

FcyRII (CD32) modulates antibody clearance in NOD SCID mice leading to impaired antibody-mediated tumour cell deletion

Journal:	Journal for ImmunoTherapy of Cancer
Manuscript ID	jitc-2020-000619.R1
Article Type:	Original research
Date Submitted by the Author:	n/a
Complete List of Authors:	Oldham, Robert; University of Southampton, Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine Mockridge, C; University of Southampton, Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine James, Sonya; University of Southampton, Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine Duriez, Patrick; University of Southampton Faculty of Medicine, Southampton Experimental Cancer Medicine/CRUK Centre, Protein Core Facility Chan, HT; University of Southampton, Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine Cox, Kerry; University of Southampton, Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine Cox, Kerry; University of Southampton, Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine Pitic, Vicentiu; University of Southampton, Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine Glennie, Martin; University of Southampton, Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine Glennie, Martin; University of Southampton, Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine
Keywords:	Immunotherapy, Antibodies, Neoplasm

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

for Rey . Rey Rey Only

2 3 4	1	FcyRII (CD32) modulates antibody clearance in NOD SCID mice leading to impaired antibody-
5 6	2	mediated tumour cell deletion
7 8 9	3	
10 11 12	4	Running title: CD32 and FcRn mediate rapid antibody clearance in NOD SCID mice
13 14 15	5	
16 17 18	6	Robert J. Oldham ¹ , C. Ian Mockridge ¹ , Sonya James ¹ , Patrick J. Duriez ² , HT Claude Chan ¹ , Kerry L.
19 20	7	Cox ¹ , Vicentiu A Pitic ¹ , Martin J Glennie ¹ , Mark S. Cragg ¹
21 22 23	8	From: ¹ Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of
24 25	9	Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK,
26 27 28	10	² Southampton Experimental Cancer Medicine/CRUK Centre, Protein Core Facility, Cancer Sciences
29 30	11	Unit, Southampton General Hospital, Southampton, SO16 6YD, UK
31 32 33	12	
34 35 36	13	Correspondence: Mark S. Cragg, Centre for Cancer Immunology, MP127, University of Southampton,
37 38	14	Southampton General Hospital, Southampton, SO16 6YD, UK (FAX: +44 (0) 23 80704061; e-mail:
39 40 41	15	msc@soton.ac.uk)
41 42 43 44	16	msc@soton.ac.uk) Word Count: 5866
45 46	17	Word Count: 5866
47 48 49	18	
50 51 52	19	
53 54 55	20	Keywords: FcyRII, CD32, NSG, NOD, SCID, antibodies, FcRn, antibody clearance, isotype
56 57 58	21	
59 60	22	

2		
3 4	23	LIST OF ABREVIATIONS
5 6 7	24	BMDM: bone marrow derived macrophage
8 9 10	25	ELISA: enzyme-linked immunosorbent assay
11 12 13	26	FcγR: Fc gamma receptor
14 15 16	27	FcRn: neonatal Fc receptor
17 18 19	28	HPLC: high performance liquid chromatography
20 21 22	29	HRP: horseradish peroxidase
23 24 25	30	IgG: immunoglobulin G
26 27 28	31	LSEC: liver sinusoidal endothelial cells
29 30	32	mAb: monoclonal antibody
31 32 33 34	33	NK: natural killer
35 36	34	NOD: non-obese diabetic
37 38 39	35	NSG: non-obese diabetic severe combined immune deficient IL-2 γ -/-
40 41 42	36	PBS: phosphate buffered saline
43 44 45	37	qPCR: quantitative polymerase chain reaction
46 47 48	38	RBC: red blood cell
49 50 51	39	SCID: severe combined Immune deficient
52 53 54	40	SEC: size exclusion chromatography
55 56 57	41	SPR: surface plasmon resonance
58 59 60	42	

2	
3	
4	
5	
6	
7	
8	
9 10	
10	
11	
12	
12 13	
11 12 13 14 15 16	
14	
15	
10	
17	
18	
19	
20	
21	
22	
23	
19 20 21 22 23 24 25 26 27 28 29 30	
25	
26	
27	
28	
29	
30	
31	
32	
32 33	
ככ 2⊿	
34 35	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

43 ABSTRACT

1 2

44 Background

Immune compromised mice are increasingly used for the pre-clinical development of monoclonal
antibodies (mAb). Most common are NOD SCID and their derivatives such as NOD SCID IL-2 γ-/(NSG), which are attractive hosts for patient derived xenografts. Despite their widespread use, the

48 relative biological performance of mAb in these strains has not been extensively studied.

49 Methods

Clinically relevant mAb of various isotypes were administered to tumour and non-tumour bearing
SCID and NOD SCID mice and the mAb clearance monitored by ELISA. Expression analysis of surface
proteins in both strains was carried out by flow cytometry and immunofluorescence microscopy.
Further analysis was performed *in vitro* by surface plasmon resonance to assess mAb affinity for Fcy
receptors (FcyR) at pH 6 and pH 7.4. NOD SCID mice genetically deficient in different FcyR were
utilised to delineate their involvement.

56 Results

Here we show that strains on the NOD SCID background have significantly faster antibody clearance 57 58 than other strains leading to reduced anti-tumour efficacy of clinically relevant mAb. This rapid 59 clearance is dependent on antibody isotype, the presence of Fc glycosylation (at N297) and 60 expression of FcyRII. Comparable effects were not seen in the parental NOD or SCID strains, 61 demonstrating the presence of a compound defect requiring both genotypes. The absence of 62 endogenous IgG was the key parameter transferred from the SCID as reconstituting NOD SCID or 63 NSG mice with exogenous IgG overcame the rapid clearance and recovered anti-tumour efficacy. In 64 contrast, the NOD strain was associated with reduced expression of the neonatal Fc Receptor (FcRn). We propose a novel mechanism for the rapid clearance of certain mAb isotypes in NOD SCID mouse 65 66 strains, based upon their interaction with FcyRII in the context of reduced FcRn.

67 Conclusions

This study highlights the importance of understanding the limitation of the mouse strain being used
for pre-clinical evaluation, and demonstrates that NOD SCID strains of mice should be reconstituted
with IgG prior to studies of mAb efficacy.

72 INTRODUCTION

The growth in the numbers of monoclonal antibodies (mAb) being developed for the clinic, particularly for use in cancer, has led to the concurrent development of in vivo models enabling their pre-clinical evaluation.[1] These models have increasingly made use of immune-compromised mice for growing patient-derived tumour xenografts and engrafting human immune or stem cells.[2, 3] Commonly used models include non-obese diabetic (NOD) severe combined immunodeficient (SCID) mice. The SCID mutation occurs in the Prkdc gene and impairs V(D)J recombination, leading to an absence of functional B and T cells and resulting in mice lacking endogenous IgG.[4, 5] The NOD phenotype results in reduced NK cell frequency and function and the absence of haemolytic complement activity.[6] Whilst these immune deficient phenotypes make NOD SCID mice attractive recipients for cell transfers (such as human PBMCs and tumour xenografts), hey may be further enhanced by additional genetic deletions such as the IL-2 γ-chain (NSG).[7, 8] Whilst the effector function defects of NOD SCID mice and their related strains are often considered, one aspect regularly overlooked is mAb clearance, despite the fact that genetic alterations, as well as the lack of endogenous IgG in immune deficient strains, could readily impact on mAb pharmacokinetics, resulting in altered efficacy.[9] The primary receptors responsible for mediating IgG mAb activity are the Fc gamma receptor (FcyR) family. It is comprised of 6 receptors in humans and 4 in mice, which vary in expression pattern and

affinity for IgG subclass.[10] Another receptor capable of interacting with IgG in both humans and

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
15	
16	
17	
18	
19	
20	
21	
22	
22 23	
23	
24	
25	
26 27	
27	
28	
20	
29	
30	
29 30 31 32 33 34	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

1

91 mice is FcRn, which is widely expressed throughout the body. The pH dependent nature of FcRn-IgG 92 interactions allows the receptor to scavenge IgG from lysosomes at an acidic pH, releasing it back 93 into the circulation at neutral pH, providing the long in vivo half-life of antibodies.[11-13] 94 In addition to the potential issue of altered efficacy arising from the lack of endogenous IgG (and 95 reduced competition for FcyR with therapeutic mAb) in NOD SCID mice, previous reports indicate that immune-compromised mice, such as NOD SCID and NSG, have reduced mAb half-life compared 96 97 to related strains. [14-16] More recently, it was reported that NOD SCID mice display an anomalous 98 biodistribution of therapeutic antibodies, including reduced tumour targeting.[17] This suggests 99 further work is required to understand the limitations of these models and develop strategies to 100 overcome their shortcomings to make more translationally-relevant pre-clinical tumour models. 101 During a recent project examining the efficacy of a tumour targeting antibody in NOD SCID mice, we 102 noted rapid mAb clearance of human (h) IgG1 and mouse (m) IgG2a isotypes. Using a Eµ-Tcl1 103 hCD20+ tumour model we found this rapid clearance resulted in reduced efficacy of clinically 104 relevant mAb, such as rituximab. Employing genetically altered mice, we showed the rapid mAb 105 clearance was dependent on the expression of the inhibitory FcyR, FcyRII. Additionally, we identified 106 a reduced level of FcRn expression in NOD SCID mice, leading us to propose a novel hypothesis for 107 how mAb half-life is regulated in these strains and means through which it can be overcome. 108

MATERIALS AND METHODS

1 2

3 4	110
5 6 7	111
7 8 9	112
10 11	113
12 13 14 15	114
16 17	115
18 19 20	116
20 21 22	117
23 24	118
25 26	119
27 28 29 30	120
30 31 32	121
33 34	122
35 36	123
37 38 39	124
40 41	125
42 43	126
44 45 46	127
47 48 49	128
50 51	129
52 53	130
54 55 56	131
50 57 58	132
59	122

In vivo experiments. Mice used in this study were bred and maintained in local facilities with 111 experiments approved through local ethics committees and performed according to Home Office 112 113 guidelines. 114 115 Generating bone marrow chimera. Recipient mice were provided with acid water, pH 2.5 on day -7 until 14 days after bone marrow receipt. Recipients received 1.1Gy radiation on days -1 and 0 using a 116 117 MultiRad 350 X-ray Irradiator (Faxitron). Bone marrow was harvested from donor mice and 3-8x10⁶ cells injected I.V. into recipients. Systemic reconstitution was confirmed by flow cytometry 8-10 118 119 weeks after engraftment. 120 EµTCL-1 tumour model. This model has been described previously.[18, 19] Briefly, 1x10⁷ 121 cryopreserved Eµ-TCL-1 transgenic (Tg) or hCD20⁺ Eµ-TCL-1 Tg tumour splenocytes were injected I.P. 122 123 into recipient mice. The presence of tumour was monitored in peripheral blood. Once tumour cells (CD19⁺CD5^{mid}) were detectable by flow cytometry, mice were treated. The white blood cell count 124 125 was determined using a Coulter Z1 particle counter with red blood cells (RBC) lysed using ZAP-126 OGLOBIN II (both Beckman Coulter) or by flow cytomery using Precision Count beads (Biolegend). 127

In vivo antibodies. All clinical antibodies were gifted from the Southampton General Hospital
oncology pharmacy. Others were produced in-house. 18B12 and Rituximab isotype variants were
cloned onto the appropriate IgG framework, produced in CHO cells and purified from culture
supernatant with Protein A. Purity was assessed by electrophoresis (Beckman EP; Beckman) and lack
of aggregation confirmed by SEC HPLC. Unless otherwise stated, all antibodies were administered
I.P. in 200µl sterile PBS (Severn Biotech).

2 3 4	134					
 Flow cytometry. Flow cytometry was performed using the antibodies listed in supplem 						
8 9	136	1. anti-mFcyR have been reported previously.[20, 21] Following staining, RBC lysis buffer was added				
10 11 12	137	(AbD Serotec) and cells washed before analysis on a FACS Canto or FACS Calibur flow cytometer (BD				
12 13 14	138	Biosciences). Alexafluor647 labelled MST-HN and H435A Abdegs for analysing FcRn expression were				
15 16	139	a kind gift from Prof Sally Ward (University of Southampton) and used at $5\mu g/ml$ with Fc block				
17 18 19	140	(2.4G2, 5μg/ml) prior to extracellular staining.				
20 21 22	141					
23 24	142	Generating bone marrow derived macrophages (BMDM). The tibia and femur of mice were flushed				
25 26	143	with sterile complete RPMI (RPMI 1640 (Life Technologies), 2mM L-glutamine, 1mM sodium				
27 28 29	144	pyruvate, 100U/ml penicillin, 100µg/ml streptomycin (all Life Technologies), 10% foetal calf serum				
30 31	145	(Sigma-Aldrich). Cells were plated in 6-well plates at 0.8x10 ⁶ cells/ml in complete RPMI +20% L929				
32 33	146	conditioned media for 7-10 days.				
34 35 36 37	147					
38 39	148	Determining plasma IgG concentration. IgG concentration was determined by ELISA with reference				
40 41	149	to a standard curve of the same antibody as follows: for hIgG, maxisorp plates (Thermo Scientific)				
42 43 44	150	were coated with 5µg/ml goat anti-human Fc-specific polyclonal antibody (Sigma-Aldrich) and				
44 45 46	151	blocked with PBS +1% BSA before addition of serum for 1hour and washing. Detection was with				
40 47 152 Horseradish peroxidase (HRP) conjugated $F(ab')_2$ goat anti-hFc specific antibody (Jacks 48						
49 50	153	Immunoresearch). Plates were incubated with OPD substrate and OD ₄₉₅ measured using an Epoch				
51 52 53	154	microplate spectrophotometer (Biotek). For quantification of mlgG, plates were coated with rabbit				
54 55	155	anti-mlgG and detected with HRP- rabbit anti-mlgG (both Jackson Immunoresearch).				
56 57 58 59 60	156					

1

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11 12 13 14 15 16	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
23	
24	
24	
25	
26	
27	
28	
29	
20	
30	
31	
32 33	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
58	
Σŏ	
59	

Heat aggregation of IgG Purified IgG was heated to 64°C for 30 minutes. The aggregated fraction
was purified on a superdex S200 column (GE Healthcare). Aggregation was confirmed by HPLC using
a Zorbax GF-250 column (Agilent).

Producing mFcyRII extracellular domain protein. RNA was isolated and cDNA generated from SCID or NOD SCID BMDMs and the mFcyRII gene amplified using gene specific primers. Subsequently, the extracellular domain (residues 1-207) of mFcyRII were cloned with the addition of a 6xHis tag. The construct was transfected into MEXi -293E cells (IBA lifesciences) and FcyRII-His expressed according to the manufacturer's protocol and protein purified using a HisTrap HP column on an AKTA prime system (Both GE biosciences) and purity confirmed by SDS-PAGE.

167

Surface Plasmon resonance (SPR) analysis. SPR was performed using a Biacore T100 system
upgraded to a T200 (GE Life Sciences). For mFcvRII isoforms, anti-His capture antibody was
immobilised on a CM5 chip (GE life Sciences). Purified FcvRII-His (10 µg/ml) was flowed over the chip
at 30µl/min for capture. IgG was injected at 30µl/min. For all other analysis, IgG was immobilised via
amine coupling with a target of 2000 RU. Recombinant mFcvRII or mFcRn (R&D systems) was flowed
over the immobilised IgG in HBS-EP+ buffer (GE Life Sciences) at pH7.4 or pH6.0. Affinity constants
were determined by analysis with Biacore Bioevaluation software assuming 1:1 binding.

175

60

Quantitative polymerase chain reaction (qPCR) mRNA was extracted from SCID or NOD SCID
splenocytes and hepatocytes using an RNeasy Mini Kit (Qiagen) and cDNA generated using a
Superscript III reverse transcription kit (Life Technologies). qPCR was performed using GoTaq qPCR
master mix (Promega) using gene specific primers, with HPRT1 as a control. Ct values were
normalised using HPRT1 values and the ΔΔCt method used to calculate fold change.

1 2		
- 3 4 5	181	
6 7	182	Western blotting. Lysates were produced from 5x10 ⁶ SCID or NOD SCID splenocytes and
8 9	183	hepatocytes using RIPA buffer (150 mM NaCl, 1% Triton X-100, 0.5% Deoxycholate, 0.1% SDS, 50 mM
10 11 12 13 14	184	Tris, pH 8) and run on a 12% Novex Nupage BIS-TRIS gel (Thermo Fisher) before transfer to a
	185	methylcellulose membrane (GE Lifesciences). Primary antibodies were anti-mouse FcRn and Lamin B
15 16	186	with detection using an HRP-conjugated donkey anti-goat antibody (Supplementary Table 1).
17 18 19	187	
20 21 22	188	Immunofluorescence. Liver tissue from BALB/c or NSG mice was embedded in OCT (CellPath) and
23 24	189	frozen in isopentane on dry ice. $8\mu M$ sections were cut and transferred to Superfrost plus slides
25 26	190	(Thermo Scientific), air dried overnight and fixed in 100% acetone. Following blocking, primary
27 28 29	191	antibodies against FcRn or FcyRII were added overnight before detection with Alexafluor488-
30 31	192	labelled secondary antibody (Supplementary Table 1) for 45 minutes. Subsequently, primary
32 33 34 35 36 37 38 39 40 41 42 43 44 45	193	antibodies against Clec4F or cytokeratin 8 were added for 2 hours before detection with AlexaFluor-
	194	549 or AlexaFluor-568 conjugated secondary antibodies (Supplementary Table 1). Slides were
	195	mounted using Vectashield hardset with DAPI (Vector Laboratories).
	196	Images were collected using a CKX41 inverted microscope with a reflected fluorescence system
	197	equipped with a DP22 camera running CellSens software, using Plan Achromat 10 × 0.25 and 40 ×
	198	0.65 objective lenses (all from Olympus). Images were transferred to ImageJ (Fiji) or Photoshop
46 47	199	(Adobe) where background autofluorescence was removed, contrast stretched and brightness
48 49 50 51 52 53	200	adjusted to maximise clarity, with all images treated equivalently.
	201	
54 55	202	RESULTS
56 57 58 59 60	203	Anti-tumour mAb therapy is less effective in NOD SCID mice due to rapid antibody clearance.

To explore potential differences of recipient mouse strains on immunotherapy efficacy, SCID and
NOD SCID mice bearing established hCD20⁺ Eµ-TCL-1 tumours were treated with rituximab. Although
initial tumour clearance was comparable between strains, 14 days after mAb treatment there were
significantly more tumour cells in the peripheral blood of NOD SCID compared to SCID mice (Figure
1A and B). To determine if this was associated with rituximab's type I nature,[22, 23] we repeated
the experiment with the type II anti-hCD20 mAb, BHH2,[18] and observed the same reduced efficacy
in NOD SCID compared to SCID mice (Figure 1B).

To understand this difference in efficacy, the concentration of injected hlgG in the plasma of mice
following treatment was determined (Figure 1C). This revealed that 7 days after mAb treatment
there was significantly less (~10 fold) hlgG in the plasma of NOD SCID compared to SCID mice (16.7 v
1.6 µg/ml) suggesting that rapid hlgG1 clearance in NOD SCID mice was responsible for the less
prolonged tumour deletion.

To investigate whether the rapid clearance was related to the mAb, strain and/or tumour, an alternative hIgG1 mAb, cetuximab, was administered to non-tumour bearing SCID and NOD SCID mice. Cetuximab was also more rapidly cleared from NOD SCID compared to SCID mice with hlgG being undetectable in the plasma of NOD SCID mice by day 7 post-administration (Figure 1D). Similar results were also observed with other hlgG1 mAb including trastuzumab (Supplementary Figure 1), showing that the rapid clearance is directly related to the NOD SCID strain, independent of tumour and a common feature of therapeutically-relevant hIgG1 mAb. Importantly, the hIgG1 clearance in SCID and NOD mice was comparable to that of immune-competent BALB/c mice (Supplementary Figure 2 and previously shown [24]), confirming fast hlgG1 clearance in NOD SCID mice, rather than slow clearance in SCID or NOD mice. Furthermore, the lack of a difference in SCID mice demonstrates that rapid hlgG clearance does not result from the absence of endogenous IgG or immune deficiency per se.

