitive development and

short stature that last into adulthood impeding economic productivity and increasing the risk

of low birthweight in offspring [2]. Many evidence-based interventions targeting infant growth

demonstrate only modest improvements in outcomes in effectiveness trials [3], a gap that, it is

increasingly suspected, may be partially explained by a phenotype of intestinal abnormalities

known as environmental enteric dysfunction (EED) [4], which is gaining recognition as a

neglected disease [5]. According to the EED hypothesis, concurrent exposures to multiple

enteric pathogens in already undernourished children cause cumulative damage to their guts’

surface, increasing its permeability to microbes and large molecules, causing systemic inflam-

mation and impairing uptake and utilization of nutrients [6–8], which in turn leads to sub-

optimal growth [9].

Studying the impact of EED is challenging. Gold standard diagnostic tests for other enter-

opathies, such as celiac and Crohn’s disease, include endoscopy and gut biopsy, invasive and

demanding procedures that cannot feasibly be deployed in resource-constrained settings or to

assess disease burden at the population level [10]. For this reason, there is considerable interest

in identifying and validating biomarkers of EED that can be used as surrogate endpoints in

population-based studies and for evaluating nutrition and hygiene interventions [11]. The

most widely adopted biomarkers of EED use saccharide-based permeability assays like the lac-

tulose/mannitol test [12]. However, such tests, while non-invasive, have well-documented lim-

itations to their use in EED-endemic populations, taking hours to administer, requiring

samples to be shipped to well-equipped facilities which makes them cumbersome, expensive

and impractical for screening and randomization for intervention trials [13]. Several fecal bio-

markers, such as alpha-1-antitrypsin, myeloperoxidase and neopterin, have been shown to

have complex associations with growth outcomes [9,11], while certain plasma biomarkers
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show correlations with suboptimal growth, including the amino acid tryptophan and its ratio

to its derivative, kynurenine [14].

Recently developed methods allow for quantifying large panels of soluble analytes in blood

that relate to inflammation or immune status [15], however there is a lack of consensus about

how to select the most important markers from among these panels and quantify their associa-

tion and explanatory power with respect to specific disease outcomes relevant to EED (growth,

cognitive function, immune activation, intestinal permeability, nutrient bioavailability, and

hormones that alter growth and metabolism) [11,16]. Machine learning approaches have been

used in biomarker analyses to identify best subsets of predictors from among large databases

of candidate markers [16–18]. More specifically, penalized regression methods estimate coeffi-

cient values for modeled variables, while applying different penalties to those that overly

increase model complexity relative to improving goodness of fit, assigning such variables a

coefficient value of (“shrunk” to) zero. Those variables that are assigned non-zero coefficients

can be interpreted as belonging to the subset that best predicts the outcome. Although these

methods do not themselves report standard errors or adjust for within-cluster correlation in

longitudinal data, the selected subsets can be included in more traditional multivariate regres-

sion models once identified and the effect size described by conventional methods.

The objective of this study was to identify clinically relevant biomarkers of the precursors of

EED that can inform intervention early in the disease process. To this end, penalized regres-

sion approaches for variable subset selection were applied to a large panel of candidate bio-

markers measured in a cohort of Peruvian infants to identify the optimal subset that are most

predictive of nutritional status (length-for-age Z-score–LAZ-score) over a two-month lag.

Methods

Ethical approval and consent to participate

Ethical approval for MAL-ED was given by the Johns Hopkins Institutional Review Board as

well as the Ethics Committee of Asociacion Benefica PRISMA, and the Regional Health

Department of Loreto. Written informed consent was obtained from the caregiver of every

participating child.

Study population

A cohort of 303 infants was enrolled between December 2009 and February 2012 from Santa

Clara de Nanay, a peri-urban community located 15 km from the city of Iquitos, Peru, a study

setting that has been described in detail elsewhere [19]. Singleton births from a selected geo-

graphic area were enrolled within 17 days of birth provided they had no recognized congenital

defects and weighed >2.4 kg at birth [20] and were followed up until 5 years of age. Daily data

relating to infant feeding were ascertained by caregiver report from twice-weekly household

visits from age 0 to 24 months, while anthropometric data and biological samples were col-

lected during monthly assessments according to pre-established schedules [20].

Outcome variable

The outcome of interest in this analysis was the subjects’ LAZ-score, a widely used measure of

nutritional status and attained statural growth [21–23] that were calculated using WHO

Anthro version 3.2.2. Anthropometric assessments were carried out at monthly intervals

counted from the subjects’ birth dates from enrolment until 5 years of age. During these assess-

ments, infants’ lengths were measured on marked platforms with a sliding footboard employ-

ing quality control measures that have been described elsewhere [23]. The LAZ-score was
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treated as a continuous variable. Its distribution in this study population has also been

described elsewhere [11].

Exposure variables

The primary exposure variables were 180 time-varying candidate fecal, urinary and plasma

biomarkers of EED compiled from the following panels (biomarker names, abbreviations and

units are listed in the supporting information):

1. Three overlapping panels of in-house quantitative, multiplexed immunoassays of cytokines,

chemokines, hormones and other regulators of metabolism and growth [24], each run at

the Myriad RBM laboratories (Austin, TX) on a separate subset of blood samples from the

cohort including:

a. 86 analytes from 20 samples taken at age 7 months from a sub-sample of subjects and

run in June 2013. These 20 subjects (10 cases and 10 controls) were selected for more

expansive testing to examine extremes in growth in this setting over the target period

between 6–15 months when exclusive breastfeeding is no longer the optimal feeding

practice. Cases (positive deviants) were those subjects who grew by>0.77 LAZ, while

controls (negative deviants) were selected from those subjects who experienced a change

in LAZ of<0.25 over the 8-month follow-up period. This sub-sample was selected for a

separate study to compare extremes in growth in this setting over the same period. At

the age of 7 months, both cases and controls had equal LAZ.

b. 49 analytes from 178 samples mostly taken at the target age of 24 months (though with a

small number taken at 7, 15, 25 and 26 months) run in May 2014.

c. 59 analytes from 443 samples taken at the target ages of 7 and 15 months (though with a

small number taken at 8–9 or 16–18 months) run in January 2015.

2. 9 chemokine and 9 proinflammatory assays run on 596 of the same blood samples as 1 a-c

at a laboratory at Johns Hopkins University (Baltimore, MD) in 2013–2014.

3. The amino acids citrulline and tryptophan and the latter’s metabolite kynurenine (umol/L)

quantified in 640 of the same blood samples by liquid chromatography-mass spectrometry

(LCMS) in the Oregon Analytics laboratory in 2015 [14].

4. 51 other biogenic amines quantified in 464 of the same blood samples by LCMS at a labora-

tory in Imperial College London in 2017 [25].

5. Several plasma analytes measured in the same blood samples as part of the MAL-ED proto-

col, including Alpha-1-acid glycoprotein (AGP—mg/dl, measured by radioimmune diffu-

sion assay in 618 samples), Insulin-like growth factor (IGF) 1 and IFG-binding protein 3

(IGFBP-3—measured by enzyme-linked immunosorbent assay (ELISA) in 566 and 597

samples respectively) and hemoglobin (g/dL, measured by Hemocue).

6. Three fecal biomarkers—alpha-1-antitrypsin (AAT–mg/g), myeloperoxidase (MPO–ng/

mL) and neopterin (NEO–nmol/L)—measured by ELISA tests of stool samples collected

from the infants at monthly intervals [26].

7. 5 urinary biomarkers calculated from lactulose to mannitol recovery tests of intestinal per-

meability performed on urine samples collected at 3, 6, 9 and 15 months of age.

Table 1 shows the number of biological samples and analytes available in each panel by age

of the subjects. In addition, the following variables were included as potential confounders:
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infants’ sex, birthweight, breastfeeding status on the previous day (a time-varying categorical

variable with four categories—“exclusively breastfed”, “partially breastfed”, “predominantly

breastfed” and “not breastfed”), age in whole months (modeled using linear and quadratic

terms) and mother’s height at the time of birth.

Statistical analysis

The fecal and urinary samples were matched to the plasma biomarker values that were closest

in age and those that were not matched to any blood sample were excluded from the analysis.

