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Abstract
In typical well-known cryptosystem, the hardness of classical problems plays a funda-
mental role in ensuring its security.While, with the booming of quantum computation,
some classical hard problems tend to be vulnerable when confronted with the already-
known quantum attacks, as a result, it is necessary to develop the post-quantum
cryptosystem to resist the quantum attacks. With the purpose to bridge the two dis-
ciplines, it is significant to summarize known quantum algorithms and their threats
toward these cryptographic intractable problems from a perspective of cryptanalysis.
In this paper, we discussed the designingmethodology, algorithm framework and latest
progress of the mathematic hard problems on which the typical cryptosystems depend,
including integer factorization problem, discrete logarithmic problem and its variants,
lattice problem, dihedral hidden subgroup problems and extrapolated dihedral coset
problem. It illustrated the reason why some cryptosystems such as RSA and ECC are
not resistant to quantum attacks, yet some of them like lattice cryptosystems remain
intact facing quantum attacks.
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1 Introduction

The public-key cryptosystems, includingRSA,ElGamal, ECCand the related variants,
play an ingredient role in securing the confidential communication over the Internet
during the past decades. The fundamental principle of designing a secure public-key
cryptosystem is to lay its security on the difficulty of certain mathematical problems.
For instances, RSA [1] builds up its security on the hardness of integer factorization
problem (IFP), and the security of ElGamal and ECC [2] is based on the difficulty
of solving the discrete logarithm problem (DLP) and the DLP over elliptic curves
(ECDLP), respectively. Even with the system parameters well optimized, the classical
algorithms ever known, such as those toward IFP, DLP and ECDLP, are no longer
efficient to our problem, as the resource required would grow in a sub-exponential
manner over the scale of the problem.

Quantum computing is an interdisciplinary subject between quantum mechanics
and computer science. Shor’s algorithm [3] and Grover’s quantum search algorithm
[4] are the two most widely used quantum algorithms at present. Shor’s algorithm is
applied to solve large integer factorization problem and discrete logarithm problem.
Grover’s quantum search algorithm is adopted to search a number of specific targets
in a disordered database. Both of them are of great significance in the perspective of
cryptanalysis. Shor’s quantum algorithmmanifests a serious threat toward the security
of RSA, ElGamal and ECC, since both the IFP problem and the DLP problem (includ-
ing the ECDLP problem) can be solved efficiently with Shor’s quantum algorithms.
Grover’s quantum algorithm is also used to speed up the task of collision finding.
Therefore, to secure confidential communication in the so-called post-quantum era,
some new public-key cryptosystems, which aim at resisting known quantum algo-
rithmic attacks, appear on the stage of the modern cryptography. NIST launched the
competition on post-quantum cryptography in 2016, and 26 outstanding designs have
been selected for the second round evaluation so far.

As one of the most well-developed branches of post-quantum cryptography, lattice
cryptography enjoys a high implementation efficiency and strong security reductions.
In particular, Regev built the connection between the hardness of lattice problems and
the hardness of the dihedral subgroup problem in 2002 [5]. However, at present, our
confidence toward lattice cryptography is based merely on a heuristic reduction from
the hardness of certain lattice problem to the hardness of certain quantum difficult
problem, while the reverse reduction required by the logic framework of provable
security is still open. Recently, Wen et al. made the first breakthrough toward building
such kind of reverse reduction. Therefore, from the perspective of cryptanalysis, it
is interesting to made a survey on quantum algorithms for classical hard problems,
including lattice problems, IFP, DLP, ECDLP, as well as other related variants.

The rest of the paper is organized as follows: In Sect. 2, we reviewed quantum
Fourier transform, for understanding quantum algorithms mentioned in this survey.
The background for basis of qubit, quantum gates and quantum circuits is not involved
in this work, since we believe it can be found in other textbooks on quantum compu-
tations, such as [6,7]. In Sect. 3, we summarized the quantum algorithms for period
findings, which helps to understand why some symmetric cipher, such as RC6, tends
to be insecure in the post-quantum era. Quantum algorithms for factoring integers,
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including Shor’s algorithm based on quantum circuit model and Jiang’s algorithm
based on quantum adiabatic model, are summarized in Sect. 4. This is a key to under-
stand why public-key cryptosystems based on difficulty of IFP are no longer secure. In
Sect. 5, we explored the quantum algorithms for the DLP problem and their variants
over elliptic curves, matrices of group rings, etc. This tell us why ElGamal, ECC as
well the related variants are secure when large-scale quantum computers are available.
Then, in Sects. 6 and 7, we introduced quantum algorithms for the hidden subgroup
problem and the hidden shift problems, respectively, as two common frameworks of
designs quantum algorithm. In Sect. 8, we presented quantum algorithms for the dihe-
dral subgroup problem and its relation with lattice problems, in order to understand
the potential of lattice cryptography in resisting known quantum attacks. Finally, we
conclude the paper in Sect. 9.

2 Quantum Fourier transform

The quantum Fourier transform (QFT), with exponential speedup compared to the
classical fast Fourier transform, has played an important role in quantum computation
as a vital part ofmany quantum algorithms [8]. TheQFT overZN , the group of integers
modulo N under addition, is a unitary operator FZN that effects on a basis state as
follows:

|x〉 �−→ 1√
N

∑

y∈ZN

ω
xy
N |y〉, ∀x ∈ ZN

whereωN := e2π i/N denotes a primitive N th root of the unity. Itsmatrix representation
is

FZN = 1√
N

⎛

⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 ωN ω2

N . . . ωN−1
N

1 ω2
N ω4

N . . . ω2N−2
N

...
...

. . .
...

1 ωN−1
N ω2N−2

N . . . ω
(N−1)(N−1)
N

⎞

⎟⎟⎟⎟⎟⎠

More succinctly, it is denoted by

FZN = 1√
N

∑

x,y∈ZN

ω
xy
N |y〉〈x |.

Further, we can derive QFT over any finite abelian group G. We know that any
finite abelian group G can be expressed as a direct product of cyclic subgroups of
prime power orders G ∼= Zp1 × · · · × Zpr . Thus, in this case the QFT over G is the
quantum operator FG = Fp1 ⊗ · · · ⊗ Fpr .
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|ϕ0 · · · • · · · • · · · • H |z0
|ϕ1 · · · • · · · • · · · H R2 |z1

...
...

