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Abstract

This work proposes a learnheuristic approach (combination of heuristics with machine learning) to solve an

aerial-drone team orienteering problem. The goal is to maximise the total reward collected from information

gathering or surveillance observations of a set of known targets within a fixed amount of time. The aerial drone

team orienteering problem has the complicating feature that the travel times between targets depend on a drone’s

flight path between previous targets. This path-dependence is caused by the aerial surveillance drones flying

under the influence of air-resistance, gravity, and the laws of motion. Sharp turns slow drones down and the

angle of ascent and air-resistance influence the acceleration a drone is capable of. The route dependence of inter-

target travel times motivates the consideration of a learnheuristic approach, in which the prediction of travel

times is outsourced to a machine learning algorithm. This work proposes an instance-based learning algorithm

with interpolated predictions as the learning module. We show that a learnheuristic approach can lead to higher

quality solutions in a shorter amount of time than those generated from an equivalent metaheuristic algorithm,

an effect attributed to the search-diversity enhancing consequence of the online learning process.

Keywords: team orienteering problem, metaheuristics, machine learning, learnheuristics, aerial drones, route-
dependent edge times.

1 Introduction

In this work we solve a team orienteering problem (TOP) for a fixed-size fleet of aerial drones or unmanned aerial
vehicles (UAV). The objective is to route each drone such that the total reward collected from visiting each of
their assigned targets is maximised. Each drone must arrive back at the end depot before a maximum time limit
–otherwise the rewards collected by that drone are lost. Furthermore, each target can only be visited once by one
single drone. We consider a realistic variant of the TOP in which the travel times between targets are subject
to physical constraints, including: air-resistance, ascent angle, gravity, and velocity reduction caused by turning.
These constraints give rise to path-dependent travel times, which are the solutions to a set of equations of motion.
The accurate prediction of inter-target travel times requires a detailed numerical approximation, which limits the
efficiency of traditional metaheuristic approaches. Additionally, in the aerial-drone TOP it is possible that partial
rewards can be achieved from making observations of targets from the locations of adjacent targets. Accordingly,
we take partial observations into account based on the visibility of a target from an adjacent one relative to a direct
observation of that target. We apply the emerging concept of learnheuristics [1, 2] to simultaneously optimise
the routes of drones and learn to predict travel times. A learnheuristic approach integrates metaheuristics –as the
optimisation module– and machine learning (ML) to rapidly predict solution-dependent decision costs using data
obtained from a time-limited availability of detailed solution evaluations via a reality module. In particular, the
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travel time between two targets depends on the initial velocity on that edge, which is based on: (i) the final velocity
at the end of the previous edge; and (ii) the turn angle required by the drone to start travelling towards the next
target. This is because sharper turns cause a greater decrease in velocity –an effect known as scrubbing within the
context of motor racing. The required turn angle depends directly upon the node sequence. Furthermore, given
an initial velocity for an edge traversal, the final velocity depends upon the forces acting over the drone during
that edge traversal including: gravity, air-resistance, and the drones’ available thrust force for overcoming these
resistive forces. Additionally, edge traversal times depend upon the gradient and length of the edge, since these
influence the required amount of work against the force of gravity and the total distance the drone has to travel.

It is important to distinguish between travel times –which are dynamic due to path dependence, such as those
considered in this work– and travel times with endogenous uncertainty –which are not considered in this work.
Here, we consider edge-traversal travel times that can be deterministically determined from the path followed by
a drone. The exact sequence of targets allocated to a drone directly influences the sequence of forces that act upon
it. This, in turn, directly influences the speed of the drone at each subsequent moment in its tour. As a result,
edge-traversal time is strongly path dependent. Figure 1 provides a flowchart of the proposed learnheuristic. The
algorithm consists of iteratively generating candidate solutions using an optimisation module. This module em-
ploys a ML algorithm to approximate route-dependent travel times between targets. The most promising candidate
solutions are then tested in the ‘reality’ module in order to accurately approximate their true objective value and
associated decision costs. The ML algorithm uses this data to rapidly approximate decision costs in the meta-
heuristic search method. In each iteration, the newly generated solution is compared to the best overall solution to
see if a new best overall solution has been found. Following this, the learning module is given access to the true
decision costs, which are used to improve the accuracy of the ML module predictions in subsequent iterations.
In a learnheuristic algorithm, an iteration consists of: (i) one execution of a metaheuristic algorithm –such as the
exploration of the local neighbourhood of an incumbent solution; (ii) the use of a ML algorithm to evaluate deci-
sion costs; and (iii) the testing of a strong candidate solution in the reality module. The process continues until a
specified maximum number of iterations have been completed. Notice that the budget of reality-module evalua-
tions is the main computational bottleneck in the proposed learnheuristic algorithm. The use of a ML prediction
model enables to evaluate intensive solution algorithms –such as metaheuristics or simpler heuristics, thus acting
as a fast ‘proxy’ or surrogate model. In addition, the simultaneous learning and optimisation process gives rise
to an additional beneficial search-diversification effect: in the early stages, the predictions provided by the ML
algorithm will be rough approximations –i.e., additional diversification mechanisms may not be required. Using
the time-expensive reality module alone limits the complexity of the search algorithms that can be employed. The
key requirement of a ML module is that it can learn and generate cost predictions quicker than the reality module,
ideally by one or two orders of magnitude. Additionally, the ML module also needs to be capable of closely
approximating the reality module.

The optimisation module relies on a an event-based constructive algorithm [3]. In this case, such an algorithm
is employed for routing drones, whose decisions are controlled by the set of weights given to each of multiple de-
cision criteria referred to as efficiency attributes (Section 7.1). The tours of drones are optimised using a two-phase
metaheuristic approach, consisting of a multi-start variable neighbourhood search (VNS) algorithm followed by a
biased-randomised (BR) algorithm. BR algorithms have been successfully applied to enhance the performance of
constructive procedures in different vehicle and arc routing problems [4, 5], scheduling problems [6, 7], and facil-
ity location problems [8]. The optimisation module for the first half of the learnheuristic iteration budget consists
of single iterations of the local search algorithm. In these iterations, the decision parameters are optimised. The
remainder of the iteration budget is spent applying BR techniques to the promising sets of decision parameters
found in the local search stage. The optimisation routine makes sparing use of the reality module. On the other
hand, the optimisation algorithm makes frequent use of the ML module.

In the learnheuristic implementation presented in this work, the ML module is a fast instance-based learning
algorithm with interpolated predictions. Instance-based algorithms are one of the simplest ML algorithms [9],
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Figure 1: Overview of the proposed learnheuristic algorithm.

and are based on storing all previous data and returning a prediction based on the stored data-instance whose
initial conditions match those of the scenario for which a prediction is required. The interpolation step is an
improvement over a standard instance-based method, as predictions are calculated from several of the nearest
data points. Furthermore the interpolation method exploits numerous properties of the drone equations of motion
to improve prediction accuracy (more details are provided in Section 6). To the best of our knowledge, the
vast majority of existing research on team orienteering problems do not consider path-dependent edge-traversal
times. Hence, they do not feature a learning problem in addition to an optimisation problem. As such, the
main contribution of other non-learning algorithms lies in the quality of the optimisation module alone. The
proposed learnheuristic approach, however, features an iterative framework based on: (i) ML-driven optimisation;
(ii) reality-module testing of candidate solutions; and (iii) ML-based algorithm training. This cycle is repeated
in each iteration of our learnheuristic algorithm. In comparison, non-learning based models have no need for
such an elaborated mechanism, since they assume constant edge-traversal times regardless of the path followed
by the drone. All in all, the main contributions of this article are as follows: (i) the introduction of an emerging
and challenging real-world aerial drone route optimisation problem, which has path-dependent travel times; (ii)

the development of a solving learnheuristic approach, which is able to outperform traditional metaheuristics –
e.g., our learnheuristic can find solutions of equal or better quality in a fraction of the time; (iii) the use of an
extended version of a sensitivity-based local search (optimisation module), which was initially introduced in [10];
(iv) the introduction of a problem-specific and instance-based learning approach, which uses interpolated data
for predicting inter-node travel times –a model that exploits structural properties of the equations of motions to
generate more precise predictions; and (v) a series of insights, such as experimental evidence that measures the
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benefits of integrating online learning and optimisation.
The remainder of the paper is structured as follows: Section 2 reviews related work on the TOP and the

topic of drone motion modelling. Section 3 formulates the team orienteering problem with aerial drone physical
constraints. Section 4 discusses the use of ML methods as surrogate models and how these are related to the
concept of learheuristics. Section 5 provides details of the detailed numerical approximation scheme (reality
module), while Section 6 introduces the ML module. Section 7 explains our event-based drone-routing algorithm.
Section 8 describes the optimisation module of the learnheuristic algorithm. Section 9 contains the results of the
computational experiments carried out to test our learnheuristic algorithm. Finally, Section 10 summarises the
main findings and future research directions.

2 Related Work

This section provides a brief review of different topics directly related to our work, including: the team orienteering
problem and some of its more popular variants, application of drones in logistics, as well as modelling vehicle
motion in routing problems.

2.1 Single-Vehicle and Team Orienteering Problems

The single-vehicle orienteering problem (OP) was introduced by Golden et al. [11]. Being NP-hard, the majority
of solving methods for the OP have relied on heuristics. Early work considered the simplest deterministic version
of the OP, in which one vehicle chooses the set of nodes to visit –as well as the visiting order– during a specified
time interval [12]. The OP has many applications, including the tourist trip design problem [13]. Some variants
of this problem include the time-dependent OP [14]. Our work focuses on the TOP, an extended version of the
OP in which a team of m vehicles aims to maximise their combined reward from visiting a selection of points
within a given time limit. The problem was first introduced in [15], who extended their methodology from the
single-vehicle OP to consider multiple vehicles. Some well-known variants of this problem are the TOP with time
windows [16] and the multi-modal TOP with time windows [17]. Chao et al. [15] set up the TOP as a multilevel
optimisation problem with three levels: select which points to visit, assign points to each member of the team,
and determine the shortest path for each team member around the points they have been assigned. Such sequential
approaches reduce the size of the overall problem at the risk of removing the optimal solution from the resultant
solution space. Exact solutions have been obtained for mid-sized problems (up to 100 vertices) using an efficient
column-generation algorithm [18]. Keshtkaran et al. [19] propose a branch-and-price algorithm and use dynamic
programming to solve pricing problems. Similarly, El-Hajj et al. [20] apply a cutting planes approach, while Dang
et al. [21] employ a branch-and-cut approach. Still, the vast majority of methods are based on heuristics. Hence,
for instance, Campos et al. [22] use a greedy randomised adaptive search procedure (GRASP) with path relinking.
Likewise, Ke et al. [23] provide a Pareto-mimic algorithm in which a Pareto front of non-dominated solutions is
iteratively evolved. Their algorithm improved 10 best-known solutions to benchmark problem instances. Most
of the recent approaches have been metaheuristics, including particle swarm optimization (PSO) [21], simulated
annealing (SA) [24], harmony search [25] and evolutionary algorithms (EA) [26, 27, 28]. Lin [24] integrates an SA
stage inside a multi-start procedure to enhance the diversity of the search. The algorithm begins with a randomly-
generated initial solution before going into the iterative procedure. In each iteration, the algorithm selects a new
solution from the neighbourhood of the current one. If the objective-function value of the new solution is better
than that of the current one, the new solution replaces the current solution and the search process is resumed. As
in any other SA structures, there is also a small probability that a new solution, with a worse objective-function
value, may be accepted as the new current solution. Recent work on the OP and the TOP considers uncertainty in
the rewards or the travel times [29, 30].

4



2.2 Drone Routing Applications

Amazon [31] and Google [32] have trial projects for drone delivery systems. Moormann et al. [33] considers
a medication delivery application. Roberts et al. [34] consider the problem of trajectory optimisation for aerial
drones used to generate 3D models of landscapes, where the drone’s trajectory greatly influences the quality of
the data available for generating the model. Coutinho et al. [35] consider a disaster assessment problem in which
they optimise the trajectories of gliders. Zhen et al. [36] consider an aerial monitoring application using UAVs,
in which they optimise trip time and observation quality with monitoring height as a variable. Otto et al. [37]
provide an extensive survey on the civil applications of unmanned aerial vehicles (UAV), highlighting –among
other things– the emerging market potential of these vehicles and some new optimisation problems that their
increasing use give rise to.

Another application area is in last-mile delivery. Murray and Chu [38] consider an application in which drones
are deployed from trucks to cover “the last mile”. Here, mathematical programming models are provided for truck-
and drone-route optimisation. Poikonen et al. [39] consider the vehicle routing version and provides extended
results comparing: (i) total delivery times for traditional trucks-only formulations; and (ii) trucks with drones
formulations. According to these authors, the main practical advantage of the drone vehicle routing problem is the
ability to parallelise tasks (with a fleet of drones per truck) and the ability to take advantage of “as the crow flies”
trajectories. Sundar and Rathinam [40] consider an UAV-based travelling salesman problem (TSP) with multiple
recharge depots dispersed across the network. The objective being to visit all customers without running out of
fuel and doing this in the shortest amount of time possible. They provide an approximation algorithm capable of
achieving solutions that are within 1.4% of optimality for small to medium problem instances. Venkatachalam et

al. [41] consider a drone fleet delivery problem under uncertain fuel usage in the presence of multiple refuelling
depots. They propose a two-stage mixed integer programming model. The first stage determines the routes, the
second stage considers realisations of the uncertain fuel usage and visits to refuelling depots as recourse actions.
Dorling et al. [42] present exact and heuristic approaches to vehicle routing problems with aerial drones, their work
empirically addresses the issue of the relationship between battery weight, payload, and energy consumption. Kim
et al. [43] propose a robust optimisation algorithm for drone flight scheduling. They take battery life uncertainty
into account and use a regression approach to model the influence of air temperature on battery life reduction.