1 2	
2 3	
4	
4 5	
6	
7	
8 9	
9 10	
11	
12	
13	
14 15	
15	
16 17	
18	
19	
20	
21	
22	
23	
24 25	
25	
26 27	
28	
29	
30	
31 22	
32 33	
34	
34 35	
36	
37	
38	
39 40	
41	
42	
43	
44	
45	
46 47	
47	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

Rapid mAb clearance in NOD SCID mice is isotype dependent and requires both SCID and NOD
 genotypes.

230 To determine if rapid mAb clearance in NOD SCID mice extended beyond hlgG1, isotype switch 231 variants of rituximab were generated and administered to SCID or NOD SCID mice. Similar to hIgG1, 232 mIgG2a also had a significantly faster mAb clearance in NOD SCID mice (Figure 1D), being no longer 233 detectable in the plasma by day 14. In contrast, hIgG2 and mIgG1 had similar clearance rates in both 234 strains. These results demonstrate that faster mAb clearance in NOD SCID mice is isotype 235 dependent. 236 We next assessed whether the rapid IgG clearance occurred in NOD and NSG strains. NOD mice had 237 a normal hlgG1 clearance rate, akin to that seen in SCID and BALB/c (Figure 2A). However, NSG mice 238 displayed rapid clearance, comparable to that in NOD SCID mice (Figure 2B). These data 239 demonstrate that both NOD and SCID phenotypes are necessary to confer rapid IgG clearance. 240 Moreover, the differences between isotypes in NOD SCID mice also occurred in the NSG strain, with hlgG1 and mlgG2a but not mlgG1 exhibiting rapid clearance (Figure 2B). 241

242

243 Rapid hlgG1 clearance is dependent on FcyR binding.

Given that mlgG2a and hlgG1 have similar FcyR binding profiles (binding to all mFcyR, with substantial affinity for several activatory FcyR), we hypothesised that the rapid mAb clearance of hlgG1 and mlgG2a isotypes in NOD SCID mice was mediated by FcyR.[25, 26] This was investigated using an N279Q (NQ)-mutant of rituximab which lacks glycosylation at N297 and does not robustly engage mFcyR (without compromising interaction with FcRn).[27] The NQ-mutant remained present in the plasma of NOD SCID mice at significantly higher concentrations at all time-points, supporting mFcyR involvement in the rapid hlgG1 clearance in NOD SCID mice (Figure 2C). Moreover, the

2		
3 4	251	concentration of rituximab-NQ was comparable between SCID and NOD SCID mice at all time-points
5 6 7	252	suggesting that abrogation of mFc γR binding restored normal mAb clearance rate.
8 9	253	
10 11 12 13	254	SCID and NOD SCID mice have comparable FcyR expression levels.
14 15	255	Having established that the rapid hlgG1 clearance rate in NOD SCID mice was likely dependent on
16 17	256	mFcyR, the relative expressions levels of these receptors in SCID and NOD SCID mice was
18 19 20	257	investigated (Figure 3A). Whilst there were no statistically significant differences in expression levels
20 21 22	258	(2-way ANOVA P>0.05) trends towards differential expression were observed. mFcyRII expression
23 24	259	was lower on both Ly6C ^{Hi} and Ly6C ^{Lo} monocytes in NOD SCID compared to SCID mice (Figure 3B).
25 26	260	Neutrophil and splenic macrophage FcyRIII expression was higher in SCID mice, with a similar
27 28 29	261	expression profile for BMDMs (Supplementary Figure 3a). The expression of mFcyRI was not
29 30 31	262	investigated as it is known to contain multiple polymorphisms in NOD SCID mice which prevent its
32 33	263	detection using available antibodies.[28] The subtle differences in activatory mFcyR expression
34 35	264	detailed above appear to be compensatory with a similar overall expression of activatory mFcyR in
36 37 38	265	each strain. In summary, only monocyte FcyRII was found to differ between SCID and NOD SCID
39 40	266	mice; the relevance of this to mAb clearance rate remains to be determined.
41 42 43	267	
44 45 46	268	Rapid hIgG1 clearance in NOD SCID mice is dependent on FcyRII.
47 48	269	To understand the contribution of specific mFcyR to rapid antibody clearance in NOD SCID mice, we
49 50 51	270	made use of animals lacking different classes of mFc γ R. In NOD SCID FcR γ -/- mice (which express no
52 53	271	activatory FcγR at the cell surface[29]) there was no significant difference in the concentration of
54 55	272	hlgG1 over time compared to NOD SCID mice (Figure 4A), demonstrating that a lack of activatory
56 57	273	mFcγR does not influence hIgG1 clearance. However, in NOD SCID mice deficient in the inhibitory
58 59 60	274	mFcyRII, the concentrations of hIgG1 were significantly increased compared to wild-type NOD SCID

mice retaining mFcyRII (Figure 4B) and comparable with SCID mice. These results demonstrate that the rapid hlgG1 clearance in NOD SCID mice is dependent on mFcyRII. Moreover, this result suggests that the somewhat reduced FcyRII expression seen previously in NOD SCID mice is not responsible for the fast hIgG1 clearance rate. The polymorphic variants of mFcyRII have comparable affinity for hIgG1. A number of autoimmune strains, including NOD express the ly17.1 form of mFcyRII whilst most other in-bred strains, including BALB/c, express the ly17.2 variant.[30] These two polymorphic forms vary in four amino acids, three of which are located in the extracellular domain.[30] The extracellular domain of FcyRII from SCID and NOD SCID mice was cloned and expressed; their relative affinity for IgG was then determined by SPR. Neither heat aggregated, pooled hIgG or individual isotypes of IgG displayed substantially different binding affinities to the ly17.1 and ly17.2 variants (Table 1).

1 2 3 4	288				
5 6 7			NOD SCID	SCID	
8 9			KD (M x10⁻6)	KD (M x10 ⁻⁶)	
10 11 12		Aggregated hIgG	0.13	0.15	
13 14 15		Cetux hlgG1	4.38	5.42	
16 17 18 19		Ritux hlgG1	2.50	3.18	
20 21 22		Ritux hlgG2	4.82	4.65	
23 24 25		Ritux mlgG1	2.25	2.02	
26 27 28		Ritux mlgG2a	2.43	2.63	
29 30	289	Table 1. Affinity of mFe	cγRII variants for IgG su	btypes. Recombinant mFc	γRII extracellular domains
31 32	290	from SCID or NOD SCIE) mice were captured o	n a Biacore CM5 chip using	g an immobilised anti-HIS
33 34	291	antibody. IgG of specif	ic isotypes or heat aggre	egated, pooled hIgG was f	lowed over the chip and the
35 36 37	292	KD value calculated using Biacore evaluation software.			
38 39 40	293				
41 42 43	294	Absence of haematopoietic mFcyRII or phagocytes does not restore normal mAb clearance.			
44 45	295	mFcyRII is expressed o	n both haematopoietic	and non-haematopoietic	cells.[30, 31] We therefore
46 47 48	296	sought to determine which mFcγRII-expressing cells were responsible for the rapid clearance of			
48 49 50	297	hlgG1. Accordingly, NOD SCID mice were irradiated and reconstituted with bone marrow from NOD			
51 52	298	SCID FcyRII-/- mice (Figure 4C and D). These mice, reconstituted with haematopoietic cells lacking			
53 54	299	mFcyRII displayed rapi	d clearance of hIgG1 an	d mlgG2a, indicating that	mFcγRII on cells of the
55 56	300	haematopoietic systen	n was not responsible fo	or the rapid mAb clearance	e (Figure 4E). We next
57 58 59	301	considered whether pl	nagocytes, particularly t	issue resident macrophag	es, might be responsible and
60	302	so deleted them with o	lodronate liposomes. T	his approach effectively re	emoved macrophages

1 2		
3 4	303	(Supplementary Figure 3b) but only resulted in a small increase in circulating hIgG1 7 days after mAb
5 6	304	administration, with no hIgG1 detectable by day 14 (Figure 4F). This suggests that phagocytes in
7 8	305	NOD SCID mice are not primarily responsible for the rapid hIgG1 clearance and that a non-
9 10 11	306	haematopoietic cell type is responsible. Given their high expression of mFcyII, the Liver Sinusoidal
12 13	307	Endothelial cells (LSEC) seem the most likely candidate.[31] We confirmed high expression of
14 15	308	mFcyRII on these cells by immunofluorescence of livers from both BALB/c and NOD SCID mice
16 17	309	(Supplementary Figure 4 and b). Moreover, we found hIgG detectable at substantially higher levels
18 19 20	310	within the liver of NSG than SCID mice following administration of hIgG1 mAb confirming a role for
20 21 22	311	the liver as a site of hIgG1 accumulation (Supplementary Figure 4c).
23 24	312	
25 26	512	
27 28	313	NOD SCID mice have reduced FcRn expression.
29 30 31	314	As mFcγRII is not known to directly regulate mAb clearance, we next considered whether FcRn might
32 33	315	be involved in the process of controlling clearance rate in the NOD SCID mouse. Importantly, FcRn in
34 35	316	NOD SCID mice does not to contain any sequence variations compared to other strains and has
36 37	317	normal binding to both human and mouse IgG.[14]. However, qPCR revealed significantly lower FcRn
38 39	318	transcription in both spleen and liver of NOD SCID versus SCID mice (Figure 5A). This result was
40 41 42	319	confirmed at the protein level by western blotting (Figure 5B) and flow cytometry using the MST-HN
42 43 44	320	protein which maintains FcRn binding at both acidic and neutral pH (Figure 5C).[32] This latter
45 46	321	approach demonstrated a lower expression of FcRn in Ly6C+ monocytes from NSG compared to SCID
47 48	322	mice (MFI 354 v 2961, mean of N=4). Combined, these results demonstrate that there is a lower
49 50	323	expression of FcRn in the tissues known to be important for IgG recycling (spleen and liver) of NOD
51 52 53	324	SCID mice compared to SCID.[33]
54 55	225	
56	325	
57 58		
59 60		

1

2	
3 4	3
4 5 6 7	3
6 7	
8	2
9	3
10 11	3
12	
13	3
14 15	1
16 17	
17 18	З
19	
20	3
20 21 22	3
74	
14	З
25 26	
26 27 28	Э
28 29	-
30	3
31	3
32 33	
34	3
35 36	3
37	
38	3
39 40	
41	3
42 43	3
44	
45	3
46 47	2
48	
49 50	3
50 51	
52	Э
53 54	
55	3
56	2
57 58	3
59	Э
<u> </u>	

326 mFcyRII has a pH dependent affinity for IgG isotypes and is expressed on the same cell types as 327 FcRn.

328 Whilst reduced FcRn could explain rapid IgG clearance, it does not provide an explanation for the 329 isotype dependent nature of the effects seen, as all isotypes should be affected equally. In contrast, 330 mFcyRII is known to display differential affinity for IgG isotypes (high for mIgG1, low for mIgG2a and hlgG1) and so we considered if mFcyRII specificity might be involved in regulating the clearance of 331 the different isotypes. Using SPR and two different mAb of each isotype, we confirmed that at pH7.4 332 333 mFcγRII had ~10 fold higher affinity for mIgG1 (2.74x10⁻⁷M) versus mIgG2a (1.18x10⁻⁶M and hIgG1 (3.02x10⁻⁶) whilst the affinity for hlgG2 was lower still (7.65x10⁻⁶M) (Table 2 and Figure 5D). 334 335 We next considered that mFcyRII might internalise cell-surface bound IgG and by virtue of its higher 336 affinity, preferentially protect mlgG1 from degradation following internalisation. To do this, it would 337 need to remain bound to IgG in a low pH environment, akin to FcRn. We therefore repeated SPR 338 analysis at pH6.0, and revealed that mFcyRII retained binding at low pH, with affinity for mIgG1, 339 mIgG2a and hIgG1 ~100-fold higher than at pH7.4. Notably, the KD for mIgG1 binding mFcyRII was 2.77x10⁻⁹M, >10-fold higher than for hIgG1 and mIgG2a. This suggests that mFcyRII is capable of 340 341 binding IgG at an acidic pH with the potential to protect IgG from degradation being greatest for 342 mlgG1. Using previously published affinity data for IgG binding to mFcRn, we calculated the ratio of mFcyRII:FcRn binding for different isotypes at pH6.0 (Table 2 and Figure 5D).[34] hIgG2 exhibited a 343 344 high mFcyRII:FcRn ratio, suggesting preferential binding for FcRn at an acidic pH. In comparison, 345 hlgG1 had a ratio around 1 (indicating no overall preference) whereas mlgG1 had a low ratio, 346 preferentially binding with a higher affinity to mFcyRII than to FcRn. 347 Having hypothesised that the differential interaction with FcRn and FcyRII may play a role in the 348 recycling of IgG, and with the knowledge that the liver expresses 75% of the FcyRII in the mouse, we sought to determine the distribution of these two receptors within the liver.[31] We found mFcyRII 349 350 on a subset of Clec4F⁺ Kupffer cells but not on Cytokeratin 8⁺ hepatocytes (Supplementary Figure 4). 60

However, the majority of mFcvRII was expressed by LSEC as determined by their morphology. This is
consistent with a previous study reporting 90% of the liver mFcvRII as being expressed by LSEC when
assessing immunofluorescence by pixel intensity.[31] We found FcRn to be widely expressed
throughout the liver including on Kupffer cells and hepatocytes (Supplementary Figure 4). This is
consistent with a previous report showing FcRn mRNA in various cell types, additionally identifying
LSEC as having the highest expression level.[31] Together, these results suggest that LSEC may be the
predominant cell type co-expressing FcvRII and FcRn.

Overall, these data provided the possibility that antibody clearance in NOD SCID strains is controlled through differential engagement of the various isotypes by mFcyRII and FcRn. However, these effects have not been reported previously in standard in-bred strains, or the single NOD and SCID strains, indicating that the proposed pathway, which is at least in part mediated by isotypedependent binding of mFcyRII, is only revealed in the absence of endogenous IgG.

	FcγRII KD pH7.4 (M)	FcyRII KD pH6 (M)	Published FcRn KD pH6 (M)	KD ratio FcγRII/FcRn
hlgG1 #1	3.02 x10 ⁻⁶	4.92 x10 ⁻⁸	7.2x10 ⁻⁸	0.68
hlgG1 #2	6.61 x10 ⁻⁶	7.90 x10 ⁻⁸	7.2 x10 ⁻⁸	1.10
hlgG2 #1	7.65 x10 ⁻⁶	2.10 x10 ⁻⁷	6.3x10 ⁻⁸	3.33
hlgG2 #2	1.45 x10 ⁻⁵	2.18 x10 ⁻⁷	6.3x10 ⁻⁸	3.46
mlgG1 #1	2.74 x10 ⁻⁷	2.77 x10 ⁻⁹	1.57x10 ⁻⁶	0.0018
mlgG1 #2	4.98 x10 ⁻⁷	3.62 x10 ⁻⁹	1.57x10 ⁻⁶	0.0023
mlgG2a #1	1.18 x10 ⁻⁶	2.36 x10 ⁻⁸	4.9x10 ⁻⁷	0.054
mlgG2a #2	1.10 x10 ⁻⁶	2.41 x10 ⁻⁸	4.9x10 ⁻⁷	0.049

2		
3 4	363	Table 2. Affinity of mFcyRII and mFcRn for IgG subtypes. Antibodies were immobilised on a Biacore
5 6	364	CM5 chip before flowing mFcyRII or mFcRn over the chip. FcRn was used at pH6 with FcyRII at pH6
7 8	365	and pH7.4. KD was calculated using Biacore evaluation software.
9 10 11 12	366	
13 14	367	Rapid hlgG1 clearance and reduced mAb efficacy can be overcome by lgG reconstitution.
15 16 17	368	We therefore hypothesised that the addition of exogenous mIgG would restore normal mAb
18 19	369	clearance rate in NOD SCID mice. Accordingly, SCID and NOD SCID mice were reconstituted with
20 21 22	370	mIgG1 and mIgG2a to a level equivalent to that seen in the plasma of wild type BALB/c mice
23 24	371	(Supplementary Figure 5). Subsequently, the clearance of hIgG1 was investigated (Figure 5E).
25 26	372	Reconstitution with mIgG overcame the rapid clearance of hIgG1 in NOD SCID mice such that it
27 28 29 30 31	373	became comparable to that observed in SCID mice. In contrast, mlgG addition did not significantly
	374	alter the clearance of hIgG in SCID mice. Additionally, reconstitution with mIgG substantially reduced
32 33	375	the accumulation of hIgG in the liver (Supplementary Figure 4c). Importantly, the expression of FcRn
34 35	376	was not altered by reconstitution with mlgG (Figure 5c). Finally, we sought to determine if
36 37	377	overcoming rapid clearance of hIgG1 by mIgG reconstitution could improve therapy, using an E μ -
38 39	378	TCL1 tumour and a hIgG1 antibody targeting mouse CD20 (18B12). Using this second tumour model
40 41 42	379	we found the differences in duration of therapy between SCID and NSG mice was maintained, with
43 44	380	tumour growth recurring in NSG before SCID mice (Figure 5F). We then compared the duration of
45 46	381	tumour deletion in NSG mice versus NSG mice reconstituted with mlgG, using the same protocol as
47 48	382	before. Reconstitution with mIgG was able to overcome the impaired therapy and restored
49 50 51	383	comparable levels of tumour deletion and control to that observed in SCID mice both in terms of
52 53	384	tumour (Figure 5F) and number of tumour cells (Supplementary Figure 6). This demonstrates that
54 55	385	reconstitution with mIgG is able to restore mAb efficacy in NSG mice.
56 57 58 59	386	

387 DISCUSSION

Our observations with rituximab showed reduced tumour control in NOD SCID compared to SCID mice. Given that equivalent initial tumour clearance was observed, and deletion is known to be dose dependent, this impairment was considered to be a direct result of reduced serum persistence and insufficient mAb at later time points. [35, 36] Rituximab is a type I mAb, known to be internalised through cis-binding to FcyRII following target binding, reducing its efficacy.[18, 37] Importantly, reduced tumour control was also seen with a type II anti-CD20 reagent, BHH2, indicating mAb internalisation was not causal and that a separate phenomenon related to the mouse strain was responsible. In support of this, rapid clearance of wild-type and chimeric hlgG1 mAb was described recently in both NOD SCID and NSG mice. [14, 16] Furthermore, we saw the same rapid hlgG1 clearance for two additional hIgG1 mAb, lacking targets in the mouse, showing this phenomenon to be independent of the presence of tumour and unrelated to F(ab)-mediated antigen binding. Separately, both SCID and NOD mice had normal clearance of hIgG1, comparable to that of immune competent BALB/c mice, as reported previously.[24] This indicated that the genetic background of NOD mice, coupled with a lack of endogenous IgG (as a result of the SCID mutation) combined to elicit rapid hlgG1 clearance in NOD SCID mice. Importantly, our observations were replicated in NSG mice, indicating that rapid hlgG1 clearance is a feature of all NOD SCID derived strains. mIgG1 was found to have normal clearance in NOD SCID mice, whereas both hIgG1 and mIgG2a had short half-lives. Both humans and mice have multiple activatory FcyR, but a single inhibitory receptor, FcyRII (FcyRIIb in humans). These receptors interact differentially with the various mouse and human IgG isotypes: mIgG2a and hIgG1 bind preferentially to multiple activatory receptors and as such have high activatory:inhibitory (A:I) ratios. [26] In contrast, mlgG1 exhibits binding to only a single activatory FcyR (FcyRIII) whilst retaining binding to FcyRII, yielding a corresponding low A:I ratio.[38] These observations provided a potential clue towards the isotype-based effects observed. A role for FcyR in this process was subsequently confirmed by using a hIgG1 N297Q mAb which

2	
4 5	
6	
5 6 7	
0	
9 10 11 12 13 14 15 16 17 18	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20 21	
20	
21	
22 23	
24	
25 26 27	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
34 35 36	
37	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51 52	
53	
54	
55	
56	
57	
58	
59	

abrogates binding to FcγRs.[27] Importantly, the N297Q mutation has been demonstrated not to
alter hlgG1 clearance in immune compromised mice.[27] The normal clearance rate of N297Q mAb
in NOD SCID mice suggested that the rapid clearance of hlgG1 (and mlgG2a) in NOD SCID mice was
dependent on Fc:FcγR interaction.