...
...

...
...

...
...

...|ϕn−3 • · · · • |zn−3

|ϕn−2 • · · · H R2 · · · Rn−2 Rn−1 |zn−2

|ϕn−1 H R2 R3 · · · Rn−1 Rn |zn−1

Fig. 1 The circuit of quantum Fourier transform [10]. |ϕ0〉, . . . ,
∣∣ϕn−1

〉
are input bits, and |z0〉, . . . ,

∣∣zn−1
〉

are output bits. Rn is two-bit quantum controlled rotation

Without loss of generality, assuming n = �log N�, then the circuit of QFT over
ZN , as depicted in Fig. 1, can be implemented exactly by using n(n−1)

2 of controlled
rotation gates, plus with n Hadamard gates, leading to the gate complexity O(n2).
Recently, Su et al. [9] suggested that QFT over n-qubits can be approximate with
O(n log n) T-gates.

3 Quantum algorithms for finding periods

A function over the domainD is called periodic if there is a unique and smallest r > 0
(called period) so that f (x) = f (x + r) holds for every x ∈ D. Say, the sine and
cosine functions, respectively, have periods 2π and π over R. Although this definition
does not require r to be integer andD to be discrete, for the problems discussed in this
survey,we only consider the settings of r being a positive integer andD being a discrete
ring, sayZ orZn (for some n ∈ N). Intuitively, without any other heuristic information
on f , say regarding f as a black box, any classical algorithm for determining whether
f has a period r needs to evaluate f on, in the worse case, all elements in D, leading
to the time complexity O(|D|) and space complexity O(1).

However, quantum computers can work exponentially faster than any classical
computers toward the period finding problem. The first breakthrough on this issue
can be traced back to the landmark work due to Simon [11]. Simon’s algorithm is
not only the first algorithm that represents a substantial advance in relativized time
complexity vs. classical computing, but also a turning point in the development of
quantum computation technology considering that it contains the key ingredients of
the relevant algorithms that follow, including the notably Shor’s quantum algorithm
for integer factoring problem [7]. Very recently, Dong [12] proposed indistinguishable
attack and key-recover attack toward one of the well-known cipher structure—the
extended Feistel structures, including the typical block ciphers such as CAST256 and
RC6.

Simon’s algorithm is proposed to deal with the following problem [13]: Given a
Boolean function f : {0, 1}n → {0, 1}n that satisfies the so-called Simon commitment
condition

x ⊕ y ∈ {0, s} ⇔ f (x) = f (y),
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Fig. 2 The circuit of Simon’s
algorithm [13]. H⊗n is n-bit
Hadamard gate

|0n H⊗n

Uf

H⊗n

|0n

the objective is to find s ∈ {0, 1}n . Considering that⊕ is the addition over binary field,
the Simon’s commitment condition is equivalent to that f has period r over Z

n
2. Now,

suppose that a quantum circuit U f for implementing |x〉|0〉 → |x〉| f (x)〉 is at hand,
then the Simon’s algorithm is depicted in Fig. 2, and a modified version due to Mosca
consists of the following eight steps [13]:

• Step 1 Initializing two registers with 2n qubit states

|ϕ0〉 = |00 . . . 0〉|00 . . . 0〉

and set i = 1.
• Step 2 Apply n Hadamard gates to the first n-qubit register

|ϕ1〉 = 1√
2n

2n−1∑

x=0

|x〉|0〉

• Step 3 Apply U f to the two registers

|ϕ2〉 = 1√
2n

2n−1∑

x=0

|x〉| f (x)〉

• Step 4 Measure and then discard the second register to force the first register
collapsing to

|ϕ3〉 = 1√
2
(|x1〉 + |x2〉)

for some x1 ∈ {0, 1}n and x2 = x1 ⊕ s.
• Step 5 Apply n Hadamard gates to the first register again

|ϕ4〉 = 1√
2n+1

2n−1∑

y=0

((−1)x1·y + (−1)x2·y)|y〉.

It can be further simplified to

|ϕ4〉 = 1

2(n−1)/2

∑

y·s=0

(−1)x ·y |y〉.

123



  178 Page 6 of 26 J. Suo et al.

• Step 6 Measure the first register to obtain a string yi ∈ {0, 1}n , and yi can be
viewed as a n dimension vector yi.

• Step 7 If i = n , go to the next step; otherwise, let i ← i + 1 and go to Step 2.
• Step 8 Let M = [y1, . . . , yn]. Then, M is invertible with high probability. Now,
we can solve the system M · s = 0 to get s, say by using the well-known classical
Gaussian elimination algorithm.

To summary, the above description of Simon’s algorithm requires O(n) quantum
operators over 2n qubits, plus a classical post-processing with time complexity O(n3).

4 Quantum algorithms for factoring integer

The integer factorization problem (IFP) is given an integer N , output prime numbers
p, q, where N = pq . It is an important problem in number theory and has attracted
significant attention due to its importance in data encryption [14]. For example, the IFP
is used as the basic hardness assumption for RSA cryptosystem. Up to now, the most
effective classical algorithm for solving IFP is the general number field sieve [15],
while the number of operations required still grows sub-exponentially with the bit
length of the integer to be factorized. Quantum computing can effectively reduce the
complexity of solving certain problems, and it has attracted much attention in recent
years [6]. Some tested quantum computing platforms are already available, such as
cloud quantum computers from IBM [16,17] based on nuclear magnetic resonance
(NMR) [18] and D-Wave’s quantum annealing system.

Researchers are currently focusing on twomain research directions to solve the IFP
via quantum computing: Shor’s quantum factoring algorithm and quantum adiabatic
computing (QAC).