2.3 Modelling the Motion of Vehicles in Routing Problems

Most existing approaches to modelling vehicle motion in routing problems are based on the work of Dubins [44].
This work deals with minimum path lengths under a curvature constraint, i.e., the maximum turn rate of a vehicle.
In this version of the TOP, the route taken by a drone obeys the laws of motion. This means allowing for Newton’s
laws of motion, gravitation, and the effects of air-resistance. Methods based on approximating the inter-target
travel times by assuming constant drone velocities can lead to solutions that are impractical or infeasible. A
consequence of the laws of motion is that a drone’s path is constrained: (i) the acceleration of the drone depends
on the continual interaction of these forces; and (ii) a drone’s minimum turn radius depends on its speed. Our
work focuses on (i) and approximates the effect of (ii). Regarding the former, the equations of motion are solved
to determine the kinematics of drones on the paths between target locations. As regards as the latter, a velocity
penalty –dependent on the turn angle– is applied. Regarding work on routing Dubins’ vehicles, Ny et al. [45]
consider the curvature constrained travelling salesman problem and provide approximation ratios for tour lengths
of Dubins’ vehicles in comparison to non-Dubins –or Euclidean distance tour length for the same TSP solution.
Isaacs and Hespanha [46] provide a graph-based approached to the Dubins’ TSP. Savla et al. [47] provide worst-
case tour length results for the Dubins’ TSP and also for a stochastic version, where targets are generated at
random. Babel [48] proposed heuristic algorithms for the Dubins’ TSP with obstacles, in which a discrete routing
model allows for full exploitation of an aircraft’s flight capabilities. In our work, we do not take the approach
of modelling the motion of drones as Dubins’ vehicles. Instead, we assume that drones have the ability to slow
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down to reduce their minimum turn radius such that all routes are feasible. This is a suitable assumption for aerial
drones with the ability to hover, such as quadrotors.

3 Problem Formulation

This sections provides a mathematical formulation of the TOP for aerial surveillance drones. The problem is
defined on a complete directed graph G = (N,E), where N is a set of all nodes –including all potential target nodes
as well as the start and end depots–, and E is the set of edges joining each pair of nodes. A set of drones B, all of
which are initially stationed at a starting depot n0, are required to visit a subset of targets n ∈M = N \{n0,n|N|},
with location pn and surveillance (reward) values s(n) (∀n ∈M). The fleet of drones has a fixed amount of time
(Tmax > 0), in which to maximise the accumulated value derived from surveillance observations before returning to
the end depot (n|N|). If a drone fails to reach the end depot, the surveillance rewards attained by that drone are lost.
A reward is collected from a visit to a target if it is visited directly once. After this, no additional value is available
from that target. If a target is not visited directly, then a partial reward is possible. This partial reward depends
upon the distance of that target from the nearest target that is visited directly by a drone. The partial reward that
can be collected, from an observation of node k, when visiting a node j is based on the relative visibility of node
k compared to a direct visit to that node. In particular, we assume that drones have a fixed cruising altitude H,
and that the nodes have a width of W . Then if node k is a distance l jk away from node j, then the partial reward
qk j achieved for a partial observation of node k from node j is closely approximated by elementary trigonometry
as in Equation 1. We assume that only the closest observation of an unvisited node contributes to the total score
objective.

qk j = s(k)


tan−1

(
W√

l2
jk+H2

)
tan−1

(W
H

)
 (1)

For simplicity, we also assume that drones are restricted to travelling directly between nodes. This means that,
upon reaching a target, the drone’s velocity vector changes instantaneously, so that the drone’s motion is directly
towards the next target. However, the effect of turns on the magnitude of a drone’s velocity is taken into account
using a velocity penalty, which increases with turn angle. This approach approximates the concept referred to as
“scrubbing” in motor racing, and helps to avoid the need to solve the control problem of driving the drones –a
problem that is explicitly considered by Zulu and John [49]. Our work considers the aerial drone TOP in which
drone velocities, at any given point in a tour, depend on the prior path followed by the drone up to that moment.
This property gives rise to path-dependent travel times. In particular, the path-dependent travel times of drones
arise due to the effects of the continuous dynamic interaction of the drones’ thrust force with the forces of gravity
and air-resistance. Section 5 provides full details of the equations of motion of aerial drones under the influence
of these forces.

3.1 Mathematical Programming Formulation

The optimisation problem can be formulated as follows, where vbki j is a binary integer decision variable which
takes a value of 1 if edge ei j is the kth edge traversed by drone b. The objective function, Equation (2), is to
maximise the total reward collected by a fleet of drones B from direct and partial observations of a set of targets
M. The first term of Equation (2) accounts for direct observations of targets, whereas the second term accounts for
the best single-partial observation of targets not visited directly by a drone. The inclusion of partial observations
makes the formulation represented in Equations (2) to (9) a non-linear mathematical program:
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max ∑
b∈B

∑
k∈K

∑
i∈N

∑
j∈N

vbki j · s( j)+ ∑
j∈N

(
1−∑

b∈B
∑
k∈K

∑
i∈N

vbki j

)
max
b′∈B
k′∈K
i′∈N

(
qi j · vb′k′i′ j

)
. (2)

The routes of drones are constrained as follows. Constraints (3) ensure that the first node in any route is the start
depot (node 0) and that the end depot is entered from a non-depot node once in any route:

∑
j∈N\{0}

vb00 j = ∑
k∈K

∑
i∈N\{|N|}

vbki|N| = 1, ∀b ∈ B. (3)

Constraints (4) ensure that each non-depot node is entered and exited an equal number of times and no more than
once, which also ensures that only a single reward can be gained from any non-depot node:

∑
b∈B

∑
i∈N
i 6= j

∑
k∈K

vbki j = ∑
b∈B

∑
i∈N
i 6= j

∑
k∈K

vbk ji ≤ 1, ∀ j ∈ N \{0, |N|}. (4)

Constraints (5) ensure that only one edge is traversed in each position of each route:

∑
i∈N

∑
j∈N

vbki j ≤ 1, ∀b ∈ B, ∀k ∈ K. (5)

Constraints (6) ensure that non-depot nodes are not visited more than once in total:

∑
b∈B

∑
k∈K

∑
i∈N\{0}

vbki j ≤ 1, ∀ j ∈ N \{|N|}. (6)

Constraints (7) are route continuity constraints, and ensure that entered non-depot nodes are immediately exited
in the next edge traversal. Constraints (3)-(7) ensure that solutions consist of feasible tours:

∑
i∈N

vbki j− ∑
h∈N

vi(k+1) jh = 0, ∀b ∈ B, ∀k ∈ {1..|K|−1} , ∀ j ∈ N \{0, |N|}. (7)

Constraints (8) ensure that each vehicles’ route is completed within the time limit. Edge-traversal times depend
on the route followed previously by a drone. This route is expressed by the following function f (.):

∑
i∈N

∑
j∈N

∑
k∈K

vbki j f (vblmn, ∀m ∈ N, n ∈ N, l ∈ K|l < k)≤ Tmax, ∀b ∈ B. (8)

Constraints (9) express that the v variables are all binary variables:

vi jmn ∈ {0,1} , ∀i ∈ I, ∀ j ∈ J, ∀m ∈ N, ∀n ∈M. (9)

Since the formulation (2)-(9) has a non-linear objective function and solution dependent decision costs (Con-
straint (8)), linear programming solvers are not an option. In the learnheuristic solution described in the next
sections, the routes of drones are defined as the sequence of nodes assigned to them, where Ybk is the kth node in
drone b’s tour. Ybk variables are related to vbki j variables by Ybk = ∑

i∈N
∑

j∈N
ivbki j.

3.2 Solution Evaluation

In this work, heuristically-generated candidate drone tours Y are evaluated according to the TotalReward (Y )

function provided in Algorithm 1.
This algorithm takes as input the set of drone tours to be evaluated, Yb (∀b ∈ B), and returns the total rewards

collected by the drones. It maintains a list of non-visited nodes, U , which is initially set to those nodes not included
in any drone route (line 3). It also maintains a list of drones, B, which complete their assigned tour within the
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Algorithm 1 TotalReward (Y )

1: Inputs: drone routes Yb ∀b ∈ B
2: Initialise total reward, totalReward = 0
3: Initialise the set of unvisited nodes, U = N \

⋃
b∈B
{i ∈ Yb}

4: Initialise the set of drones that successfully finished their tours within the time limit, B← /0
5: for b ∈ B do
6: Evaluate drone tour time using Algorithm 2
7: τb = TourTime(Yb)
8: if τb ≤ Tmax then
9: totalReward← reward + ∑

i∈Yb

S (i)

10: B←B∪{b}
11: else
12: U ←U ∪{i ∈ Yb}
13: end if
14: end for
15: Add rewards for partial observations of nodes not visited directly by drones that finished their tours success-

fully
16: for u ∈U do
17: totalReward← totalReward +max

b∈B
i∈Yb

qiu

18: end for
19: Output: totalReward

time limit Tmax. The algorithm then considers each drone route in turn, and evaluates the time required to complete
each route using the TourTime(Yb) function, which will be described in the following. If the tour time τb of drone
b is less than or equal to Tmax, then the rewards for direct observations of the nodes in that tour are added to
the totalReward (line 9), and the drone is added to list B (line 10). If τb exceeds Tmax, then a route failure has
occurred, and the nodes in that route are added to the list U (line 12). After evaluating the tours of each drone
(line 5-14), the algorithm accounts for any rewards from the best partial observations of any non-visited nodes U

by drones which successfully completed their routes within Tmax. The time taken for a drone to traverse an edge is
dependent upon the initial velocity, gradient, and length of the edge. Furthermore, the initial velocity on each edge
depends upon the final velocity on the previous edge and the turn angle between the previous and the current edge.
In this case, the time taken for a drone to complete its tour is calculated as in Algorithm 2, where: βi j denotes the
gradient –with respect to horizontal ground– of the edge from node i to node j, and li j is the length of the edge
between nodes i and j.

Algorithm 2 simulates the sequence of edge traversals in a drone’s route by solving the drone equations of
motion for each edge (lines 6 and 7), whilst applying turn penalties for the turns performed at each node visited
between the start and end depot nodes (lines 10 and 11). The initial velocity u of a drone on an edge is calculated
by applying the turn penalty to the final velocity v of the drone when it reached the end of the previous edge.
Additionally, the initial velocity on an edge is limited to the terminal velocity on the current edge, which amounts
to assuming that any necessary deceleration occurs instantaneously. The turn penalty values are described in detail
in Section 5.1. The tour time (τ) is the sum of the times to traverse each edge. Section 5 provides the details of
the drone equations of motion and their numerical solution.

4 Surrogate Models and Learnheuristics

The section discusses hybridisation in optimisation, existing examples of ML methods used as surrogate objective
functions, and a discussion of the relationship between learnheuristics and reinforcement learning.

8



Algorithm 2 TotalTime(Yb)

1: Inputs: drone path Yb
2: Initialise the drone’s initial velocity u = 0 and total tour time τ = 0
3: for j ∈ {Yb \{n0}} do
4: i = previous node to j in path Yb
5: k = next node to j in path Yb
6: u← min

(
u, terminalVelocity

(
ek j
))

(see Equation (25))
7: // Solve the equations of motion to determine t the edge traversal time and v the final velocity on the current

edge, denoted by the function h() (see single edge traversal simulation Algorithm 3)
8: (t,v)← h(u,βi j, li j)
9: // Update total tour time

10: τ ← τ + t
11: // Apply turn penalty (πi jk) for traversing edge e jk immediately after edge ei j to determine the drones initial

velocity on the next edge
12: u← vπi jk
13: end for
14: Output: τ

4.1 Fitness Function Approximation

In many real-world engineering and combinatorial optimisation problems, complex simulation models are required
for the evaluation of candidate solutions. The substantial time requirements of such detailed simulation models
precludes the use of methodologies that require a high number of function evaluations such as metaheuristics. ML
algorithms are often used to provide fast fitness function approximations. Learnheuristics [2] provide a formal
framework for such an approach, with an emphasis on combinatorial optimisation problems with an inherent
parameter learning problem. Many fitness function approximation methods have been proposed. Jin [50] provides
a comprehensive survey and states that the most popular methods of fitness function approximation are: “the
response-surface methodology, the kriging model, the feed-forward neural networks, [...] and support vector
machines”. However, since they typically require extensive computing times, these ML methods do not always fit
well in the learning module of a learnheuristic. For that reason, we propose an approach that uses a fast and easy-
to-implement instance-based learning algorithm. It iteratively learns to approximate solution-dependent decision
costs, from a limited budget of full fitness function (reality module) evaluations, during the optimisation process.
Such an approach gives rise to the possibility of selecting solutions that will provide the learning algorithm with
training data. During the iterative solution process, a diminishing weight is given to selecting edge traversals based
on a prediction uncertainty measure of the estimated edge-traversal time (Section 7.1).