416 Despite establishing a likely role for mFcyR in rapid mAb clearance, no gross changes in activatory 417 FcyR expression levels were observed in NOD SCID versus SCID mice. The subtle inter-strain 418 differences in mFcyRIII and mFcyRIV expression are likely to be compensatory and do not result in a 419 large difference in the total A:I ratio or amount of activatory FcyR on the cell surface. One caveat 420 here was that the expression level of mFcyRI in NOD SCID mice could not be determined by flow 421 cytometry as its sequence varies considerably from the canonical sequence seen in most other 422 strains (by 17 residues), and so cannot be detected using our existing reagents.[39] mFcyRII 423 expression was found to be lower on monocytes from NOD SCID compared to SCID mice, likely due 424 to the previously reported alterations upstream of the gene in NOD SCID mice associated with lower 425 expression.[40] However, subsequent results, particularly in mice lacking mFcyRII expression, demonstrate that the reduced expression of mFcyRII was unlikely responsible for the rapid mAb 426 427 clearance. 428 We additionally investigated the expression levels of FcRn, the primary receptor responsible for IgG 429 recycling and long half-life.[41] Whilst it has a broad tissue distribution, expression is particularly

430 prominent in the spleen and liver.[33, 41] Analysis of these tissues demonstrated that there was

431 lower expression of FcRn in NOD SCID compared to SCID mice. SCID mice have previously been

reported to have comparable FcRn expression and tissue distribution to immune-competent mice;

433 indicating that the reduction is a result of the NOD phenotype rather than elevated expression in

434 SCID mice.[33] However, given that the N279Q-mutated antibody which can interact with FcRn but

435 not FcγR had a normal clearance rate in NOD SCID mice, the reduced FcRn expression in isolation

 $\frac{8}{9}$ 436 cannot explain the differences in mAb clearance.

60

432

2	
2 3 4	Z
5 6	Z
7 8	Z
9 10	Z
11 12	Z
13 14	/
15 16	
17 18	2
19 20	Ζ
21 22	Ζ
23 24	Z
25 26 27	Z
27 28 29	Z
30 31	Z
32 33	
34 35	
36 37	2
38 39	Ζ
40 41	Z
42 43	Z
44 45	Z
46 47	Z
48 49	4
50 51	
52 53	2
54 55	Ζ
56 57	Ζ
58 59	Ζ
60	

> 437 To determine the receptor responsible, we used mice deficient in either the activatory or inhibitory 438 mFcyR by employing mFcR y-chain -/- or mFcyRII-/- mice, respectively. Only the absence of mFcyRII 439 restored normal hlgG1 clearance in NOD SCID mice. This observation supports the implications of 440 the N297Q-mutant data; i.e. failing to engage with mFcyRII and therefore phenocopying the effect in 441 the mFcyRII-/- mice. Our observation that mFcyRII mediates this effect is in contrast to a previous 442 study suggesting mFcyRIV is responsible.[16] The previous study used an Fc-engineered antibody 443 reported to have reduced binding to FcyRIV; such mutations often result in broader changes to FcyR 444 binding profiles with causal effects of specific FcyR difficult to define. In contrast, in the present 445 study we were able to specifically define the role of FcyRII by using mice genetically deficient in 446 FcγRII.

447 Given the dependence on mFcyRII, we investigated this receptor in more detail. There are two 448 polymorphic variants of mFcyRII; the ly17.1 haplotype expressed by NOD SCID mice, and the more 449 common ly17.2 haplotype expressed by most other in-bred mouse strains, which differ by four 450 amino acids, three of which are extracellular. [42, 43] We confirmed previous observations that these 451 allotypes do not differ in their affinity for IgG. Whilst this SPR analysis assesses the likely effects of 452 the extracellular polymorphisms, further investigation is needed into the role of the remaining I258S 453 intracellular polymorphism to determine its influence on mAb internalisation. This could be of 454 importance given the role of the intracellular I232T polymorphism in hFcyRIIB, which alters the 455 ability of the receptor to cluster into lipid rafts and deliver inhibitory signals. [44] 456 The data presented here indicate that no single factor can explain the isotype-dependent differences

in mAb clearance in NOD SCID versus SCID mice. Instead, the data support a more complex model
whereby multiple factors arising from the NOD and SCID backgrounds combine to deliver the
observed defect. We propose a model whereby mFcyRII accelerates initial mAb internalisation. The
ability of FcyRII to mediate mAb internalisation has been previously reported in DC mediated antigen
presentation and the internalisation of rituximab.[37, 45] hlgG1 N297Q and hlgG2 do not bind

2		
3 4	462	appreciably to FcyRII, preventing receptor-mediated internalisation, maintaining equivalent
5 6	463	clearance in both SCID and NOD SCID mice. Similarly, in SCID mice with a normal level of FcRn, the
7 8	464	IgG internalised via FcyRII can be efficiently recycled by FcRn to maintain serum persistence.
9 10 11	465	However, In NOD SCID mice, this efficient FcRn mediated recycling does not occur due to the
12 13 14	466	reduced FcRn expression levels, resulting in more rapid serum loss.
15 16	467	In trying to understand the isotype dependent nature of the rapid IgG clearance rate in NOD SCID
17 18	468	mice, we unexpectedly observed an increased affinity of mFcyRII for all IgG at pH6.0. Crucially
19 20	469	however, the affinity of mFcyRII for mIgG1 at pH6.0 was retained and \sim 10-fold higher than for the
21 22 23	470	other isotypes investigated. This raises the possibility that mIgG1 is protected from degradation
23 24 25	471	under acidic conditions due to continued association with mFcyRII following internalisation. In
26 27	472	contrast, mIgG2a and hIgG1 would remain unprotected and become degraded following
28 29	473	internalisation, due to mFcyRII having lower affinity for these isotypes at pH6.0. We propose that
30 31	474	this reduced degradation occurs only in the presence of reduced FcRn expression in NOD SCID mice,
32 33 34	475	further work is however required to confirm this hypothesis. These data therefore suggest a complex
35 36	476	role for FcyRII in mAb clearance; it is required for the internalisation of IgG, preventing external
37 38	477	catabolism, yet it also delivers IgG for internal lysosomal degradation unless it exhibits sufficient
39 40 41	478	affinity for IgG binding at pH6.
42 43	479	Prior experiments in conditional knock-out mice suggested that both endothelial and
44 45	480	haematopoietic cells regulate IgG levels in mice.[46, 47] The transfer of mFcyRII -/- NOD SCID bone
46 47 48	481	marrow into NOD SCID mice resulted in mice deficient in haematopoietic mFcyRII but with mFcyRII
49 50	482	expression on non-haematopoietic (predominantly endothelial) cells. hlgG1 clearance in these
51 52	483	chimeras was unaltered compared to NOD SCID mice, demonstrating that haematopoietic cells were
53 54	484	not responsible. The liver was previously found to be the main site of IgG clearance, accounting for
55 56 57	485	30% of all antibody degradation.[48] The same organ has also been shown to contain 75% of the
58 59	486	mFcyRII in the body, the receptor demonstrated here to be essential for rapid NOD SCID mAb
60		

2 3 4	487
4 5 6	488
7 8	489
9 10 11	490
12 13	491
14 15	492
16 17 18	493
18 19 20	494
21 22	495
23 24 25	496
26 27	497
28 29	498
30 31 32	499
33 34	500
35 36	501
37 38 39	502
40 41	503
42 43	504
44 45 46	505
40 47 48	506
49 50	507
51 52	508
53 54 55	509
55 56 57	510
58 59 60	511

7	clearance.[31] Additionally, we were able to demonstrate greater accumulation of hIgG in the liver
8	of NSG compared to SCID mice, an effect that was overcome by the addition of exogenous mlgG.
9	Our immunofluorescence studies, combined with previous reports, suggest that LSEC are the
0	predominant cell type in the liver expressing both FcyRII and FcRn, the receptors regulating the fast
1	mAb clearance.[31, 49] LSEC have been described as having the highest rates of endocytic uptake in
2	the body. In addition, mFcyRII is required for the efficient clearance of small immune complexes. [31,
3	50] This leads us to hypothesise that LSEC are the key cell type responsible for fast mAb clearance
4	observed in the present study, with internalisation of IgG mediated by mFcyRII.
5	Further investigation is required to determine if pH and isotype dependent affinity is restricted to
6	mFcyRII or is common to the other FcyR. Moreover, it remains to be established if the same occurs
7	with the inhibitory FcyRIIb in humans. This could have implications for mAb therapy as it is known

that the A:I ratio of IgG binding to FcyR can determine the outcome of therapy, particularly where
the expression of hFcyRIIb may increase, such as within the tumour microenvironment.[51]
Moreover, in this context, the acidic pH of the tumour microenvironment may further modify this
ratio of A:I binding by altering the relative binding to individual receptors.

502 Given the importance of the rapid mAb clearance in NOD SCID mice on the therapeutic activity of 503 direct targeting hIgG1 mAb, we sought a means of restoring normal pharmacokinetics. By 504 reconstituting NOD SCID mice with physiological levels of mIgG, the rapid mAb clearance could be 505 overcome, restoring persistence equivalent to that observed in SCID and BALB/c mice. Moreover, 506 this increased persistence of therapeutic mAb was able to recover anti-tumour efficacy to the same 507 level as seen in SCID mice. This result is in agreement with findings that the addition of human IVIg 508 can restore the normal half-life of an antibody-drug conjugate.[16] Moreover, it has been previously 509 reported that the addition of exogenous IgG is able to overcome anomalous antibody biodistribution 510 in NOD SCID mice, adding to the potential benefits of IgG reconstitution in tumour models.[17] We 511 suggest that in the presence of exogenous IgG, mFcyRII is occupied (most likely by the mIgG1

2		
3 4	512	component, due to its higher affinity) and less internalisation of hlgG1 can occur. Based on these
5 6	513	observations, we propose that reconstitution with IgG should be a consideration when performing
7 8 9	514	therapy experiments in NOD SCID mice in order to restore therapeutic antibody half-life.
10 11 12	515	The implications for the findings presented here are wide-reaching. With an increasing use of
13 14	516	immune-compromised mice in pre-clinical investigation of mAb therapeutics, it is essential to
15 16	517	understand how the choice of host strain can influence the outcome. The clearance rate of the most
17 18	518	clinically relevant deleting isotypes are significantly shorter in NOD SCID and NSG mice than other
19 20	519	immune-compromised strains such as SCID. This is likely to underplay the therapeutic efficacy of
21 22 23	520	mAb used in these models and complicate comparisons between strains. Additionally, there are
24 25	521	significant efforts ongoing to understand the isotype requirements for mAb directed against
26 27	522	different targets, and with different Fc requirements.[52] Our work suggests that NOD SCID mice
28 29	523	may not be a suitable host strain for determining the optimal mAb isotype or therapeutic dose due
30 31 32	524	to complications arising from different isotype-dependent clearance rates, unless exogenous mIgG
33 34	525	reconstitution is also provided. Specifically, we suggest that caution should be exercised when
35 36	526	interpreting results from immune compromised mice on the NOD SCID background with regard to
37 38	527	differences in antibody activity that could be explained by mAb clearance rate.
39 40 41	528	
42 43	529	DECLARATIONS
44 45		
46 47	530	Ethics Approval
48 49 50	531	Animal experiments were cleared through local ethics committees and performed according to
51 52	532	Home Office guidelines under project license PB24EEE31.
53 54 55	533	
56 57 58	534	Consent for Publication
59 60	535	Not applicable

1 2		
3 4 5	536	
5 6 7 8	537	Availability of Data and Material
8 9 10	538	All datasets used and/or analysed during the current study are available from the corresponding
11 12 13	539	author on reasonable request.
14 15	540	
16 17 18	541	Competing Interests
19 20 21	542	MSC is a retained consultant for Bioinvent and has performed educational and advisory roles for
22 23	543	Boehringer Ingelheim, Merck KGaA, Baxalta and GLG. He has received research funding from
24 25 26	544	Bioinvent, Roche, Gilead, Iteos, UCB and GSK. The other authors have no financial conflicts of
20 27 28	545	interest.
29 30 31	546	
32 33 34	547	Funding
35 36	548	Funding was provided through an iCASE studentship to RJO and MSC with Huntingdon Life Sciences
37 38 39	549	from the MRC (1254288), Programme Grants from Bloodwise (12050) and Cancer Research UK
40 41	550	(A24721) as well as CRUK centre support C328/A25139.
42 43 44	551	
45 46 47	552	Author Contributions
48 49	553	RJO, CIM, SJ, KLC and VAP performed experiments. RJO analysed the data. RJO, MSC and MJG
50 51 52	554	interpreted the results. PD and HTC generated critical reagents. RJO and MSC wrote the manuscript.
53 54 55	555	
56 57 58 59 60	556	Acknowledgements

1		
2		
3 4	557	The authors would like to thank all of the members of the Antibody and Vaccine Group (Cancer
5		
6	558	Sciences, Faculty of Medicine, University of Southampton, UK), Prof Falk Nimmerjahn and Prof Sally
7	559	Ward for helpful discussions relating to the experiments reported herein. SW additionally provided
8 9	223	ward for helpful discussions relating to the experiments reported herein. Sw additionally provided
9 10	560	the Abdeg reagents for quantifying FcRn expression.
11	500	
12		
13	561	REFERENCES
14		
15 16	562	1. Kaplon H, Reichert JM. Antibodies to watch in 2018. mAbs. 2018;10(2):183-203.
17	563	2. van der Loo JC, Hanenberg H, Cooper RJ, et al. Nonobese diabetic/severe combined
18	564	immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization
19	565	of human peripheral blood stem cells. Blood. 1998;92(7):2556-70.
20	566	3. Gerstein R, Zhou Z, Zhang H, et al. Patient-Derived Xenografts (PDX) of B Cell Lymphoma in
21	567	NSG Mice: A Mouse Avatar for Developing Personalized Medicine. Blood. 2015;126(23):5408
22 23	568	4. Blunt T, Finnie NJ, Taccioli GE, et al. Defective DNA-dependent protein kinase activity is
23 24	569	linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell.
25	570	1995;80(5):813-23.
26	571	5. Mouse strain datasheet-001303 NOD scid: The Jackson Laboratory; 2015 [26/02/2020].
27	572	Available from: <u>https://www.jax.org/strain/001303</u> .
28	573	6. Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive
29	574	immunologic function in NOD/LtSz-scid mice. The Journal of Immunology. 1995;154(1):180-91.
30 31	575	7. Brandsma AM, Hogarth PM, Nimmerjahn F, et al. Clarifying the Confusion between Cytokine
32	576	and Fc Receptor "Common Gamma Chain". Immunity. 2016;45(2):225-6.
33	577	8. Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/γc ^{null} mouse: an excellent recipient mouse
34	578	model for engraftment of human cells. Blood. 2002;100(9):3175-82.
35	579	9. Zalevsky J, Chamberlain AK, Horton HM, et al. Enhanced antibody half-life improves in vivo
36	580	activity. Nature Biotechnology. 2010;28(2):157-9.
37	581	10. Ravetch JV, Bolland S. IgG Fc receptors. Annual review of immunology. 2001;19:275-90.
38 39	582	11. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nature Reviews
40	583	Immunology. 2007;7(9):715-25.
41	584	12. Raghavan M, Bonagura VR, Morrison SL, et al. Analysis of the pH Dependence of the
42	585	Neonatal Fc Receptor/Immunoglobulin G Interaction Using Antibody and Receptor Variants.
43	586	Biochemistry. 1995;34(45):14649-57.
44	587	13. Kim JK, Firan M, Radu CG, et al. Mapping the site on human IgG for binding of the MHC class
45 46	588 589	I-related receptor, FcRn. European Journal of Immunology. 1999;29(9):2819-25.
40 47	589 590	14. Pop L, Liu X-y, Pop I, et al. Abnormally short serum half-lives of chimeric and human IgGs in NOD-SCID mice (P4184). The Journal of Immunology. 2013;190(1 Supplement):48.2.
48	590 591	15. Li F, Ulrich M, Hunter J, et al. Abstract 2082: Fc-FcyR interaction impacts the clearance and
49	591	antitumor activity of antibody-drug conjugates in NSG mice. Cancer Research. 2016;76(14
50	593	Supplement):2082
51	594	16. Li F, Ulrich ML, Shih VF, et al. Mouse Strains Influence Clearance and Efficacy of Antibody
52	595	and Antibody-Drug Conjugate Via Fc-FcgammaR Interaction. Mol Cancer Ther. 2019;18(4):780-7.
53 54	596	17. Sharma SK, Chow A, Monette S, et al. Fc-mediated Anomalous Biodistribution of Therapeutic
54 55	597	Antibodies in Immunodeficient Mouse Models. Cancer Research. 2018.
56	598	18. Tipton TR, Roghanian A, Oldham RJ, et al. Antigenic modulation limits the effector cell
57	599	mechanisms employed by type I anti-CD20 monoclonal antibodies. Blood. 2015;125(12):1901-9.
58		· · · · · · · · · · · · · · · · · · ·
59		
60		

2 3 600 19. Blunt MD, Carter MJ, Larrayoz M, et al. The PI3K/mTOR inhibitor PF-04691502 induces 4 601 apoptosis and inhibits microenvironmental signaling in CLL and the Eµ-TCL1 mouse model. Blood. 5 602 2015;125(26):4032-41. 6 Tutt AL, James S, Laversin SA, et al. Development and Characterization of Monoclonal 603 20. 7 604 Antibodies Specific for Mouse and Human Fcgamma Receptors. The Journal of Immunology. 8 605 2015;195(11):5503-16. 9 Williams EL, Tutt AL, French RR, et al. Development and characterisation of monoclonal 10 606 21. 11 607 antibodies specific for the murine inhibitory FcgammaRIIB (CD32B). European Journal of 12 608 Immunology. 2012;42(8):2109-20. 13 609 Cragg MS, Morgan SM, Chan HT, et al. Complement-mediated lysis by anti-CD20 mAb 22. 14 610 correlates with segregation into lipid rafts. Blood. 2003;101(3):1045-52. 15 23. Cragg MS, Glennie MJ. Antibody specificity controls in vivo effector mechanisms of anti-611 16 CD20 reagents. Blood. 2004;103(7):2738-43. 612 17 24. Zuckier LS, Georgescu L, Chang CJ, et al. The use of severe combined immunodeficiency mice 613 18 19 614 to study the metabolism of human immunoglobulin g. Cancer. 1994;73(S3):794-9. 20 615 25. Nimmerjahn F, Ravetch JV. Divergent Immunoglobulin G Subclass Activity Through Selective 21 616 Fc Receptor Binding. Science. 2005;310(5753):1510-2. 22 Overdijk MB, Verploegen S, Ortiz Buijsse A, et al. Crosstalk between human IgG isotypes and 617 26. 23 618 murine effector cells. The Journal of Immunology. 2012;189(7):3430-8. 24 619 Tao MH, Morrison SL. Studies of aglycosylated chimeric mouse-human IgG. Role of 27. 25 620 carbohydrate in the structure and effector functions mediated by the human IgG constant region. 26 621 The Journal of Immunology. 1989;143(8):2595-601. 27 622 28. Gavin AL, Leiter EH, Hogarth PM. Mouse FcgammaRI: identification and functional 28 29 623 characterization of five new alleles. Immunogenetics. 2000;51(3):206-11. 30 624 29. Takai T, Li M, Sylvestre D, et al. FcR y chain deletion results in pleiotrophic effector cell 31 625 defects. Cell. 1994;76(3):519-29. 32 626 30. Smith KGC, Clatworthy MR. Fc[gamma]RIIB in autoimmunity and infection: evolutionary and 33 627 therapeutic implications. Nature Reviews Immunology. 2010;10(5):328-43. 34 628 Ganesan LP, Kim J, Wu Y, et al. FcyRIIb on liver sinusoidal endothelium clears small immune 31. 35 629 complexes. The Journal of immunology. 2012;189(10):4981-8. 36 630 Vaccaro C, Zhou J, Ober RJ, et al. Engineering the Fc region of immunoglobulin G to 37 32. 631 modulate in vivo antibody levels. Nature Biotechnology. 2005;23:1283. 38 39 632 33. Latvala S, Jacobsen B, Otteneder MB, et al. Distribution of FcRn Across Species and Tissues. 40 633 The Journal of Histochemistry and Cytochemistry. 2017;65(6):321-33. 41 634 34. Abdiche YN, Yeung YA, Chaparro-Riggers J, et al. The neonatal Fc receptor (FcRn) binds 42 635 independently to both sites of the IgG homodimer with identical affinity. mAbs. 2015;7(2):331-43. 43 636 35. Beers SA, Chan CH, James S, et al. Type II (tositumomab) anti-CD20 monoclonal antibody out 44 performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. 637 45 638 Blood. 2008;112(10):4170-7. 46 639 36. Beers S, French R, Chan H, et al. Antigenic modulation limits the efficacy of anti-CD20 47 48 640 antibodies: implications for antibody selection. Blood. 2010;115(25):5191-201. 49 641 37. Vaughan AT, Iriyama C, Beers SA, et al. Inhibitory FcyRIIb (CD32b) becomes activated by 50 therapeutic mAb in both cis and trans and drives internalization according to antibody specificity. 642 51 643 Blood. 2014;123(5):669-77. 52 644 38. Bruhns P, Iannascoli B, England P, et al. Specificity and affinity of human Fcy receptors and 53 645 their polymorphic variants for human IgG subclasses. Blood. 2009;113(16):3716-25. 54 646 39. Prins J, Todd J, Rodrigues N, et al. Linkage on chromosome 3 of autoimmune diabetes and 55 647 defective Fc receptor for IgG in NOD mice. Science. 1993;260(5108):695-8. 56 57 648 40. Pritchard NR, Cutler AJ, Uribe S, et al. Autoimmune-prone mice share a promoter haplotype 58 649 associated with reduced expression and function of the Fc receptor FcyRII. Current Biology. 59 650 2000;10(4):227-30. 60