4.1 Shor’s integer factorization algorithm

It is a challenge to implement Shor’s algorithm [19], since it is founded on the quantum
circuit model. Vandersypen et al. [20] used a molecule with seven spin-1/2 nuclei to
factor 15, yet the experiments cannot be applied to a larger number. Martín-López et
al. [21] re-utilized qubits to factor 21 with Shor’s algorithm by adopting an iterative
protocol. Geller et al. [22] employed Fermat numbers and eight qubits to factor 51 and
85, which are the largest numbers to be factored by Shor’s algorithm so far. According
to Gidney [23], there should be 2k + 1 qubits to factor k-bit integers.

From the perspective of universal quantum computation, there is still a long way to
go before it could be practical.

Shor’s algorithm [3] transforms the problem of factoring a given number N into an
equivalent problem: Given a random positive integer a , where a < N , gcd(a, N ) = 1,
find the order r of a, i.e., ar ≡ 1 (mod N ). Then, p and q can be find by Euclidean
algorithm. Suppose t = �log N� and a quantum circuitU f for implementing |x〉|0〉 →
|x〉|ax mod N 〉 is at hand, then the Shor’s algorithm consists of the following seven
steps:
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• Step 1 Initialize two t-qubit registers as follows:

|ϕ0〉 = |0〉|0〉

• Step 2 Apply a Hadamard gate to the first register

|ϕ1〉 = 1√
N

N−1∑

x=0

|x〉|0〉

• Step 3 Apply U f in the second register

|ϕ2〉 = 1√
N

N−1∑

x=0

|x〉|ax mod N 〉

• Step 4 Measure the second register and the first register collapsing to

|ϕ3〉 = 1√
N

r−1∑

n=0

N/r−1∑

m=0

|mr + n〉

• Step 5 Perform quantum Fourier transform on the first register

|ϕ4〉 =
√

r

N

N/r−1∑

n=0

⎛

⎝ 1√
N

N−1∑

j=0

e−2π i j(mr+n)/N | j〉
⎞

⎠ .

When j = kN
r , k = 0, 1, . . . r − 1, it can be further simplified to

|ϕ4〉 = 1√
r

(
r−1∑

k=0

e−2π i kr n|kN
r

〉
)

• Step 6 Measure the first register; we can observe the value � kN
r �with a probability

no less than 4
π2r

.
• Step 7 Finally, the period r can be derived by using the classical continued fraction
expansion (CFE) method in polynomial time [10].

During the past decades, there are many attempts to implement Shor’s algorithm
over different quantum prototype computers. The number of qubits and quantum gate
complexities needed for these implementations is summarized in Table 1.

4.2 Factorization by using quantum adiabatic computing

Another promising method for integer factorization is QAC [29–31], which was put
forward by Burges [32,33] at first. QAC is being used on the IFP mainly in two ways:
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Table 1 Different implementations of Shor’s algorithms, comparison of the number of qubits and quantum
gate needed

Authors Year Gates Total qubits

Shor [3] 1994 �(n3 log n) �(n)

Beckman et al. [24] 1996 �(n3) 5n + 1

Veldral et al. [25] 1996 �(n3) 4n + 3

Beauregard [26] 2003 �(n3 log n
ξ
log 1

ξ
) 2n + 3

Takahashi et al. [27] 2006 �(n3 log n
ξ
log 1

ξ
) 2n + 2

Haner et al. [28] 2016 �(n3 log n) 2n + 2

Gidney [23] 2017 �(n3 log n) 2n + 1

(1) NMR [18,34,35] and (2) quantum annealing leveraging the D-Wave system [36].
D-Wave’s quantum computing system is playing a more important role than ever [33].
Although it is the strength of the NMR on long coherence time, high-accuracy quan-
tum control, as well as NMR can be effective implementation on Grover’s algorithm
[37] using QAC [31,38]. D-Wave’s superconducting quantum computer is standing
out in terms of the number of qubits. Wang et al. [39] suggested that quantum anneal-
ing could potentially be applied to cryptanalysis, representing them to combinational
optimization problems to be mapped to the D-Wave machine’s theoretical model.
Li et al. [40] applied both theoretical reductions and Hamiltonian transformations to
successfully factor 291311, while Jiang et al. [41] recently proposed a generalized
quadratic unconstrained binary optimization (QUBO) model, which is used to repre-
sent the multiplication table and the model is able to factor 376298 with 94 qubits.
Wang et al. [33] optimize the problem Hamiltonian to reduce the number of qubits
involved in the final Hamiltonian while maintaining the QUBO coefficients in a rea-
sonable range, enabling the improved algorithm to factorize larger integers with fewer
qubits. This algorithm using D-Wave’s hybrid quantum/classical simulator qbsolv
confirmed that performance was improved; it can factorize 1,005,973 with only 89
qubits, a new record for quantum factorized integers.

A quantum system remains in its instantaneous eigenstate if the systemHamiltonian
varies slowly enough and if there is a gap between this eigenvalue and the rest of the
Hamiltonian’s spectrum [35]. It has been proved to be equivalent to the conventional
circuit model. A quantum computer algorithm can be viewed as a specification of a
Hamiltonian H(t) and an initial state |ψ(0)〉.

The time-dependent Hamiltonian of the quantum system is

H(t) =
(
1 − t

T

)
HB + t

T
HP

where HB is the initial Hamiltonian

HB = −
∑

σ (i)
x
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Table 2 Multiplication table for
factoring 143 [41]

27 26 25 24 23 22 21 20

p 1 p2 p1 1

q 1 q2 q1 1

1 p2 p1 1

q1 p2q1 p1q1 q1
p2q2 p1q2 q2

1 p2 p1 1

Carries c4 c3 c2 c1
p × q = 143 1 0 0 0 1 1 1 1

Carries are unknown intermediate variables

and HP is the final Hamiltonian

HP =
∑

hiσ
(i)
z +

∑
Ji jσ

(i)
z σ

( j)
z

The time-dependent Hamiltonian H(t) of the physical system evolves according to
Schrodinger equation

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉

Wang et al. improve the algorithm of Jiang et al. [41]. To compute the number
of carry variables every column block needs, they use the target value, maximum
carry and prodf function values for the column blocks to reduce the number of carry
variables needed. They replace p1 and p2 withq1 or 1−q1 andq2 or 1−q2, respectively,
thus further decreasing the number of qubits needed for the final QUBO model. Take
N = 143 as an example; the algorithm steps are as follows:

• Step 1 Divide the multiplication table into k column blocks as Table 2 and get the
equations for each block

(p2 + p1q1 + q2) × 2 + (p1 + q1)

= (11)2 + (c2 × 4 + c1 × 2) × 2

(q1 + p2q2 + p1 + c2) × 2 + (1 + p2q1 + p1q2 + 1 + c1)

= (01)2 + (c4 × 4 + c3 × 2) × 2

(1 + c4) × 2 + (q2 + p2 + c3)

= (100)2

Further simplified, then we can get

2p2 + 2p1q1 + 2q2 − 8c2 − 4c1 + p1 + q1 − 3 = 0

2q1 + 2p2q2 + 2p1 + 2c2 − 8c4 − 4c3 + p2q1 + p1q2 + c1 + 1 = 0

q2 + p2 + c3 + 2c4 − 2 = 0
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• Step 2 Construct the cost function

f (p1, p2, q1, q2, c1, c2, c3, c4) = (N − pq)2 = A2 + B2 + C2

with

A = 2p2 + 2p1q1 + 2q2 − 8c2 − 4c1 + p1 + q1 − 3,

B = 2q1 + 2p2q2 + 2p1 + 2c2 − 8c4 − 4c3 + p2q1 + p1q2 + c1 + 1,

C = q2 + p2 + c3 + 2c4 − 2.

• Step 3 Transform the k-bit (k ≥ 3) coupling terms into quadratic term according
to the following equations:

x1x2x3 = min
x4

(x4x3 + 2(x1x2 − 2x1x4 − 2x2x4 + 3x4))

−x1x2x3 = min
x4

(−x4x3 + 2(x1x2 − 2x1x4 − 2x2x4 + 3x4))

• Step 4 Replace p1q1, p1q2, p2q2 and p2q1 with t1, t2, t3 and t4, respectively.
Further, rename the variables p1, p2, q1, q2, c1, . . . , c4, t1, . . . , t4 as v1, . . . , v12,
and replace vi = 1−si

2 (i = 1, . . . , 12) to make the variables lie in the domain
{−1, 1}. Now, the above cost function f can be rewritten as

f (p1, p2, q1, q2, c1, c2, c3, c4) = 2 f ′(s1, . . . , s12)

where f ′ is given in Fig. 3.
• Step 5 Now, we can review the above cost function as an Ising Hamiltonian with
local fields, and the values of hi and Ji j can be derived accordingly (See Fig. 3 for
details).

• Step 6 Solve the Ising Hamiltonian system by calling qbsolv, the Python library
provided by D-Wave systems, and map the results back to the prime factorization
of N .

To summary, the qubits needed for different implementations of quantum factor-
ization based on QAC are shown in Table 3.

Table 3 Different implementations of quantum factorization based on QAC

Authors Year The largest integer can be factorized Qubits

Li et al. [40] 2018 291,311 –

Jang et al. [41] 2018 376,298 94

Wang et al. [33] 2019 1,005,973 89

Comparison of the largest integer can be factorized
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f (s1, s2, · · · , s12) = 261
2 s1 + 215

2 s2 + 261
2 s3 + 215

2 s4 − 41s5 − 82s6 + 3s7 + 6s8 − 137s9 − 81s10 − 107s11 − 81s12

+2s1s2 + 79s1s3 + 95
2 s1s4 − 2s1s5 − 4s1s6 − 8s1s7 − 16s1s8 − 148s1s9 − 84s1s10

+ 95
2 s2s3 + 71s2s4 − 8s2s5 + −16s2s6 + s2s7 + 2s2s8 + 6s2s9 + 6s2s10 − 124s2s11 − 84s2s12

+2s3s4 − 2s3s5 − 4s3s6 − 8s3s7 − 16s3s8 − 148s3s9 − 84s3s12

−8s4s5 − 16s4s6 + s4s7 + 2s4s8 + 6s4s9 − 84s4s10 − 124s4s11 + 6s4s12

+34s5s6 − 4s5s7 − 8s5s8 − 8s5s9 + s5s10 + 2s5s11 + s5s12

−8s6s7 − 16s6s8 − 16s6s9 + 2s6s10 + 4s6s11 + 2s6s12

+34s7s8 − 4s7s10 − 8s7s11 − 4s7s12

−8s8s1016s8s118s8s12

+s9s11

+794

hT = (σ(1)
z , · · · , σ

(12)
z ) = (130.5, 107.5, 130.5, 107.5, −41, −82, 3, 6, −137, −81, −107, −81)

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ
(1)
z σ

(2)
z σ

(3)
z σ

(4)
z σ

(5)
z σ

(6)
z σ

(7)
z σ

(8)
z σ

(9)
z σ

(10)
z σ

(11)
z σ

(12)
z

σ
(1)
z 0 2 79 47.5 −2 −4 −8 −16 −148 −84 0 0

σ
(2)
z 0 47.5 71 −8 −16 1 2 6 6 −124 −84

σ
(3)
z 0 2 −2 −4 −8 −16 −148 0 0 −84

σ
(4)
z 0 −8 −16 1 2 6 −84 −124 6

σ
(5)
z 0 34 −4 −8 −8 1 2 1

σ
(6)
z 0 −8 −16 −16 2 4 2

σ
(7)
z 0 34 0 −4 −8 −4

σ
(8)
z 0 0 −8 −16 −8

σ
(9)
z 0 0 1 0

σ
(10)
z 0 0 0

σ
(11)
z 0 0

σ
(12)
z 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3 Ising Hamiltonian system for factoring 143

5 Quantum algorithms for discrete logarithmic problems

Let G = 〈g〉 be a cyclic group of order p and g be a generator of G. The discrete
logarithmic problem (DLP) over G is to find an integer r such that gr = y for given
y ∈ G. Diffie–Hellman key exchange protocol, ElGamal encryption and most elliptic
curve cryptosystems are based on the difficulty of computing discrete logarithms. At
present, the best known classical algorithm for solving DLP is the so-called index-
calculate method (ICM) that requires sub-exponential classical operations.