Other approaches to fitness-function approximation include [51], who use k-means clustering on the popula-
tion of solutions and perform full fitness-function evaluations only for elements nearest to the cluster centroids
–the other elements are approximated with an ensemble of neural networks. Their algorithm significantly outper-
forms the plain evolutionary strategy with the same number of full fitness-function evaluations and without any
fitness-function approximations. A similar comparison is made in this work (Section 9). Brownlee et al. [52]
propose the use of a Markov’s network as a surrogate objective function in a genetic algorithm, and find that such
an approach is only beneficial for cases where the fitness functions are substantially complex. In their work, the
proposed fitness-function approximation is close to two orders of magnitude faster than the fully-detailed evalua-
tion approach. Lim et al. [53] introduce a generalised framework for utilising a variety of surrogate models within
an evolutionary algorithm. The weights given to each surrogate model are based on the accuracy of the fitness
predictions generated in previous iterations of the evolutionary algorithm. Yang et al. [54] use support vector
machine regression to model the original objective function and accelerate the metaheuristic computing time.

9



4.2 Learnheuristics and Reinforcement Learning

Our learnheuristic framework is analogous to reinforcement learning in several ways –although the former is
specifically adapted to the area of metaheuristics. Reinforcement learning is concerned with the problem of simul-
taneously learning and optimising the behaviour of agents in an environment through trial and error. The standard
reinforcement learning framework [55] consists of an agent in a feedback loop in which actions are selected based
on a policy that is conditioned on the agents state in the environment. For each action performed, a state transition
occurs, and the agent receives a reward –which is used to update the agents policy for that state. The learning
challenge is that of finding an optimal balance between exploration of different actions and the accumulated re-
ward. Reinforcement learning algorithms are typically based on the formalism of Markov decision processes [56],
whereby the states of a system exhibit the Markov property. Given this property, the Bellman equations [57]
characterise the value function for an optimal agent, which defines the expected total reward associated with each
state at each time. The value function can be used by the agent to make step-by-step optimal decisions –e.g.: by
selecting the action with the maximum value of the immediate reward plus the expected value of the resultant
state. Learnheuristics do not directly build upon the same standard mathematical formalism. Instead, they pro-
vide a framework for hybridising existing metaheuristics and learning algorithms in order to address optimisation
problems with inherent learning requirements. Just as in reinforcement learning, learnheuristics are faced with
the trade-off between exploration and exploitation when simultaneously learning and optimising. With its roots
in the adaptive experiment design [58], the study of the multi-armed bandit reinforcement learning problem [59]
has contributed much to address this trade-off. In particular, the Gittins’ index rule [60] was proven to provide
an efficient solution to this problem. It provides a measure of the value associated with selecting an action in
terms of the trade-off between the immediate reward and the information that will be gained from exploring that
action. Just as a Gittins’ index accounts for the amount of previous exploration of a candidate decision, in the
proposed learnheuristic algorithm we include a prediction uncertainty measure as a decision criterion for selecting
targets-to-visit-next within an event-based solution construction procedure (Section 7).

5 Reality Module

This section provides the equations of motion accounting for the effects of gravity, air-resistance, elevation change,
and turn angles, along with a numerical approximation scheme for their solution. The basic forces governing flight
are thrust, drag, lift, and gravity [61]. These forces can be modelled using Newtonian mechanics [62]. Force is a
scientific measure of actions applied to a mass, which can change its velocity. A constant force changes a mass
velocity at a constant rate, i.e., a constant acceleration or deceleration. Thrust provides the acceleration force,
which allows a drone to overcome resistive forces of drag (or air-resistance) and gravity. Lift is the vertical accel-
eration force, which is required to overcome gravity and allow an aircraft to leave the ground. Lift is generated
through aerodynamic effects between the air and wings (or propellers). An increased lift raises the air-resistance.
We do not directly model aerodynamic effects because the problem of choosing the correct wing angle in order
to achieve the desired resultant acceleration direction is an aspect of the drone control problem. In this work we
assume that drones have a constant thrust force F . This assumption is shown in experiments to be an accurate
approximation [42]. Drones are also subject to air resistance, with a force that is proportional to v2 (the drone’s

velocity squared). The air resistive force is given by the equation αv2 [63], where the air-resistance coefficient is
given by α = 1

2 ρCDA. In the previous expression, ρ is the density of air, A is the cross sectional area of the drone
in its direction of travel, and CD is the drag coefficient. As stated in Section 3, we assume that drones travel along

the shortest straight line paths between consecutive nodes, since this greatly simplifies the drone control problem.

The terrain over which the drone is taking observations may exhibit elevation changes. Therefore, the time to
traverse edge ei j also depends on the gradient of that edge βi j due to the effect of the gravitational force (mg) on
the drone’s mass m –where g is gravitational acceleration. Given these assumptions, a drone’s motion along an
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edge ei j is governed by the following equations:

rx = αv2 cos(βi j)− fx,

rz = mg+αv2 sin(βi j)− fz,

F2 = f 2
x + f 2

z ,

βi j = tan−1 (rz/rx) .

(10)

Here, rx and rz are the components of the resultant force of the drone, the magnitude of which divided by the
drone’s mass m gives the acceleration of the drone along the edge. Also, rz corresponds to the vertical lift force,
while rx corresponds to the propulsive force parallel to the ground. F is the magnitude of the force available to
the drone, while fx and fz are its components. The third and fourth equations constrain the travelling direction of
the drone and the total available thrust force, respectively. These equations also encapsulate our approach, thus
avoiding the need to solve a complex aerial drone control problem. The first and second equations of the set of
Equations (10) define the forces acting on the drone due to gravity and air resistance in the component directions.
The third equation of the set of Equations (10) associates the total force available to the drone with the unknown
components of that force. The fourth equation of the set of Equations (10) states that the direction of the resultant
acceleration is constrained to the direction of the edge being traversed. The set of Equations (10) capture the
main force components of a drone in flight. The unknown parameters are fx, fz, rx, and rz. Thus, there are four
equations that need to be solved to find the aforementioned parameters. This can be achieved by substitutions
and the solution to a quadratic equation –see Equation (11). The reality module solves these equations of motion
using a numerical approximation based on calculating the resultant acceleration at small time intervals of δ . This
process continues until the edge length has been traversed and the total traversal time and final velocity have been
revealed. Algorithm 3 provides an outline of a single edge traversal approximation.

Algorithm 3 Numerical approximation of a single edge traversal: (t,v)← h(u,β , l)

1: Inputs: drone initial velocity u, edge gradient β , edge length l
2: Predefined constants: time step size δ , gravitational acceleration g, coefficient of air-resistance α

3: Initialise drone’s position on the edge position = 0, the drone’s speed s= u, and edge traversal time t
4: while position < l do
5: // Evaluate force equations to determine the drones acceleration a
6: a← φ (s,β ,g,α)
7: // Update the drones speed and position based on the calculated acceleration a
8: position← position+ sδ +0.5aδ 2

9: s← s+aδ

10: // increment the edge traversal time t
11: t← t +δ

12: end while
13: Output: t and s

Lines 8 and 9 provide the simplest numerical approximation, the Euler’s method. In this work we use the
fourth order Runge-Kutta method for second order differential equations [64], since it provides a more accurate
approximation. Another important issue is the choice of the time step size (δ ). In experiments of the steepest
downhill edge, it was found that the fourth order Runge-Kutta method did not need a step size in excess of
δ = 0.1. The φ function is evaluated by solving equations (10), as described above, resulting in the following
(broken down) equations.

φ (s,β ,g,α) =

√
(b− fx)

2 +(a− fz)
2

m
, (11)

where, fz =
√

F2− f 2
x , fx =

−g+
√

g2−4fe
2f , a = mg+αs2 sin(β ), b = αs2 cos(β ), c = tan(β ), d = cb− a, e =

d2−F2, f= c2 +b and g= 2cd.
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5.1 Turn Angle Effect

To model the effect of turns on velocity, we use a velocity penalty function that increases with turn angle. Suppose
that part of a drone’s route includes visiting nodes i, j, and k in sequence. Let θi jk denote the angle between edges

ei j and e jk, and equals cos−1
(
((p j−pi)(pk−p j))
|p j−pi||pk−p j |

)
, where pi is the position vector of target i. The turn penalty πi jk,

upon reaching node j, is πi jk = cos(θi jk/2). So, if a 180 degree turn is required, all of the velocity is lost in the
turn. Also, if there is no turn, there is no velocity penalty. The initial velocity u on edge e jk can be calculated as
u = vπi jk, where v was the final velocity on the preceding edge ei j.

6 Machine Learning Module

Using the reality module to evaluate decision costs might require time-consuming numerical approximations (e.g.,
complex simulations), which prohibit the use of evaluation-intensive metaheuristic algorithms. Since accurate
evaluations of drone tour times are the dominant computation bottleneck, the role of ML in our learnheuristic
approach is to provide rapid predictions of path-dependent decision costs. Within a learnheuristic, the ML module
is part of a feedback loop that also involves the optimisation module. Within each iteration of the learnheuristic, the
following steps occur: (i) the optimisation module proposes a promising candidate solution, which is generated
based on decision-cost predictions generated by the ML algorithm; (ii) this candidate solution is then tested in
the reality module to reveal its true cost, in addition to accurate data regarding the decision costs; and (iii) the
accurate data regarding decision costs is then used to train the ML algorithm. Hence, if the candidate solution is
generated based on inaccurate predictions, then the data collected from the reality module can be used to improve
those predictions. Thus, if a candidate solution turns out to be not so promising, then improved predictions
should prevent the optimisation module from generating the same solution in subsequent learnheuristic iterations.
This means that the integration of iterative optimisation and ML algorithms configure a search-diversification
mechanism.

The learning component of the proposed learnheuristic framework has the role of rapidly predicting edge-
traversal times and final velocities on those edges. The ML module has access to data provided by a limited
number of reality-module solution evaluations. We propose an instance-based learning algorithm for playing
the role of the ML module. This means that edge traversal predictions will be based on the historical edge-
traversal data that is closest to the initial conditions of the edge traversal being predicted. Furthermore, instead
of merely returning a prediction based on the nearest existing data, as in a standard instance-based approach
[9], the predictions are interpolated from the nearest available data points. The ML module is decomposed by
edge, which means that a separate instance of the instance-based learning algorithm is implemented for each edge
and each edge-traversal direction. In contrast to the alternative approach of implementing a single-data value
of the instance-based learning algorithm for making all of the required predictions, this decomposition approach
eliminates edge length and gradient as independent variables for each edge prediction model –as these are constant
in the data collected for each edge. Whilst this approach increases the number of individual learning problems, it
significantly simplifies the prediction problem to that of predicting edge-traversal times as a function of a single
variable –that of the initial velocity on the edge. Furthermore, each individual model is smaller with lower data
requirements. The ML module also predicts the final velocities of drones after traversing each edge, as these are
required for estimating the initial velocities on subsequent edges after taking turn-penalties into account. The
prediction problem for each edge ei j can be represented as follows:

(t,v)← h′i j (u) . (12)

Here, t and v denote the predicted traversal time and final velocity, respectively. Also, h′ represents the
prediction method as a function –in contrast to h, the actual edge traversal function. Also, u denotes the drones’
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initial velocity. Tour time evaluations are performed by replacing the function h(u,βi j, li j) on line 7 of Algorithm
2 with h′i j (u). Our ML module can be any ML methodology for regression, such as a neural network [65], or
regression trees [66]. In this work we use an instance-based approach with interpolation due to: (i) the speed and
simplicity of the learning and prediction tasks; and (ii) our interest in exploiting the characteristics of the specific
learning problem to improve the accuracy of the solving approach, as described in Section 6.2.

6.1 Reality Module Data

In general terms, the ML module fits the function h to the edge-traversal data generated in the reality module edge-
traversal simulations –such in a way that the average prediction error is minimised. When a candidate solution for
the aerial drone TOP is evaluated in the reality module, data is collected regarding the initial velocity u, traversal
time t, and final velocity v for each edge traversed. Note that, since we assume that drones travel on straight
paths between consecutive nodes, velocity is modelled as a one dimensional vector. Therefore, speed equals
velocity in the following. Let Di j denote the complete set of data collected from all of the traversals of edge i j

evaluated so far in the reality module. Let di j
k denote the kth element of this set of data, which itself is a tuple

containing the initial speed, traversal time, and final speed for that edge traversal. Such a tuple can be expressed
as
(

u
(

di j
k

)
,v
(

di j
k

)
, t
(

di j
k

))
, where the functions u(.), v(.), and t (.) return the initial speed, final speed, and

edge traversal time, respectively. Furthermore, the set Di j is an ordered set in which the elements are sorted in
ascending order of the initial speeds of each data tuple, where di j

k denotes the data tuple, corresponding to the
traversal of edge i j, with the kth lowest initial speed. This ordering facilities the interpolation method, which is
used to generate traversal time predictions, t ′, and final speed predictions, v′, given an initial speed |u′| on edge i j.