1						
2 3						
4	651	41. Roopenian DC, Christianson GJ, Sproule TJ, et al. The MHC Class I-Like IgG Receptor Controls				
5	652	Perinatal IgG Transport, IgG Homeostasis, and Fate of IgG-Fc-Coupled Drugs. The Journal of				
6	653	Immunology. 2003;170(7):3528-33.				
7	654	42. Hibbs ML, Hogarth PM, McKenzie IF. The mouse Ly-17 locus identifies a polymorphism of the				
8	655	Fc receptor. Immunogenetics. 1985;22(4):335-48.				
9	656	43. Slingsby JH, Hogarth MB, Walport MJ, et al. Polymorphism in the Ly-17 alloantigenic system				
10	657	of the mouse FcgRII gene. Immunogenetics. 1997;46(4):361-2.				
11	658	44. Kono H, Kyogoku C, Suzuki T, et al. FcgammaRIIB Ile232Thr transmembrane polymorphism				
12	659	associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates				
13 14	660	inhibitory effects on B cell receptor signaling. Human Molecular Genetics. 2005;14(19):2881-92.				
14 15	661	45. Bergtold A, Desai DD, Gavhane A, et al. Cell Surface Recycling of Internalized Antigen Permits				
16	662	Dendritic Cell Priming of B Cells. Immunity. 2005;23(5):503-14.				
17	663	46. Montoyo HP, Vaccaro C, Hafner M, et al. Conditional deletion of the MHC class I-related				
18	664	receptor FcRn reveals the sites of IgG homeostasis in mice. Proceedings of the National Academy of				
19	665	Sciences. 2009;106(8):2788-93.				
20	666	47. Ward ES, Zhou J, Ghetie V, et al. Evidence to support the cellular mechanism involved in				
21	667	serum IgG homeostasis in humans. International Immunology. 2003;15(2):187-95.				
22	668	48. Eigenmann MJ, Fronton L, Grimm HP, et al. Quantification of IgG monoclonal antibody				
23	669	clearance in tissues. mAbs. 2017;9(6):1007-15.				
24 25	670	49. van der Flier A, Liu Z, Tan S, et al. FcRn Rescues Recombinant Factor VIII Fc Fusion Protein				
25 26	671	from a VWF Independent FVIII Clearance Pathway in Mouse Hepatocytes. PloS one.				
20	672	2015;10(4):е0124930-е.				
28	673	50. Knolle PA, Wohlleber D. Immunological functions of liver sinusoidal endothelial cells. Cell				
29	674	Mol Immunol. 2016;13(3):347-53.				
30	675	51. Dahal LN, Dou L, Hussain K, et al. STING Activation Reverses Lymphoma-Mediated Resistance				
31	676	to Antibody Immunotherapy. Cancer Research. 2017;77(13):3619-31.				
32	677	52. White AL, Chan HT, French RR, et al. Conformation of the human immunoglobulin G2 hinge				
33	678	imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell.				
34	679	2015;27(1):138-48.				
35 36	010					
30 37	680					
38						
39	681	FIGURE LEGENDS				
40	001	FIGURE LEGENDS				
41						
42	682	Figure 1: Antibody mediated therapy is reduced in NOD SCID mice due to faster mAb clearance. A -				
43						
44	683	C) Eµ-Tcl1 x hCD20 Tg tumour cells were injected I.P. into SCID or NOD SCID mice. Once tumour was				
45						
46 47	684	detectable in the peripheral blood animals were treated with 100µg rituximab or BHH2 I.P. A) 2 and				
47 48		,				
49	685	14 days after treatment, the percentage of tumour cells in the blood was assessed. B) The number of				
50						
51	686	tumour cells in the blood 14 days after treatment was determined (n=4-9). C) The concentration of				
52						
53	687	hIgG in the plasma was measured by ELISA with a significantly lower concentration of hIgG on day 7				
54	007					
55	688	in NOD SCID compared to SCID mice. hIgG was not detectable in the plasma of NOD SCID mice from				
56	000					
57 58	689	day 14 onwards. D) In the absence of tumour, 100µg cetuximab or 100µg rituximab hIgG2, mIgG2a				
58 59	005	ary 11 charaster of the assence of turnour, 100µg cetuxinitis of 100µg fituxinitis higoz, filigoza				
60	690	or mIgG1 was administered I.P. to SCID or NOD SCID mice. The concentration of human or mouse				
-	000					

IgG in the plasma was determined by ELISA. (hIgG1 n=6-7; combined data from 2 independent experiments, hlgG2, mlgG1 and mlgG2a n=3, representative of 2 independent experiments). ND = not detectable. Statistics; 2 way ANOVA with multiple comparisons *P<0.05, **P<0.01, ***P<0.001. No significant differences were observed between SCID and NOD SCID mice receiving hIgG2 or mlgG1. Figure 2: Rapid antibody half-life requires both the NOD and SCID phenotypes as well as functional Fc. A) 100µg cetuximab injected I.P. into NOD or NOD SCID mice with the concentration of hlgG in the plasma determined by ELISA, over 14 days. (n=4-6). B) 100µg rituximab hlgG1, mlgG1 or mlgG2a was injected I.P. into NSG mice and the concentration of mouse or human IgG in the plasma determined by ELISA, (n=6-8), data combined from 2 independent experiments. (C) 100µg rituximab (hlgG1) or rituximab hlgG1 N297Q (NQ) was injected I.P. into SCID or NOD SCID mice and the concentration of hIgG in the plasma determined by ELISA.(SCID n=3-4, NOD SCID N=7 combined from 2 independent experiments). 2-way ANOVA with multiple comparisons, **P<0.01, ***P<0.001 Figure 3: mFcγR expression profiling in SCID and NOD SCID mice. Splenocytes or peripheral blood from SCID and NOD SCID mice were stained with specific antibodies for Ly6c, Ly6G, CD11b or CD11c to identify monocytes, macrophages and neutrophils, concurrently with mAb to each mFcyR. N=3 combined data from 2 independent experiments, mean +range. No statistically significant differences were observed between strains (2-way ANOVA with Tukeys multiple comparison test, p>0.05) Figure 4: Rapid mAb clearance in NOD SCID mice is dependent on expression of mFcyRII but not activatory mFc γ R. A) NOD SCID and NOD SCID FcR γ -chain deficient mice (NS γ -/-) were injected with

100µg trastuzumab hlgG1 I.V. Tail blood was collected and the concentration of hlgG in the plasma determined by ELISA. (n=3-4) mean +S.D. By day 14 hlgG was not detectable in the plasma of both strains. B) SCID, NOD SCID and NOD SCID mFcγRII-/- mice were injected with 100μg cetuximab I.V. The concentration of hIgG in plasma was determined 2, 7 and 14 days later by ELISA. (n=3-4 per group), representative of 2 independent experiments. 2-way ANOVA with multiple comparisons **p<0.01, ***p<0.001. C) NOD SCID mice were irradiated and reconstituted with bone marrow cells harvested from NOD SCID FcyRII-/- mice. D) Engraftment was confirmed by staining peripheral CD11b+ cells for mFcyRII expression. E) 100µg rituximab hlgG1 or mIgG2a was injected into these or control NOD SCID mice. The concentration of human or mouse IgG in the plasma was determined by ELISA. (n=3-4), mean +S.D. F) NOD SCID mice were injected I.V. with clodronate- or PBS-containing liposomes on days -3, -1, 6 and 13 to deplete macrophages. On day 0, 100µg rituximab was administered I.P. and the concentration of hIgG in the plasma determined by ELISA. Figure 5: NOD SCID mice have low expression of FcRn, associated with rapid mAb clearance, which can be overcome by IgG reconstitution. A) cDNA was produced from SCID and NOD SCID spleen and liver lysates with FcRn transcript expression analysed by qPCR using the ddCT method and expressed relative to that in SCID mice. (n=4-5), unpaired T-test **P<0.01, ***P<0.001. B) Splenocytes from SCID and NOD SCID spleens were lysed and Western blot performed on the lysates for FcRn and Lamin B as a loading control. C) Uptake of MST-HN Abdeg by splenocytes from SCID and NSG mice as well as mIgG reconstituted NSG mice, gated on CD11b+Ly6G-Ly6C+ cells. No protein (red), H435A control (blue) and MST-HN (orange) are shown.N=3-4 with a representative example for each group shown. D) Rituximab hlgG1, hlgG2, mlgG1 or mlgG2a was immobilised on Biacore CM5 chips and recombinant mFcyRII flowed over the chip at pH6 or pH7.4 with a highest receptor concentration of 1000nM and 5-fold serial dilutions. E) SCID or NOD SCID mice were reconstituted with 400µg mlgG2a

and 500µg mlgG1 on day 0. An additional 200µg mlgG2a was given on day 3, 6, 9, 12 and 15. 100µg

3 4	-
5 6	7
4 5 7 8 9 10	7
9 10 11	7
12	7
13 14 15 16 17	7
16 17	7
18 19 20	7
20 21 22	-
23 24	-
21 22 23 24 25 26	7
27 28	
29 30 21	
32 33	
34 35	
30 31 32 33 34 35 36 37	
38 39	
40 41 42	
42 43 44	
45 46	
47 48	
49 50	
51 52 53	
55 54 55	
56 57	

1 2

740 rituximab was then given I.P. on day 0 and the concentration of hIgG in the plasma determined by 741 ELISA. (n=4-8), data combined from 2 independent experiments, mean +S.D. 2-way ANOVA with 742 multiple comparisons ***P<0.001, n.s. = not significant. F) Eµ-Tcl1 tumour cells were injected I.P. 743 into SCID or NSG mice. Once tumour was detectable in the peripheral blood a group of NSG mice 744 were reconstituted with mlgG as described above, animals were then treated with 100µg hlgG1 anti-AL e blood w. .nmparisons *P<0.L 745 mCD20 (18B12) I.P. representative FACs plots are shown on the left. 14 days after treatment, the 746 percentage of tumour cells in the blood was assessed and plotted. (n=5-6 per group), mean +S.D. 1-747 way ANOVA with multiple comparisons *P<0.05, **P<0.01. 748 749

4 5					
5					
6 7					
, 8					
9					
10 11	1	FcyRII (CD32) modulates antibody clearance in NOD SCID mice leading to impaired antibody-			
12 13	2	mediated tumour cell deletion			
14 15	3				
16 17	4	Running title: CD32 and FcRn mediate rapid antibody clearance in NOD SCID mice			
18 19	5				
20 21	6	Robert J. Oldham ¹ , C. Ian Mockridge ¹ , Sonya James ¹ , Patrick J. Duriez ² , HT Claude Chan ¹ , Kerry L.			
22 23	7	Cox ¹ , <u>Vicentiu A Pitic¹</u> , Martin J Glennie ¹ , Mark S. Cragg ¹			
24 25	8	From: ¹ Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of			
26 27	9	Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK,			
28 29	10	² Southampton Experimental Cancer Medicine/CRUK Centre, Protein Core Facility, Cancer Sciences			
30 31	11	Unit, Southampton General Hospital, Southampton, SO16 6YD, UK			
32 33	12				
34 35	13	Correspondence: Mark S. Cragg, Centre for Cancer Immunology, MP127, University of Southampton,			
36 37	14	Southampton General Hospital, Southampton, SO16 6YD, UK (FAX: +44 (0) 23 80704061; e-mail:			
38 39	15	msc@soton.ac.uk)			
40 41	16				
42 43	17	Word Count: 54525866			
44 45	18				
46 47	19				
48 49	20	Keywords: FcyRII, CD32, NSG, NOD, SCID, antibodies, FcRn, antibody clearance, isotype			
50 51	21				
52 53 54	22				
55 56 57		1			
58					
59 60					

1 2 3 4		
5		
6 7		
8		
9 10	22	
11	23	LIST OF ABREVIATIONS
12	24	BMDM: bone marrow derived macrophage
13 14		
15	25	ELISA: enzyme-linked immunosorbent assay
16	20	
17 18	26	FcyR: Fc gamma receptor
19	27	FcRn: neonatal Fc receptor
20		
21	28	HPLC: high performance liquid chromatography
22 23		
24	29	HRP: horseradish peroxidase
25	30	IgG: immunoglobulin G
26 27		
28	31	LSEC: liver sinusoidal endothelial cells
29		
30 31	32	mAb: monoclonal antibody
32	33	NK: natural killer
33	55	
34 25	34	NOD: non-obese diabetic
35 36		
37	35	NSG: non-obese diabetic severe combined immune deficient IL-2 γ-/-
38	36	PBS: phosphate buffered saline qPCR: quantitative polymerase chain reaction RBC: red blood cell
39 40	50	PBS. phosphate bullered same
41	37	qPCR: quantitative polymerase chain reaction
42		
43 44	38	RBC: red blood cell
45	39	SCID: severe combined Immune deficient
46	39	SCID: severe combined immune dencient
47	40	SEC: size exclusion chromatography
48 49		
50	41	SPR: surface plasmon resonance
51		
52 53	42	
55		
55		2
56 57		
57 58		
50		

ABSTRACT

Background

1

2 3		
4		
5		
6 7		
8		
9 10		
11		43
12 13		44
14 15		45
16 17		46
18		47
19 20		48
21 22		49
23 24		50
25 26		51
27 28		52
29		53
30 31		54
32		55
33 34		
35 36		56
37		57
38 39		58
40 41		59
42		60
43 44		61
45 46		62
47		63
48 49	I	64
50 51		65
52		66
53 54		
55		
56		
57 58		
58 59		

60

46 antibodies (mAb). Most common are NOD SCID and their derivatives such as NOD SCID IL-2 y-/-47 (NSG), which are attractive hosts for patient derived xenografts. Despite their widespread use, the relative biological performance of mAb in these strains has not been extensively studied. 48 49 Methods Clinically relevant mAb of various isotypes were administered to tumour and non-tumour bearing 50 SCID and NOD SCID mice and the mAb clearance monitored by ELISA. Expression analysis of surface 51 proteins in both strains was carried out by flow cytometry and immunofluorescence microscopy. 52 53 Further analysis was performed in vitro by surface plasmon resonance to assess mAb affinity for Fcy receptors (FcyR) at pH 6 and pH 7.4. NOD SCID mice genetically deficient in different FcyR were 54 55 utilised to delineate their involvement. 56 Results 57 Here we show that strains on the NOD SCID background have significantly faster antibody clearance than other strains leading to reduced anti-tumour efficacy of clinically relevant mAb. This rapid 58 59 clearance is dependent on antibody isotype, the presence of Fc glycosylation (at N297) and 60 expression of FcyRII. Comparable effects were not seen in the parental NOD or SCID strains, demonstrating the presence of a compound defect requiring both genotypes. The absence of 61 62 endogenous IgG was the key parameter transferred from the SCID as reconstituting NOD SCID or 63 NSG mice with exogenous IgG overcame the rapid clearance and recovered anti-tumour efficacy. In 64 contrast, the NOD strain was associated with reduced expression of the neonatal Fc Receptor (FcRn). We propose a novel mechanism for the rapid clearance of certain mAb isotypes in NOD SCID mouse 65 strains, based upon their interaction with FcyRII in the context of reduced FcRn. 66

Immune compromised mice are increasingly used for the pre-clinical development of monoclonal

1 2		
2		
4		
5 6		
7		
8		
9 10		
11	67	Conclusions
12 13	68	This study highlights the importance of understanding the limitation of the mouse strain being used
14	69	for pre-clinical evaluation, and demonstrates that NOD SCID strains of mice should be reconstituted
15 16	70	with IgG prior to studies of mAb efficacy.
17	-4	
18 19	71	
20	72	INTRODUCTION
21		
22 23	73	The growth in the numbers of monoclonal antibodies (mAb) being developed for the clinic,
24 25	74	particularly for use in cancer, has led to the concurrent development of in vivo models enabling their
26	75	pre-clinical evaluation.[1] These models have increasingly made use of immune-compromised mice
27 28	76	for growing patient patient derived tumour xenografts and engrafting human immune or stem
29 30	77	cells.[2, 3]
31 32	78	Commonly used models include non-obese diabetic (NOD) severe combined immunodeficient (SCID)
33 34	79	mice. The SCID mutation occurs in the Prkdc gene and impairs V(D)J recombination, leading to an
35 36	80	absence of functional B and T cells, and resulting in mice lacking endogenous IgG.[4, 5] The NOD
30 37	81	phenotype results in reduced NK cell frequency and function and the absence of haemolytic
38 39	82	complement activity.[6] Whilst these immune deficient phenotypes make NOD SCID mice attractive
40	83	recipients for cell transfers (such as human PBMCs and tumour xenografts), - they may be further Commented [OR1]: Reviewer 3 point 7
41 42	84	enhanced by additional genetic deletions such as the IL-2 γ-chain (NSG).[7, 8]
43 44	85	Whilst the effector function defects of NOD SCID mice and their related strains are often considered,
45 46	86	one aspect regularlyoften overlooked is mAb clearance, despite the fact that genetic alterations, as Commented [OR2]: Reviewer 3 point 8
47	87	well as the lack of endogenous IgG in immune deficient strains, could readily impact on mAb
48 49	88	pharmacokinetics, resulting in altered efficacy.[9]
50 51	89	The primary receptors responsible for mediating IgG mAb activity are the Fc gamma receptor (FcyR)
52 53	90	family. It is comprised of 6 receptors in humans and 4 in mice, which vary in expression pattern and
54 55		4
56		
57		
58 59		
60		