Exposure values were lagged by two months so that the analysis assessed the association

between the subjects’ LAZ-score at month of age j and the exposures measured at age j-2

months. A 2-month lag was chosen because it is a length of time at which the impacts on a

child’s growth of interventions such as steroids [27], chemotherapy [28] or treatment for

severe acute malnutrition [29] become manifest, and therefore offers a feasible time window

for clinical intervention and in which to reproducibly detect meaningful changes in ponderal

growth associated with important physiologic determinants. Two months has also been dem-

onstrated to be optimal for predicting future growth trajectory using fecal biomarkers [11]. All

biomarkers were log-transformed with base 2. Because numerous biomarkers were either only

available for samples collected at 24 months of age, or only for those collected around 7 and

15 months of age, the following analyses were performed on two subsets of the full biomarker

database:

Table 1. Number of biological samples and analytes available in each panel included in the study by age at which they were taken.

Panel number

1 2 3 4 5 6 7

a. b. c. AGP IGF-1 IGFBP-3 Hb

Age in months 6 0 0 0 0 0 0 0 0 0 0 174 267

7 20 5 211 210 226 148 236 175 202 340 262 2

8 0 0 2 2 7 2 2 2 1 7 264 1

9 0 0 2 2 3 2 2 1 2 6 175 247

10 0 0 0 0 0 0 0 0 0 0 257 3

11 0 0 0 0 0 0 0 0 0 0 248 0

12 0 0 0 0 0 0 0 0 0 0 253 0

13 0 0 0 0 0 0 0 0 0 0 209 0

14 0 0 0 0 0 0 0 0 0 0 203 0

15 0 6 211 189 209 156 200 179 183 355 177 226

16 0 0 13 10 11 12 12 12 11 14 213 1

17 0 0 3 2 3 2 2 2 3 5 214 2

18 0 0 1 1 1 1 1 1 1 2 226 0

19 0 0 0 0 0 0 0 0 0 0 221 0

20 0 0 0 0 0 0 0 0 0 0 218 0

21 0 0 0 0 0 0 0 0 0 0 213 0

22 0 0 0 0 0 0 0 0 0 0 206 0

23 0 0 0 0 0 0 0 0 0 0 197 0

24 0 167 0 167 167 129 154 181 182 304 182 180

25 0 9 0 9 9 8 8 9 8 13 52 4

26 0 4 0 4 4 4 1 4 4 4 43 1

Total 20 191 443 596 640 464 618 566 597 1,050 4,207 934

Analytes 86 49 59 18 3 53 1 1 1 1 3 5

https://doi.org/10.1371/journal.pntd.0007851.t001
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1. 7–15-month database–This excluded the samples in panel 1.b and any samples from panels

2–7 that were taken at�24 months of age, resulting in 461 observations and 110

biomarkers.

2. 7–24-month database–This included the 24-month samples but only for those biomarkers

that were included in both panels 1.b and 1.c as well as panels 1. a and 2–7, resulting in 639

observations and 80 biomarkers.

Missing data. Non-detectable biomarker values, for which the analyte concentration was

below the lower limit of quantification (LLOQ), were substituted with LLOQ /
p

2 [30]. No

standard equivalent approaches exist for substituting values that are above the upper limit of

quantification (ULOQ), however this only affected a small number of values for biomarkers in

panel 4 which were treated as missing values. Almost all biomarkers and subjects had some

number of missing values. Biomarkers for which more than 40% of the original values were

missing were excluded from the imputation and further analysis, as were variables with fewer

than 25 unique values within the detectable range. Observations that had missing values for

more than 40% of the remaining biomarkers were excluded from the analysis. A small number

of missing length measurements (n = 19, 3.0% of total) were linearly interpolated and extrapo-

lated based on the actual or target date of assessment before calculating LAZ-scores. For time-

fixed baseline variables (birth weight and maternal height), the small number of missing values

were substituted with the sample mean of that variable. All other missing values of the bio-

marker exposures were imputed using multivariate normal regression (MVN) with an iterative

Monte Carlo method to accommodate the arbitrary missing-value patterns of the continuous

variables [31]. Missing values–of which there were 5,279 (11.1%) in the 7-15-month database

and 4,508 (10.6%) in the 7–24-month database—were substituted with the average of the

imputed values from 10 MVN imputations. The kynurenine/tryptophan (K/T ratio) and lactu-

lose/mannitol ratios were excluded from imputation and recalculated after from their compo-

nent biomarkers.

Variable selection. The retained biomarkers were included in penalized linear regression

models with three different shrinkage methods that have been used in other studies of EED

biomarkers—Adaptive LASSO (Least Absolute Shrinkage and Selection Operator), Minimax

Concave Penalty (MCP) and Smoothly Clipped Absolute Deviation (SCAD) penalties [16,17]–

with values for the tuning parameter λ determined through 10-fold cross validation. For each

model, the variables assigned non-zero coefficients were treated as the optimal, best-predicting

subset and the subset for the method that yielded the lowest cross-validation error (calculated

from the mean-squared error or deviation from the fitted mean) was retained in a final multi-

variable model.

Effect modeling. Regression models were fitted with robust variance estimation to allow

for intra-subject correlation first for each of the candidate biomarkers separately (adjusting for

the a priori-selected non-biomarker covariates) in order to report their independent effects

and statistical significance and then for a multi-variable model that included all biomarkers

selected for the best-fitting subset, to estimate the adjusted effect of each in the presence of the

others and their combined effect on LAZ-score. To account for the false discovery rate (FDR)

due to the large number of comparisons, p-values from the separately modeled biomarkers

were compared visually in scatterplots with their corresponding q-values (a measure of signifi-

cance in terms of the FDR [32] calculated using the method proposed by Simes [33]) and with

a Bonferroni corrected α value calculated from the number of comparisons. The effect mea-

sures from the single-biomarker and adjusted subset models were visualized using forest plots.

For the biomarkers included in the final, multi-variable models, the coefficient estimates were
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reported along with the difference in a child’s height predicted by the model between subjects

at the 25th and the 75th percentile of each included biomarker’s distribution at the age of the

final included sample (15 or 24 months, depending on which database was used) and holding

all other included biomarkers at their mean values and based on the standard deviation in

height at that age reported in the WHO child growth standards [21]. The R2 statistic for the

final subset model was reported along with the partial R2 for all included biomarker terms as

an estimate of the proportion of the total variability in the outcome that was explained by the

selected biomarker subset. Results from the final models were compared with those obtained

from adjusting for LAZ-score measured contemporaneously with the biomarker (in place of

the other covariates), in order to compare the prognostic potential of the final biomarker sub-

set in predicting future growth relative to a natural and existing alternative, namely attained

LAZ-score. The potential for non-linear relationships between biomarkers in the final subsets

and LAZ-score was assessed by generating nonparametric smooth plots and by applying a

multivariate spline model-selection algorithm to the final models. Finally, as a validation exer-

cise, associations between each of three of the most important biomarkers (expressed per stan-

dard deviation [SD]) and changes in LAZ over increasing lag-lengths of 1–10 months

adjusting for contemporaneous LAZ were plotted to assess the performance using an existing

method that has previously been used for tryptophan and citrulline and compared to a com-

parator biomarker of a known endocrinologic agent–Insulin-like growth factor 1 (IGF-1), rep-

licating the methodology of Kosek and colleagues [14]. Analyses were carried out using Stata

15.1 [34] and R 3.6.1.

Results

Summary statistics of the distributions of the 180 candidate biomarkers and whether they met

the criteria for inclusion in further analysis are presented in S1 Table in the supporting infor-

mation. A participant flowchart is provided as S1 Fig (supporting information). Before apply-

ing exclusion criteria, 639 observations were available for 258 of the 303 enrolled subjects for

whom blood samples were available relating to 180 biomarkers. 23 of the biomarkers were

only available in the case control panel (panel 1a.) and so were excluded from further analysis

for only having 20 available observations. A further 47 biomarkers were excluded from the 7-

15-month database either because more than 40% of their values were missing, fewer than 25

were within the detectable range, they were only available at 24 months of age (panel 1c.) or

some combination of these. 77 biomarkers were excluded from the 7-24-month database due

to missingness, detectability, or because they did not have values available at 24 months. Over-

all, 110 biomarkers were retained for analysis in the 7-15-month database, and 80 in the 7-

24-month.