In 1994, Shor [3] put forward a polynomial time quantum algorithm to solve the
discrete logarithmic problem in group. Proos et al. [42] further extended Shor’s quan-
tum DLP algorithm to elliptic curves [42–44]. In 2012, Myasnikov et al. proposed a
quantum algorithm for the DLP over matrices of finite group rings [45]. Childs [46]
described an effective quantumalgorithm for computing discrete logarithmsover semi-
groups. Recently, further generalized Shor’s quantum DLP algorithms are proposed
for different algebraic structures [47–50].

With the identity gr = y, if we define a binary function f : Zp−1 × Zp−1 → Zp

as follows:

(a, b) �→ ga yb mod p,
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|0
Fp−1 ⊗ Fp−1

Uf

Fp−1 ⊗ Fp−1|0
|0

Fig. 4 The circuit of discrete logarithmic problems [51]. Fp−1 is the Fourier transform over Z p−1

then f takes (r ,−1) as its period, considering that

f (a + r , b − 1) = f (a, b) (∀a, b ∈ Zp−1).

Therefore, the aforementioned idea for finding period can be used to solve the discrete
logarithms problems.

Now, suppose a quantum circuit U f for implementing

|a〉|b〉|0〉 → |a〉|b〉|ga yb mod p〉

is at hand, then Shor’s discrete logarithm algorithm is depicted in Fig. 4. A modified
version of Shor’s quantumDLP algorithm, due toWang [51], consists of the following
six steps:

• Step 1 Initialize three quantum registers

|ϕ0〉 = |0〉|0〉|0〉

• Step 2 Apply the Fp−1 ⊗ Fp−1 on the first two registers and get the superposition

|ϕ1〉 = 1

p − 1

p−2∑

a=0

p−2∑

b=0

|a〉|b〉|0〉

• Step 3 Perform U f in the third register

|ϕ2〉 = 1

p − 1

p−2∑

a=0

p−2∑

b=0

|a〉|b〉|ga yb mod p〉

• Step 4Measure and then discard the third register, leading that the first two registers
collapse to

|ϕ3〉 = 1√
p − 1

p−2∑

λ=0

|a0 + λr〉|b0 − λ〉.

• Step 5 Apply QFT to the first two registers, and we get

|ϕ4〉 = 1√
p − 1

p−1∑

u=0

e
2π i(a0+b0r)u

p−1 |u〉|ru〉
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Table 4 The complexity of quantum DLP algorithms

Authors Year Time complexity Space complexity

Shor et al. [3] 1994 O(n3) O(n)

Proos et al. [42] 2003 O(n2) –

Ekera et al. [49] 2019 – O( n2 )

The comparison of time and space complexities is in table

• Step 6 Measure the first two registers to get |u0〉|ru0〉, and then, derive r by
r = ru0u

−1
0 mod (p−1) (assuming that gcd(u0, p−1) = 1with highprobability).

The complexities of Shor’s quantum DLP algorithm and some related algorithms
are collected in Table 4.

6 Quantum algorithms for abelian hidden subgroup problems

Let H be the subgroup of group G, S be any set and f : G → S a function that
distinguishes cosets of H , i.e., ∀g1, g2 ∈ G, f (g1) = f (g2) ⇔ g1H = g2H .
The hidden subgroup problem (HSP) is to find the subgroup H using f . To solve
this problem classically, 
(|G|) queries on f are required, while it is solvable on a
quantum computer using merely O(log |G|) f -queries.

In 1995, Kitaev [52] gave a polynomial quantum algorithms to solve the abelian
stabilizer problem (ASP) and prove that the integer factorization and discrete loga-
rithm problems can be solved as special cases. In 1995, Dan and Lipton [53] first
built the relationship between quantum algorithm and HSP and designed a quan-
tum algorithm to solve the hidden linear function. In 1997, Brassard and Hoyer [54]
extended the Simon’s problem to HSP. In 1998, Jozsa [55] gave a unified description
of Deustch–Jozsa’s algorithm, Simon’s algorithm and Shor’s algorithm in the form of
HSP. Subsequently, Mosca [56,57] and Jozsa [58] introduced the more general abelian
HSP and gave quantum Fourier transform to solve it. Abelian HSP mainly focuses on
finite abelian groups, and related algorithms can be seen in [57,59].

The algorithm of general finite abelian HSP rewrote by Damgard [60] consists of
the following six steps:

• Step 1 Prepare the initial state

|ϕ0〉 = |0 . . . 0〉|0 . . . 0〉

• Step 2 Apply QFT to the first register, and we get

|ϕ1〉 = 1√|G|
∑

g∈G
|g〉|0〉
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• Step 3 Apply U f to get

|ϕ2〉 = 1√|G|
∑

g∈G
|g〉| f (g)〉

• Step 4 Measure the second register, and suppose the value is f (g0),

|ϕ3〉 = 1√
H

∑

h∈H
|g0 + h〉| f (g0)〉

• Step 5 Apply QFT to the first register, and we get

|ϕ4〉 = 1√|H ||G|
∑

g∈G

(
χg(g0)

∑

h∈H
χg(h)

)
|g〉

where
∑

h∈H χg(h) = 0 if and only if g /∈ H⊥.
Othogonal subgroup H⊥ defined as H⊥ = {g ∈ G|χg(h) = 1, ∀h ∈ H}. |ϕ4〉
can be further simplied to

|ϕ4〉 = 1√|H ||G|
∑

g∈H⊥
|H ||g〉 =

√
|H |
|G|

∑

g∈H⊥
|g〉 = |H⊥〉

• Step 6 Measure the first register, and we can obtain H⊥; then, H can be obtained
by H = (H⊥)⊥.