6		
7		
8		
9 10	91	affinity for IgG subclass.[10] Another receptor capable of interacting with IgG in both humans and
11 12	92	mice is FcRn, which is widely expressed throughout the body. The pH dependent nature of FcRn-IgG
13 14	93	interactions allows the receptor to scavenge IgG from lysosomes at an acidic pH, releasing it back
15 16	94	into the circulation at neutral pH, providing the long in vivo half-life of antibodies.[11-13]
17 18	95	In addition to the potential issue of altered efficacy arising from the lack of endogenous IgG (and
19 20	96	reduced competition for FcyR with therapeutic mAb) in NOD SCID mice, previous reports indicate
21	97	that immune-compromised mice, such as NOD SCID and NSG, have reduced mAb half-life compared
22 23	98	to related strains.[14-16] More recently, it was reported that NOD SCID mice display an anomalous
24 25	99	biodistribution of therapeutic antibodies, including reduced tumour targeting.[17] This suggests
26 27	100	further work is required to understand the limitations of these models and develop strategies to
28	101	overcome their shortcomings to make more translationally-relevant pre-clinical tumour models.
29 30	102	During a recent project examining the efficacy of a tumour targeting antibody in NOD SCID mice, we
31 32	103	noted rapid mAb clearance of human (h) $lgG1$ and mouse (m) $lgG2a$ isotypes. Using a Eµ-Tcl1
33 34	104	hCD20+ tumour model we found this rapid clearance resulted in reduced efficacy of clinically
35 36	105	relevant mAb, such as rituximab. Employing genetically altered mice, we showed the rapid mAb
37	106	clearance was dependent on the expression of the inhibitory FcyR, FcyRII. Additionally, we identified
38 39	107	a reduced level of FcRn expression in NOD SCID mice, leading us to propose a novel hypothesis for
40 41	108	how mAb half-life is regulated in these strains and means through which it can be overcome.
42 43	109	
44 45	110	
46 47		
48		
49		
50		
51		
52		
53		
54		5
55 56		
50 57		
58		
59		
60		

111 MATERIALS AND METHODS

In vivo experiments. Mice used in this study were bred and maintained in local facilities with experiments approved through local ethics committees and performed according to Home Office guidelines. Generating bone marrow chimera. Recipient mice were provided with acid water, pH 2.5 on day -7 until 14 days after bone marrow receipt. Recipients received 1.1Gy radiation on days -1 and 0 using a MultiRad 350 X-ray Irradiator (Faxitron). Bone marrow was harvested from donor mice and 3-8x10⁶ cells injected I.V. into recipients. Systemic reconstitution was confirmed by flow cytometry 8-10 weeks after engraftment. hCD20⁺ EµT<u>CLcl-1 tumour model</u>. This model has been described previously.[18, 19] Briefly, 1x10⁷ cryopreserved Eµ-TCL-1 transgenic (Tg) or hCD20⁺ Eµ-TCLcl-1 Tg tumour splenocytes were injected I.P. into recipient mice. The presence of tumour was monitored in peripheral blood. Once tumour cells (CD19+CD5^{mid}) were detectable by flow cytometry, mice were treated. The white blood cell count was determined using a Coulter Z1 particle counter with red blood cells (RBC) lysed using ZAP-OGLOBIN II (both Beckman Coulter) or by flow cytomery using Precision Count beads (Biolegend). In vivo antibodies. All clinical antibodies were gifted from the Southampton General Hospital oncology pharmacy. Others were produced in-house. 18B12 and Rituximab isotype variants were cloned onto the appropriate IgG framework, produced in CHO cells and purified from culture supernatant with Protein A. Purity was assessed by electrophoresis (Beckman EP; Beckman) and lack of aggregation confirmed by SEC HPLC. Unless otherwise stated, all antibodies were administered

134 I.P. in 200µl sterile PBS (Severn Biotech).

https://jitc.bmj.com

Flow cytometry. Flow cytometry was performed using the antibodies listed in supplementary Table 1. anti-mFcyR have been reported previously.[20, 21] Following staining, RBC lysis buffer was added (AbD Serotec) and cells washed before analysis on a FACS Canto or FACS Calibur flow cytometer (BD Biosciences). Alexafluor647 labelled MST-HN and H435A Abdegs for analysing FcRn expression were a kind gift from Prof Sally Ward (University of Southampton) and used at 5µg/ml with Fc block (2.4G2, 5µg/ml) prior to extracellular staining. Generating bone marrow derived macrophages (BMDM). The tibia and fibia femur of mice were flushed with sterile complete RPMI (RPMI 1640 (Life Technologies), 2mM L-glutamine, 1mM sodium pyruvate, 100U/ml penicillin, 100µg/ml streptomycin (all Life Technologies), 10% foetal calf serum (Sigma-Aldrich). Cells were plated in 6-well plates at 0.8x10⁶ cells/ml in complete RPMI +20% L929 conditioned media for 7-10 days. Determining plasma IgG concentration. IgG concentration was determined by ELISA with reference to a standard curve of the same antibody as follows: For for hlgG, maxisorp plates (Thermo Scientific) were coated with 5µg/ml goat anti-human Fc-specific polyclonal antibody (Sigma-Aldrich) and blocked with PBS +1% BSA before addition of serum for 1hour and washing. Detection was with Horseradish peroxidase (HRP) conjugated F(ab')₂ goat anti-hFc specific antibody (Jackson Immunoresearch). Plates were incubated with OPD substrate and with OD₄₉₅ measured using an Epoch microplate spectrophotometer (Biotek). For quantification of mIgG, plates were coated with rabbit anti-mlgG and detected with HRP- rabbit anti-mlgG (both Jackson Immunoresearch).

Heat aggregation of IgG Purified IgG was heated to 64°C for 30 minutes. The aggregated fraction
was purified on a superdex S200 column (GE Healthcare). Aggregation was confirmed by HPLC using
a Zorbax GF-250 column (Agilent).

Producing mFcyRII extracellular domain protein. RNA was isolated and cDNA generated from SCID or NOD SCID BMDMs and the mFcyRII gene amplified using gene specific primers. Subsequently, the extracellular domain (residues 1-207) of mFcyRII were cloned with the addition of a 6xHis tag. The construct was transfected into MEXi -293E cells (IBA lifesciences) and FcyRII-His expressed according to the manufacturer's protocol and protein purified using a HisTrap HP column on an AKTA prime system (Both GE biosciences) and purity confirmed by SDS-PAGE.

Surface Plasmon resonance (SPR) analysis. SPR was performed using a Biacore T100 system
upgraded to a T200 (GE Life Sciences). For mFcyRII isoforms, anti-His capture antibody was
immobilised on a CM5 chip (GE life Sciences). Purified FcyRII-His (10 µg/ml) was flowed over the chip
at 30µl/min for capture. IgG was injected at 30µl/min. For all other analysis, IgG was immobilised via
amine coupling with a target of 2000 RU. Recombinant mFcyRII or mFcRn (R&D systems) was flowed
over the immobilised IgG in HBS-EP+ buffer (GE Life Sciences) at pH7.4 or pH6.0. Affinity constants
were determined by analysis with Biacore Bioevaluation software assuming 1:1 binding.

Quantitative polymerase chain reaction (qPCR) mRNA was extracted from SCID or NOD SCID
splenocytes and hepatocytes using an RNeasy Mini Kit (Quiagen) and cDNA generated using a
Superscript III reverse transcription kit (Life Technologies). qPCR was performed using GoTaq qPCR
master mix (Promega) using gene specific primers, with HPRT1 as a control. Ct values were
normalised using HPRT1 values and the ΔΔCt method used to calculate fold change.

6		
7		
8		
9		
10	182	
11 12		
13	183	Western blotting. Lysates were produced from 5x10 ⁶ SCID or NOD SCID splenocytes and
14	184	hepatocytes using RIPA buffer (150 mM NaCl, 1% Triton X-100, 0.5% Deoxycholate, 0.1% SDS, 50 mM
15	104	
16	185	Tris, pH 8) and run on a 12% Novex Nupage BIS-TRIS gel (Thermo Fisher) before transfer to a
17	186	methylcellulose membrane (GE Lifesciences). Primary antibodies were anti-mouse FcRn and Lamin B
18	100	
19 20	187	with detection using an HRP-conjugated donkey anti-goat antibody (Supplementary Table 1).
20 21		
22	188	
23		
24	189	Immunofluorescence. Liver tissue from BALB/c or NSG mice was embedded in OCT (CellPath) and
25	190	frozen in isopentane on dry ice. 8µM sections were cut and transferred to Superfrost plus slides
26		
27	191	(Thermo Scientific), air dried overnight and fixed in 100% acetone. Following blocking, primary
28 29	192	antibodies against FcRn or FcyRII were added overnight before detection with Alexafluor488-
29 30		
31	193	labelled secondary antibody (Supplementary Table 1) for 45 minutes. Subsequently, primary
32	194	antibodies against Clec4F or cytokeratin 8 were added for 2 hours before detection with AlexaFluor-
33		
34	195	549 or AlexaFluor-568 conjugated secondary antibodies (Supplementary Table 1). Slides were
35	196	mounted using Vectashield hardset with DAPI (Vector Laboratories).
36 37		
38	197	Images were collected using a CKX41 inverted microscope with a reflected fluorescence system
39	198	equipped with a DP22 camera running CellSens software, using Plan Achromat 10 × 0.25 and 40 ×
40	190	equipped with a DF22 camera running censens software, using rian Achromat 10 × 0.25 and 40 ×
41	199	0.65 objective lenses (all from Olympus). Images were transferred to ImageJ (Fiji) or Photoshop
42	200	(Adobe) where background autofluorescence was removed, contrast stretched and brightness
43 44	200	
44 45	201	adjusted to maximise clarity, with all images treated equivalently.
46		
47	202	
48		
49	203	RESULTS
50	204	A stitute way to be a stitute in NOD COID with the second stitute to second
51 52	204	Anti-tumour mAb therapy is less effective in NOD SCID mice due to rapid antibody clearance.
52 53		
54		
55		9
56		
57		
58		
59 60		
00		

To explore potential differences of recipient mouse strains on immunotherapy efficacy, SCID and NOD SCID mice bearing established hCD20⁺ Eµ-TeCLI-1 tumours were treated with rituximab. Although initial tumour clearance was comparable between strains, 14 days after mAb treatment there were significantly more tumour cells in the peripheral blood of NOD SCID compared to SCID mice (Figure 1A and B). To determine if this was associated with rituximab's type I nature, [22, 23] we repeated the experiment with the type II anti-hCD20 mAb, BHH2,[18] and observed the same reduced efficacy in NOD SCID compared to SCID mice (Figure 1B). To understand this difference in efficacy, the concentration of injected hlgG in the plasma of mice following treatment was determined (Figure 1C). This revealed that 7 days after mAb treatment there was significantly less (~10 fold) hIgG in the plasma of NOD SCID compared to SCID mice (16.7 v 1.6 µg/ml) suggesting that rapid hlgG1 clearance in NOD SCID mice was responsible for the less prolonged tumour deletion. To investigate if whether the rapid clearance was related to the mAb, strain and/or tumour, an alternative hlgG1 mAb, cetuximab, was administered to non-tumour bearing SCID and NOD SCID mice. Cetuximab was also more rapidly cleared from NOD SCID compared to SCID mice with hIgG being undetectable in the plasma of NOD SCID mice by day 7 post-administration (Figure 1D). Similar results were also observed with other hlgG1 mAb including trastuzumab (Supplementary Figure 1), showing that the rapid clearance is directly related to the NOD SCID strain, independent of tumour and a common feature of therapeutically therapeutically-relevant hlgG1 mAb. Importantly, the hlgG1 clearance in SCID and NOD mice was comparable to that of immune-competent BALB/c mice (Supplementary Figure 2 and previously shown [24]), confirming fast hlgG1 clearance in NOD SCID mice, rather than slow clearance in SCID or NOD mice. Furthermore, the lack of a difference in SCID mice demonstrates that rapid hIgG clearance does not result from the absence of endogenous IgG or immune deficiency per se.

4		
5		
6		
7		
8		
9 10	229	Rapid mAb clearance in NOD SCID mice is isotype dependent and requires both SCID and NOD
11		
12 13	230	genotypes.
14	231	To determine if rapid mAb clearance in NOD SCID mice extended beyond hlgG1, isotype switch
15	231	To determine in rapid map clearance in NOD SCID mile extended beyond night, isotype switch
16 17	232	variants of rituximab were generated and administered to SCID or NOD SCID mice. Similar to hlgG1,
17	233	mlgG2a also had a significantly faster mAb clearance in NOD SCID mice (Figure 1D), being no longer
19 20	234	detectable in the plasma by day 14. In contrast, hlgG2 and mlgG1 had similar clearance rates in both
21	235	strains. These results demonstrate that faster mAb clearance in NOD SCID mice is isotype
22 23	236	dependent.
23 24		
25	237	We next assessed if whether the rapid IgG clearance occurred in NOD and NSG strains. NOD mice
26 27	238	had a normal hlgG1 clearance rate, akin to that seen in SCID and BALB/c (Figure 2A). However, NSG
28 29	239	mice displayed rapid clearance, comparable to that in NOD SCID mice (Figure 2B). These data
30	240	demonstrate that both NOD and SCID phenotypes are necessary to confer rapid IgG clearance.
31 32	241	Moreover, the differences between isotypes in NOD SCID mice also occurred in the NSG strain, with
33 34	242	hlgG1 and mlgG2a but not mlgG1 exhibiting rapid clearance (Figure 2B).
35	242	
36	243	
37 38	244	Rapid hlgG1 clearance is dependent on FcyR binding.
39		
40	245	Given that mIgG2a and hIgG1 have similar FcyR binding profiles (binding to all mFcyR, with
41 42	246	substantial affinity for several activatory $Fc\gamma R$), we hypothesised that the rapid mAb clearance of
43 44	247	hlgG1 and mlgG2a isotypes in NOD SCID mice was mediated by FcγR.[25, 26] This was investigated
45	248	using an N279Q (NQ)-mutant of rituximab which lacks glycosylation at N297 and does not robustly
46 47	249	engage mFcγR (without compromising interaction with FcRn).[27] The NQ-mutant remained present
48 49	250	in the plasma of NOD SCID mice at significantly higher concentrations at all time-points, supporting
50	251	mFcyR involvement in the rapid hlgG1 clearance in NOD SCID mice (Figure 2C). Moreover, the
51 52		
52		
53 54		
54 55		11
55 56		
50 57		
58		

concentration of rituximab-NQ was comparable between SCID and NOD SCID mice at all time-points suggesting that abrogation of mFcyR binding restored normal mAb clearance rate. SCID and NOD SCID mice have comparable FcyR expression levels. Having established that the rapid hlgG1 clearance rate in NOD SCID mice was likely dependent on mFcyR, the relative expressions levels of these receptors in SCID and NOD SCID mice was investigated (Figure 3A). Whilst there were no statistically significant differences in expression levels (2-way ANOVA P>0.05) trends towards differential expression were observed. mFcyRII expression was lower on both Ly6C^{Hi} and Ly6C^{Lo} monocytes in NOD SCID compared to SCID mice (Figure 3B). Neutrophil and splenic macrophage FcyRIII expression was higher in SCID mice, with a similar expression profile for BMDMs (Supplementary Figure 3a). The expression of mFcyRI was not investigated as it is known to contain multiple polymorphisms in NOD SCID mice which prevents its detection using available antibodies.[28] The subtle differences in activatory mFcyR expression detailed above appear to be compensatory with a similar overall expression of activatory mFcyR in each strain. In summary, only monocyte FcyRII was found to substantially differ between SCID and NOD SCID mice; the relevance of this to mAb clearance rate remains to be determined. Rapid hIgG1 clearance in NOD SCID mice is dependent on FcyRII. To understand the contribution of specific mFcyR to rapid antibody clearance in NOD SCID mice, we made use of animals lacking different classes of mFcyR. In NOD SCID FcR y-/- mice (which express no activatory FcyR at the cell surface[29]) there was no significant difference in the concentration of hlgG1 over time compared to NOD SCID mice (Figure 4A);-), demonstrating that a lack of activatory mFcyR does not influence hIgG1 clearance. However, in NOD SCID mice deficient in the inhibitory mFcyRII, the concentrations of hIgG1 were significantly increased compared to wild-type NOD SCID

Commented [OR3]: Reviewer 1, major comment 1

Commented [OR4]: Reviewer 3 point 4: Here we make it clear that at this point in the manuscript the relevance of expression level to half-life has not yet been determined

mice retaining mFcyRII (Figure 4B) and comparable with SCID mice. These results demonstrate that the rapid hlgG1 clearance in NOD SCID mice is dependent on mFcyRII. Moreover, this result suggests that the somewhat reduced FcyRII expression seen previously in NOD SCID mice is not responsible for the fast hlgG1 clearance rate.

The polymorphic variants of mFcyRII have comparable affinity for hIgG1.

A number of autoimmune strains, including NOD express the ly17.1 form of mFcyRII whilst most other in-bred strains, including BALB/c, express the ly17.2 variant.[30] These two polymorphic forms vary in four amino acids, three of which are located in the extracellular domain.[30] The extracellular domain of FcyRII from SCID and NOD SCID mice was cloned and expressed; their relative affinity for IgG was then determined by SPR. Neither heat aggregated, pooled hIgG or individual isotypes of IgG displayed substantially different binding affinities to the ly17.1 and ly17.2 variants (Table 1). or Review

Commented [OR5]: Reviewer 3 point 4. At this point it is apparent that the reduced FcyRII expression is not responsible for the effects observed, therefore we have clarified this point here.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	289
29 30	290
31 32	291
33	292
34 35 36	293
37 38	294
39 40	295
41 42	296
43 44	297
45	298
46 47	299
48 49	300
50	301
51 52	302
53 54 55 56 57 58 59 60	303

		NOD SCID	SCID	
		KD (M x10⁵)	KD (M x10 ⁻⁶)	
	Aggregated hIgG	0.13	0.15	
	Cetux hIgG1	4.38	5.42	
	Ritux hIgG1	2.50	3.18	
	Ritux hIgG2	4.82	4.65	
	Ritux mlgG1	2.25	2.02	
	Ritux mlgG2a	2.43	2.63	
D	Table 1. Affinity of mFo	cyRII variants for IgG s	ubtypes. Recombinant mFcyRII extr	acellular doma
L	from SCID or NOD SCID	mice were captured	on a Biacore CM5 chip using an imn	nobilised anti-H
2	antibody. IgG of specifi	ic isotypes or heat agg	gregated, pooled hIgG was flowed o	ver the chip an
	antibody. IgG of specifi KD value calculated usi			ver the chip an
2 3				ver the chip an
3				ver the chip an
	KD value calculated usi	ng Biacore evaluatior		Re
3 1 5	KD value calculated usi	ing Biacore evaluation Dietic mFcγRII or pha	software.	Ab clearance.
3 4 5	KD value calculated usi Absence of haematope mFcyRII is expressed of	ng Biacore evaluation Dietic mFcγRII or pha n both haematopoiet	software. gocytes does not restore normal m	Ab clearance. , 31] We theref
3 4 5 5 7	KD value calculated usi Absence of haematope mFcγRII is expressed of sought to determine w	ng Biacore evaluation Dietic mFcyRII or pha n both haematopoiet hich mFcyRII-express	software. gocytes does not restore normal m c and non-haematopoietic cells.[30	Ab clearance. , 31] We theref pid clearance o
3	KD value calculated usi Absence of haematope mFcyRII is expressed of sought to determine w hIgG1. Accordingly, NC	n both haematopoiet hich mFcyRII or pha bith haematopoiet	software. gocytes does not restore normal m c and non-haematopoietic cells.[30 ng cells were responsible for the ra	Ab clearance. , 31] We theref pid clearance o e marrow from
3 4 5 6 7 8	KD value calculated usi Absence of haematope mFcyRII is expressed of sought to determine w hIgG1. Accordingly, NC SCID FcyRII-/- mice (Fig	n both haematopoiet hich mFcyRII or pha bietic mFcyRII or pha both haematopoiet blo SCID mice were irra gure 4C and D). These	gocytes does not restore normal m c and non-haematopoietic cells.[30 ng cells were responsible for the ra adiated and reconstituted with bone	Ab clearance. , 31] We theref pid clearance o e marrow from oietic cells lack
3 4 5 7 8 9	KD value calculated usi Absence of haematope mFcyRII is expressed of sought to determine w hIgG1. Accordingly, NC SCID FcyRII-/- mice (Fig mFcyRII displayed rapid	n both haematopoiet hich mFcyRII or pha hoth haematopoiet bich mFcyRII-express D SCID mice were irra ure 4C and D). These d clearance of hIgG1 a	software. gocytes does not restore normal m c and non-haematopoietic cells.[30 ng cells were responsible for the ra adiated and reconstituted with bone mice, reconstituted with haematop	Ab clearance. , 31] We theref pid clearance o e marrow from oietic cells lack on cells of the
3 1 5 5 7 3 9 0	KD value calculated usi Absence of haematope mFcyRII is expressed of sought to determine w hIgG1. Accordingly, NC SCID FcyRII-/- mice (Fig mFcyRII displayed rapid haematopoietic system	n both haematopoiet bietic mFcyRII or pha n both haematopoiet hich mFcyRII-express DD SCID mice were irra gure 4C and D). These d clearance of hIgG1 a n was not responsible	gocytes does not restore normal m c and non-haematopoietic cells.[30 ng cells were responsible for the ra adiated and reconstituted with bone mice, reconstituted with haematop and mIgG2a, indicating that mFcyRII	Ab clearance. , 31] We theref pid clearance o e marrow from oietic cells lack on cells of the e 4E). We next
; ; ; ;	KD value calculated usi Absence of haematope mFcyRII is expressed of sought to determine w hIgG1. Accordingly, NC SCID FcyRII-/- mice (Fig mFcyRII displayed rapid haematopoietic system considered whether ph	ing Biacore evaluation Dietic mFcyRII or pha In both haematopoiet which mFcyRII-express DD SCID mice were irra gure 4C and D). These d clearance of hIgG1 a in was not responsible hagocytes, particularly	gocytes does not restore normal m c and non-haematopoietic cells.[30 ng cells were responsible for the ra adiated and reconstituted with bone mice, reconstituted with haematop and mIgG2a, indicating that mFcyRII for the rapid mAb clearance (Figure	Ab clearance. , 31] We theref pid clearance o e marrow from oietic cells lack on cells of the e 4E). We next at be responsible

(Supplementary Figure 3b) but only resulted in a small increase in circulating hIgG1 7 days after mAb administration, with no hlgG1 detectable by day 14 (Figure 4F). This suggests that phagocytes in NOD SCID mice are not primarily responsible for the rapid hlgG1 clearance and that a non-haematopoietic cell type is responsible. Given their high expression of mFcyII, the Liver Sinusoidal Endothelial cells (LSEC) seem the most likely candidate.[31] We confirmed high expression of mFcyRII on these cells by immunofluorescence of livers from both BALB/c and NOD SCID mice (Supplementary Figure 4 and b). Moreover, we found hIgG detectable at substantially higher levels within the liver of NSG than SCID mice following administration of hIgG1 mAb confirming a role for the liver as a site of hIgG1 accumulation (Supplementary Figure 4c).