Table 2 shows the number of biomarkers selected (assigned non-zero coefficients) and the

cross-validation error and R2 values for the three penalized regression models fitted on each of

the two biomarker databases. MCP selected the smallest subset of biomarkers when fitted to

the 7-15-month, but not the 7-24-month database, for which adaptive LASSO selected the

smallest. For both databases, the SCAD penalty resulted in the largest subset, the highest cross-

validated R2 and the lowest cross-validation error (jointly with MCP in the 7–24 month

model) and was chosen as the subset for subsequent analyses.

Fig 1 shows the coefficient estimates from the linear regression models of single biomark-

ers, for the subsets of multiple biomarkers selected by the three penalized regression methods

and from fitting a final multi-variable linear regression model to the SCAD-selected subset–

the penalty with the lowest cross-validation error—adjusting for covariates. For 82 of the 110

biomarkers in the 7-15-month database, the single biomarker model predicted a negative
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association with the outcome, compared with 28 for which a positive association was pre-

dicted. In 17 of these models, the estimate was statistically significant at the uncorrected α =

0.05 level. 42 of the 80 biomarkers in the 7-24-month database had a negative association with

the outcome in the single biomarker models, 38 had a positive association, and 12 had statisti-

cally significant estimates. No fecal or urinary biomarkers were included in the final subsets

selected by adaptive LASSO, although in both the 7–15 and 7-24-month models, the SCAD

and MCP penalties assigned small, non-zero coefficients to fecal MPO and SCAD also selected

urinary lactulose.

In both databases, just 5 biomarkers were selected by all three penalties. In the 7-15-month

models, these were hemoglobin, Immunoglobulin A (IgA), Insulin-like growth factor-binding

protein 3 (IGFBP-3), Pulmonary and Activation-Regulated Chemokine (PARC) and Thyroid-

Stimulating Hormone (TSH), while in the 7-24-month models these included adiponectin and

IgM instead of IgA and TSH. In both databases, all biomarkers selected by MCP were also

selected by SCAD and in the 7-24-month database all biomarkers selected by adaptive LASSO

were also selected by the other two penalties. SCAD selected 5 biomarkers in the 7-15-months

and 3 in the 7-24-month database that were not included in either of the other two subsets,

however only one of these–growth hormone (GH)–was significant in the final model.

Fig 2 plots the p-values from the separately modeled biomarkers against their correspond-

ing q-values with lines representing the Bonferroni corrected α values to assess their signifi-

cance after adjusting for the FDR. For both databases, only adiponectin retained statistical

significant at the Bonferroni corrected α levels, while a small number of other biomarkers–Fer-

ritin (FRTN), IGF-1, IGFBP-3 and Serum Amyloid P-Component (SAP) in both databases,

GH and aspartic acid for the 7-15-month data and PARC for the 7-24-month–had q-values

below the less conservative threshold of q<0.1.

Table 3 presents the coefficient estimates from the final 7-15-month and 7-24-month linear

regression models for a 1 log2 increase of each of the biomarkers selected by SCAD along with

the difference in child’s height predicted for children aged 17 and 26 months respectively at

the 25th and 75th percentile of the biomarker distribution (holding all other included biomark-

ers at their sample mean). The 36 selected biomarkers include numerous amino acids, chemo-

kines, hormones, glycoproteins and proteins along with two antibodies, three apolipoproteins,

the enzyme myeloperoxidase, the sugar lactulose and 5-OH-Indole-3-acetic Acid (5-HIAA),

the metabolite of serotonin. Thirteen biomarkers were included in both final models, while 11

were only included in the 7-15-month model and 12 only in the 7-24-month model.

The iron-transporting glycoprotein transferrin had the largest effect size in the 7-15-month

model both in terms of its estimated coefficient–a highly statistically significant 0.50 (0.24,

0.75) increase in the predicted LAZ-score–and the height difference predicted–a 17-month-

old child at the 75th percentile of plasma transferrin concentration being two thirds of a centi-

meter taller than one at the 25th. Hemoglobin had the second largest absolute coefficient value

in the 7-15-month model–a slightly significant 0.47 (0.02, 0.93)–but the second largest differ-

ence in height was predicted by SAP—a child at the 3rd quartile of its distribution predicted to

Table 2. Number of biomarkers selected (assigned non-zero coefficients) and cross-validation error for three penalized regression models fitted on two biomarker

databases.

7–15 months 7–24 months

Adaptive LASSO MCP SCAD Adaptive LASSO MCP SCAD

Biomarkers selected 17 8 23 5 22 25

Cross-validation error 0.84 0.84 0.82 0.85 0.78 0.78

Cross-validated R-squared 0.06 0.05 0.08 0.10 0.10 0.10

https://doi.org/10.1371/journal.pntd.0007851.t002
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be 0.65 cm shorter than one at the 1st quartile–which also had a highly statistically significant

coefficient estimate. Other biomarkers for which the 7-15-month model predicted large and

statistically significant negative effects include the hormones adiponectin and GH–predicting

respectively around a -0.4cm and a -0.28cm height difference–and apolipoprotein (Apo)

C-I—-0.3cm–while AGP had a slightly statistically significant positive effect.

Several biomarkers that had large effect sizes in the 7-15-months model–transferrin, Apo

C-I and GH- were not included in the 7-24-month database, due to no values being available

at 24 months of age. Instead, in that model, while hemoglobin again had the largest coefficient

estimate–a non-significant 0.44 (-0.03, 0.91)–SAP predicted the largest difference in height

between the extremes of the interquartile range of the analyte’s distribution at 24 months–

26-month-old children with high SAP concentration at 24-months a predicted 0.79cm shorter

than their low SAP counterparts–the next largest being the chemokines Interleukin-8 (IL-8)–

0.63cm taller–and adiponectin– 0.54cm shorter–the latter having a highly statistically signifi-

cant effect estimate. Proline, arginine, tryptophan and SHBG also all had slightly statistically

significant coefficient estimates and predicted among the largest height differences.

The final 7-15-month model explained 43.0% of the variance in the LAZ-score according to

the R2 statistics, with 23.0% of the variance explained solely by the selected subset of biomark-

ers (the partial R2 statistic excluding the non-biomarker covariates). The equivalent propor-

tions for the final 7-24-month model were 39.6% and 17.7% respectively. S2 Table in the

supporting information show the equivalent results when the non-biomarker covariates were

replaced in the final models with contemporaneous LAZ-score to adjust for attained growth.

In the presence of this variable, many of the effect size estimates decreased in magnitude and

Fig 1. Forest plots of coefficient estimates and 95% confidence intervals from linear regression models of single biomarkers, for subsets of

multiple biomarkers selected by the three penalized regression methods and from a final multi-variable linear regression model of the subset

with the lowest cross-validation error adjusting for covariates.

https://doi.org/10.1371/journal.pntd.0007851.g001

Fig 2. Scatterplot comparing the p-values from the separately modeled biomarkers to their corresponding q-values calculated using the method proposed by

Simes’ method [33] and to the Bonferroni corrected α values (represented by the dashed lines). Biomarkers for which q<0.1 are labeled.

https://doi.org/10.1371/journal.pntd.0007851.g002
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Table 3. Coefficient estimates (with 95% confidence intervals) from linear regression models for biomarkers selected by SCAD along with the predicted difference

in child’s height 2 months after the last sample for children at the 25th and 75th percentile of the biomarker distribution.