6.2 Interpolated Prediction Method

In a purely instance-based approach, given an initial speed |u′|, predictions for the traversal time t ′ and final speed
|v′| on an edge i j are generated by identifying the data tuple in the set Di j with the nearest initial speed u

(
di j

k′

)
to

|u′|. That is, we find the di j
k′ that minimises u

(
di j

k′

)
−|u′|. In order to produce more accurate predictions, traversal

time and final speed predictions are interpolated. In particular, a blend of linear and gradient interpolations are
used. A linear interpolation takes an initial-speed-difference-weighted-sum of the data tuples with the nearest
initial speeds either side of |u′|. In the gradient based interpolation approach, gradients are estimated for the rate
of change of traversal time

(
∂ t
∂u

)
and final speed

(
∂v
∂u

)
with respect to changes in initial speed. These are used to

generate interpolated predictions by extrapolating predictions from the data tuples with the nearest initial speeds
either side of |u′|. Finally, a weighted sum of the linear and gradient-based interpolated predictions is used to
generate the final prediction. Noting that the data for each edge is sorted in increasing order of initial speed, the
interpolation method exploits the following properties of traversal times and edge final speeds as a function of
initial speed:

t
(

di j
k

)
≥ t
(

di j
k+1

)
, (13)

v
(

di j
k

)
≤ v
(

di j
k+1

)
. (14)

Property (13) means that edge-traversal times, t (.), monotonically decrease with initial speed u(.). Prop-
erty (14) means that edge final speeds, v(.), monotonically increase with initial speed. For an edge-traversal
starting from an initial speed of |u′|, these properties imply the following: when predicting the traversal time
t ′ and final speed |v′|, the data point d′, with u(d′) = |u′|, provides bounds on the prediction values t ′ and |v′|.
Specifically, the data point d with the minimum initial speed that is higher than (or equal to) |u′| (denoted d),
provides an upper bound for the final speed prediction, i.e., |v′| ≤ v

(
d
)
. It also provides a lower bound for the
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traversal time prediction, i.e., t ′ ≥ t
(
d
)
. Similarly, the data point d with the maximum initial speed that is lower

than (or equal to) |u′| (denoted d), provides a lower bound for the final speed prediction, i.e., |v′| ≥ v(d), as well
as a lower bound for the traversal time prediction, i.e., t ′ ≤ t (d). It is possible to express d and d as follows:

d = argmax
d∈D

{u(d) |u(d)≤ |u′|} ,

d = argmin
d∈D

{u(d) |u(d)≥ |u′|} .
(15)

The bounds on the predictions can then be expressed as:

t
(
d
)
≤ t ′ ≤ t (d) ,

v
(
d
)
≥ |v′| ≥ v(d) .

(16)

The monotonicity of both edge-traversal time and edge final speed can be seen in Figure 2, which also shows
the convexity of the functions. Convexity follows on from the fact that drone acceleration is decreasing in speed
due to air resistance.
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Figure 2: Monotonicity (and convexity) of edge traversal times and final speeds as a function of edge initial speed.

The convexity feature of both the traversal time and final speeds means that a linear interpolation is guaranteed
to overestimate the true value. Letting ψ = u

(
d
)
−u(d), then c = |u′|−u

(
d
)
, and c = u(d)−|u′|. In other words,

the distance between initial speeds of the neighbouring data points and the initial speed for which a prediction is
required. Notice that: (

c
ψ

)
t (d)+

(
c
ψ

)
t
(
d
)
≥ t̂, (17)

where t̂ denotes the true value for the edge-traversal time being predicted. The same applies to final speeds by
interchanging |v| with t. Now let gt (dk) denote the gradient of the edge-traversal time function at the kth lowest
initial speed for a traversal of the given edge, which can be estimated from an initial speed distance weighted sum
of forwards and backwards gradient approximations:

gt (dk) =
c
(

t(dk)−t(dk−1)
c

)
+ c
(

t(dk+1)−t(dk)
c

)
c+ c

. (18)
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The convexity of the traversal time and final speed functions means that gradient-based extrapolations starting
from the neighbouring data points will underestimate the true value, i.e.:

t
(
d
)
− cgt

(
d
)
≤ t̂,

t (d)+ cgt (d)≤ t̂.
(19)

Therefore, a weighted sum of the linear interpolation and gradient-based extrapolations can result in a prediction
of improved accuracy. Let γt and γv be the weight given to the linear interpolation for traversal-time and final-
speed predictions, respectively (where 0 ≤ γt ≤ 1 and 0 ≤ γv ≤ 1). The final predicted edge traversal time (and
final speed analogously) can be expressed by Equation (20).

t ′ = γtLt +(1− γt)Gt . (20)

Here, Lt is the linearly interpolated traversal time prediction, given by Equation (21), and where Gt is the
forwards and backwards extrapolation based interpolated traversal time prediction, given by Equation (22).

Lt =
ct (d)+ ct

(
d
)

ψ
, (21)

Gt =
c(t (d)+ cgt (d))+ c

(
t
(
d
)
− cgt

(
d
))

ψ
. (22)

Figure 3 shows that low values of the interpolation weight γt result in predicted edge-traversal times with
the lowest root mean squared error (RMSE). Additionally, there is a weak negative correlation between RMSE
and the solution quality –as measured by the total reward. The correlation coefficient was −0.1004 and the R2

goodness-of-fit measure result was 0.0101. Note that the predicted final speeds on edges are calculated with an
analogous equation, where t () is replaced by v(), and γt is replaced with a final speed interpolation weight σ .
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The edge-traversal time interpolation weight and the edge final-speed interpolation weight can both be learned
from the prediction errors, which are revealed by testing a solution in the reality module. For this, exponential
smoothing is used to learn the best value for an interpolation weight. For the case of the traversal-time interpolation
weight, the exponential smoothing update is as follows:

γt ← χtγ
∗
t +(1−χt)γt , (23)

where γ∗t is the value of the interpolation weight that would have led to the correct predicted edge-traversal
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time, and χt is the corresponding interpolation weight-learning rate:

γ
∗
t =

t̂−Gt

Lt −Gt
. (24)

Here, t̂ is the true edge traversal time, Gt is the gradient-based interpolated traversal time –see Equation (22)–
, and Lt is the linearly interpolated traversal time –see Equation (21). Note that, consistent with Figure 3, the
traversal-time interpolation weight converges to a value close to 0.1, which means that gradient interpolations tend
to be more accurate than linear interpolations, but still underestimate the true values slightly. Finally, Figure 4
illustrates how the RMSE of edge-traversal time predictions decreases as more iterations of the learnheuristic
are performed. The ML module for each edge is initialised using the reality module to approximate with two
edge traversals, one corresponding to an initial speed of 0 and another corresponding to an initial speed equal to
the terminal velocity for that edge. This represents a moderate use of the reality module in comparison to the
requirements of a metaheuristic algorithm based on reality-module-evaluations-only. The terminal velocity for an
edge can be calculated analytically from Equations (10) by setting the resultant acceleration to zero (rx = 0 and
rz = 0). It is given by the following equation:

terminal velocity =

√√√√√
∣∣∣∣∣∣
−mgsin(β )+

√
m2g2

(
sin2 (β )−1

)
+F2

α

∣∣∣∣∣∣. (25)

7 Event-Based Constructive Drone-Routing Heuristic

The general heuristic procedure that is used to build drones routes is summarised in Algorithm 4 and explained in
more detail next.

Algorithm 4 is an event-based routing algorithm, similar to the one proposed by Fikar et al. [3] for the problem
of home service routing with synchronised trip sharing. The event based approach is suitable in the current context
due to the feature of solution dependence of inter-target travel times, which complicates the efficient use of typical
local search moves such as those employed by the vast majority of the best metaheuristic algorithms for team
orienteering problems without this feature [67]. In particular, we use local search moves based on the minimum
changes to decision weights that modify a routing decision. Algorithm 4 generates routes for a fleet of drones
simultaneously in time order. It maintains a list of drones sorted according to the earliest time drones will reach
the most recent target allocated to them. In every iteration, the drone at the top of this list is assigned a next target
to visit. The next target is selected by calculating efficiency scores for each unvisited target and selecting that
with the highest score. The score for each unvisited node is computed as a weighted sum of efficiency attributes
associated with the given drone visiting that node next. Section 7.1 explains the efficiency attributes in detail.

7.1 Efficiency Attributes of the Next Target to Visit

For each unvisited and feasible node, efficiency attributes (e.a.) are calculated on line 14 of Algorithm 4 in order
to assess the relative benefits of selecting each candidate node as the next node a drone should visit. The e.a. are
explained next:

1. Reward (λ1): This e.a. is simply the reward that will be achieved from visiting the given candidate node.
In problem instances where little time is available, greedily visiting high-value nodes can result in a very
good solution.

2. Traversal time (λ2): This e.a. takes on the value of the time required to reach the given candidate node,
starting from the current node of the drone. Setting a high negative decision weight for this attribute results

16



in the selection of nodes that can be visited quickly. This may be due to a node being near, or due to the
drone not having to slow down to make a sharp turn.

3. Distance (λ3): This e.a. takes on the value of the distance, to the given candidate node, from the current
node of the given drone. Setting a high weight for this attribute simulates a nearest neighbour algorithm.

4. Reward per second (λ4): This e.a. is calculated as the reward associated with visiting a given node divided
by the time required to reach that node, starting from the current node. It is a standard measure used in
heuristic algorithms for the team orienteering problem.

5. Velocity after turn (λ5): This e.a. takes on the value of the velocity after the turn that is required to travel
towards a given candidate node. Setting a high weight for this efficiency attribute will lead to routes where
drones fly along a straight path, avoiding speed reductions due to sharp turns.

6. Velocity at next node (λ6): This e.a. takes on the value of the velocity upon reaching the given candidate
node, starting from the current node. Setting a high decision weight for this attribute increases the velocity
upon reaching the next node. This may be due to the next node being: at a lower altitude (reducing the
required work against gravity), relatively far away (allowing the drone to accelerate for longer), or in the
same direction the drone is already travelling (reducing the speed reduction due to a sharp turn).

7. Edge-traversal-time prediction uncertainty (λ7): This e.a. is a measure of the level of uncertainty in
the predicted time required to traverse the edge joining the drone’s current location and the candidate target
node. Setting a high weight for this attribute encourages the exploration of edges that have not been traversed
regularly, which leads to more information being collected about them (via reality module testing). This,
in turn, reduces their future prediction uncertainty level. As well as helping to improve the future accuracy
of the ML module, this attribute also provides a search diversification mechanism. Edge-traversal time
prediction uncertainty is calculated as follows:

λ7 =
(
t (d)− t

(
d
))(u

(
d
)
+u(d)−2u′

u
(
d
)
−u(d)

)
. (26)

The first term is an upper bound on the uncertainty of the traversal-time prediction, as the true traversal
time must lie between the traversal times of the previous edge traversal instances (d and d), which had the
nearest initial velocities below and above the current initial velocity on the same edge (u′). The second term
is a measure of how close u′ is to the midpoint between u

(
d
)

and u(d), where the prediction uncertainty is
highest.

After calculating the e.a. scores for each feasible candidate node, all of these scores are normalised relative
to the minimum and maximum scores for each e.a. Following this, the overall score for each candidate node is
calculated as: ∑

|λ |
i=1 wbiλi (see line 15 of Algorithm 4). The next section explains the algorithm used to search the

space of e.a. weights using the event-based constructive algorithm presented in this section.

8 Optimisation Module

Within the learnheuristic framework set out in Figure 1, the optimisation module is tasked with determining the
next solution that will be tested in the reality module. The main overall objective is to find a set of drone tours
which maximise the total reward. However, there is the additional learning objective of ensuring that the ML
module has a sufficiently diverse set of data. The latter objective is addressed by the use of an uncertainty measure
for scoring candidate nodes (see λ7 of Section 7.1). Equation (27) provides an exponential decay scheme for the
weight given to prediction uncertainty in iteration f of the learnheuristic algorithm:
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wb,7 ( f ) = wb,7 (0)µ
f . (27)

Here, µ takes on a value close to and less than 1. This approach means that the learning problem does not
have to be treated as an additional objective, and the optimisation module can focus solely on maximising the
main objective. In this paper, a two-phase metaheuristic algorithm is proposed. It consists of a multi-start local
search algorithm –for searching the space of attribute weights– followed by a biased-randomised implementation
of Algorithm 4. In this BR implementation, a strong candidate set of attribute weights –which were identified in
the first phase– are explored in more detail. The local search component uses three local neighbourhoods, which
are explained in Section 8.1. Another issue is the avoidance of multi-plicatively symmetrical solutions. For this,
the weights are scaled proportionately after each modification, such that the absolute maximum weight value is 1.

8.1 Local Search Neighbourhoods

Equation (28) gives the minimum change to decision weight, wb j, that modifies the overall highest-scoring candi-
date node from the current best candidate i∗ to candidate node i. These minimum weight changes can be calculated
for the current solution after line 24 of Algorithm 4. Here, ε is a positive value close to 0, and avoids a tie in the
value of the candidate node i with the current best candidate node i∗.