7 Quantum algorithms for hidden shift problems

Given a finite group G, a finite set R and two maps f , g : G → R, the hidden
shift problem is to find some s ∈ G such that f (x) = g(x + s) for all x ∈ G. At
least

√
N queries are necessary for hidden shift problem by reduction from Grover’s

problem. However, on quantum computer, onlyO(1) queries can solve certain special
cases of hidden shift problems. The hidden shift problem was first introduced and
studied by van Dam et al. [61,62] in 2003. The shifted Legendre symbol algorithm
[63,64] is classified as this special case, and no classical algorithm in O(polylogN )

time has been found to solve these problems. In addition, the shifted Legendre symbol
problem’s quantum algorithm will destroy the specific cryptographic pseudorandom
generator and it has the ability to make quantum queries to the generator [62]. There
has a connection between the hidden shift problem and the hidden subgroup problem,
hidden subgroup problem over dihedral group is equivalent to the hidden shift problem
overZN , and graph isomorphism can be cast as a hidden shift problemover Sn [10–12].
The study of the hidden shift problem can give an arguably more natural view to tackle
the graph isomorphism problem [12]. Based on the “pretty goodmeasurement,” Childs
et al. [65] proposed a quantum algorithm for the generalized hidden shift problem:
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f ∈ ZM × ZN satisfying f (b, x) = f (b + 1, x + s) for b ∈ ZM and x, s ∈ ZN . In
2010, Roetteler [66] gave an efficient quantum algorithm for solving the hidden shift
problem for several classes of the so-called bent functions. Gavinsky et al. [67] gave
an efficient quantum algorithm for solving the hidden shift problem for the average
case Boolean functions in 2001. Ozols et al. [68] gave another quantum algorithm
for the Boolean hidden shift problem based on a quantum analogue of the rejection
sampling.

The quantum algorithm for a generalized hidden shift problem by Childs is as
follows:

• Step 1 Initialize the three registers

|ϕ0〉 = |0〉|0〉|0〉

• Step 2 Apply Hadamard gates on the first two registers and get the superposition

|ϕ1〉 = 1√
MN

∑

b∈ZM

∑

x∈ZN

|b〉|x〉|0〉

• Step 3 Apply U f on the last two registers

|ϕ2〉 = 1√
MN

∑

b∈ZM

∑

x∈ZN

|b〉|x〉| f (b, x)〉

• Step 4Measure the third register and discard it, the second register will collapsed,
and then,

|ϕ3〉 = 1√
M

M−1∑

b=0

|b〉|x + bs〉.

The results are equal to the mixed state described by the density matrix

ρs := 1

N

∑

x∈ZN

∣∣φx,s
〉〈φx,s |.

Now, we need to discuss how to derive s according to three different cases.

– When M is very large, s can be identified by the period finding method mentioned
in Sect. 3.

– Otherwise, Childs et al. [65] use k > 1 states and PGM to obtain s as follows:

– Apply QFT on the second register over ZN to get

ρ̃⊗k
s = 1

(MN )k

∑

x∈Zk
N

∑

b,c∈Zk
M

ω(b·x−c·x)s |b, x〉〈c, x |
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= 1

(MN )k

∑

x∈Zk
N

∑

ω,ν∈ZN

ω(ω−ν)s
√

ηx
ωηx

ν |Sxω, x〉〈Sxν , x |

where

|Sxω〉 := 1√
ηx

ω

∑

b∈Sxω
|b〉

ηx
ω := |Sxω|

– Then, the hidden shift s can be identified using the pretty good measurement
with at least a constant probability [65].

8 Quantum algorithms for dihedral hidden subgroup problems and
lattice problems

The dihedral group is a symmetric group generated by the reflection and rotation. It
contains 2N elements:

DN = 〈s, r |s2 = r N = 1, srs = r−1〉

where s can be viewed as a reflection about some fixed axis, and r is a rotation by
an angle 2π

N . Moreover, DN is isomorphic to a semidirect product of the two cyclic
groups Z2 and ZN of order 2 and N , respectively,

DN = Z2 �φ ZN

with multiplication defined by

(a1, b1)(a2, b2) = (a1 + a2, b1 + φ(a1)(b2)).

The homomorphism φ : Z2 → Aut(ZN ) is specified by

φ(0)(b) = b, and φ(1)(b) = −b.

An element (a, b) ∈ DN is a rotation if a = 0, and a reflection if a = 1 [69]. Now,
let us consider a hidden subgroup H = {(0, 0), (1, d)} for some unknown d ∈ ZN .
That is, H is the subgroup group generated by an unknown reflection r = (1, d).
The dihedral hidden subgroup problem (dHSP) with respect to H is to find d. This
problem is also formulated quantum as the so-called dihedral coset problem (DCP):
Given many superpositions { 1√

2
(|0, xi 〉 + |1, xi + d〉) : xi ∈ ZN }i≤� (i.e., the coset of

H ), the objective is to find d.
In 1998, Ettingcr and Hoyer [69] were the first to study dihedral hidden subgroup

problems (dHSP). They divided the dihedral group into two subgroups of rotation and
reflection and searched for the hidden subgroups of each subgroup, respectively. They
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Fig. 5 Determining the parity of
d [51]. FN is Fourier transform,
and H is Hadamard gate

|0
FN ⊗ H

Uf

FN

|0 H

|0

claimed that it is enough to solve dHSP if the generator of the hidden subgroup of
the reflected subgroup is known. In 2002, Regev [5] found the connection between
the unique shortest vector problem (uSVP) and dHSP and pointed out that if dHSP
can be effectively solved, the unique shortest vector problem of lattice can also be
effectively solved. Kuperberg [76] first proposed a sub-exponential quantum algo-
rithm of dHSP. In 2004, Regev [5] abstracted Kuperberg’s sieve method as a pipeline,
reducing the quantum space complexity of the original algorithm to polynomial level,
but the time complexity is still sub-exponential. In 2011, Kuperberg [76] improved
the original algorithm and Regev’s polynomial space algorithm and proposed another
sub-exponential quantum algorithm of dHSP. The time complexity of the improved
algorithm is slightly reduced, but in the worst case, the algorithm is Regev’s algorithm.
In 2016, Roetteler [71] first raised a quantum algorithm that can solve a special type
of dHSP problem in polynomial time and space complexities: When N = 2m − 1,
more than O(2m

2
) instances are easy to solve among dHSP problem on the dihedral

group DN , that is, the total number of easily solved instances increases exponentially
with m.