Biomarker 7 & 15 months 7, 15 & 24 months

Coefficient—LAZ

score

Predicted height difference (cm) at

17 months

Coefficient—LAZ

score

Predicted height difference (cm) at

26 months

5-OH-Indole-3-acetic Acid (5-HIAA) - - -0.05

(-0.11, 0.00)

-0.16

Alpha-2-Macroglobulin (A2Macro) -0.07

(-0.25, 0.11)

-0.10 - -

Alpha-amino-n-butyric acid (AABA) -0.06

(-0.18, 0.06)

-0.15 - -

Adiponectin -0.26

(-0.42, -0.10)

-0.40 -0.29

(-0.47, -0.12)

-0.54

alpha-1-acid glycoprotein (AGP) 0.20

(0.05, 0.36)

0.33 0.07

(-0.09, 0.23)

0.14

Apolipoprotein B (Apo B) - - 0.06

(-0.11, 0.23)

0.13

Apolipoprotein C-I (Apo C-I) -0.22

(-0.43, -0.01)

-0.30 - -

Apolipoprotein D (Apo D) - - -0.08

(-0.26, 0.11)

-0.12

Arginine 0.18

(-0.00, 0.37)

0.39 0.17

(0.00, 0.34)

0.46

Beta-amino-iso-butyric acid (BABA) - - 0.06

(-0.03, 0.15)

0.38

Citrulline -0.15

(-0.32, 0.03)

-0.22 -0.14

(-0.33, 0.06)

-0.24

Eotaxin-3 - - 0.06

(-0.04, 0.16)

0.11

Fecal Myeloperoxidase (MPO) 0.03

(-0.01, 0.08)

0.19 0.03

(-0.02, 0.07)

0.20

Growth Hormone (GH) -0.07

(-0.12, -0.01)

-0.28 - -

Hemoglobin 0.47

(0.02, 0.93)

0.30 0.44

(-0.03, 0.91)

0.31

Homoserine -0.05

(-0.12, 0.01)

-0.16 - -

Immunoglobulin A (IgA) -0.12

(-0.27, 0.03)

-0.23 - -

Immunoglobulin M (IgM) - - -0.03

(-0.16, 0.11)

-0.07

Insulin-like growth factor-binding protein 3

(IGFBP-3)

0.19

(-0.06, 0.43)

0.25 0.18

(-0.02, 0.39)

0.28

Interleukin-8 (IL-8) chemokine - - 0.17

(0.07, 0.27)

0.63

Lactulose -0.05

(-0.11, 0.01)

-0.24 - -

Leptin 0.02

(-0.07, 0.11)

0.09 0.06

(-0.02, 0.14)

0.27

Lysine 244 - - -0.07

(-0.15, 0.01)

-0.21

Monocyte Chemotactic Protein 4 (MCP-4) - - -0.07

(-0.21, 0.07)

-0.25

Myoglobin - - 0.02

(-0.08, 0.12)

0.06

(Continued)
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statistical significance considerably including transferrin and GH in the 7-15-month model,

tryptophan and SHBG in the 7-24-month model and adiponectin and SAP in both models.

Several biomarkers did increase in statistical significance upon adjustment for attained growth

however, including Alpha-2-Macroglobulin (A2Macro), fecal MPO, tryptophan and TSH

in the 7-15-month and proline and hemoglobin in the 7-24-month models. Adjustment for

baseline LAZ-score also greatly increased the proportion of the variability explained by the

models—R2 statistics of 83.7% and 84.3% for the 7-15-month and 7-24-month models respec-

tively–but decreased the proportion explained by the biomarker subsets– 9.6% and 7.3%

respectively—demonstrating that growth already attained has far more explanatory power for

modeling short-term future growth than any combination of biomarkers.

Numerous biomarkers, including Eotaxin-3, citrulline, myoglobin, lactulose, and SHBG,

exhibited evidence of having non-linear relationships with the outcome when visualized in

polynomial smooth plots (S2–S6 Figs respectively in the supporting information). When a

multivariate spline model-selection algorithm was run on each of the two final biomarker sub-

sets, none of the biomarkers improved the model when represented by multiple cubic splines

relative to linear terms with the exceptions of proline in the 7-15-month model (4 degrees of

freedom) and Thymus and activation regulated chemokine (TARC) and Monocyte Chemotac-

tic Protein 4 (MCP-4) (2 degrees of freedom each) in the 7-24-month model (results not

reported).

Fig 3 shows the results of the validation exercise in which a previously published methodol-

ogy was replicated using three biomarkers from the final subset identified here along with

IGF-1 as a comparator. This analysis treated the difference in LAZ-score (ΔLAZ) over time-

windows of increasing length as the outcome, standard deviations of the biomarkers as expo-

sures and adjusted for baseline LAZ, as well as the other covariates. Adiponectin, which had

Table 3. (Continued)

Biomarker 7 & 15 months 7, 15 & 24 months

Coefficient—LAZ

score

Predicted height difference (cm) at

17 months

Coefficient—LAZ

score

Predicted height difference (cm) at

26 months

Pulmonary and Activation-Regulated

Chemokine (PARC)

-0.02

(-0.19, 0.15)

-0.04 -0.14

(-0.31, 0.03)

-0.28

Proline -0.21

(-0.44, 0.02)

-0.42 -0.24

(-0.44, -0.05)

-0.50

Serum Amyloid P-Component (SAP) -0.28

(-0.42, -0.14)

-0.65 -0.29

(-0.47, -0.12)

-0.79

Sarcosine 0.00

(-0.09, 0.09)

0.01 - -

Sex Hormone-Binding Globulin (SHBG) -0.11

(-0.23, 0.01)

-0.33 -0.12

(-0.22, -0.01)

-0.42

Thymus and activation regulated chemokine

(TARC)

- - -0.01

(-0.11, 0.09)

-0.05

Thyroxine-Binding Globulin (TBG) - - 0.28

(-0.01, 0.56)

0.36

Transferrin 0.50

(0.24, 0.75)

0.66 - -

Tryptophan 0.17

(-0.03, 0.37)

0.29 0.23

(0.06, 0.40)

0.44

Thyroid-Stimulating Hormone (TSH) -0.07

(-0.17, 0.03)

-0.16 - -

von Willebrand Factor (vWF) 0.07

(-0.01, 0.14)

0.23 - -

https://doi.org/10.1371/journal.pntd.0007851.t003
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Fig 3. Associations between concentrations of four plasma biomarkers (per standard deviation of their log2 transformed values) and

differences in LAZ-score (ΔLAZ) over time windows of increasing length, from models adjusting for baseline LAZ, age, and sex.

https://doi.org/10.1371/journal.pntd.0007851.g003
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previously exhibited a large and highly statistically significant association with nutritional sta-

tus showed no obvious trend after adjustment for attained growth, while IGF-1 and, most

markedly, transferrin showed large and statistically significant associations with changes in

LAZ-score over longer time windows of 5–10 months.

Discussion

Analytical techniques such as multiplex immunoassays and mass spectrometry are increasingly

being used in human studies to enable the quantification of ever more diverse and extensive

panels of analytes in biological samples, many of which have biological functions that have yet

to be fully characterized. At the same time, advanced statistical learning methods have

emerged that can be used to identify patterns in large datasets. This study brings together these

two developments and applies them to an issue that has received growing attention in recent

years but has yet to be fully resolved–identifying prognostic biomarkers of EED that can pre-

dict future linear growth over time windows relevant to clinical intervention. In a birth cohort

recruited from a low-resource setting in Peru, this study reports the distributions of 180 candi-

date biomarkers in fecal, urinary and plasma samples, of which 110 met the criteria for inclu-

sion in variable-subsetting penalized regression models–the largest number of markers ever

considered in a study of this nature.

The final subsets selected by SCAD penalty included numerous biomarkers that previous

studies have implicated as potential predictors of linear growth and markers of gut function.

The essential amino acid tryptophan has previously shown promise as a prognostic indicator

of EED due to its role in normal infant growth and its hypothesized correlation with indolea-

mine 2,3-dioxygenase 1 (IDO1) activity in states of chronic low-grade endotoxin exposure

[14]. However, while tryptophan was selected by the majority of the penalized regression mod-

els, and its association with LAZ-score was statistically significant in the 7-24-month final

models it was not among the biomarkers most predictive of differences in height. A positive

association between plasma tryptophan concentration and a 6-month change in LAZ-score

has already been reported in this cohort and a similar one in Tanzania and separately in one in

Northeast Brazil with effect sizes comparable to that of the final model here [14,35]. Immuno-

globulin A (IgA), which was retained in the final 7-15-month model, had a small, non-signifi-

cant, negative effect size consistent with that observed for IgA anti-LPS antibody also in the

Brazil cohort [35].