∆wi
b j =

((
score(i∗)−

(
wb jλi∗ j

))
−
(
score(i)−

(
wb jλi j

))
+ ε
)

λi j−λi∗ j
−wb j. (28)

The first local search neighbourhood consists of the absolute minimum change, to each of the decision weights
individually –both positive and negative–, which change any of the routes generated by Algorithm 4 from those
of the current solution. The minimum weight changes are made in Algorithm 4 (lines 23 and 24). For all b ∈ B

and for all j ∈ {1,2, ..., |λ |}, let n1 denote the set of absolute minimum weight changes over all target choice
decisions made in the current solution. The second local search neighbourhood consists of the average minimum
weight changes for each of the decision weights individually, both positive and negative. In comparison to the
first neighbourhood, this second neighbourhood represents a slightly larger step size. For all b ∈ B and for all
j ∈ {1,2, ..., |λ |}, let n2 denote the set of average minimum weight changes over all target choice decisions made
in the current solution. These first two neighbourhoods can be used as local search neighbourhoods for any
problem in which a weighted-sum-of-efficiency-attributes approach is used, to make “next decisions”, within an
event-based constructive algorithm. The third local search neighbourhood is different from the previous two, as
it is based applying Algorithm 4 for subsets of drones sequentially. The initial implementation of Algorithm 4 is
based on determining all drone routes simultaneously. However it is possible that generating routes for subsets of
drones at a time may result in a higher-quality solution. If, for example, there are four drones, then the possible
allocation orders can be represented as follows:

(1,1,1,1)
(1,1,1,2)
(1,1,2,2)
(1,2,2,2)
(1,1,2,3)
(1,2,2,3)
(1,2,3,3)
(1,2,3,4)

(29)

The first allocation order given in Equation (29) corresponds to the default implementation of Algorithm 4.
The second allocation order determines routes for the first three drones together, and then determines a route
for the fourth drone involving the remaining unvisited targets last. The last one represents a fully sequential
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implementation of Algorithm 4. The other allocation orders have analogous meanings. This neighbourhood is
called the allocation order neighbourhood, and is denoted n3. In general, an allocation order neighbourhood can
be used whenever a constructive procedure can be used to sequentially allocate tasks to a collection of agents,
such as: aerial drones, vehicles, people, etc. Finally, let the set of local search neighbourhoods be denoted by
N, i.e.: N = {n1,n2,n3}. Defining a set of local search neighbourhoods is useful notationally for the following
Algorithm 5, since local search neighbourhoods are temporarily ruled-out of consideration if they are known to
not contain any solutions with an objective value higher than that of the incumbent solution.

8.2 Multi-Start Local Search Followed by Biased Randomisation

The following pseudo-code corresponds to the optimisation module of Figure 1. It is a multi-start local search
based on the three local search neighbourhoods defined in Section 8.1. In each iteration, a local search neighbour-
hood is selected at random according to a probability distribution P local search.

In an iteration of Algorithm 5, one of the currently unexplored neighbourhoods is selected and explored using
the ML module. The best solution found in an iteration is then tested in the reality module. If the objective value
of that solution newOb j is found to be the best solution found since the local search restarted, the new solution
is set as the current solution and the set of unexplored neighbourhoods is reset. Additionally, the weights and
allocation order for the new current solution are added to a set of strong candidates Z. It is these that are explored
in more detail in the second phase of the metaheuristic algorithm via biased-randomisation. If newOb j is not an
improvement upon the best solution since local search restarted, the current neighbourhood is removed from the
set of unexplored neighbourhoods. If no unexplored neighbourhoods remain, it is concluded that a local optimum
has been found and the local search restarts. The restart procedure can be either random or, alternatively, can
be a weighted sum of a pair of strong candidate solutions in Z –the pair of strong candidates are selected using
biased-randomisation, too. The output of a single iteration of the optimisation module is a new solution newSol

for the reality module solution to test (Figure 1).
The multi-start local search algorithm is used as the optimisation algorithm for half of the available iteration

budget of the learnheuristic algorithm. In the second half, the set of strong candidate solution generation parame-
ters Z are explored in more depth by applying biased randomisation on line 23 of Algorithm 4. As explained with
examples in [68] and [69], this means that, instead of always selecting the candidate node with the highest total
weighted sum efficiency attribute score, a node is selected using a skewed probability distribution such that higher
scoring nodes have a higher probability of selection. In this work a geometric probability distribution is used to
select the score rank index (randI) of the node in the score-ordered candidate list C that will be added to a drone’s
tour next. Equation (30) provides random candidate index for the geometric distribution, where ω is a parameter
between 0 and 1. Notice that ω = 1 corresponds to a full greedy behaviour, whilst lower values respectively lead
to less greedy and more exploratory behaviour.

randI = Mod
(⌊

log(uniRand (0,1))
log(1−ω)

⌋
, |C|
)
. (30)

Figure 5 shows that the best choice for the ω parameter of the biased randomisation implementation of the
event-based routing algorithm is around 0.75, which corresponds to relatively greedy behaviour when choosing
between candidate nodes to allocate to drone tours. Additionally, experiments revealed that focusing the biased
randomisation on the top 10 candidate sets of solution generation parameters, with 100 repeated applications of
the biased-randomised procedure, lead to the highest quality solutions. Figure 6 shows the current solution and
the best overall solution in each iteration of an example implementation of the two-phase metaheuristic algorithm
presented in this section. The overall average percentage difference between the best and current solution was
20.07%, and the standard deviation of the percentage difference between the best and current solution was 14.03%.
For the first stage, these statistics were 25.08% and 17.13%, respectively. For the second stage, they were 15.06%
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and 7.08%, respectively. These statistics reflect a first stage with a high level of search diversification, and a
second stage with a higher level of search intensification.
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9 Numerical Experiments and Results

In this section, we provide the results of numerical experiments which: (i) validate the proposed event-based
drone-routing algorithm in the case of ‘static’ (not path-dependent) TOP instances; and (ii) compare the proposed
learnheuristic algorithm with a reality-module-only metaheuristic –i.e., a reality-module only counterpart of the
proposed learnheuristic and an a priori learning implementation of the proposed learnheuristic over a range of test
instances, in which the level of path-dependency is varied. In the spirit of a fair testing, each algorithm has the
same budget of reality-module simulation runs for testing candidate solutions. However the reality-module-only
learnheuristic and the reality-module-only metaheuristic use additional reality-module runs as they use the reality
module to generate candidate solutions using Algorithm 4, whereas the learnheuristic and the a priori learning
implementation of the proposed learnheuristic use the ML module for this purpose.

9.1 Comparing the Learnheuristic with the Best-Known Solutions of the Static TOP

Tables 1 and 2 compare the proposed learnheuristic algorithm with the best-known solutions for the TOP bench-
mark standard instances. We present the results for the subset of benchmark instances considered by El-Hajj et

al. [20], who provide optimal solutions for all but 5 instances, where relatively tight upper and lower bounds
are provided. Since there are no existing benchmark TOP with path-dependent decision costs, this experiment
validates the optimisation module in TOP benchmark standard instances.

All of the experiments reported in this work were executed on a desktop computer with a Core i5 - 8400
2.80GHz CPU with 8GB of RAM. The final three columns of Tables 1 and 2 refer to the solutions generated
by our learnheuristic algorithm. In order to generate our solutions, a sample of metaheuristic search parameters
was tested in each instance. We report the average and best solutions found by our algorithm over those samples.
The samples of parameters explored different neighbourhood selection probability distributions, as well as the
probabilities of random restarts and biased random restarts of the multi-start local search algorithm phase of the
optimisation module. In all cases, 1,000 iterations of the local search phase followed by 1,000 iterations of the
biased-randomisation phase were performed. The results show that the proposed learnheuristic is able to find
good quality solutions in a matter of seconds for each of the benchmark instances. Furthermore, the proposed
algorithm was able to find 23 optimal solutions out of 79 benchmark instances, and the overall average optimality
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gap was 2.32%. Tables 1 and 2 show that the proposed solution approach attains relatively large gaps for the p4

instance set. These are relatively large instances and our results may benefit from an increased iteration limit. The
results indicate that an event-based constructive routing algorithm, controlled by efficiency attributes weights with
a second biased-randomisation phase, is a reliable method for generating high quality solutions rapidly.

9.2 Comparing the Learnheuristic with Reality-module-only Alternative Algorithms

The proposed learnheuristic algorithm is tested in a variety of physical settings, which have the effect of varying the
degree of path-dependency of the edge traversal times of the test instances considered. For each physical setting,
the proposed learnheuristic is compared with a reality-module-only metaheuristic algorithm, a reality-module-only
version of the proposed learnheuristic, and an a priori learning version of the proposed learnheuristic.

• Reality-module-only simulated annealing algorithm plus biased randomisation (RMSA): This is a simulated
annealing algorithm [70, 71] based on the same set of neighbourhoods as presented in Section 8.1. It
also uses a reality-module-only implementation of the BR phase, which contributes to enhance the SA
approach in a similar way as described by Ferone et al. [72] for the GRASP. The reason for selecting
a simulated annealing algorithm as a method of comparison for the proposed learnheuristic is to assess
the benefits of the proposed learnheuristic approach compared to a standard metaheuristic approach for
problems with solution-dependent parameters. Also, simulated annealing has been successfully applied to
the team orienteering problem previously [24]. The algorithm required the setting of a temperature scheme.
Experiments were performed to identify the best temperature scheme to use. Linear and exponential decay
schemes and various initial temperatures were compared. It was found that an exponential decay based on an
initial temperature of 10 and final temperature of 0.001 provided the best solutions. An initial temperature
of 10 is reasonable, given that a useful rule for setting an initial temperature is that it should be close to
the largest possible decrease in the objective value due to moving to a neighbouring solution in the local
neighbourhood. The settings and results of this comparison are explained later in this section.

• Reality-module-only learnheuristic (RMLH): This algorithm is identical to the proposed learnheuristic one
except that the ML module is replaced with the reality module. The purpose of including such an approach
in these experiments is to provide a reference point for judging the quality of the solutions generated by the
proposed learnheusristic algorithm.

• A priori learning heuristic (PH): This heuristic is identical to the proposed learnheuristic except that the
learning phase is performed in an initial phase, where traversals of each edge are simulated starting from
initial velocities between 0 and the terminal velocity for that edge as described in Equartion (25). To
ensure a fair comparison, the budget of edge simulations is the same as the total number of edge simulation
performed in the corresponding LH experiment. Following this, the learnheuristic is implemented without
considering additional edge-traversal data to the ML module. The purpose of including this method of
comparison is to provide a benchmark for the learning aspect of the learnheuristic. In particular, it can be
used to assess the impact on the solution quality of simultaneous learning and optimisation, such as that
used in the proposed learnheursitic. The budget of reality module evaluations available in this approach is
the same as that available to the learnheuristic (LH) approach.

LH, RMLH, PH, and RMSA are each implemented in a range of problem settings. The problem settings vary ac-
cording to: (i) low and high air-resistance (drone cross-sectional areas A= 0.04 and 0.2, respectively); (ii) zero and
earth gravitational acceleration (g = 0 and 9.81, respectively); (iii) turn-penalties off and turn-penalties on –when
turn-penalties are off, drones do not have to slow down to turn; and (iv) partial observations off and partial observa-
tions on –when partial observations are off, only direct observations of targets result in a collected reward. More-
over, these problem settings are repeated for a 100 node example problem and a 150 node problem. Full details
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of the test instances are available at www.researchgate.net/publication/338503289_LH_TOP_instances.
The results in Table 3 are approximately ordered in increasing degree of path-dependent edge traversals –or, equiv-
alently, in increasing order of physical interaction with the environment. This means that air-resistance had the
largest effect on drones, followed by gravity, turn penalties, and partial observations. The results in Table 3 cor-
respond to a problem instance in which the targets are positioned uniformly randomly within a 100 by 100 by 20
metre box. The rewards were selected from a uniform-random probability distribution. For each problem setting,
there are four drones, each with a mass of 1kg and a thrust force of 1.05×9.81N (the drone thrust force needs to
exceed the gravitational force). The time limit T is set to 25 seconds. Table 3 provides the total rewards, solution
times, and RMSE values for each of the four algorithms being compared in each problem setting –i.e., LH, RMLH,
RMSA, and PH. The total rewards are calculated using the reality module. We provide solution-time results be-
cause these are relevant when considering that learnheuristics are designed for problems where time restrictions
preclude intensive use of a time-expensive reality module. Since the role of the reality module can also be played
by real-life experiments, the LH approach, with its reduced reliance on the reality module, can facilitate fast
real-life optimisation of drone tours. Furthermore, fast solution time would indeed be beneficial if the set of nodes
changes frequently. Additionally, lower solution times allow for additional ML and metaheuristic hyper-parameter
tuning, which enables the identification of higher-quality solutions. We include RMSE error results for the LH

and PH methods. The total reward results indicate that the proposed LH was able to find the best-known solution
of the four algorithms being compared in 10 out of 16 test instances, and that in the remaining cases reasonably
competitive solutions were identified. As shown in Figure 7, the four proposed algorithms provide similar results
in terms of total rewards. However, the LH approach is able to reach high-quality solutions in a reduced amount
of computing time. The RMSE of edge-traversal time predictions were calculated for the LH and PH methods.