Commented [OR6]: Reviewer 3 point 5 - we have now referenced the new part of supplementary figure 4 showing staining for hlgG in the liver.

NOD SCID mice have reduced FcRn expression.

As mFcyRII is not known to directly regulate mAb clearance, we next considered whether FcRn might be involved in the process of controlling clearance rate in the NOD SCID mouse. Importantly, FcRn in NOD SCID mice does not to contain any sequence variations compared to other strains and has normal binding to both human and mouse IgG.[14]. However, qPCR revealed significantly lower FcRn transcription in both spleen and liver of NOD SCID versus SCID mice (Figure 5A). This result was confirmed at the protein level by western blotting (Figure 5B) and flow cytometry using the MST-HN protein which maintains FcRn binding at both acidic and neutral pH (Figure 5C).[32] This latter approach demonstrated a lower expression of FcRn in Ly6C+ monocytes from NSG compared to SCID mice (MFI 3545706 v 29611957, mean of N=3-4). Combined, these results demonstrate that there is a lower expression of FcRn in the tissues known to be important for IgG recycling (spleen and liver) of NOD SCID mice compared to SCID.[33]

> > https://jitc.bmj.com

4	
5	
6	
7	
8	
9	
10	327
11 12	328
13	520
14	329
15	525
16	330
17	331
18	221
19	332
20	222
21	333
22 23	334
25 24	
25	335
26	
27	336
28	337
29	
30	338
31	339
32	000
33 34	340
34 35	341
36	541
37	342
38	242
39	343
40	344
41	245
42	345
43	346
44 45	-
45 46	347
47	240
48	348
49	349
50	
51	350
52	351
53	
54	
55 56	
56 57	
58	
59	
~~	

1 2 3

> 828 FcRn. 329 Whilst reduced FcRn could explain rapid IgG clearance, it does not provide an explanation for the 30 isotype dependent nature of the effects seen, as all isotypes should be affected equally. In contrast, mFcyRII is known to display differential affinity for IgG isotypes (high for mIgG1, low for mIgG2a and 331 332 hlgG1) and so we considered if mFcyRII specificity might be involved in regulating the clearance of the different isotypes. Using SPR and two different mAb of each isotype, we confirmed that at pH7.4 33 34 mFcγRII had ~10 fold higher affinity for mIgG1 (2.74x10⁻⁷M) versus mIgG2a (1.18x10⁻⁶M and hIgG1 (3.02x10⁻⁶) whilst the affinity for hIgG2 was lower still (7.65x10⁻⁶M) (Table 2 and Figure 5D). 335 We next considered that mFcyRII might internalise cell-surface bound IgG and by virtue of its higher 36 37 affinity, preferentially protect mIgG1 from degradation following internalisation. To do this, it would 38 need to remain bound to IgG in a low pH environment, akin to FcRn. We therefore repeated SPR 339 analysis at pH6.0, and revealed that mFcyRII retained binding at low pH, with affinity for mIgG1, mlgG2a and hlgG1 ~100-fold higher than at pH7.4. Notably, the KD for mlgG1 binding mFcyRII was 840 2.77x10⁻⁹M, >10-fold higher than for hIgG1 and mIgG2a. This suggests that mFcyRII is capable of 841 842 binding IgG at an acidic pH with the potential to protect IgG from degradation being greatest for mlgG1. Using previously published affinity data for IgG binding to mFcRn, we calculated the ratio of 43 mFcyRII:FcRn binding for different isotypes at pH6.0 (Table 2 and Figure 5D).[34] hlgG2 exhibited a 344 high mFcyRII:FcRn ratio, suggesting preferential binding for FcRn at an acidic pH. In comparison, 845 46 hlgG1 had a ratio around 1 (indicating no overall preference) whereas mlgG1 had a low ratio, preferentially binding with a higher affinity to mFcyRII than to FcRn. 347 848 Having hypothesised that the differential interaction with FcRn and FcyRII may play a role in the recycling of IgG, and with the knowledge that the liver expresses 75% of the FcyRII in the mouse, we 849 850 sought to determine the distribution of these two receptors within the liver.[31] We found mFcyRII on a subset of Clec4F⁺ Kupffer cells but not on Cytokeratin 8⁺ hepatocytes (Supplementary Figure 4). 851

mFcyRII has a pH dependent affinity for IgG isotypes and is expressed on the same cell types as

9		
10	352	However, the majority of mFcyRII was expressed by LSEC as determined by their morphology. This is
11		
12	353	consistent with a previous study reporting 90% of the liver mFcyRII as being expressed by LSEC when
13	1.	
14	354	assessing immunofluorescence by pixel intensity[31] We found FcRn to be widely expressed
15	355	throughout the liver including on Kupffer cells and hepatocytes (Supplementary Figure 4). This is
16		
17	356	consistent with a previous report showing FcRn mRNA in various cell types, additionally identifying
18		
19	357	LSEC as having the highest expression level.[31] Together, these results suggest that LSEC may be the
20	250	prodominant coll tupo collevergering ForPli and FoPn
21	358	predominant cell type co-expressing FcyRII and FcRn.

Overall, these data provided the possibility that antibody clearance in NOD SCID strains is controlled through differential engagement of the various isotypes by mFcyRII and FcRn. However, these effects have not been reported previously in standard in-bred strains, or the single NOD and SCID strains, indicating that the proposed pathway, which is at least in part mediated by isotype-dependent binding of mFcyRII, is only revealed in the absence of endogenous IgG.

	FcγRII KD pH7.4 (M)	FcyRII KD pH6 (M)	Published FcRn KD pH6 (M)	KD ratio FcyRII/FcRn
hIgG1 #1	3.02 x10 ⁻⁶	4.92 x10 ⁻⁸	7.2x10 ⁻⁸	0.68
hIgG1 #2	6.61 x10 ⁻⁶	7.90 x10 ⁻⁸	7.2 x10 ⁻⁸	1.10
hIgG2 #1	7.65 x10 ⁻⁶	2.10 x10 ⁻⁷	6.3x10 ⁻⁸	3.33
hIgG2 #2	1.45 x10 ⁻⁵	2.18 x10 ⁻⁷	6.3x10 ⁻⁸	3.46
mlgG1 #1	2.74 x10 ⁻⁷	2.77 x10 ⁻⁹	1.57x10 ⁻⁶	0.0018
mlgG1 #2	4.98 x10 ⁻⁷	3.62 x10 ⁻⁹	1.57x10 ⁻⁶	0.0023
mlgG2a #1	1.18 x10 ⁻⁶	2.36 x10 ⁻⁸	4.9x10 ⁻⁷	0.054
mlgG2a #2	1.10 x10 ⁻⁶	2.41 x10 ⁻⁸	4.9x10 ⁻⁷	0.049

Table 2. Affinity of mFcyRII and mFcRn for IgG subtypes. Antibodies were immobilised on a Biacore CM5 chip before flowing mFcyRII or mFcRn over the chip. FcRn was used at pH6 with FcyRII at pH6 and pH7.4. KD was calculated using Biacore evaluation software. Rapid hlgG1 clearance and reduced mAb efficacy can be overcome by lgG reconstitution. We therefore hypothesised that the addition of exogenous mlgG would restore normal mAb clearance rate in NOD SCID mice. Accordingly, SCID and NOD SCID mice were reconstituted with mlgG1 and mlgG2a to a level equivalent to that seen in the plasma of wild type BALB/c mice (Supplementary Figure 5). Subsequently, the clearance of hIgG1 was investigated (Figure 5E). Reconstitution with mIgG overcame the rapid clearance of hIgG1 in NOD SCID mice such that it became comparable to that observed in SCID mice. In contrast, mIgG addition did not significantly alter the clearance of hIgG in SCID mice. Additionally, reconstitution with mIgG substantially reduced the accumulation of hIgG in the liver (Supplementary Figure 4c). Importantly, the expression of FcRn was not altered by reconstitution with mlgG (Figure 5c). Finally, we sought to determine if overcoming rapid clearance of hIgG1 by mIgG reconstitution could improve therapy, using an Eµ-TCL1 tumour and a hIgG1 antibody targeting mouse CD20 (18B12). Using this second tumour model we found the differences in duration of therapy between SCID and NSG mice was maintained, with tumour growth recurring in NSG before SCID mice (Figure 5F). We then compared the duration of tumour deletion in NSG mice versus NSG mice reconstituted with mIgG, using the same protocol as before. Reconstitution with mlgG was able to overcome the impaired therapy and restored comparable levels of tumour deletion and control to that observed in SCID mice both in terms of tumour (Figure 5F) and number of tumour cells (Supplementary Figure 6). This demonstrates that reconstitution with mIgG is able to restore mAb efficacy in NSG mice.

Commented [OR7]: Reviewer 3 point 5

Commented [OR8]: Reviewer 1 major comment 3

388 DISCUSSION

Our observations with rituximab showed reduced tumour control in NOD SCID compared to SCID mice. Given that equivalent initial tumour clearance was observed, and deletion is known to be dose dependent, this impairment was considered to be a direct result of reduced serum persistence and insufficient mAb at later time points. [35, 36] Rituximab is a type I mAb, known to be internalised through cis-binding to FcyRII following target binding, reducing its efficacy.[18, 37] Importantly, reduced tumour control was also seen with a type II anti-CD20 reagent, BHH2, indicating mAb internalisation was not causal and that a separate phenomenon related to the mouse strain was responsible. In support of this, rapid clearance of wild-type and chimeric hlgG1 mAb was described recently in NOD SCID mice although the mechanism was not discussed both NOD SCID and NSG mice.[14, 16] Furthermore, we saw the same rapid hlgG1 clearance for two additional hlgG1 mAb, lacking targets in the mouse, showing this phenomenon to be independent of the presence of tumour and unrelated to F(ab)-mediated antigen binding. Separately, both SCID and NOD mice had normal clearance of hlgG1, comparable to that of immune competent BALB/c mice, as reported previously.[24] This indicated that the genetic background of NOD mice, coupled with a lack of endogenous IgG (as a result of the SCID mutation) combined to elicit rapid hlgG1 clearance in NOD SCID mice. Importantly, our observations were replicated in NSG mice, indicating that rapid hlgG1 clearance is a feature of all NOD SCID derived strains. mlgG1 was found to have normal clearance in NOD SCID mice, whereas both hlgG1 and mlgG2a had short half-lives. Both humans and mice have multiple activatory FcyR, but a single inhibitory receptor, FcyRII (FcyRIIb in humans). These receptors interact differentially with the various mouse and human IgG isotypes: mIgG2a and hIgG1 bind preferentially to multiple activatory receptors and as such have high activatory: inhibitory (A:I) ratios. [26] In contrast, mlgG1 exhibits binding to only a single activatory FcyR (FcyRII) whilst retaining binding to FcyRII, yielding a corresponding low A:I ratio.[38] These observations provided a potential clue towards the isotype-based effects observed.

A role for FcyR in this process was subsequently confirmed by using a hlgG1 N297Q mAb which abrogates binding to FcyRs. [27] Importantly, the N297Q mutation has been demonstrated not to alter hlgG1 clearance in immune compromised mice.[27] The normal clearance rate of N297Q mAb in NOD SCID mice suggested that the rapid clearance of hlgG1 (and mlgG2a) in NOD SCID mice was dependent on Fc:FcyR interaction. Despite establishing a likely role for mFcyR in rapid mAb clearance, no gross changes in activatory FcyR expression levels were observed in NOD SCID versus SCID mice. The subtle inter-strain differences in mFcyRIII and mFcyRIV expression are likely to be compensatory and do not result in a large difference in the total A:I ratio or amount of activatory FcyR on the cell surface. One caveat here was that the expression level of mFcyRI in NOD SCID mice could not be determined by flow cytometry as its sequence varies considerably from the canonical sequence seen in most other strains (by 17 residues), and so cannot be detected using our existing reagents.[39] mFcyRII expression was found to be lower on monocytes from NOD SCID compared to SCID mice, likely due to the previously reported alterations upstream of the gene in NOD SCID mice associated with lower expression.[40] However, subsequent results, particularly in mice lacking mFcyRII expression, demonstratesuggest that the reduced expression of mFcyRII was unlikely to be responsible for the rapidfast mAb clearance. We additionally investigated the expression levels of FcRn, the primary receptor responsible for IgG recycling and long half-life.[41] Whilst it has a broad tissue distribution, expression is particularly prominent in the spleen and liver.[33, 41] Analysis of these tissues demonstrated that there was lower expression of FcRn in NOD SCID compared to SCID mice. SCID mice have previously been reported to have comparable FcRn expression and tissue distribution to immune-competent mice; indicating that the reduction is a result of the NOD phenotype rather than elevated expression in SCID mice.[33] However, given that the N279Q-mutated antibody which can interact with FcRn but

Commented [OR9]: Reviewer 3 point 4

4		
5 6		
7		
8		
9		
10 11	437	not FcyR had a normal clearance rate in NOD SCID mice, the reduced FcRn expression in
12 13	438	isolationalone cannot explain the differences in mAb clearance.
14	439	To confirm a role for mFcyR in rapid mAb clearance in NOD SCID mice, To determine the receptor
15 16	440	responsible, www used mice deficient in either the activatory or inhibitory mFcyR by employing mFcR
17 18	441	γ-chain -/- or mFcγRII-/- mice, respectively. Only the absence of mFcγRII restored normal hIgG1
19 20	442	clearance in NOD SCID mice. This observation supports the implications of the N297Q-mutant data;
21	443	i.e. failing to engage with mFcyRII and therefore phenocopying the effect in the mFcyRII-/- mice. <u>Our</u>
22 23	444	observation that mFcyRII mediates this effect is in contrast to a previous study suggesting mFcyRIV is
24 25	445	responsible.[16] The previous study used an Fc-engineered antibody reported to have reduced
26	446	binding to FcyRIV; such mutations often result in broader changes to FcyR binding profiles with
27 28	447	causal effects of specific FcyR difficult to define. In contrast, in the present study we were able to
29 30	448	specifically define the role of FcyRII by using mice genetically deficient in FcyRIIHowever, this
31	449	mechanism does not explain the isotype differences in IgG clearance between SCID and NOD SCID
32 33	450	mice.[16]
34 35	451	Given the dependence on mFcyRII, we investigated this receptor in more detail. There are two
36 37	452	polymorphic variants of mFcyRII; the ly17.1 haplotype expressed by NOD SCID mice, and the more
38 39	453	common ly17.2 haplotype expressed by most other in-bred mouse strains, which differ by four
40	454	amino acids, three of which are extracellular.[42, 43] We confirmed previous observations that these
41 42	455	allotypes do not differ in their affinity for IgG. Whilst this SPR analysis assesses the likely effects of
43 44	456	the extracellular polymorphisms, further investigation is needed into the role of the remaining I2585
45	457	intracellular polymorphism to determine its influence on mAb internalisation. This could be of
46 47	458	importance given the role of the intracellular I232T polymorphism in hFcyRIIB, which alters the
48 49	459	ability of the receptor to cluster into lipid rafts and deliver inhibitory signals. [44]
50 51	460	The data presented here indicate that no single factor can explain the isotype-dependent differences
52 53	461	in mAb clearance in NOD SCID versus SCID mice. Instead, the data support a more complex model
54		21
55 56		
57 58		
59		
60		

7 8			
9			
10 11	462	whereby multiple factors arising from the NOD and SCID backgrounds combine to deliver the	
12 13	463	observed defect. We propose a model whereby mFcyRII accelerates initial mAb internalisation. The	
14	464	ability of FcyRII to mediate mAb internalisation has been previously reported in DC mediated antigen	
15 16	465	presentation and the internalisation of rituximab.[37, 45] hIgG1 N297Q and hIgG2 do not bind	
17 18	466	appreciably to FcyRII, preventing receptor-mediated internalisation, maintaining equivalent	
19	467	clearance in both SCID and NOD SCID mice. Similarly, in SCID mice with a normal level of FcRn, the	
20 21	468	IgG internalised via FcyRII can be efficiently recycled by FcRn to maintain serum persistence.	
22 23	469	However, In NOD SCID mice, this efficient FcRn mediated recycling does not occur due to the	
24 25	470	reduced FcRn expression levels, resulting in more rapid serum loss.	
26	471	In trying to understand the isotype dependent nature of the rapid IgG clearance rate in NOD SCID	
27 28	472	mice, we unexpectedly observed an increased affinity of mFcyRII for all IgG at pH6.0. Crucially	
29 30	473	however, the affinity of mFcyRII for mIgG1 at pH6.0 was retained and ~10-fold higher than for the	
31 32	474	other isotypes investigated. This raises the possibility that mIgG1 is protected from degradation	
33	475	under acidic conditions due to continued association with mFcyRII following internalisation. In	
34 35	476	contrast, mlgG2a and hlgG1 would remain unprotected and become degraded following	
36 37	477	internalisation, due to mFcyRII having lower affinity for these isotypes at pH6.0. We propose that	
38	478	this reduced degradation occurs only in the presence of reduced FcRn expression in NOD SCID mice,	
39 40	479	further work is however required to confirm this hypothesis. These data therefore suggest a complex	Commented [OR10]: Reviewer 3 point 6
41 42	480	role for FcyRII in mAb clearance; it is required for the internalisation of IgG, preventing external	
43 44	481	catabolism, yet it also delivers IgG for internal lysosomal degradation unless it exhibits sufficient	
45	482	affinity for IgG binding at pH6.	
46 47	483	Prior experiments in conditional knock-out mice suggested that both endothelial and	
48 49	484	haematopoietic cells regulate IgG levels in mice.[46, 47] The transfer of mFcyRII -/- NOD SCID bone	
50 51	485	marrow into NOD SCID mice resulted in mice deficient in haematopoietic mFcyRII but with mFcyRII	
52	486	expression on non-haematopoietic (predominantly endothelial) cells. hlgG1 clearance in these	
53 54			
55		22	
56			
57 58			
50 59			
60			

1 2			
3 4			
5			
6 7			
8			
9			
10 11	487	chimeras was unaltered compared to NOD SCID mice, demonstrating that haematopoietic cells were	
12	488	not responsible. The liver was previously found to be the main site of IgG clearance, accounting for	
13 14	489	30% of all antibody degradation.[48] The same organ has also been shown to contain 75% of the	
15 16	490	mFcyRII in the body, the receptor demonstrated here to be essential for rapid NOD SCID mAb	
17 18	491	clearance.[31] Additionally, we were able to demonstrate greater accumulation of hIgG in the liver	
19	492	of NSG compared to SCID mice, an effect that was overcome by the addition of exogenous mlgG.	
20 21	493	Our immunofluorescence studies, combined with previous reports, suggest that LSEC are the	-1
22	494	predominant cell type in the liver expressing both FcyRII and FcRn, the receptors regulating the fast	
23 24	495	mAb clearance.[31, 49] LSEC have been described as having the highest rates of endocytic uptake in	
25 26	496	the body. In addition, mFcyRII is required for the efficient clearance of small immune complexes. [31,	
27 28	497	50] This leads us to hypothesise that LSEC are the key cell type responsible for fast mAb clearance	
29	498	observed in the present study, with internalisation of IgG mediated by mFcyRII.	
30 31	499	Further investigation is required to determine if pH and isotype dependent affinity is restricted to	
32 33	500	mFcyRII or is common to the other FcyR. Moreover, it remains to be established if the same occurs	
34 35	501	with the inhibitory FcyRIIb in humans. This could have implications for mAb therapy as it is known	
36	502	that the A:I ratio of IgG binding to FcyR can determine the outcome of therapy, particularly where	
37 38	503	the expression of hFcyRIIb may increase, such as within the tumour microenvironment.[51]	
39 40	504	Moreover, in this context, the acidic pH of the tumour microenvironment may further modify this	
41 42	505	ratio of A:I binding by altering the relative binding to individual receptors.	
43 44	506	Given the importance of the rapid mAb clearance in NOD SCID mice on the therapeutic activity of	
45	507	direct targeting hlgG1 mAb, we sought a means of restoring normal pharmacokinetics. By	
46 47	508	reconstituting NOD SCID mice with physiological levels of mIgG, the rapid mAb clearance could be	
48 49	509	overcome, restoring persistence equivalent to that observed in SCID and BALB/c mice. Moreover,	
50	510	this increased persistence of therapeutic mAb was able to recover anti-tumour efficacy to the same	
51 52	511	level as seen in SCID mice. This result is in agreement with findings that the addition of human IVIg	
53 54			
54 55 56		23	

Commented [OR11]: Reviewer 3 point 5. Added reference in the discussion to our additional immunofluorescence experiments.