For some other biomarkers in the subsets, evidence in previous literature on EED is more

scant though known mechanisms nonetheless exist through which they might plausibly track

nutritional status. Most obvious of these is hemoglobin, long the gold standard marker of

severe anemia and therefore of its attendant delaying effects on growth and development [36].

Analysis of data from the 8-site study to which the cohort described here contributed found an

association (though weaker and less significant than those found here) between hemoglobin

and LAZ-score at age 5 years [37], while other studies of EED have adjusted for hemoglobin as

a potential confounder [38,39]. Low levels of plasma transferrin are found during protein-

energy malnutrition [40]. Adiponectin is an appetite-regulating hormone that promotes satiety

and therefore may inhibit food intake, which may explain its negative association with growth

[41,42]. While elevated levels of circulating adiponectin have a known negative association

with obesity [43], its role in child growth is unclear, and among twins this adipokine had a pos-

itive association with birthweight-adjusted LAZ-score (counter to the negative one reported

here) [42]. Leptin and the serum leptin-adiponectin ratio were found to be associated with

stunting in Bangladeshi children and increased in this group following food supplementation

[38]. The positive association between serum arginine concentrations and nutritional status is

Biomarkers of environmental enteric dysfunction and nutritional status

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007851 November 15, 2019 14 / 20

https://doi.org/10.1371/journal.pntd.0007851


consistent with findings from Malawi, though the same study failed to find a significant associ-

ation with proline, which was one of the more predictive of the biomarkers in these results

[44].

While the SCAD-selected subset was used for the final models due to its yielding the low

cross-validated error and explaining a larger proportion of the variance, it is notable that this

penalty did select several biomarkers that had small non-significant effect estimates and did

not select several biomarkers, which had statistically significant single biomarker effect sizes

and known associations with nutritional outcomes (such as IGF-1 and ferritin). Though

SCAD has been used in numerous studies of EED biomarkers [16–18], these findings do sug-

gest that this penalty lacks both sensitivity and specificity when applied to large panels.

For other biomarkers in the subsets, the functions or pathways through which they might

impact growth are as yet unclear, which demonstrates the hypothesis-generating potential of

this approach. SHBG is of interest in biomarker research for its association at low levels with

type-II diabetes and metabolic syndrome but, although elevated SHBG is seen following

weight loss, this glycoprotein has not previously been considered as a prognostic marker of

growth faltering [45]. Though known for its association with amyloidosis, SAP is also involved

in the humoral innate immune system’s response to infections and might plausibly lie on the

pathway connecting enteric pathogen infection to growth deficits that is specific to the EED

hypothesis [46–48]. TBG, responsible for binding the thyroid hormones thyroxine and triiodo-

thyronine in the blood down, which downregulate the activity of hormones that stimulate met-

abolic rate and may influence the regulation of skeletal growth [49,50].

C-Reactive Protein (CRP), which multiple previous studies have found to be a promising

biomarker [17,51], was not selected despite having a statistically significant, though small, neg-

ative effect in the single biomarker 7–24 months model. The fact that CRP is inversely related

to Fetuin-A [52] and, like SAP, is a calcium-dependent ligand binding plasma protein [46]

may mean that the presence of the latter protein in the final model fully accounted for any

effect of CRP. The three fecal biomarkers and the urinary lactulose/mannitol ratio (along with

the other four urinary markers) have shown clinical potential in previous studies [11,53] but in

this analysis were not significant in any of the single-biomarker or final models. It may be the

case that restricting the data to assessments at just 2–3 time points meant that the analysis was

underpowered to detect the true but relatively small effects of these substances [11]. Citrulline,

which has shown promise in previous studies [35], was not significant in either single bio-

marker model, and was selected but not significant in the final models.

Although ferritin, the body’s stored form of iron, has been implicated previously [17,51]

and was significant in the single biomarker model, it was not selected here for either final

model. This may be because its association with growth is mediated by the stronger and more

statistically significant effect of the related glycoprotein transferrin [54]. Some biomarkers that

have been implicated in other studies–such as soluble CD14 [16,17], endotoxin core antibodies

(EndoCAB) [12], zonulin, intestinal fatty acid binding protein [35], retinol binding protein

and calprotectin [17]–were not included in any of the panels. Others were excluded from the

analysis due to having too few unique observations, notably almost all the interleukins, which

were only tested for in the case-control panel, a limitation of this study.

Several other limitations warrant highlighting. Most associations that were apparently sta-

tistically significant in the single biomarker models appeared much less so after accounting for

the FDR–indeed, only adiponectin remained significant at the Bonferroni-corrected α level.

Furthermore, the results of the adjusted subset models do not account for the variable selection

in the first stage SCAD model, a post-selection inference problem that can lead to inflated

type-1 errors and overly narrow confidence intervals [55]. However, the associations identified

by this analysis should be assessed, not just by their statistical significance but by their
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biological plausibility and in light of the fact that the biomarkers selected for the subset and the

relative strength of their associations with the outcome are broadly consistent with known bio-

logical pathways. Another limitation is the assumption both in the subset selection stage and

in fitting the final models that any relationships between biomarkers and LAZ-score would be

linear. Exploratory analysis revealed some evidence to challenge this, which may limit the

accuracy of the predictions from the linear models, however further analysis using multivariate

regression splines suggested that only a very small number of biomarkers were affected by this

assumption. As consensus develops around a final set of important biomarkers of EED such

non-linear effects will need to be more rigorously characterized.

Applying the penalized regression models to the database that included the observations at

24 months of age, did not improve the predictive capability of the model. Similarly, the final 7-

24-month model explained a smaller proportion of the variance in the outcome than the 7-

15-month model. However, for some biomarkers that were included in both models, the 7-

24-month model tended to give larger and more statistically significant effect size estimates

than the 7-15-month model (with the notable exception of hemoglobin). The reason for the

difference in explanatory power may be because the 7-24-month database did not include

transferrin (which was not tested at 24 months of age), the biomarker with the largest effect

size in the 7-15-month final model.

Studies with more intensive sample collection and frequent follow-up are needed to explore

random effects and short-term intra- and inter-subject variability of these biomarkers as well

as those that were excluded from this analysis and to more precisely model their effects on

growth [11]. The validity of these biomarkers as clinically relevant predictors of growth in new

populations can be readily assessed given that ELISA kits for most of them are commercially

available. This is important considering the high burden of stunting in under-resourced set-

tings in low- and middle-income countries where these biomarkers can potentially be tested in

regional laboratories, and the results used to inform care and programs aimed at controlling

stunting.

The expanded testing of analytes chosen for their characterization as being important

immune and metabolic regulators pertinent to child growth revealed several important find-

ings. This selected subset of biomarkers explained 17.7–23.0% of the variance in LAZ score

with measurements taken at 2 or 3 time points, compared to a single biomarker such as MPO

which only accounted for 2.8% of the variance with monthly follow-up up to age 3 years in the

same population [11]. Future studies should aim to characterize changes in LAZ scores when

assessing the interaction between EED biomarkers and intestinal infections by specific patho-

gens. These plasma biomarkers represent a set of surrogate outcomes which can be measured

at different time points, all of which are characteristic of a good biomarker of EED to circum-

vent the problems associated with the lactulose/mannitol test, the current gold standard test

(such as the variable in its association with child growth, which, even when significant has an

effect size that is much smaller than the selected panel described here) [56].

In summary, penalized regression modeling approaches–most notably SCAD—can be used

to select subsets from large panels of candidate biomarkers of EED providing translational

value in the form of further evidence for known markers and in generating hypotheses about

new ones. Adiponectin, IL-8, proline, SAP and transferrin, among others, are promising

plasma biomarkers of EED.
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2. Victora CG, de Onis M, Hallal PC, Blössner M, Shrimpton R. Worldwide timing of growth faltering: revis-

iting implications for interventions. Pediatrics. 2010; 125: e473–80. https://doi.org/10.1542/peds.2009-

1519 PMID: 20156903

3. Dewey KG, Adu-Afarwuah S. Systematic review of the efficacy and effectiveness of complementary

feeding interventions in developing countries. Matern Child Nutr. 2008; 4: 24–85. https://doi.org/10.