The results for the 150 node problem are given in Table 4. These are based on the same drone configurations.
The results in Table 4 follow a similar pattern to those in Table 3, except that the performance of the proposed
LH demonstrates similar relative performance to the three algorithms of comparison –by achieving the highest
average total reward with the best solution in 7 out 16 cases.
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Algorithm 4 Event-based constructive drone-routing algorithm

1: Inputs: Efficient attribute weight matrix w,
2: Reset drone routes Yb← n0,∀b ∈ B
3: Reset the set of non-visited nodes U ← N \{depot, end depot}
4: Set nextArrivalTime(b)← 0,∀b ∈ B
5: Let B be a list of drones (b ∈ B) sorted in increasing nextArrivalTime order
6: while |B|> 0 do
7: // Select the drone (b) expected to reach its last allocated node soonest as the drone that will be allocated an

unvisited node next
8: b←B1
9: Reset the list of candidate nodes (C← /0) that drone b can visit next

10: // Consider the remaining unvisited nodes as potential candidates for the next node for drone b to visit next
11: for n ∈U do
12: // Check the feasibility of drone b visiting node n using ML module edge traversal time predictions
13: if drone b can visit node n and return to the end depot before time Tmax then
14: // Calculate efficiency attributes (Section 7.1) for drone b visiting node n next and the associated overall

attractiveness score (score(n))

15: score(n)←
|λ |
∑

i=1
wbiλi

16: // Add node n to the candidate list C
17: C←C∪{n}
18: end if
19: end for
20: if |C|> 0 then
21: // Sort the list of candidate nodes in order of decreasing attractiveness score
22: Sort (C,score, ’decreasing’)
23: // Select the node with the highest attractiveness score (C1) as the node that drone b will visit next
24: Yb← (Yb, C1)
25: // Update drone b’s next arrival time according to the ML module’s predicted edge traversal time to node

C1

26: nextArrivalTime(b)← nextArrivalTime(b)+ t ′
(

Yb(|Yb|−1)
,C1

)
27: // Sort B in increasing order of nextArrivalTime
28: Sort (B,nextArrivalTime, ’ascending’)
29: else
30: // No feasible candidate nodes exist for drone b, set the end depot as the drones next node and remove

drone b from the drone list B
31: Yb←

(
Yb, n|N|

)
32: B←B\{b}
33: end if
34: end while
35: Output: drone routes Y
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Algorithm 5 One iteration of multi-start local search algorithm

1: Inputs: current solution (w (weights), a (allocation order)), bestOb jValT hisRestart
2: Set newWBOb j← inf, newSol← null, newW ← /0, newA← a
3: Select a search neighbourhood nk from N according to the probability distribution P local search

4: for m ∈ nk do
5: Set the candidate solution w′,a′ to neighbour m of the incumbent solution parameters w,a
6: Use Algorithm 4 to generate the drone routes Y ′ for the solution w′,a′ and obtain the (ML module based)

objective value ob jVal′ of that solution
7: if ob jVal′ > newWBOb j then
8: newWBOb j← ob jVal′

9: newSol← Y ′

10: newW ← w′

11: newA← a′

12: end if
13: end for
14: Test newSol in the reality module to reveal its true objective value newOb j (“reality module” of Figure 1)
15: if newOb j > bestOb jValT hisRestart then
16: bestOb jValT hisRestart← newOb j
17: add (newSol,newW,newA) to Z (the decreasing objective value ordered list of strong candidate solutions

and solution generation parameters)
18: Reset N←{n1,n2,n3}
19: else
20: //Remove the explored neighbourhood nk from the set of unexplored neighbourhoods N
21: N←N\{nk}
22: if |N|= 0 then
23: Restart the local search by selecting a random initial set of solution generation parameters (with proba-

bility ProbabilityO f RandonRestart) or by selecting a biased random pair of previous strong candidate
solutions (Z) and using their average as the initial solution.

24: Reset N←{n1,n2,n3}
25: Set bestOb jValT hisRestart, newSol according to the new initial solution
26: Evaluate newSol in the reality module to reveal newOb j
27: end if
28: end if
29: Output: newSol, newOb j (as required by the second decision block of Figure 1)
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Table 1: Comparison of the event-based weighted sum routing algorithm with best-known solutions provided in
[20] to the standard benchmark instance for the team orienteering problem.

Benchmark Our solution
Instance nodes best best Gap Time best Gap Time Average Standard Total

LB UB solution deviation time
p1.2.p 30 250 250 0 7 240 4 2 238.9 2.08 401.1
p1.2.q 30 265 265 0 5 260 1.89 2 257.1 2.48 471.2
p1.2.r 30 280 280 0 4 275 1.79 2 268.4 2.70 484.2

Set Avg 265.0 265.0 0 5.3 258.3 2.56 1.9 254.8 2.42 452.2
p3.2.l 31 590 590 0 28 580 1.69 2 572.4 4.31 403.6
p3.2.m 31 620 620 0 33 620 0 2 604.0 5.42 487.4
p3.2.n 31 660 660 0 28 650 1.52 2 649.2 2.95 512.8
p3.2.o 31 690 690 0 19 690 0 2 687.9 4.06 496.7
p3.2.p 31 720 720 0 24 710 1.39 2 709.4 2.37 516.9
p3.2.q 31 760 760 0 12 750 1.32 2 735.0 6.26 554.6
p3.2.r 31 790 790 0 8 780 1.27 2 757.7 9.32 515.1
p3.2.s 31 800 800 0 0 800 0 2 789.7 4.67 568.4
p3.3.s 31 720 720 0 90 720 0 3 710.0 0.61 765.6
p3.3.t 31 760 760 0 42 740 2.63 3 721.9 7.50 802.0

Set Avg 711.0 711.0 0 28.4 704.0 0.98 2.2 693.7 4.75 562.3
p4.2.f 98 687 687 0 6550 647 5.82 25 629.8 7.28 6979.7
p4.2.h 98 835 835 0 2784 769 7.90 28 734.0 8.91 9579.5
p4.2.i 98 918 918 0 1064 864 5.88 39 833.9 9.01 10804.0
p4.2.j 98 965 965 0 2777 937 2.90 39 900.9 11.40 10727.6
p4.2.k 98 1022 1022 0 2751 975 4.60 51 947.4 9.26 12864.0
p4.2.l 98 1074 1074 0 7172 1019 5.12 60 995.4 6.81 13372.7
p4.2.m 98 1132 1132 0 4610 1071 5.39 56 1028.6 9.65 13192.9
p4.2.r 98 1292 1292 0 5016 1230 4.80 54 1209.2 11.40 16794.4
p4.2.t 98 1306 1306 0 0 1281 1.91 44 1263.3 6.01 17946.2
p4.3.g 81 653 653 0 52 615 5.82 28 596.7 6.52 7939.6
p4.3.h 90 736 736 0 801 695 5.57 32 678.2 7.40 10180.3
p4.3.i 94 809 809 0 2989 757 6.43 32 730.5 9.65 11347.0
p4.4.i 68 657 657 0 23 632 3.81 34 583.4 15.37 9619.4
p4.4.j 76 732 732 0 141 701 4.23 32 647.3 14.99 11891.6
p4.4.k 83 821 821 0 558 751 8.53 40 714.0 12.12 13614.3

Set Avg 909.3 909.3 0 2485.9 862.9 5.25 39.5 832.8 9.72 11790.2
p5.2.l 64 800 800 0 3 800 0 8 786.8 13.81 2174.0
p5.2.m 64 860 860 0 32 860 0 6 851.5 2.36 2350.5
p5.2.n 64 925 925 0 89 925 0 9 920.1 0.85 2663.1
p5.2.o 64 1020 1020 0 271 1020 0 14 1011.2 3.28 2936.5
p5.2.p 64 1150 1150 0 77 1150 0 14 1150.0 0 3011.5
p5.2.q 64 1195 1195 0 6597 1190 0.42 11 1190.0 0 3181.8
p5.2.r 64 1260 1260 0 123 1255 0.40 14 1250.0 0.75 3628.1
p5.2.s 64 1340 1340 0 845 1340 0 11 1322.1 4.18 3588.8
p5.2.t 64 1400 1400 0 418 1375 1.79 15 1363.8 4.41 3791.6
p5.2.u 64 1460 1460 0 3263 1450 0.68 19 1440.3 5.50 3929.1
p5.2.v 64 1505 1505 0 3497 1500 0.33 14 1488.1 4.56 3960.2
p5.2.w 64 1565 1565 0 5875 1550 0.96 15 1550.0 0 4162.6
p5.2.x 64 1610 1610 0 128 1610 0 18 1610.0 0 4312.1
p5.2.y 64 1645 1645 0 457 1640 0.30 16 1635.5 4.63 4475.6
p5.2.z 64 1680 1680 0 0 1675 0.30 20 1670.1 0.53 4474.5
p5.3.l 64 595 595 0 31 595 0 12 595.0 0 2820.9
p5.3.m 64 650 650 0 1 650 0 12 649.4 1.62 3161.9
p5.3.n 64 755 755 0 3 755 0 15 755.0 0 3514.4
p5.3.q 64 1070 1090 1.83 521 1065 2.29 20 1065.0 0 4440.3
p5.3.t 64 1260 1270 0.79 5152 1250 1.57 20 1234.6 6.63 5300.9
p5.3.u 64 1350 1395 3.23 123 1335 4.30 22 1317.1 4.58 5558.1
p5.4.l 44 430 430 0 0 430 0 12 428.7 2.67 2746.2
p5.4.m 52 555 555 0 0 555 0 15 550.9 4.13 3384.2
p5.4.n 60 620 620 0 0 620 0 15 619.2 6.48 3749.8
p5.4.o 60 690 690 0 0 685 0.72 16 675.6 4.73 4183.1
p5.4.p 64 765 765 0 729 760 0.65 25 751.2 3.22 4629.4
p5.4.q 64 860 860 0 1 860 0 20 859.1 3.69 5075.5
p5.4.v 64 1320 1320 0 12 1320 0 28 1319.2 4.33 6731.2
p5.4.y 64 1520 1520 0 46 1500 1.32 29 1479.3 8.41 7778.3
p5.4.z 64 1620 1620 0 550 1560 3.70 30 1540.7 6.14 8027.5
Avg 1115.8 1118.3 0.19 961.5 1109.3 0.66 16.5 1102.6 3.38 4124.7
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Table 2: Comparison of the event based weighted sum routing algorithm with best-known solutions provided in
[20] to the standard benchmark instance for the team orienteering problem.

Benchmark Our solution
Instance nodes best best Gap Time best Gap Time Average Standard Total

LB UB solution deviation time
p6.2.j 62 948 948 0 139 948 0 10 935.3 3.92 2630.3
p6.2.k 62 1032 1032 0 223 1032 0 8 1019.8 4.79 2738.8
p6.2.l 62 1116 1116 0 39 1110 0.54 11 1104.1 0.63 3246.5
p6.2.m 62 1188 1188 0 680 1188 0 15 1170.2 1.96 3545.6
p6.2.n 62 1260 1260 0 1 1242 1.43 17 1227.7 5.88 3609.7
p6.3.m 62 1080 1080 0 432 1080 0 12 1062.1 4.01 4330.9

Set Avg 1104.0 1104.0 0 252.3 1100.0 0.33 12.2 1086.5 3.53 3350.3
p7.2.g 87 459 459 0 44 442 3.70 13 433.4 1.35 2941.8
p7.2.h 92 521 521 0 1977 508 2.50 20 501.4 3.31 4089.4
p7.2.i 98 580 580 0 6271 559 3.62 27 548.6 1.83 4775.9
p7.2.t 100 1179 1179 0 6934 1105 6.28 62 1066.7 12.76 13695.9
p7.3.h 59 425 425 0 3 410 3.53 15 396.6 5.79 4305.9
p7.3.i 70 487 487 0 488.5 473 2.87 14 462.9 4.13 5272.2
p7.3.j 80 564 564 0 4207 548 2.84 31 532.8 6.41 7033.9
p7.3.k 91 633 633.2 0.03 1173 602 4.92 33 587.6 4.50 7896.5
p7.3.m 96 762 762 0 928 712 6.56 45 700.4 7.34 10915.7
p7.3.n 99 820 820 0 230 758 7.56 59 744.0 4.86 12765.8
p7.4.j 51 462 462 0 2 441 4.55 24 429.7 6.26 6385.5
p7.4.k 61 520 520 0 73 506 2.69 32 492.4 5.12 8083.5
p7.4.l 70 590 590 0 173 566 4.07 36 549.5 5.56 9541.7
p7.4.n 87 730 730 0 85 701 3.97 53 676.1 10.27 12753.5
p7.4.o 91 781 784.7 0.47 4434 762 2.89 73 732.1 9.09 14417.8

Set Avg 634.2 634.5 0.03 1801.5 606.2 4.17 35.7 590.3 5.91 8325.0
Avg set Avg 789.9 790.3 0.04 922.5 773.5 2.32 18.0 760.1 4.95 4767.4
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Table 3: Comparison of four algorithms in problem settings with varying degrees of path-dependency, 100 nodes, 4 drones with random uniform rewards and positions in a 100
metre by 100 metre by 20 metre box.

Results
Dynamism experiment settings Total Solution RMSE of

reward time edge traversal time
(seconds) predictions

Air-resistance Gravity Turn penalties on Partial observations LH RMLH RMSA PH LH RMLH RMSA PH LH RMLH RMSA PH
Low 0 Off Off 49.96 49.96 49.96 49.96 124 2998 305 190 0.14 - - 0.06

On 49.96 49.96 49.96 49.96 157 2934 294 175 0.16 - - 0.07
On Off 47.86 49.42 48.38 48.79 110 3513 378 165 0.17 - - 0.09

On 49.68 49.26 48.32 48.75 149 3658 367 164 0.16 - - 0.09
9.81 Off Off 25.29 25.47 22.47 24.12 65 3498 388 63 0.16 - - 0.08

On 28.45 28.84 27.78 28.82 75 3592 383 83 0.16 - - 0.09
On Off 24.39 24.30 22.83 23.72 52 3157 387 73 0.12 - - 0.10

On 28.35 28.57 24.64 27.82 79 3769 313 87 0.13 - - 0.09
High 0 Off Off 30.78 29.67 28.71 29.79 68 3491 388 87 0.07 - - 0.05

On 33.85 33.60 32.88 34.22 67 3214 435 99 0.07 - - 0.05
On Off 30.45 30.40 25.57 29.05 81 4248 430 83 0.10 - - 0.07

On 33.30 33.54 33.07 33.13 87 4101 411 104 0.09 - - 0.08
9.81 Off Off 6.70 6.70 6.70 6.70 11 3206 363 15 0.07 - - 0.08

On 10.48 10.27 10.16 10.48 8 2840 336 15 0.06 - - 0.06
On Off 6.58 6.58 6.58 6.38 12 3268 349 17 0.07 - - 0.09

On 10.30 10.27 10.27 10.27 10 3050 325 16 0.07 - - 0.08
Average 29.15 29.18 28.02 28.87 72 3409 366 90 0.11 - - 0.08
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Table 4: Comparison of four algorithms in problem settings with varying degrees of path-dependency, 150 nodes, 4 drones with random uniform rewards and positions in a 100
metre by 100 metre by 40 metre box.