In recent years, significant progress has been made in lattice-based cryptogra-
phy among the post-quantum public-key cryptography. Many lattice-based public-key
encryption schemes have been proposed in light of the fact that some lattice problems
[72–74] such as unique shortest vector problem (uSVP) are the foundation of the trap-
door one-way function.However, uSVP can be reduced to a kind of non-abelian hidden
subgroup problem [5]: the dihedral hidden subgroup problem. Therefore, the study on
quantum algorithm for the dihedral hidden subgroup problem has great significance
for the security of lattice-based cryptography.

8.1 Kuperberg’s quantum algorithm for dHSP

In 2003, Kuperberg [76] reduced the dHSP to finding the slope d when N = 2n and
H = 〈(1, d)〉. Suppose the black box f : DN → R for hidden H is given and U f

(i.e., the quantum circuit for implement f ) is at hand, where R is the range of f . That
is, f on each coset of H is constant. Now, a quantum algorithm for determining the
parity of d, due to Kuperberg, is depicted in Fig. 5 [51] and described as the following
eight steps:

• Step 1 Initialize the register

|ϕ0〉 = |0〉|0〉|0〉
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• Step 2 Prepare the initial quantum state

|ϕ1〉 =
2n−1∑

x=0

1∑

y=0

|x〉|y〉| f (x, y)〉

• Step 3 Measure the third register

|ϕ2〉 = 1√
2
(|x0〉|y0〉 + |x0 + (−1)y0d〉|y0 + 1〉)

=
{

1√
2
(|x0〉|0〉 + |x0 + d〉|1〉) y0 = 0

1√
2
(|x0 − d〉|0〉 + |(x0 − d) + d〉|1〉) y0 = 1

because x0, y0 are any value |ϕ2〉 which can be generalized to

|ϕ2〉 = 1√
2
(|x〉|0〉 + |x + d〉|1〉)

• Step 4 Apply QFT to the first register

|ϕ3〉 = 1√
2n+1

2n−1∑

z=0

(e
2π i zx
2n |z〉|0〉 + e

2π i z(x+d)
2n |z〉|1〉)

= 1√
2n+1

2n−1∑

0

e
2π i zx
2n |z〉 ⊗ (|0〉 + e

2π i zd
2n |1〉)

• Step 5Measure thefirst register, ignore the global phase e
2π i z0x

2n and thefirst register,
and the second register collapses to

|ϕz0〉 = 1√
2

(
|0〉 + e

2π i z0d
2n |1〉

)

• Step 6 Apply Kuperberg’s sieve, continue the combines operation, and gain the
target quantum state

|ϕ2n−1〉 =
(

|0〉 + e
2π i2n−1d

2n |1〉
)

=
(
|0〉 + eπ id |1〉

)
=

(
|0〉 + (−1)d |1〉

)

• Step 7 Apply Hadamard gate

H |ϕ2n−1〉 =
(
1 + (−1)d

2

)
|0〉 +

(
1 − (−1)d

2

)
|1〉
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Table 5 The complexity of DHSP

Authors Year Time complexity Space complexity Query complexity

Quantum Classical

Kuperberg et al. [76] 2003 2O(
√
log N ) 2O(

√
log N ) – 2O(

√
log N )

Regev et al. [5] 2004 2O(
√
log(log N ) log N ) 2O(

√
N log N ) – 2O(

√
log(log N ) log N )

Kuperberg et al. [70] 2011 2O(
√
log N ) 2O(

√
log N ) 2O(

√
log N ) 2O(

√
log N )

Time, space and query complexity are in the table

• Step 8Measure the second register. If 0 is observed, d is even; otherwise, d is odd.

After the parity (i.e., the least significant bit) of d is found, Kuperberg suggested to
use the sieving idea to find all bits of d iteratively. The following steps are Kuperberg’s
sieve idea, reformulated by Regev [5].

– When d is even. Then, consider the black box f ′ : DN/2 → R given by f (a, b) :=
f (a, 2b). Note that this function hides the subgroup H ′ = 〈(1, d ′)〉 of DN/2 with
d ′ = d/2.

– When d is odd. Then, consider the black box f ′′ : DN/2 → R given by f (a, b) :=
f (a, 2b + 1). Note that this function hides the subgroup H ′′ = 〈(1, d ′′)〉 of DN/2
with d ′′ = (d − 1)/2.

We can now obtain the second least significant bit of d (i.e., the parity of d ′ or d ′′)
by calling the above algorithm with either f ′ or f ′′ [5]. By continuing this process
iteratively, we can find all the bits of d (Table 5).

8.2 LWE and EDCP

Givenm ≥ n samples of the form (a, b) ∈ Z
n
q ×Zq , with a ← Z

n
q and b = 〈a, s〉+ e,

where e ← DZ,αq and s ∈R Z
n
q , the learning with errors (LWE) problem is to find

the secret vector s. The hardness of the learning with errors (LWE) problem is one
of the most fruitful resources of modern cryptography. In particular, it is one of the
most prominent candidates for secure post-quantum cryptography. Understanding its
quantum complexity is therefore an important goal.

In 2005, Regev [75] first proposed the LWE problem and proved that the LWE
problem is difficult under proper assumptions. Since then, this problem has proved to
be as difficult as the worst-case lattice problem, which has become the basis of a large
number of encryption applications in recent years.

Regev [5] showed that uSVP and, therefore, also BDD and LWE are no harder to
solve than the DCP problem. The best known algorithm for DCP, due to Kuperberg
[76], runs in time2O(log l+log N/ log l)which does not improve upon classical methods
for solving LWE. Regev showed that DCP can be solved given efficient algorithms
for the subset-sum problem (which is classically defined), however in a regime of
parameters that appear harder to solve than LWE itself. In 2013, Li et al. [77] present
a quantum algorithm to generate the input of the two-point problem which hides
the solution of LWE; then they give a new reduction from two-point problem to
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Fig. 6 From LWE to EDCP
[80]. GR02 is the algorithm in
[81], FZnq is Fourier transform

over Zn
q , and Ug is an unitary

transformation. The output state
is UEDCP

|0 GR02

Uf Uf

UEDCP
|0 FZn

q

|0
Ug

|0

|0 g(a · s − je0)

dihedral coset problem. Their reduction implicates that any algorithm solved DCP
in sub-exponential time would lead a quantum algorithm for LWE. In 2016, Eldar
and Shor [78] proposed a quantum algorithm to solve the bounded-distance-decoding
(BDD) problem on lattice and claimed that some parameters of the algorithm could
be improved to attack the cryptographic system based on the LWE problem. Although
the algorithm found has problem later [78], the technique of “smoothing” analysis of
lattices by using systematic normal form (SysNF) provided a new idea for the direct
solution of lattices. Subsequently, they systematically explained how to use SysNF
technology to effectively carry out discrete Fourier transform [79] (DFT) in the any
distribution that is sufficiently ”smooth” of any lattice, which provided a new possible
approach for analyzing lattice point structure based on DFT eigenvector and solving
SVP equilateral lattice problem.