1111/j.1740-8709.2007.00124.x PMID: 18289157

4. Harper KM, Mutasa M, Prendergast AJ, Humphrey J, Manges AR. Environmental enteric dysfunction

pathways and child stunting: A systematic review. PLoS Negl Trop Dis. 2018; 12. https://doi.org/10.

1371/journal.pntd.0006205 PMID: 29351288

5. Arndt MB, Walson JL. Enteric infection and dysfunction—A new target for PLOS Neglected Tropical

Diseases. Ryan ET, editor. PLoS Negl Trop Dis. 2018; 12: e0006906. https://doi.org/10.1371/journal.

pntd.0006906 PMID: 30592716

6. Kelly P, Menzies I, Crane R, Zulu I, Nickols C, Feakins R, et al. Responses of small intestinal architec-

ture and function over time to environmental factors in a tropical population. Am J Trop Med Hyg. 2004;

70: 412–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/15100456 PMID: 15100456

7. Korpe PS, Petri WA. Environmental enteropathy: critical implications of a poorly understood condition.

Trends Mol Med. 2012; 18: 328–36. https://doi.org/10.1016/j.molmed.2012.04.007 PMID: 22633998

8. Kosek MN, Ahmed T, Bhutta Z, Caulfield L, Guerrant R, Houpt E, et al. Causal Pathways from Entero-

pathogens to Environmental Enteropathy: Findings from the MAL-ED Birth Cohort Study. EBioMedi-

cine. 2017; 18: 109–117. https://doi.org/10.1016/j.ebiom.2017.02.024 PMID: 28396264

9. Kosek M, Haque R, Lima A, Babji S, Shrestha S, Qureshi S, et al. Fecal Markers of Intestinal Inflamma-

tion and Permeability Associated with the Subsequent Acquisition of Linear Growth Deficits in Infants.

Am J Trop Med Hyg. 2013; 88: 390–396. https://doi.org/10.4269/ajtmh.2012.12-0549 PMID: 23185075

10. Keusch GT, Rosenberg IH, Denno DM, Duggan C, Guerrant RL, Lavery J V., et al. Implications of

Acquired Environmental Enteric Dysfunction for Growth and Stunting in Infants and Children Living in

Low- and Middle-Income Countries. Food Nutr Bull. 2013; 34: 357–364. https://doi.org/10.1177/

156482651303400308 PMID: 24167916

11. Colston JM, Peñataro Yori P, Colantuoni E, Moulton LH, Ambikapathi R, Lee G, et al. A methodologic

framework for modeling and assessing biomarkers of environmental enteropathy as predictors of

growth in infants: an example from a Peruvian birth cohort. Am J Clin Nutr. 2017; 106: 245–55. https://

doi.org/10.3945/ajcn.116.151886 PMID: 28592604

12. Hoke MK, McCabe KA, Miller AA, McDade TW. Validation of endotoxin-core antibodies in dried blood

spots as a measure of environmental enteropathy and intestinal permeability. Am J Hum Biol. 2018;

e23120. https://doi.org/10.1002/ajhb.23120 PMID: 29532544

13. Faubion WA, Camilleri M, Murray JA, Kelly P, Amadi B, Kosek MN, et al. Improving the detection of

environmental enteric dysfunction: a lactulose, rhamnose assay of intestinal permeability in children

aged under 5 years exposed to poor sanitation and hygiene. BMJ Glob Heal. 2016; 1: e000066. https://

doi.org/10.1136/bmjgh-2016-000066 PMID: 28588929

14. Kosek MN, Mduma E, Kosek PS, Lee GO, Svensen E, Pan WKY, et al. Plasma Tryptophan and the

Kynurenine-Tryptophan Ratio are Associated with the Acquisition of Statural Growth Deficits and Oral

Vaccine Underperformance in Populations with Environmental Enteropathy. Am J Trop Med Hyg. 2016;

95: 928–937. https://doi.org/10.4269/ajtmh.16-0037 PMID: 27503512

15. Breen EC, Reynolds SM, Cox C, Jacobson LP, Magpantay L, Mulder CB, et al. Multisite comparison of

high-sensitivity multiplex cytokine assays. Clin Vaccine Immunol. 2011; 18: 1229–42. https://doi.org/10.

1128/CVI.05032-11 PMID: 21697338

Biomarkers of environmental enteric dysfunction and nutritional status

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007851 November 15, 2019 18 / 20

https://doi.org/10.1016/S0140-6736(07)61690-0
https://doi.org/10.1542/peds.2009-1519
https://doi.org/10.1542/peds.2009-1519
http://www.ncbi.nlm.nih.gov/pubmed/20156903
https://doi.org/10.1111/j.1740-8709.2007.00124.x
https://doi.org/10.1111/j.1740-8709.2007.00124.x
http://www.ncbi.nlm.nih.gov/pubmed/18289157
https://doi.org/10.1371/journal.pntd.0006205
https://doi.org/10.1371/journal.pntd.0006205
http://www.ncbi.nlm.nih.gov/pubmed/29351288
https://doi.org/10.1371/journal.pntd.0006906
https://doi.org/10.1371/journal.pntd.0006906
http://www.ncbi.nlm.nih.gov/pubmed/30592716
http://www.ncbi.nlm.nih.gov/pubmed/15100456
http://www.ncbi.nlm.nih.gov/pubmed/15100456
https://doi.org/10.1016/j.molmed.2012.04.007
http://www.ncbi.nlm.nih.gov/pubmed/22633998
https://doi.org/10.1016/j.ebiom.2017.02.024
http://www.ncbi.nlm.nih.gov/pubmed/28396264
https://doi.org/10.4269/ajtmh.2012.12-0549
http://www.ncbi.nlm.nih.gov/pubmed/23185075
https://doi.org/10.1177/156482651303400308
https://doi.org/10.1177/156482651303400308
http://www.ncbi.nlm.nih.gov/pubmed/24167916
https://doi.org/10.3945/ajcn.116.151886
https://doi.org/10.3945/ajcn.116.151886
http://www.ncbi.nlm.nih.gov/pubmed/28592604
https://doi.org/10.1002/ajhb.23120
http://www.ncbi.nlm.nih.gov/pubmed/29532544
https://doi.org/10.1136/bmjgh-2016-000066
https://doi.org/10.1136/bmjgh-2016-000066
http://www.ncbi.nlm.nih.gov/pubmed/28588929
https://doi.org/10.4269/ajtmh.16-0037
http://www.ncbi.nlm.nih.gov/pubmed/27503512
https://doi.org/10.1128/CVI.05032-11
https://doi.org/10.1128/CVI.05032-11
http://www.ncbi.nlm.nih.gov/pubmed/21697338
https://doi.org/10.1371/journal.pntd.0007851


16. Lu M, Zhou J, Naylor C, Kirkpatrick BD, Haque R, Petri WA, et al. Application of penalized linear regres-

sion methods to the selection of environmental enteropathy biomarkers. Biomark Res. 2017; 5: 9.

https://doi.org/10.1186/s40364-017-0089-4 PMID: 28293424

17. Naylor C, Lu M, Haque R, Mondal D, Buonomo E, Nayak U, et al. Environmental Enteropathy, Oral Vac-

cine Failure and Growth Faltering in Infants in Bangladesh. EBioMedicine. 2015; 2: 1759–66. https://

doi.org/10.1016/j.ebiom.2015.09.036 PMID: 26870801

18. Moreau GB, Ramakrishnan G, Cook HL, Fox TE, Nayak U, Ma JZ, et al. Childhood growth and neuro-

cognition are associated with distinct sets of metabolites. EBioMedicine. 2019; 44: 597–606. https://doi.

org/10.1016/j.ebiom.2019.05.043 PMID: 31133540

19. Yori PP, Lee G, Olortegui MP, Chavez CB, Flores JT, Vasquez AO, et al. Santa Clara de Nanay: The

MAL-ED Cohort in Peru. Clin Infect Dis. 2014; 59: S310–S316. https://doi.org/10.1093/cid/ciu460

PMID: 25305303

20. MAL-ED Network Investigators The MAL-ED Network Investigators, MAL-ED Network Investigators.

The MAL-ED study: a multinational and multidisciplinary approach to understand the relationship

between enteric pathogens, malnutrition, gut physiology, physical growth, cognitive development, and

immune responses in infants and children up to 2 years of. Clin Infect Dis. 2014; 59 Suppl 4: S193–206.