Results
Dynamism experiment settings Total Solution RMSE of

reward time edge traversal time
(seconds) predictions

Air-resistance Gravity Turn penalties on Partial observations LH RMLH RMSA PH LH RMLH RMSA PH LH RMLH RMSA PH
Low 0 Off Off 60.92 62.04 59.86 59.89 456 6938 693 612 0.14 - - 0.07

On 63.04 63.42 58.81 63.98 491 7636 688 672 0.16 - - 0.06
On Off 56.89 56.26 57.05 56.51 449 8051 766 632 0.18 - - 0.10

On 59.14 58.14 58.44 58.64 567 7123 778 504 0.18 - - 0.09
9.81 Off Off 24.04 24.17 23.96 24.36 123 4834 763 126 0.19 - - 0.13

On 31.24 30.76 28.49 29.31 155 7421 654 202 0.19 - - 0.12
On Off 23.78 22.52 22.11 22.85 160 6488 698 81 0.17 - - 0.13

On 28.66 28.93 28.71 28.21 174 6917 710 168 0.17 - - 0.14
High 0 Off Off 25.59 25.78 24.52 25.55 166 6947 774 179 0.07 - - 0.05

On 30.76 31.04 29.45 29.84 132 7662 744 210 0.06 - - 0.05
On Off 25.31 25.55 24.62 24.79 122 7501 820 155 0.11 - - 0.09

On 30.28 31.02 29.29 30.06 170 7619 707 158 0.10 - - 0.08
9.81 Off Off 1.37 1.37 1.37 1.37 4 1143 404 5 0.03 - - 0.03

On 4.96 4.96 4.96 4.96 4 1142 404 4 0.03 - - 0.04
On Off 1.37 1.37 1.37 1.37 5 1108 408 5 0.03 - - 0.03

On 4.96 4.96 4.96 4.96 5 1111 409 5 0.03 - - 0.04
Average 29.52 29.52 28.62 29.17 199 5603 651 232 0.11 - - 0.08
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In the 150 node instance, all of the algorithms achieve the same solution for the four problem settings in which
the level of interaction with the environment is highest. This is because, in these cases and due to high resistive
forces, none of the drones have enough time to visit any nodes too far from the start and end depots.
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Figure 7: Visual comparison of rewards and solutions times of four algorithms relative to the maximum reward
and minimum solution time respectively for each instance in Table 3.

Considering the results of Tables 3 and 4, the LH method attained the highest or joint highest total reward (in
17 out of 32 cases), and the second highest overall average reward, i.e.: 29.34 LH, 29.35 RMLH, 28.32 RMSA, and
29.02 PH. The RMLH method attained the best overall average reward, the small difference between LH and the
RMLH represents the cost of using the ML module to quickly evaluate tour times. The solution times of all four
algorithms increased in environments with low levels or resistive forces. This is because Algorithm 4 evaluates the
efficiency attributes of every unvisited node as a candidate node every time a new next-node is required for a drone.
Also, the higher the velocities the more node visits have to be evaluated using the ML module. Tables 3 and 4 show
that the LH method attains quality solutions in short times (between 4 seconds and 491 seconds) in comparison
to the RMLH method (1,108 to 8,051 seconds) and to the RMSA method (294 to 820 seconds). Figures 7 and 8
provide a visual comparison of the rewards and computing times achieved by each algorithm. It is interesting to
note that the RMLH algorithm is often outperformed by the LH algorithm despite they both are similar algorithms
–but with the latter using a relatively unrestricted access to reality-module evaluations. One explanation for this is
that the integrated learning and optimisation process has the added benefit of increasing the diversity of search, a
feature that is lost when no uncertainty exists in decision cost predictions (as is the case for the RMSA algorithm).
Since the RMLH algorithm does already have a substantial amount of randomisation, we conclude that the LH

algorithm gives rise to an additional beneficial search-diversification mechanism. The experiments of Tables 3
and 4 have been repeated for 6 other types of instances, also available from the previously cited website. In these
instances, the node positions are arranged in different ways. The results of those experiments are qualitatively
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Figure 8: Visual comparison of rewards and solutions times of four algorithms relative to the maximum reward
and minimum solution time respectively for each instance in Table 4.

very similar to the results of Tables 3 and 4. The associated appendix provides the results of these experiments.

10 Conclusion

In this paper, a learnheuristic approach has been proposed to solve the team orienteering problem with path-
dependent travel times between each pair of targets. The problem refers to aerial drones, and edge-travel times
depend upon the prior route taken by a drone due to: (i) the need to slow down for sharp turns; and (ii) the
effects of gravity and air-resistance on the motion of a drone. The equations of motion require detailed numer-
ical solutions, which are time consuming to calculate. This constitutes the main computational bottleneck. Our
proposed algorithm integrates a metaheuristic with a machine learning mechanism that allows it to learn how to
approximate edge costs quickly from a limited budget of reality-module evaluations. This way, our approach
can significantly speed-up the computation times required to achieve high-quality solutions to such a complex
problem. The algorithm also benefits from biased-randomisation techniques and different local search processes.
Another finding of the work is that the learning process also helps to improve search diversity of the proposed
learnheuristic. To address the learning objective of the simultaneous learning and optimisation problem, a pre-
diction uncertainty measure was used to encourage the exploration of rarely-visited edges. A series of numerical
experiments contribute to support the effectiveness of our approach.

A critical ingredient to the success of a learnheuristic algorithm lies in the correct selection of the optimisation
and learning modules. In particular, it is advisable to employ problem-domain knowledge in the design of the
learning component. In this work, the learning module utilised domain knowledge about the convexity of edge-
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traversal times, as well as on edge final velocities as a function of the initial velocity. The interpolation method
employed also benefited from an adaptive procedure for setting the vital interpolation weight parameter. This
highlights the importance of using all of the available feedback from reality-module runs in order to improve the
machine-learning module. In cases where the functions being predicted do not exhibit concavity or convexity, the
exact details of an interpolation approach will need to be modified, ideally by exploiting any available domain
specific knowledge. However it is worth noting that, as more data becomes available –and assuming a non-
fractal function–, it becomes increasingly likely that the local region of the function relevant to an instance-based
interpolation tends to convexity or concavity. For cases where the functions being predicted exhibit uncertainty
(due to factors such as weather conditions), it may be advisable to use a more general machine learning approach
such as neural networks.

Different research lines can be foreseen for future work, among them: (i) the exploration of the use of more
advanced learning methods, such as multiple regression, support vector machines, random forests, or neural net-
works; (ii) the integration of stochastic components in the inputs (e.g., in the rewards provided by each target);
(iii) the inclusion of different driving-range limits on a heterogeneous fleet of drones; and (iv) the incorporation of
uncertainty due to weather conditions.
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Summary of the notation
B : Set of drones
ni : Node i
N : Set of nodes
M : Set of nodes excluding start and end depot nodes
p(n) : Spatial coordinate of node i
s(n) : Reward for a direct visit of node n
Tmax : Maximum time available to drones for collecting rewards and returning to the end depot before rewards collected by a drone are lost
H : Cruising height of a drone
W : Node width (assumed to be spherical in shape)
l jk : distance between node j and node k
qk j : Partial reward available for an observation of node k from node j if node j is the closest node visited directly by a drone
G : Graph composed of the set of nodes N and set of edges E
E : Set of edges
Ybk : The kth node visited by deone b
TourTime(Yb) : Function returning the actual tour time of drone b’s tour Yb

βi j : Gradient, with respect to horizontal ground, of the straight line path from node i to node j
τb : Actual time required for drone b to complete their assigned route Yb

h(u,βi j , li j) : Function returning the true traversal time and final velocity for a drone traversing the edge from node i to node j starting from an initial
velocity of u, with a gradient βi j and length li j

πi jk : Multiplicative turn penalty applied to a drone’s speed upon reaching node j starting from node i with node k the next node after node
j in the drone’s tour

ei j : Directed edge starting at node i and ending at node j
u : A given drone’s initial velocity (predicted or actual depending upon the context) when starting to traverse a given edge
v : A given drone’s final velocity (predicted or actual depending upon the context) upon completion of a given edge traversal
t : The time required for a drone to complete the traversal of a given edge
reward : The total reward (predicted or actual depending upon the context) associated with a given set of drone tours Yb ∀b ∈ B
U : Set of non-visited nodes at a given stage of solution construction or solution evaluation
B : Set of drones which have completed their assigned tours (predicted or actual depending upon the context)
b : A drone in the set B

vbki j : Binary integer decision variable which indicates with a value of 1 whether edge ei j is the kth edge in drone b’s tour
F : Thrust force available to a drone
α : Air-resistance coefficient
ρ : Density of air
CD : Drag coefficient
A : Cross-sectional area of a drone
m : Mass of a drone
g : Gravitational acceleration
rx : Resultant force upon drone in the direction parallel to horizontal ground
ry : Resultant for upon a drone in the direction parallel to the vertical
fx : horizontal component of the thrust force of a drone
fz : Vertical component of the thrust force of a drone
δ : Time interval size used in the numerical solution to the equations of motion governing a drones motion throughout their assigned tour
position : The distance that a drone has travelled along a given edge
s : The current speed of a drone on a given edge
φ (s,β ,g,α) : Function returning the current acceleration of a drone with a current velocity of s along an edge with a gradient of β , under a gravitation

acceleration of g and air-resistance with air-resistance coefficient α

θi jk : The angle between edges ei j and e jk

h′i j (u) : Function returning the machine learning based traversal time and final velocity predictions for a drone traversing the edge from node i
to node j starting from an initial velocity of u

Di j : Set of data collected regarding actual drone traversals of the directed edge ei j

di j
k : The data point in the set Di j with the kth lowest initial velocity

u
(

di j
k

)
: Function returning the initial velocity of the kth data point collected for traversals of edge ei j

v
(

di j
k

)
: Function returning the final velocity of the kth data point collected for traversals of edge ei j

t
(

di j
k

)
: Function returning the edge traversal time of the kth data point collected for traversals of edge ei j

u′ : Initial velocity for an edge traversal for which final velocity (v′) and edge traversal time (t ′) predictions are required
v′ : Predicted final velocity for an edge traversal
t ′ : Predicted traversal time for an edge traversal
d : The data point for a edge traversal with the greatest initial velocity lower than or equal to u’
d : The data point for an edge traversal with the lowest initial velocity greater than u’
ψ : Equal to u

(
d
)
−u(d), i.e., the difference between the initial velocities of the data points with the nearest initial velocities above and

below u’
c : Equal to |u′|−u

(
d
)
, i.e, the difference between the initial velocity u′ and u

(
d
)

c : Equal to u(d)−|u′|, i.e, the difference between the initial velocity u′ and u(d)
t̂ : The true value for an edge-traversal time that is currently being predicted
v̂ : The true value for a final velocity that is currently being predicted
gt (dk) : The gradient of edge traversal time as a function of initial velocity at the initial velocity corresponding to data point dk for a given edge
gv (dk) : The gradient of final velocity as a function of initial velocity at the initial velocity corresponding to data point dk for a given edge
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Lt(v) : Linearly interpolated prediction of an edge traversal time (final velocity)
Gt(v) : Gradient based extrapolation of an edge traversal time (final velocity)
γt : The weight given to the linearly interpolated edge traversal time, a weight of (1− γt ) is given to the gradient based edge traversal

time prediction
γv : The weight given to the linearly interpolated final velocity, a weight of (1− γv) is given to the gradient based final velocity

prediction
χt(v) : Interpolation weight learning rate
B : List of drones sorting in increasing order of last assigned node arrival time (event based constructive drone-routing algorithm)
C : List of candidate nodes that a drone can be assigned to next
score(n) : Attractiveness score associated with selecting node n as the next node that a drone should visit
wbi : The weight given to efficiency attribute i of drone b

λi : Efficiency attribute i score for a given drone visiting a given node next
nextArrivalTime(b) : A function that returns the estimated time at which drone b arrives at their last assigned node
µ : Edge-traversal time prediction uncertainty efficiency attribute weight exponential decay scheme parameter
ε : Tolerance parameter for preventing ties when calculating minimum efficiency attribute weight changes that change a drone

routing decision in the event-based constructive drone-routing algorithm
∆wi

b j : The minimum change to the efficiency attribute weight j for drone b that changes the highest scoring candidate node to node i
N : Set of local search neighbourhoods
ni : Local search neighbourhood i
Plocal search

i : The probability that the ith local search neighbourhood in the current set of local search neighbourhoods is selected as the local
search neighbourhood in the current iteration of the multi-start local search algorithm

Z : List of strong candidate efficiency attribute weight matrices generated throughout the multi-start local search algorithm
ω : Biased randomisation greediness parameter
LH : Learnheuristic
RMLH : Reality-module-only learnheuristic
RMSA : Reality module simulated annealing
PH : A priori learning heuristic
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Table 5: Comparison of four algorithms in instance p12r3D with varying degrees of path-dependency.