In 2018, Brakerski et al. [80] show the equivalence between LWE and the extrapo-
lated dihedral coset problem (EDCP) by building quantum reductions between them.
The EDCP problem over DN is specified as follows: Given � many registers in a
normalized state corresponding to

∑

j∈Z
e−π

| j |2
r2 | j, (xi + j · s) mod N 〉

where xi ∈ Z
n
N (i = 1, . . . , �), and s ∈ Z

n
N is fixed, the objective of EDCP is to find

the secret value s.
(1) Quantum reduction from LWE to EDCP.
An instance of LWE problem over the lattice L(A), A ∈ Z

m×n
q , can be reduced to

an instance of EDCP problem over the dihedral group DN , N = 2n , according to the
following quantum steps (Fig. 6):

• Step 1 Initialize the four registers with required qubits

|ϕ1〉 = |0〉|0〉|0〉|0〉

• Step 2 Perform QFT on the second register (normalization omitted)

|ϕ2〉 =
∑

s∈Zn
q

|0〉|s〉|0〉|0〉

123



Quantum algorithms for typical hard problems… Page 21 of 26   178 

• Step 3Apply GR02 algorithm [81] in the first register, which is a quantum process
to create a superposition state according to given probability distribution

|ϕ3〉 =
∑

s∈Zn
q

(
∑

j∈Z
ρr ( j)| j〉)|s〉|0〉|0〉

• Step 4 Suppose that the quantum circuit U f

U f | j〉|s〉|0〉 → | j〉|s〉|As − jb mod q〉

is at hand. Apply U f on the first three registers

|ϕ4〉 =
∑

s∈Zn
q , j∈Z

ρr ( j)| j〉|s〉|As − j · As0 − je0〉|0〉

=
∑

s∈Zn
q , j∈Z

ρr ( j)| j〉|s + js0〉|As − je0〉|0〉

• Step 5 Further, suppose that the quantum circuit Ug

Ug|x〉|0〉 → |x〉|x/z − w mod q̄〉

is at hand, where q̄ = q/z = c. Apply Ug on the last two registers, and we get

|ϕ5〉 =
∑

s∈Zn
q , j∈Z

ρr ( j)| j〉|s + j · s0〉|As − je0〉|g(As − je0)〉

• Step 6 Measure the fourth register and discard it

|ϕ6〉 =
∑

j∈Z
ρr ( j)| j〉|s + j · s0〉|As − je0〉

• Step 7 Apply U f to the first three registers, the third register gives 0 and discard
it, and the state is of the form

|ϕ7〉 =
∑

j∈Z
ρr ( j)| j〉|s + j · s0〉

• Step 8 Repeat the above procedure � times, and we obtain � many EDCP states
with probability (1 − 1

k )
m�

|ϕEDCP〉 = {
∑

j∈Z
ρr ( j)| j〉|s + j · s0〉}k≤�

where xk∈Zn
q
.
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Fig. 7 From EDCP to LWE
[80]. FZnq is Fourier transform

over Zn
q , and UEDCP is the

output state

ρt(j)|j FZn
q ULWE

|x + j · s0 FZn
q â

(2) Quantum reduction from EDCP to LWE.
The reverse quantum reduction from EDCP to LWE is given below (Fig. 7).

• Step 1 Prepare the input state

|ϕ1〉 =
∑

j∈Z
ρr ( j)| j〉|x + j · s0 mod q〉

• Step 2 Apply QFT on the second register

|ϕ2〉 =
∑

a∈Zn
q

∑

j∈Z
ω

〈(x+ j ·s0),a〉
q · ρr ( j)| j〉|a〉

where ωq = e
2π i
q

• Step 3Measure the second register and obtained ak , omitting global phase ω
〈x ,̂a〉
q

|ϕ3〉 =
∑

j∈Z
ω

j ·〈̂a,s0〉
q · ρr ( j)| j, â〉

• Step 4 Apply QFT on the first register

|ϕ4〉 =
∑

b∈Zq

∑

j∈Zq

ω
j ·(〈̂a,s0〉+b)
q · ρr ( j)|b〉

Using Poisson summation formula to reorganize |ϕ4〉, then

|ϕ4〉 =
∑

e∈Z
ρ 1

2

(
e

q

)
| − â, s0〉 + e mod q〉

• Step 5 Measure the first register, and we can obtain an LWE sample

|ϕLWE〉 = (−â, 〈−â, s0〉 + ek)

9 Conclusion

With the rapid development of quantum computing, it broke through the defense line
of the classic cryptosystems, which makes the post-quantum cryptography become
the frontier of research. In order to search the novel cryptography which is resistant to
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quantum attack, it is of great necessity to conduct a systematical analysis of the quan-
tum algorithms that could solve the typical hard problems. In this paper, we start from
the typical hard problems: integer factorization problem, discrete logarithmic problem
and dihedral hidden subgroup problems in the public-key cryptosystem (respectively,
RSA, ElGamal, ECC); then, we analyze the latest development of quantum algo-
rithms; besides, the limitation of typical cryptosystem (RSA, ElGamal, ECC) and its
vulnerability to quantum attacks, as well as the explanation to the resistance of lattice
cryptography to quantum attacks are all elaborated. For future research, analyzing the
isogeny, multivariable and seeking for the quantum algorithms for problems such as
hash collision should be of guiding significance.
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