https://doi.org/10.1093/cid/ciu653 PMID: 25305287

21. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/height-for-

age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and

development. Geneva: World Health Organization; 2006. Available: http://www.who.int/childgrowth/

standards/technical_report/en/

22. Kosek M, Guerrant RL, Kang G, Bhutta Z, Yori PP, Gratz J, et al. Assessment of environmental enterop-

athy in the MAL-ED cohort study: theoretical and analytic framework. Clin Infect Dis. 2014; 59 Suppl 4:

S239–47. https://doi.org/10.1093/cid/ciu457 PMID: 25305293

23. Richard SA, McCormick BJJ, Miller MA, Caulfield LE, Checkley W. Modeling Environmental Influences

on Child Growth in the MAL-ED Cohort Study: Opportunities and Challenges. Clin Infect Dis. 2014; 59:

S255–S260. https://doi.org/10.1093/cid/ciu436 PMID: 25305295

24. Myriad RBM. HumanMAP v. 2.0. 2018 [cited 22 Aug 2018]. Available: https://myriadrbm.com/products-

services/humanmap-services/humanmap/

25. Gray N, Zia R, King A, Patel VC, Wendon J, McPhail MJW, et al. High-Speed Quantitative UPLC-MS

Analysis of Multiple Amines in Human Plasma and Serum via Precolumn Derivatization with 6-Amino-

quinolyl- N -hydroxysuccinimidyl Carbamate: Application to Acetaminophen-Induced Liver Failure. Anal

Chem. 2017; 89: 2478–2487. https://doi.org/10.1021/acs.analchem.6b04623 PMID: 28194962

26. McCormick BJJ, Lee GO, Seidman JC, Haque R, Mondal D, Quetz J, et al. Dynamics and Trends in

Fecal Biomarkers of Gut Function in Children from 1–24 Months in the MAL-ED Study. Am J Trop Med

Hyg. 96. https://doi.org/10.4269/ajtmh.16-0496 PMID: 27994110

27. Ahmed SF, Tucker P, Mushtaq T, Wallace AM, Williams DM, Hughes IA. Short-term effects on linear

growth and bone turnover in children randomized to receive prednisolone or dexamethasone. Clin

Endocrinol (Oxf). 2002; 57: 185–191. https://doi.org/10.1046/j.1365-2265.2002.01580.x PMID:

12153596

28. Bath LE, Crofton PM, Evans AEM, Ranke MB, Elmlinger MW, Kelnar CJH, et al. Bone Turnover and

Growth during and after Chemotherapy in Children with Solid Tumors. Pediatr Res. 2004; 55: 224–230.

https://doi.org/10.1203/01.PDR.0000100903.83472.09 PMID: 14605245

29. Isanaka S, Kodish SR, Berthé F, Alley I, Nackers F, Hanson KE, et al. Outpatient treatment of severe

acute malnutrition: Response to treatment with a reduced schedule of therapeutic food distribution. Am

J Clin Nutr. 2017; 105: 1191–1197. https://doi.org/10.3945/ajcn.116.148064 PMID: 28404577

30. Hornung RW, Reed LD. Estimation of Average Concentration in the Presence of Nondetectable Values.

Appl Occup Environ Hyg. 1990; 5: 46–51. https://doi.org/10.1080/1047322X.1990.10389587

31. Schafer JL (Joseph L. Analysis of incomplete multivariate data. Chapman & Hall; 1997. Available:

https://www.crcpress.com/Analysis-of-Incomplete-Multivariate-Data/Schafer/p/book/9780412040610

32. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A.

2003; 100: 9440–9445. https://doi.org/10.1073/pnas.1530509100 PMID: 12883005

33. Simes RJ. An improved bonferroni procedure for multiple tests of significance. Biometrika. 1986; 73:

751–754. https://doi.org/10.1093/biomet/73.3.751

34. StataCorp. Stata Statistical Software: Release 15. College Station, TX; 2017.

35. Guerrant RL, Leite AM, Pinkerton R, Medeiros PHQS, Cavalcante PA, DeBoer M, et al. Biomarkers of

Environmental Enteropathy, Inflammation, Stunting, and Impaired Growth in Children in Northeast Bra-

zil. PLoS One. 2016; 11: e0158772. https://doi.org/10.1371/journal.pone.0158772 PMID: 27690129

Biomarkers of environmental enteric dysfunction and nutritional status

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007851 November 15, 2019 19 / 20

https://doi.org/10.1186/s40364-017-0089-4
http://www.ncbi.nlm.nih.gov/pubmed/28293424
https://doi.org/10.1016/j.ebiom.2015.09.036
https://doi.org/10.1016/j.ebiom.2015.09.036
http://www.ncbi.nlm.nih.gov/pubmed/26870801
https://doi.org/10.1016/j.ebiom.2019.05.043
https://doi.org/10.1016/j.ebiom.2019.05.043
http://www.ncbi.nlm.nih.gov/pubmed/31133540
https://doi.org/10.1093/cid/ciu460
http://www.ncbi.nlm.nih.gov/pubmed/25305303
https://doi.org/10.1093/cid/ciu653
http://www.ncbi.nlm.nih.gov/pubmed/25305287
http://www.who.int/childgrowth/standards/technical_report/en/
http://www.who.int/childgrowth/standards/technical_report/en/
https://doi.org/10.1093/cid/ciu457
http://www.ncbi.nlm.nih.gov/pubmed/25305293
https://doi.org/10.1093/cid/ciu436
http://www.ncbi.nlm.nih.gov/pubmed/25305295
https://myriadrbm.com/products-services/humanmap-services/humanmap/
https://myriadrbm.com/products-services/humanmap-services/humanmap/
https://doi.org/10.1021/acs.analchem.6b04623
http://www.ncbi.nlm.nih.gov/pubmed/28194962
https://doi.org/10.4269/ajtmh.16-0496
http://www.ncbi.nlm.nih.gov/pubmed/27994110
https://doi.org/10.1046/j.1365-2265.2002.01580.x
http://www.ncbi.nlm.nih.gov/pubmed/12153596
https://doi.org/10.1203/01.PDR.0000100903.83472.09
http://www.ncbi.nlm.nih.gov/pubmed/14605245
https://doi.org/10.3945/ajcn.116.148064
http://www.ncbi.nlm.nih.gov/pubmed/28404577
https://doi.org/10.1080/1047322X.1990.10389587
https://www.crcpress.com/Analysis-of-Incomplete-Multivariate-Data/Schafer/p/book/9780412040610
https://doi.org/10.1073/pnas.1530509100
http://www.ncbi.nlm.nih.gov/pubmed/12883005
https://doi.org/10.1093/biomet/73.3.751
https://doi.org/10.1371/journal.pone.0158772
http://www.ncbi.nlm.nih.gov/pubmed/27690129
https://doi.org/10.1371/journal.pntd.0007851


36. Soliman AT, De Sanctis V, Kalra S. Anemia and growth. Indian J Endocrinol Metab. 2014; 18: S1–5.

https://doi.org/10.4103/2230-8210.145038 PMID: 25538873

37. Richard SA, Mccormick BJJ, Murray-Kolb LE, Lee GO, Seidman JC, Mahfuz M, et al. Enteric dysfunc-

tion and other factors associated with attained size at 5 years: MAL-ED birth cohort study findings. Am J

Clin Nutr. 2019; 110: 131–138. https://doi.org/10.1093/ajcn/nqz004 PMID: 31127812

38. Hossain M, Nahar B, Haque MA, Mondal D, Mahfuz M, Naila NN, et al. Serum Adipokines, Growth Fac-

tors, and Cytokines Are Independently Associated with Stunting in Bangladeshi Children. Nutrients.