Results
Dynamism experiment settings Total Solution RMSE of

reward time edge traversal time
(seconds) predictions

Air-resistance Gravity Turn penalties on Partial observations LH RMLH RMSA PH LH RMLH RMSA PH LH RMLH RMSA PH
Low 0 Off Off 285.00 285.00 285.00 285.00 5 236 29 8 0.16 - - 0.06

On 285.00 285.00 285.00 285.00 6 241 29 9 0.17 - - 0.06
On Off 285.00 285.00 285.00 285.00 6 398 40 9 0.10 - - 0.08

On 285.00 285.00 285.00 285.00 7 408 39 10 0.11 - - 0.09
9.81 Off Off 270.00 270.00 280.00 260.00 6 378 41 7 0.10 - - 0.07

On 276.89 272.25 268.45 276.89 6 394 40 8 0.10 - - 0.07
On Off 240.00 240.00 225.00 240.00 5 370 46 7 0.07 - - 0.07

On 251.85 251.55 247.47 251.73 6 446 44 8 0.08 - - 0.07
High 0 Off Off 235.00 235.00 230.00 235.00 3 437 47 5 0.07 - - 0.05

On 246.40 250.73 250.73 246.74 4 448 48 6 0.06 - - 0.05
On Off 220.00 215.00 210.00 225.00 4 513 52 7 0.06 - - 0.05

On 231.77 233.24 226.44 233.90 5 487 53 8 0.06 - - 0.05
9.81 Off Off 100.00 95.00 100.00 100.00 2 487 61 3 0.07 - - 0.07

On 127.90 131.99 126.75 126.75 2 509 60 3 0.08 - - 0.06
On Off 95.00 100.00 95.00 100.00 1 275 60 2 0.07 - - 0.07

On 123.88 127.97 127.97 127.97 2 468 63 3 0.06 - - 0.06
Average 222.42 222.67 220.49 222.75 4 406 47 6 0.09 - - 0.06
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Figure 9: Visual comparison of rewards and solutions times of four algorithms relative to the maximum reward
and minimum solution time respectively for each instance in Table 5.
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Table 6: Comparison of four algorithms in instance p33t3D with varying degrees of path-dependency.

Results
Dynamism experiment settings Total Solution RMSE of

reward time edge traversal time
(seconds) predictions

Air-resistance Gravity Turn penalties on Partial observations LH RMLH RMSA PH LH RMLH RMSA PH LH RMLH RMSA PH
Low 0 Off Off 800.00 800.00 800.00 800.00 6 225 27 9 0.19 - - 0.06

On 800.00 800.00 800.00 800.00 6 220 26 9 0.19 - - 0.07
On Off 800.00 800.00 800.00 800.00 7 375 42 11 0.12 - - 0.11

On 800.00 800.00 800.00 800.00 8 406 41 10 0.13 - - 0.11
9.81 Off Off 800.00 800.00 800.00 800.00 7 359 37 9 0.11 - - 0.06

On 800.00 800.00 800.00 800.00 7 365 37 10 0.11 - - 0.06
On Off 780.00 770.00 760.00 780.00 7 449 45 8 0.08 - - 0.07

On 794.20 785.70 761.67 766.53 7 486 47 10 0.08 - - 0.07
High 0 Off Off 760.00 750.00 760.00 760.00 5 459 47 7 0.07 - - 0.05

On 764.48 764.48 764.48 764.48 5 432 44 7 0.08 - - 0.05
On Off 710.00 710.00 710.00 710.00 6 574 54 9 0.08 - - 0.06

On 720.94 720.94 720.94 720.94 7 547 55 10 0.08 - - 0.06
9.81 Off Off 400.00 400.00 390.00 380.00 4 587 58 6 0.08 - - 0.07

On 451.69 451.69 424.78 451.69 4 606 60 6 0.08 - - 0.07
On Off 370.00 400.00 390.00 400.00 4 614 64 6 0.08 - - 0.07

On 420.87 450.85 426.78 442.49 4 674 64 6 0.07 - - 0.07
Average 685.76 687.73 681.79 686.01 6 461 47 8 0.10 - - 0.07
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Figure 10: Visual comparison of rewards and solutions times of four algorithms relative to the maximum reward
and minimum solution time respectively for each instance in Table 6.
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Table 7: Comparison of four algorithms in instance p44k3D with varying degrees of path-dependency.

Results
Dynamism experiment settings Total Solution RMSE of

reward time edge traversal time
(seconds) predictions

Air-resistance Gravity Turn penalties on Partial observations LH RMLH RMSA PH LH RMLH RMSA PH LH RMLH RMSA PH
Low 0 Off Off 1306.00 1306.00 1306.00 1306.00 138 3268 338 185 0.21 - - 0.06

On 1306.00 1306.00 1306.00 1306.00 174 3451 331 189 0.20 - - 0.09
On Off 1301.00 1306.00 1306.00 1306.00 135 4700 409 149 0.15 - - 0.11

On 1301.08 1306.00 1306.00 1306.00 148 4586 424 148 0.14 - - 0.11
9.81 Off Off 979.00 987.00 847.00 954.00 103 5107 430 123 0.13 - - 0.08

On 1049.14 1060.14 1056.80 1022.62 115 4554 445 113 0.13 - - 0.08
On Off 922.00 930.00 944.00 886.00 99 4886 458 93 0.10 - - 0.10

On 989.00 1001.57 953.50 973.42 106 4337 419 118 0.10 - - 0.10
High 0 Off Off 946.00 946.00 928.00 970.00 86 4962 502 108 0.08 - - 0.05

On 1005.07 1012.19 986.18 1001.37 108 5067 492 100 0.09 - - 0.05
On Off 913.00 920.00 870.00 912.00 90 4772 504 112 0.08 - - 0.08

On 1007.99 962.52 958.84 1008.38 96 5383 530 101 0.09 - - 0.07
9.81 Off Off 354.00 356.00 361.00 337.00 23 4194 467 38 0.09 - - 0.09

On 483.54 469.93 451.02 465.10 20 4936 468 34 0.08 - - 0.09
On Off 377.00 347.00 347.00 350.00 29 4106 475 35 0.09 - - 0.10

On 484.35 478.56 452.02 479.28 28 4437 479 36 0.08 - - 0.10
Average 920.26 918.43 898.71 911.45 94 4547 448 105 0.12 - - 0.09
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Figure 11: Visual comparison of rewards and solutions times of four algorithms relative to the maximum reward
and minimum solution time respectively for each instance in Table 7.
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Table 8: Comparison of four algorithms in instance p54z3D with varying degrees of path-dependency.

Results
Dynamism experiment settings Total Solution RMSE of

reward time edge traversal time
(seconds) predictions

Air-resistance Gravity Turn penalties on Partial observations LH RMLH RMSA PH LH RMLH RMSA PH LH RMLH RMSA PH
Low 0 Off Off 1570.00 1570.00 1490.00 1570.00 32 1441 137 45 0.13 - - 0.07

On 1542.07 1549.70 1295.00 1571.84 31 1446 130 48 0.14 - - 0.08
On Off 1485.00 1395.00 1385.00 1425.00 28 2079 192 36 0.10 - - 0.08

On 1457.91 1446.19 1423.71 1406.12 31 2035 202 37 0.11 - - 0.08
9.81 Off Off 690.00 680.00 595.00 690.00 22 1549 157 26 0.09 - - 0.07

On 793.68 788.63 770.14 800.85 22 1664 160 28 0.08 - - 0.07
On Off 640.00 650.00 640.00 595.00 18 1793 192 23 0.08 - - 0.08

On 726.40 742.67 718.22 733.79 21 1693 170 25 0.09 - - 0.08
High 0 Off Off 515.00 515.00 515.00 515.00 13 1730 176 16 0.06 - - 0.04

On 611.63 611.63 611.63 617.47 13 1585 178 19 0.06 - - 0.04
On Off 420.00 470.00 465.00 460.00 11 1916 192 16 0.07 - - 0.07

On 554.23 565.42 576.16 585.73 12 1453 203 17 0.07 - - 0.06
9.81 Off Off 155.00 150.00 165.00 165.00 4 1561 187 4 0.07 - - 0.07

On 275.04 289.68 275.96 277.22 7 1834 187 9 0.06 - - 0.06
On Off 145.00 150.00 145.00 145.00 4 1750 210 7 0.05 - - 0.07

On 254.10 259.12 257.61 260.07 6 1985 204 8 0.06 - - 0.07
Average 739.69 739.56 708.03 738.63 17 1720 180 23 0.08 - - 0.07

44



LH RMLH RMSA PH

0.85

0.9

0.95

1
R

ew
ar

d 
re

la
tiv

e 
to

 b
es

t

0.9749 0.9843
0.9582

0.9831

LH RMLH RMSA PH

0

100

200

300

400

T
im

e 
re

la
tiv

e 
to

 b
es

t

1.006

159.3

17.45 1.34

Figure 12: Visual comparison of rewards and solutions times of four algorithms relative to the maximum reward
and minimum solution time respectively for each instance in Table 8.
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Table 9: Comparison of four algorithms in instance p63m3D with varying degrees of path-dependency.

Results
Dynamism experiment settings Total Solution RMSE of

reward time edge traversal time
(seconds) predictions

Air-resistance Gravity Turn penalties on Partial observations LH RMLH RMSA PH LH RMLH RMSA PH LH RMLH RMSA PH
Low 0 Off Off 1344.00 1344.00 1344.00 1344.00 33 1225 145 45 0.29 - - 0.07

On 1344.00 1344.00 1344.00 1344.00 38 1229 146 49 0.27 - - 0.07
On Off 1344.00 1344.00 1344.00 1344.00 44 1752 191 44 0.18 - - 0.09

On 1344.00 1344.00 1344.00 1344.00 46 1730 194 45 0.16 - - 0.09
9.81 Off Off 1326.00 1314.00 1278.00 1326.00 36 2146 209 46 0.10 - - 0.07

On 1314.85 1323.92 1305.85 1327.71 37 2168 211 50 0.11 - - 0.07
On Off 1260.00 1236.00 1218.00 1236.00 33 2249 219 42 0.09 - - 0.07

On 1275.92 1254.16 1228.46 1254.23 36 2267 215 44 0.09 - - 0.07
High 0 Off Off 1320.00 1320.00 1308.00 1320.00 29 2574 245 37 0.07 - - 0.06

On 1290.13 1281.55 1289.07 1299.91 30 2532 244 42 0.08 - - 0.06
On Off 1320.00 1284.00 1272.00 1290.00 30 2728 262 39 0.08 - - 0.06

On 1303.22 1290.13 1267.07 1271.74 32 2753 260 39 0.08 - - 0.06
9.81 Off Off 156.00 186.00 180.00 168.00 2 825 206 7 0.04 - - 0.05

On 255.34 293.15 284.42 296.70 4 1038 194 5 0.04 - - 0.05
On Off 156.00 186.00 186.00 186.00 5 886 197 8 0.04 - - 0.05

On 255.34 301.34 293.15 296.70 3 1798 194 8 0.04 - - 0.05
Average 1038.05 1040.39 1030.38 1040.56 27 1869 208 34 0.11 - - 0.06
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Figure 13: Visual comparison of rewards and solutions times of four algorithms relative to the maximum reward
and minimum solution time respectively for each instance in Table 9.
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Table 10: Comparison of four algorithms in instance p74o3D with varying degrees of path-dependency.

Results
Dynamism experiment settings Total Solution RMSE of

reward time edge traversal time
(seconds) predictions

Air-resistance Gravity Turn penalties on Partial observations LH RMLH RMSA PH LH RMLH RMSA PH LH RMLH RMSA PH
Low 0 Off Off 1436.00 1450.00 1423.00 1446.00 153 2681 266 153 0.15 - - 0.06

On 1420.10 1437.33 1441.42 1437.44 140 2411 260 151 0.16 - - 0.06
On Off 1315.00 1338.00 1313.00 1332.00 116 4130 395 124 0.12 - - 0.10

On 1342.49 1337.64 1274.99 1341.28 124 4101 371 124 0.13 - - 0.09
9.81 Off Off 830.00 830.00 701.00 818.00 71 3023 299 68 0.11 - - 0.08

On 938.09 943.22 943.21 928.62 69 3026 291 69 0.13 - - 0.08
On Off 759.00 755.00 729.00 718.00 71 2576 298 67 0.09 - - 0.10

On 910.51 882.94 874.80 866.95 80 3195 302 74 0.09 - - 0.09
High 0 Off Off 842.00 821.00 815.00 839.00 74 4032 388 71 0.06 - - 0.05

On 952.25 951.09 943.53 956.54 63 3832 352 79 0.07 - - 0.05
On Off 812.00 808.00 807.00 832.00 68 4308 417 56 0.08 - - 0.07

On 952.06 948.59 924.06 946.92 68 4434 373 74 0.08 - - 0.08
9.81 Off Off 301.00 291.00 280.00 294.00 13 3117 275 18 0.07 - - 0.08

On 444.21 444.21 435.64 424.93 21 2930 286 23 0.06 - - 0.08
On Off 289.00 289.00 239.00 279.00 13 1751 281 17 0.05 - - 0.10

On 405.11 413.47 409.13 411.41 19 2263 277 17 0.05 - - 0.08
Average 871.8 871.28 847.11 867.01 73 3238 321 74 0.09 - - 0.08
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Figure 14: Visual comparison of rewards and solutions times of four algorithms relative to the maximum reward
and minimum solution time respectively for each instance in Table 10.
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