5 6		
7		
8		
9		
10	512	can restore the normal half-life of an antibody-drug conjugate.[16] Moreover, it has been previously
11 12 13	513	reported that the addition of exogenous IgG is able to overcome anomalous antibody biodistribution
14	514	in NOD SCID mice, adding to the potential benefits of IgG reconstitution in tumour models.[17] We
15 16	515	suggest that in the presence of exogenous IgG, mFcyRII is occupied (most likely by the mIgG1
17	516	component, due to its higher affinity) and less internalisation of hIgG1 can occur. Based on these
18 19	517	observations, we propose that reconstitution with IgG should be a consideration when performing
20 21	518	therapy experiments in NOD SCID mice in order to restore therapeutic antibody half-life.
22 23	519	The implications for the findings presented here are wide-wide-reaching. With an increasing use of
24 25	520	immune-compromised mice in pre-clinical investigation of mAb therapeutics, it is essential to
25 26 27	521	understand how the choice of host strain can influence the outcome. The clearance rate of the most
28	522	clinically relevant deleting isotypes are significantly shorter in NOD SCID and NSG mice than other
29 30	523	immune-compromised strains such as SCID. This is likely to underplay the therapeutic efficacy of
31	524	mAb used in these models and complicate comparisons between strains. Additionally, there are
32 33	525	significant efforts ongoing to understand the isotype requirements for mAb directed against
34 35	526	different targets, and with different Fc requirements.[52] Our work suggests that NOD SCID mice
36 37	527	may not be a suitable host strain for determining the optimal mAb isotype or therapeutic dose due
38	528	to complications arising from different isotype-dependent clearance rates, unless exogenous mlgG
39	529	reconstitution is also provided. Specifically, we suggest that caution should be exercised when
40 41 42	530	interpreting results from immune compromised mice on the NOD SCID background with regard to
43	531	differences in antibody activity that could be explained by mAb clearance rate.
44		
45	532	
46		
47 48	533	DECLARATIONS
49		
50	534	Ethics Approval
51		
52		
53 54		
55		24
56		
57		
58		
59 60		
00		

Commented [OR12]: Reviewer 3: discussion on paper by Li et al

1 2			
3 4			
5			
6			
7 8			
9			
10	535	Animal experiments were cleared through local ethics committees and performed according to	
11 12	536	Home Office guidelines under project license PB24EEE31.	
13 14	537		
15 16	538	Consent for Publication	
17 18			
19	539	Not applicable	
20 21	540		
22 23 24	541	Availability of Data and Material	
25 26	542	All datasets used and/or analysed during the current study are available from the corresponding	
27 28	543	author on reasonable request.	
20 29 30	544		
31 32	545	Competing Interests	
33 34	546	MSC is a retained consultant for Bioinvent and has performed educational and advisory roles for	
35 36	547	Boehringer Ingelheim, Merck KGaA, Baxalta and GLG. He has received research funding from	
37 38	548	Bioinvent, Roche, Gilead, Iteos, UCB and GSK. The other authors have no financial conflicts of	
39 40	549	interest.	
41 42	550		
43 44	551	Funding	
45 46	552	Funding was provided through an iCASE studentship to RJO and MSC with Huntingdon Life Sciences	
47	553	from the MRC (1254288), Programme Grants from Bloodwise (12050) and Cancer Research UK	
48 49	554	(A24721) as well as CRUK centre support C328/A25139.	
50 51	555		
52 53	556	Author Contributions	
54 55		25	
55 56			
57			
58 59			
60			

557 RJO, CIM, SJ₂-and KLC and VAP performed experiments. RJO analysed the data. RJO, MSC and MJG

558 interpreted the results. PD and HTC generated critical reagents. RJO and MSC wrote the manuscript.

560 Acknowledgements

 561 The authors would like to thank all of the members of the Antibody and Vaccine Group (Cancer

562 Sciences, Faculty of Medicine, University of Southampton, UK), Prof Falk Nimmerjahn and Prof Sally

563 Ward for helpful discussions relating to the experiments reported herein. SW additionally provided

564 the Abdeg reagents for quantifying FcRn expression.

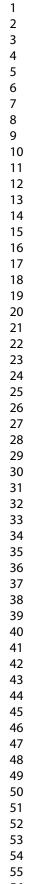
565 REFERENCES

1. Kaplon H, Reichert JM. Antibodies to watch in 2018. mAbs. 2018;10(2):183-203. 2. van der Loo JC, Hanenberg H, Cooper RJ, et al. Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells. Blood. 1998;92(7):2556-70. Gerstein R, Zhou Z, Zhang H, et al. Patient-Derived Xenografts (PDX) of B Cell Lymphoma in 3. NSG Mice: A Mouse Avatar for Developing Personalized Medicine. Blood. 2015;126(23):5408-. Blunt T, Finnie NJ, Taccioli GE, et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell. 1995;80(5):813-23. Mouse strain datasheet-001303 NOD scid: The Jackson Laboratory; 2015 [26/02/2020]. 5. Available from: https://www.jax.org/strain/001303. 6. Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. The Journal of Immunology. 1995;154(1):180-91. Brandsma AM, Hogarth PM, Nimmerjahn F, et al. Clarifying the Confusion between Cytokine 7. and Fc Receptor "Common Gamma Chain". Immunity. 2016;45(2):225-6. Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/γc^{null} mouse: an excellent recipient mouse 8. model for engraftment of human cells. Blood. 2002;100(9):3175-82. Zalevsky J, Chamberlain AK, Horton HM, et al. Enhanced antibody half-life improves in vivo 9. activity. Nature Biotechnology. 2010;28(2):157-9. 10. Ravetch JV, Bolland S. IgG Fc receptors. Annual review of immunology. 2001;19:275-90. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nature Reviews 11. Immunology. 2007;7(9):715-25. Raghavan M, Bonagura VR, Morrison SL, et al. Analysis of the pH Dependence of the 12. Neonatal Fc Receptor/Immunoglobulin G Interaction Using Antibody and Receptor Variants. Biochemistry. 1995;34(45):14649-57. Kim JK, Firan M, Radu CG, et al. Mapping the site on human IgG for binding of the MHC class 13. I-related receptor, FcRn. European Journal of Immunology. 1999;29(9):2819-25. Pop L, Liu X-y, Pop I, et al. Abnormally short serum half-lives of chimeric and human IgGs in 14. NOD-SCID mice (P4184). The Journal of Immunology. 2013;190(1 Supplement):48.2.

1 2 3 4 5 6 7 8 9 10 595 Li F, Ulrich M, Hunter J, et al. Abstract 2082: Fc-FcyR interaction impacts the clearance and 15. 11 596 antitumor activity of antibody-drug conjugates in NSG mice. Cancer Research. 2016;76(14 12 597 Supplement):2082-. 598 Li F, Ulrich ML, Shih VF, et al. Mouse Strains Influence Clearance and Efficacy of Antibody 16. 13 599 and Antibody-Drug Conjugate Via Fc-FcgammaR Interaction. Mol Cancer Ther. 2019;18(4):780-7. 14 600 17. Sharma SK, Chow A, Monette S, et al. Fc-mediated Anomalous Biodistribution of Therapeutic 15 601 Antibodies in Immunodeficient Mouse Models. Cancer Research. 2018. 16 602 18. Tipton TR, Roghanian A, Oldham RJ, et al. Antigenic modulation limits the effector cell 17 603 mechanisms employed by type I anti-CD20 monoclonal antibodies. Blood. 2015;125(12):1901-9. 604 Blunt MD, Carter MJ, Larrayoz M, et al. The PI3K/mTOR inhibitor PF-04691502 induces 18 19. 605 apoptosis and inhibits microenvironmental signaling in CLL and the Eµ-TCL1 mouse model. Blood. 19 606 2015;125(26):4032-41. 20 607 Tutt AL, James S, Laversin SA, et al. Development and Characterization of Monoclonal 20. 21 608 Antibodies Specific for Mouse and Human Fcgamma Receptors. The Journal of Immunology. 22 609 2015:195(11):5503-16. 610 Williams EL, Tutt AL, French RR, et al. Development and characterisation of monoclonal 23 21. 611 antibodies specific for the murine inhibitory FcgammaRIIB (CD32B). European Journal of 24 Immunology. 2012;42(8):2109-20. 612 25 613 Cragg MS, Morgan SM, Chan HT, et al. Complement-mediated lysis by anti-CD20 mAb 22. 26 614 correlates with segregation into lipid rafts. Blood. 2003;101(3):1045-52. 27 615 Cragg MS, Glennie MJ. Antibody specificity controls in vivo effector mechanisms of anti-23. 28 616 CD20 reagents. Blood. 2004;103(7):2738-43. Zuckier LS, Georgescu L, Chang CJ, et al. The use of severe combined immunodeficiency mice 617 24. 29 618 to study the metabolism of human immunoglobulin g. Cancer. 1994;73(S3):794-9. 30 619 Nimmerjahn F, Ravetch JV. Divergent Immunoglobulin G Subclass Activity Through Selective 25. 31 620 Fc Receptor Binding. Science. 2005;310(5753):1510-2. 32 621 26. Overdijk MB, Verploegen S, Ortiz Buijsse A, et al. Crosstalk between human IgG isotypes and 33 622 murine effector cells. The Journal of Immunology. 2012;189(7):3430-8. 34 623 Tao MH, Morrison SL. Studies of aglycosylated chimeric mouse-human IgG. Role of 27. carbohydrate in the structure and effector functions mediated by the human IgG constant region. 624 35 625 The Journal of Immunology. 1989;143(8):2595-601. 36 626 28. Gavin AL, Leiter EH, Hogarth PM. Mouse FcgammaRI: identification and functional 37 627 characterization of five new alleles. Immunogenetics. 2000;51(3):206-11. 38 628 29. Takai T, Li M, Sylvestre D, et al. FcR y chain deletion results in pleiotrophic effector cell 39 629 defects. Cell. 1994;76(3):519-29. Smith KGC, Clatworthy MR. Fc[gamma]RIIB in autoimmunity and infection: evolutionary and 630 30. 40 therapeutic implications. Nature Reviews Immunology. 2010;10(5):328-43. 631 41 632 31. Ganesan LP, Kim J, Wu Y, et al. FcyRIIb on liver sinusoidal endothelium clears small immune 42 complexes. The Journal of immunology. 2012;189(10):4981-8. 633 43 634 Vaccaro C, Zhou J, Ober RJ, et al. Engineering the Fc region of immunoglobulin G to 32. 44 635 modulate in vivo antibody levels. Nature Biotechnology. 2005;23:1283. Latvala S, Jacobsen B, Otteneder MB, et al. Distribution of FcRn Across Species and Tissues. 636 45 33. The Journal of Histochemistry and Cytochemistry. 2017;65(6):321-33. 637 46 Abdiche YN, Yeung YA, Chaparro-Riggers J, et al. The neonatal Fc receptor (FcRn) binds 638 34. 47 639 independently to both sites of the IgG homodimer with identical affinity. mAbs. 2015;7(2):331-43. 48 640 35. Beers SA, Chan CH, James S, et al. Type II (tositumomab) anti-CD20 monoclonal antibody out 49 641 performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. 50 642 Blood. 2008;112(10):4170-7. 643 Beers S, French R, Chan H, et al. Antigenic modulation limits the efficacy of anti-CD20 51 36. antibodies: implications for antibody selection. Blood. 2010;115(25):5191-201. 644 52 53 54 27 55 56 57 58

37. Vaughan AT, Iriyama C, Beers SA, et al. Inhibitory FcyRIIb (CD32b) becomes activated by therapeutic mAb in both cis and trans and drives internalization according to antibody specificity. Blood. 2014;123(5):669-77. Bruhns P, Jannascoli B, England P, et al. Specificity and affinity of human Fcy receptors and 38. their polymorphic variants for human IgG subclasses. Blood. 2009;113(16):3716-25. 39. Prins J, Todd J, Rodrigues N, et al. Linkage on chromosome 3 of autoimmune diabetes and defective Fc receptor for IgG in NOD mice. Science. 1993;260(5108):695-8. Pritchard NR, Cutler AJ, Uribe S, et al. Autoimmune-prone mice share a promoter haplotype 40. associated with reduced expression and function of the Fc receptor FcyRII. Current Biology. 2000:10(4):227-30. Roopenian DC, Christianson GJ, Sproule TJ, et al. The MHC Class I-Like IgG Receptor Controls 41. Perinatal IgG Transport, IgG Homeostasis, and Fate of IgG-Fc-Coupled Drugs. The Journal of Immunology. 2003;170(7):3528-33. Hibbs ML, Hogarth PM, McKenzie IF. The mouse Ly-17 locus identifies a polymorphism of the 42. Fc receptor. Immunogenetics. 1985;22(4):335-48. Slingsby JH, Hogarth MB, Walport MJ, et al. Polymorphism in the Ly-17 alloantigenic system 43. of the mouse FcgRII gene. Immunogenetics. 1997;46(4):361-2. Kono H, Kyogoku C, Suzuki T, et al. FcgammaRIIB Ile232Thr transmembrane polymorphism 44. associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Human Molecular Genetics. 2005;14(19):2881-92. 45. Bergtold A, Desai DD, Gavhane A, et al. Cell Surface Recycling of Internalized Antigen Permits Dendritic Cell Priming of B Cells. Immunity. 2005;23(5):503-14. Montoyo HP, Vaccaro C, Hafner M, et al. Conditional deletion of the MHC class I-related 46. receptor FcRn reveals the sites of IgG homeostasis in mice. Proceedings of the National Academy of Sciences. 2009;106(8):2788-93. Ward ES, Zhou J, Ghetie V, et al. Evidence to support the cellular mechanism involved in 47. serum IgG homeostasis in humans. International Immunology. 2003;15(2):187-95. 48. Eigenmann MJ, Fronton L, Grimm HP, et al. Quantification of IgG monoclonal antibody clearance in tissues. mAbs. 2017;9(6):1007-15. van der Flier A, Liu Z, Tan S, et al. FcRn Rescues Recombinant Factor VIII Fc Fusion Protein 49. from a VWF Independent FVIII Clearance Pathway in Mouse Hepatocytes. PloS one. 2015;10(4):е0124930-е. 50. Knolle PA, Wohlleber D. Immunological functions of liver sinusoidal endothelial cells. Cell Mol Immunol. 2016:13(3):347-53. Dahal LN, Dou L, Hussain K, et al. STING Activation Reverses Lymphoma-Mediated Resistance 51. to Antibody Immunotherapy. Cancer Research. 2017;77(13):3619-31. White AL, Chan HT, French RR, et al. Conformation of the human immunoglobulin G2 hinge 52. imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell. 2015;27(1):138-48.

687 FIGURE LEGENDS


Figure 1: Antibody mediated therapy is reduced in NOD SCID mice due to faster mAb clearance. A -C) Eµ-Tcl1 x hCD20 Tg tumour cells were injected I.P. into SCID or NOD SCID mice. Once tumour was detectable in the peripheral blood animals were treated with $100\mu g$ rituximab or BHH2 I.P. A) 2 and 14 days after treatment, the percentage of tumour cells in the blood was assessed. B) The number of tumour cells in the blood 14 days after treatment was determined (n=4-9). C) The concentration of hIgG in the plasma was measured by ELISA with a significantly lower concentration of hIgG on day 7 in NOD SCID compared to SCID mice. hlgG was not detectable in the plasma of NOD SCID mice from day 14 onwards. D) In the absence of tumour, 100µg cetuximab or 100µg rituximab hlgG2, mlgG2a or mlgG1 was administered I.P. to SCID or NOD SCID mice. The concentration of human or mouse IgG in the plasma was determined by ELISA. (hlgG1 n=6-7; combined data from 2 independent experiments, hlgG2, mlgG1 and mlgG2a n=3, representative of 2 independent experiments). ND = not detectable. Statistics; 2 way ANOVA with multiple comparisons *P<0.05, **P<0.01, ***P<0.001. No significant differences were observed between SCID and NOD SCID mice receiving hIgG2 or mlgG1. Figure 2: Rapid antibody half-life requires both the NOD and SCID phenotypes as well as functional Fc. A) 100µg cetuximab injected I.P. into NOD or NOD SCID mice with the concentration of hIgG in the plasma determined by ELISA, over 14 days. (n=4-6). B) 100µg rituximab hlgG1, mlgG1 or mlgG2a was injected I.P. into NSG mice and the concentration of mouse or human IgG in the plasma determined by ELISA, (n=63-84), representative of data combined from 2 independent experiments. (C) 100µg rituximab (hlgG1) or rituximab hlgG1 N297Q (NQ) was injected I.P. into SCID or NOD SCID mice and the concentration of hIgG in the plasma determined by ELISA. (<u>SCID</u> n=3-4, NOD SCID N=7 combined from 2 independent experiments) results representative of 2 independent experiments. 2-way ANOVA with multiple comparisons, **P<0.01, ***P<0.001

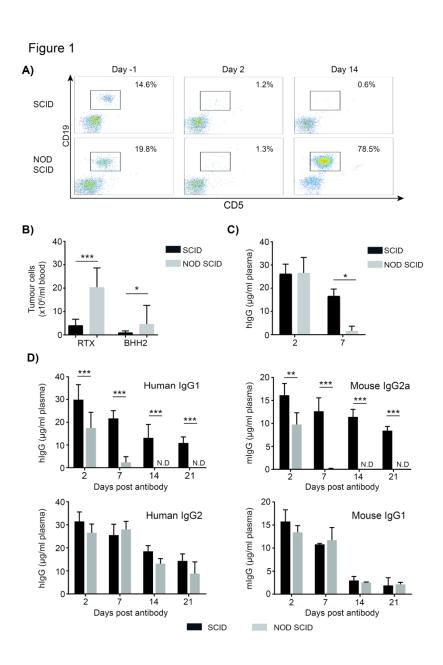

Figure 3: mFcyR expression profiling in SCID and NOD SCID mice. Splenocytes or peripheral blood
 from SCID and NOD SCID mice were stained with specific antibodies for Ly6c, Ly6G, CD11b or CD11c
 to identify monocytes, macrophages and neutrophils, concurrently with mAb to each mFcyR. N=32
 representative of 3combined data from 2 independent experiments, mean +range. No statistically
 significant differences were observed between strains (2-way ANOVA with Tukeys multiple