2019; 11. https://doi.org/10.3390/nu11081827 PMID: 31394828

39. Kamng’ona AW, Young R, Arnold CD, Kortekangas E, Patson N, Jorgensen JM, et al. The association

of gut microbiota characteristics in Malawian infants with growth and inflammation. Sci Rep. 2019; 9:

12893. https://doi.org/10.1038/s41598-019-49274-y PMID: 31501455

40. Bharadwaj S, Ginoya S, Tandon P, Gohel TD, Guirguis J, Vallabh H, et al. Malnutrition: laboratory mark-

ers vs nutritional assessment. Gastroenterol Rep. 2016; 4: 272–280. https://doi.org/10.1093/gastro/

gow013 PMID: 27174435

41. Holst JJ. The Physiology of Glucagon-like Peptide 1. Physiol Rev. 2007; 87: 1409–1439. https://doi.org/

10.1152/physrev.00034.2006 PMID: 17928588

42. Yeung EH, Sundaram R, Xie Y, Lawrence DA. Newborn adipokines and early childhood growth. Pediatr

Obes. 2018; 13: 505–513. https://doi.org/10.1111/ijpo.12283 PMID: 29781193

43. Woo JG, Guerrero ML, Altaye M, Ruiz-Palacios GM, Martin LJ, Dubert-Ferrandon A, et al. Human milk

adiponectin is associated with infant growth in two independent cohorts. Breastfeed Med. 2009; 4: 101–

9. https://doi.org/10.1089/bfm.2008.0137 PMID: 19500050

44. Semba RD, Shardell M, Sakr Ashour FA, Moaddel R, Trehan I, Maleta KM, et al. Child Stunting is Asso-

ciated with Low Circulating Essential Amino Acids. EBioMedicine. 2016; 6: 246–252. https://doi.org/10.

1016/j.ebiom.2016.02.030 PMID: 27211567

45. Wang F-M, Lin C-M, Lien S-H, Wu L-W, Huang C-F, Chu D-M. Sex difference determined the role of

sex hormone-binding globulin in obese children during short-term weight reduction program. Medicine

(Baltimore). 2017; 96: e6834. https://doi.org/10.1097/MD.0000000000006834 PMID: 28489766

46. Hutchinson WL, Hohenester E, Pepys MB. Human serum amyloid P component is a single uncom-

plexed pentamer in whole serum. Mol Med. 2000; 6: 482–93. Available: http://www.ncbi.nlm.nih.gov/

pubmed/10972085 PMID: 10972085

47. Agrawal A, Singh PP, Bottazzi B, Garlanda C, Mantovani A. Pattern recognition by pentraxins. Adv Exp

Med Biol. 2009; 653: 98–116. Available: http://www.ncbi.nlm.nih.gov/pubmed/19799114 https://doi.org/

10.1007/978-1-4419-0901-5_7 PMID: 19799114

48. Poulsen ET, Pedersen KW, Marzeda AM, Enghild JJ. Serum Amyloid P Component (SAP) Interactome

in Human Plasma Containing Physiological Calcium Levels. Biochemistry. 2017; 56: 896–902. https://

doi.org/10.1021/acs.biochem.6b01027 PMID: 28098450

49. Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology. 14th ed. Wiley; 2014. Available:

http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002935.html

50. Kim H-Y, Mohan S. Role and Mechanisms of Actions of Thyroid Hormone on the Skeletal Development.

Bone Res. 2013; 1: 146–161. https://doi.org/10.4248/BR201302004 PMID: 26273499

51. Iqbal NT, Sadiq K, Syed S, Akhund T, Umrani F, Ahmed S, et al. Promising Biomarkers of Environmen-

tal Enteric Dysfunction: A Prospective Cohort study in Pakistani Children. Sci Rep. 2018; 8: 2966.

https://doi.org/10.1038/s41598-018-21319-8 PMID: 29445110

52. Dabrowska AM, Tarach JS, Wojtysiak-Duma B, Duma D. Fetuin-A (AHSG) and its usefulness in clinical

practice. Review of the literature. Biomed Pap. 2015; 159: 352–359. https://doi.org/10.5507/bp.2015.

018 PMID: 25916279

53. Kosek MN, Lee GO, Guerrant RL, Haque R, Kang G, Ahmed T, et al. Age and Sex Normalization of

Intestinal Permeability Measures for the Improved Assessment of Enteropathy in Infancy and Early

Childhood. J Pediatr Gastroenterol Nutr. 2017; 65: 31–39. https://doi.org/10.1097/MPG.

0000000000001610 PMID: 28644347

54. Ponka P, Beaumont C, Richardson DR. Function and regulation of transferrin and ferritin. Semin Hema-

tol. 1998; 35: 35–54. Available: http://www.ncbi.nlm.nih.gov/pubmed/9460808 PMID: 9460808

55. Taylor J, Tibshirani RJ. Statistical learning and selective inference. Proc Natl Acad Sci U S A. 2015;

112: 7629–7634. https://doi.org/10.1073/pnas.1507583112 PMID: 26100887

56. Denno DM, VanBuskirk K, Nelson ZC, Musser CA, Hay Burgess DC, Tarr PI. Use of the lactulose to

mannitol ratio to evaluate childhood environmental enteric dysfunction: A systematic review. Clin Infect

Dis. 2014. https://doi.org/10.1093/cid/ciu541 PMID: 25305289

Biomarkers of environmental enteric dysfunction and nutritional status

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007851 November 15, 2019 20 / 20

https://doi.org/10.4103/2230-8210.145038
http://www.ncbi.nlm.nih.gov/pubmed/25538873
https://doi.org/10.1093/ajcn/nqz004
http://www.ncbi.nlm.nih.gov/pubmed/31127812
https://doi.org/10.3390/nu11081827
http://www.ncbi.nlm.nih.gov/pubmed/31394828
https://doi.org/10.1038/s41598-019-49274-y
http://www.ncbi.nlm.nih.gov/pubmed/31501455
https://doi.org/10.1093/gastro/gow013
https://doi.org/10.1093/gastro/gow013
http://www.ncbi.nlm.nih.gov/pubmed/27174435
https://doi.org/10.1152/physrev.00034.2006
https://doi.org/10.1152/physrev.00034.2006
http://www.ncbi.nlm.nih.gov/pubmed/17928588
https://doi.org/10.1111/ijpo.12283
http://www.ncbi.nlm.nih.gov/pubmed/29781193
https://doi.org/10.1089/bfm.2008.0137
http://www.ncbi.nlm.nih.gov/pubmed/19500050
https://doi.org/10.1016/j.ebiom.2016.02.030
https://doi.org/10.1016/j.ebiom.2016.02.030
http://www.ncbi.nlm.nih.gov/pubmed/27211567
https://doi.org/10.1097/MD.0000000000006834
http://www.ncbi.nlm.nih.gov/pubmed/28489766
http://www.ncbi.nlm.nih.gov/pubmed/10972085
http://www.ncbi.nlm.nih.gov/pubmed/10972085
http://www.ncbi.nlm.nih.gov/pubmed/10972085
http://www.ncbi.nlm.nih.gov/pubmed/19799114
https://doi.org/10.1007/978-1-4419-0901-5_7
https://doi.org/10.1007/978-1-4419-0901-5_7
http://www.ncbi.nlm.nih.gov/pubmed/19799114
https://doi.org/10.1021/acs.biochem.6b01027
https://doi.org/10.1021/acs.biochem.6b01027
http://www.ncbi.nlm.nih.gov/pubmed/28098450
http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002935.html
https://doi.org/10.4248/BR201302004
http://www.ncbi.nlm.nih.gov/pubmed/26273499
https://doi.org/10.1038/s41598-018-21319-8
http://www.ncbi.nlm.nih.gov/pubmed/29445110
https://doi.org/10.5507/bp.2015.018
https://doi.org/10.5507/bp.2015.018
http://www.ncbi.nlm.nih.gov/pubmed/25916279
https://doi.org/10.1097/MPG.0000000000001610
https://doi.org/10.1097/MPG.0000000000001610
http://www.ncbi.nlm.nih.gov/pubmed/28644347
http://www.ncbi.nlm.nih.gov/pubmed/9460808
http://www.ncbi.nlm.nih.gov/pubmed/9460808
https://doi.org/10.1073/pnas.1507583112
http://www.ncbi.nlm.nih.gov/pubmed/26100887
https://doi.org/10.1093/cid/ciu541
http://www.ncbi.nlm.nih.gov/pubmed/25305289
https://doi.org/10.1371/journal.pntd.0007851