Figure 4: Rapid mAb clearance in NOD SCID mice is dependent on expression of mFcyRII but not activatory mFcyR. A) NOD SCID and NOD SCID FcR y-chain deficient mice (NS y-/-) were injected with 100µg trastuzumab hlgG1 I.V. Tail blood was collected and the concentration of hlgG in the plasma determined by ELISA. (n=3-4) mean +S.D. By day 14 hlgG was not detectable in the plasma of both strains. B) SCID, NOD SCID and NOD SCID mFcyRII-/- mice were injected with 100µg cetuximab I.V. The concentration of hIgG in plasma was determined 2, 7 and 14 days later by ELISA. (n=3-4 per group), representative of 2 independent experiments. 2-way ANOVA with multiple comparisons **p<0.01, ***p<0.001. C) NOD SCID mice were irradiated and reconstituted with bone marrow cells harvested from NOD SCID FcyRII-/- mice. D) Engraftment was confirmed by staining peripheral CD11b+ cells for mFcyRII expression. E) 100µg rituximab hlgG1 or mlgG2a was injected into these or control NOD SCID mice. The concentration of human or mouse IgG in the plasma was determined by ELISA. (n=3-4), mean +S.D. F) NOD SCID mice were injected I.V. with clodronate- or PBS-containing liposomes on days -3, -1, 6 and 13 to deplete macrophages. On day 0, 100µg rituximab was administered I.P. and the concentration of hIgG in the plasma determined by ELISA.

comparison test, p>0.05)

7		
8		
9		
10 11	735	Figure 5: NOD SCID mice have low expression of FcRn, associated with rapid mAb clearance, which
12	736	can be overcome by IgG reconstitution. A) cDNA was produced from SCID and NOD SCID spleen and
13 14	737	liver lysates with FcRn transcript expression analysed by qPCR using the ddCT method and expressed
15 16	738	relative to that in SCID mice. (n=4-5), unpaired T-test **P<0.01, ***P<0.001. B) Splenocytes from
17	739	SCID and NOD SCID spleens were lysed and Western blot performed on the lysates for FcRn and
18 19	740	Lamin B as a loading control. C) Uptake of MST-HN Abdeg by splenocytes from SCID and NSG mice as
20 21	741	well as migG reconstituted NSG mice, gated on CD11b+Ly6G-Ly6C+ cells. No protein (greyred),
22	742	H435A control (red<u>blue</u>) and MST-HN (Blue<u>orange</u>) are shown<u>N=3-4 with a representative example</u>
23 24	743	for each group shownRepresentative example of N=4. D) Rituximab hlgG1, hlgG2, mlgG1 or mlgG2a
25 26	744	was immobilised on Biacore CM5 chips and recombinant mFcyRII flowed over the chip at pH6 or
27 28	745	pH7.4 with a highest receptor concentration of 1000nM and 5-fold serial dilutions. E) SCID or NOD
29	746	SCID mice were reconstituted with 400 μ g mlgG2a and 500 μ g mlgG1 on day 0. An additional 200 μ g
30 31	747	mlgG2a was given on day 3, 6, 9, 12 and 15. $100\mu g$ rituximab was then given I.P. on day 0 and the
32 33	748	concentration of hIgG in the plasma determined by ELISA. (n=4-8), data combined from 2
34	749	independent experiments, mean +S.D. 2-way ANOVA with multiple comparisons ***P<0.001, n.s. =
35 36	750	not significant. F) Eµ-Tcl1 tumour cells were injected I.P. into SCID or NSG mice. Once tumour was
37 38	751	detectable in the peripheral blood a group of NSG mice were reconstituted with mlgG as described
39	752	above, animals were then treated with 100µg hlgG1 anti-mCD20 (18B12) I.P. representative FACs
40 41	753	plots are shown on the left. 14 days after treatment, the percentage of tumour cells in the blood was
42 43	754	assessed and plotted. (n=5-6 per group), mean +S.D. 1-way ANOVA with multiple comparisons
44	755	<u>*P<0.05, **P<0.01.</u>
45 46 47	756	

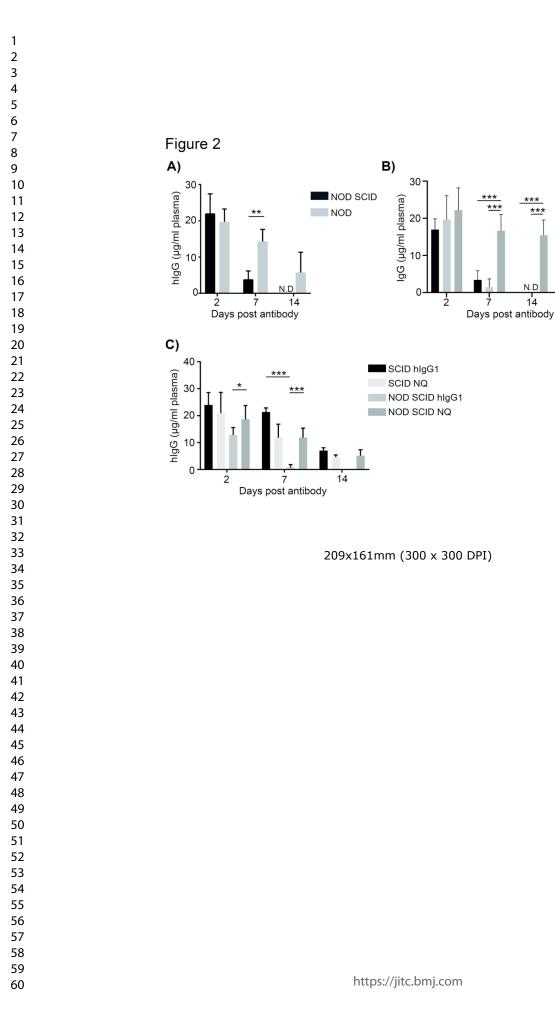
209x296mm (300 x 300 DPI)

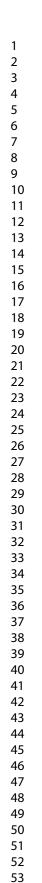
hlgG1

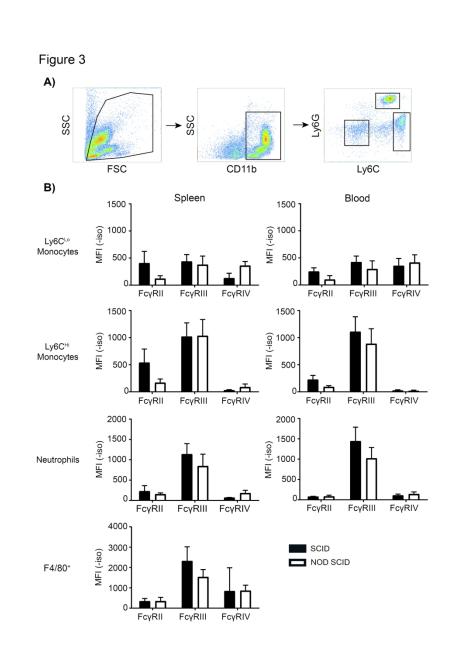
mlgG2a

mlgG1

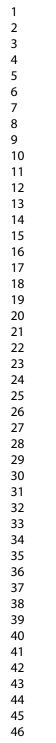
N.D

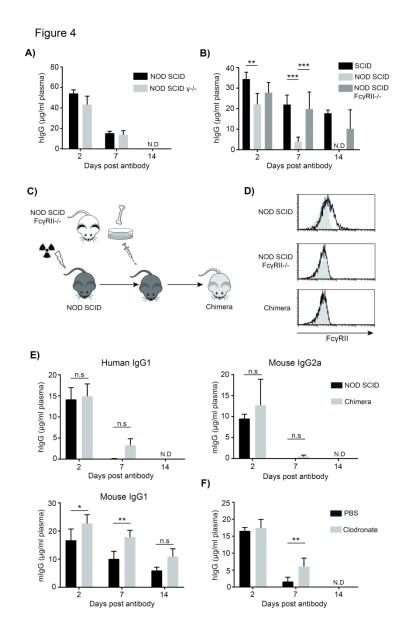

21

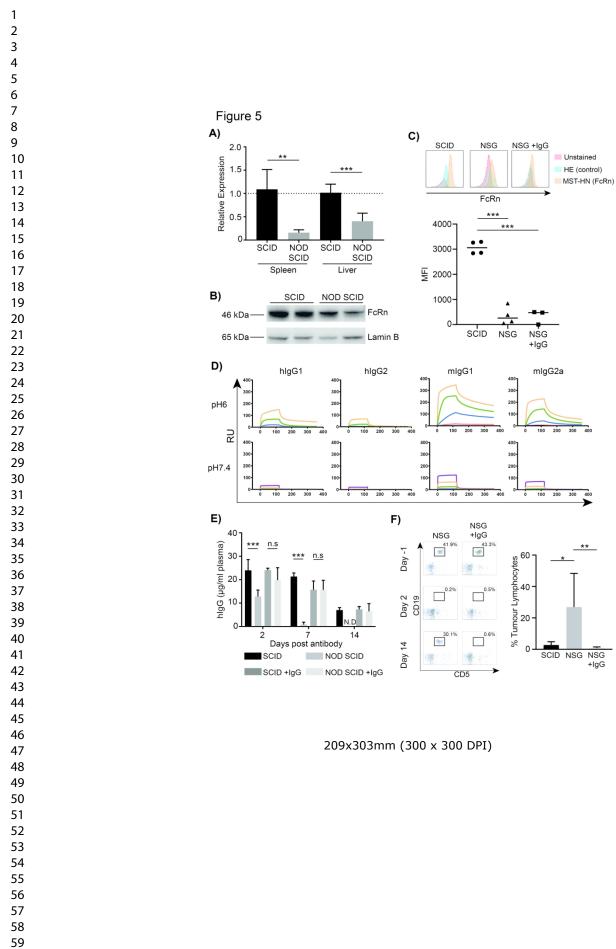



ND

14


<u>***</u>





209x296mm (300 x 300 DPI)

209x336mm (300 x 300 DPI)

Supplementary Table

Table S1. List of antibodies for flow cytometry and Immunofluorescence

Target	Isotype	Conjugate	Clone	Company
CD19	Rat IgG2a	PE	1D3	In-house
CD19	Rat IgG2a	APC	1D3	Biolegend
CD5	Rat IgG2a	FITC	53-7.3	Biolegend
CD11b	Rat IgG2b	Pacific Blue	M1/70	Biolegend
Ly6C	Rat IgG2c	PerCP/Cy5.5	HK1.4	Biolegend
Ly6G	Rat IgG2a	APC/Cy7	1A8	Biolegend
FcγRII	Mouse F(ab') ₂	FITC	AT130-2	In-house
FcγRII	Human IgG2	Unconjugated	AT130-2	In-house
FcγRII	Rat IgG2a	Unconjugated	AT130-2	In-house
FcRn	Goat	Unconjugated	AF6775	R&D systems
Lamin B	Goat	Unconjugated	Not-applicable	Santa Cruz
				Biotechnology
Goat IgG	Donkey	HRP	Not-applicable	Santa Cruz
				Biotechnology
Clec4F	Human IgG1	Unconjugated	4M23	In-house
Cytokeratin 8	Rabbit	Unconjugated	EP1628Y	Abcam
Rat IgG	Goat	Alexafluor 488	polyclonal	Invitrogen
Human IgG	Goat	Alexafluor 488	polyclonal	Abcam
Goat IgG	Chicken	Alexafluor 488	polyclonal	Invitrogen
Human IgG	Goat	Alexafluor 549	polyclonal	Abcam
Rabbit IgG	Goat	Alexafluor 568	polyclonal	Invitrogen

SUPPLEMENTARY FIGURES

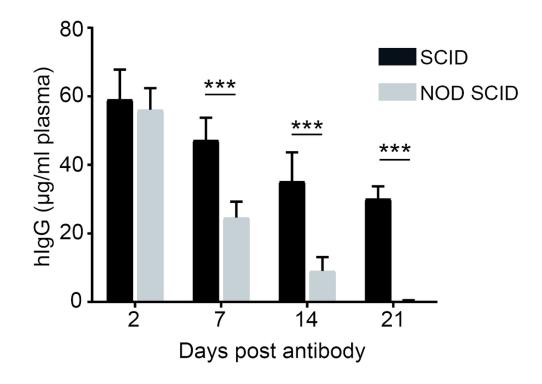
Supplementary Figure 1 100µg trastuzumab was administered I.P. to SCID or NOD SCID mice. The concentration of human or mouse IgG in the plasma was then determined by ELISA 2-21 days later. (n=4; 2 way ANOVA with multiple comparisons ***P<0.001

2.0

Supplementary Figure 2 SCID, NOD or BALB/c mice were injected I.P. with 100µg cetuximab. The concentration of hIgG in the plasma was determined by ELISA 7 days later. N=4, representative of 2 independent experiments. One-way ANOVA P>0.05

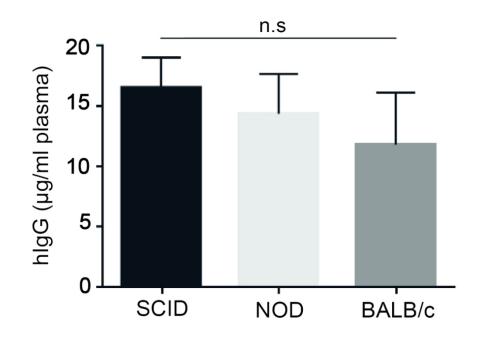
Supplementary Figure 3 A) Bone marrow derived macrophages from SCID and NOD SCID mice were stained with fluorescent antibodies specific for individual mouse FcyR. MFI with isotype control subtracted N=2, representative of 2 independent experiments. B) NOD SCID mice were injected I.V.

with clodronate- or PBS-containing liposomes on days -3, -1, 6 and 13. Splenic macrophages (CD11b+, F4/80+) were quantified on day 14, representative of 2 animals.

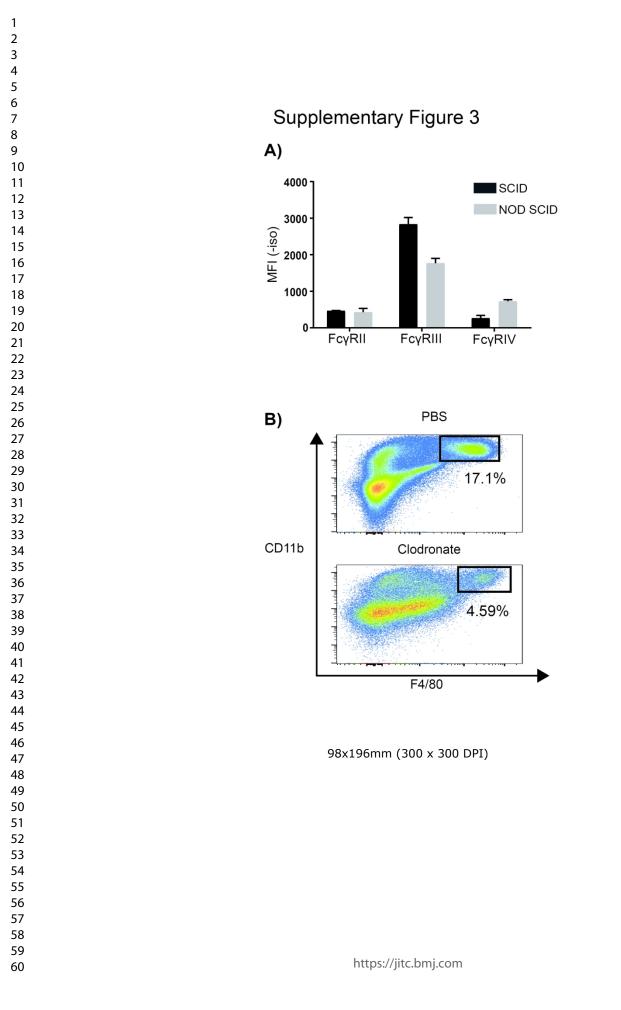

Supplementary Figure 4. A and B) Sections were cut from frozen, OCT embedded liver from BALB/c (A) and NSG (B) mice. Sections were stained using primary antibodies against FcRn, FcγRII, Cytokeratin 8 and Clec4F which were detected using fluorescently conjugated secondary antibodies. Sections were counterstained with DAPI. Mounted slides were imaged at 10x or 40x magnification with the highlighted area expanded in the right hand image. C) SCID or NSG mice were reconstituted with 400µg mlgG2a and 500µg mlgG1 prior to administration of 100µg rituximab hlgG1. After 48 hours livers were harvested and embedded in OCT. Sections were stained using fluorescently conjugated goat anti-hlgG before being counterstained with DAPI, mounted and imaged as described above. Images from 3 mice from each treatment group are shown at 10x magnification with a representative single mouse from each group shown below at 40x magnification.

Supplementary Figure 5. SCID or NOD SCID mice were reconstituted with 400µg mlgG2a and 500µg mlgG1 on day 0. An additional 200µg mlgG2a was given on day 3, 6, 9, 12 and 15. The concentration of mlgG in the plasma was determined by ELISA and compared to that of a BALB/c mouse. N=3.

Supplementary Figure 6. Eµ-Tcl1 tumour cells were injected I.P. into SCID or NSG mice. Once tumour was detectable in the peripheral blood a group of NSG mice were reconstituted with mlgG as follows: 400µg mlgG2a and 500µg mlgG1 was administered on day 0, an additional 200µg mlgG2a was given on day 3, 6, 9, 12. Animals were treated on day 0 with 100µg hlgG1 anti-mCD20 (18B12) 14 days after treatment, the number of tumour cells in the blood was assessed. (n=5-6 per group), mean +S.D. 1-way ANOVA with multiple comparisons *P<0.05.


https://jitc.bmj.com

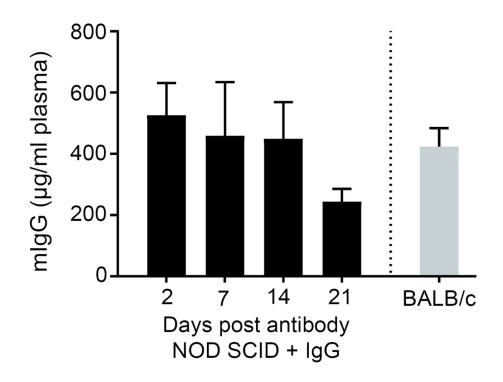
Supplementary Figure 1



98x104mm (300 x 300 DPI)

Supplementary Figure 2

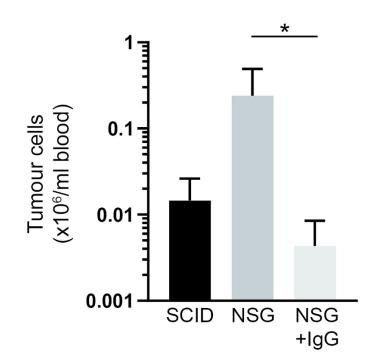
98x95mm (300 x 300 DPI)



Supplementary Figure 4

A)

A)	FcγRII	Clec4F DAP	u I	FcγRII	Cytokeratin 8	DAPI
	FCYRII			FCYRII		
	E-De			E-D-		DADI
	FcRn	Clec4F DAF		FcRn	Cytokeratin 8	DAPI
B)						
		Clec4F DAP		FcyRII	Cytokeratin 8	DAPI
	FcRn	Clec4F DAP		FcRn	Cytokeratin 8	DAPI
C)	SCIE)	NSG	i	NSG	+lgG
10	×					
40	×			i F		
			hIgG	DAPI		
		190x326	6mm (300	x 300 D	PI)	



98x89mm (300 x 300 DPI)

98x89mm (300 x 300 DPI)