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Abstract

Background

Environmental enteric dysfunction (EED) is widespread throughout the tropics and in chil-

dren is associated with stunting and other adverse health outcomes. One of the hallmarks of

EED is villus damage. In children with severe acute malnutrition (SAM) the severity of enter-

opathy is greater and short term mortality is high, but the metabolic consequences of enter-

opathy are unknown. Here, we characterize the urinary metabolic alterations associated

with villus health, classic enteropathy biomarkers and anthropometric measurements in

severely malnourished children in Zambia.

Methods/Principal findings

We analysed 20 hospitalised children with acute malnutrition aged 6 to 23 months in Zam-

bia. Small intestinal biopsies were assessed histologically (n = 15), anthropometric and gut

function measurements were collected and the metabolic phenotypes were characterized

by 1H nuclear magnetic resonance (NMR) spectroscopy.

Endoscopy could not be performed on community controls children. Growth parameters

were inversely correlated with enteropathy biomarkers (p = 0.011) and parameters of villus

health were inversely correlated with translocation and permeability biomarkers (p = 0.000

and p = 0.015). Shorter villus height was associated with reduced abundance of metabolites

related to gut microbial metabolism, energy and muscle metabolism (p = 0.034). Villus blunt-

ing was also related to increased sucrose excretion (p = 0.013).

Conclusions/Significance

Intestinal villus blunting is associated with several metabolic perturbations in hospital-

ized children with severe undernutrition. Such alterations include altered muscle
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metabolism, reinforcing the link between EED and growth faltering, and a disruption

in the biochemical exchange between the gut microbiota and host. These findings

extend our understanding on the downstream consequences of villus blunting and

provide novel non-invasive biomarkers of enteropathy dysfunction. The major limita-

tions of this study are the lack of comparative control group and gut microbiota char-

acterization.

Introduction

Nutritional disorders are glaring examples of health inequalities between high- and low-

income countries, and within low-income countries. Malnutrition underlies almost half of all

child deaths globally and contributes enormously to the unacceptably high under-5 mortality

rates in many countries [1]. Chronic undernutrition is usually manifested as stunting (poor

linear growth), affects 30–40% of children in Zambia [2], and is associated with increased mor-

tality [3], reduced neurodevelopmental potential and decreased long-term economic produc-

tivity [4]. Chronic undernutrition can also result in severe enteropathy (environmental enteric

dysfunction), which includes alterations to intestinal cell morphology, gut barrier disruption,

and nutrient malabsorption. Another consequence of enteropathy is increased susceptibility to

pathogenic infections, and poor response to oral vaccines and nutritional interventions. Acute

malnutrition is usually manifest as wasting (loss of tissue), and severe acute malnutrition

(SAM) carries the highest mortality [5], particularly if associated with complications. HIV has

changed the epidemiology, pathogenesis and clinical presentation of SAM, and children with

both conditions have a particularly high mortality [6]. Over the last two decades, developments

in the approach to treatment such as standardized management protocols and ready to use

therapeutic food (RUTF) have improved the outcome of SAM [7,8]. However, children with

clinical complications of SAM requiring hospital treatment [9] often fail to respond to treat-

ment [10], and continue to experience high mortality of up to 35% [5,11]. In our experience it

is a subgroup of children with SAM and persistent diarrhoea who pose the most difficult man-

agement challenges, although the vast majority of children with SAM have a degree of enterop-

athy [11–13]. Currently, there is no perfect non-invasive biomarker for the diagnosis of

enteropathy and there is a pressing need to greater understand the biochemical perturbations

associated with enteropathy associated with SAM and diarrhea so that novel therapies can be

devised and tested.

Metabolic profiling is a systems biology approach that simultaneously measures a com-

prehensive range of metabolites within a biological sample to capture the metabolic pheno-

type of the biological system. We have recently demonstrated the utility of studying the

urinary metabolic phenotypes of children and rodents to understand the biochemical

impact of malnutrition and stunting in children and rodents [14,15]. This allows the bio-

molecular mechanisms of developmental shortfalls to be studied as well as the elucidation

of biomarkers to identify susceptible individuals. Importantly, metabolic profiles are the

product of genetic and environmental factors, providing information on the interactions

between the genotype, the diet, lifestyle, and gut microbiota. We postulated that a meta-

bolic phenotyping approach may provide molecular insights into EED, so we set out to

determine if 1H nuclear magnetic resonance (NMR) spectroscopy-based metabolic profil-

ing approach could describe any of several facets of the EED disorder and find new EED

biomarkers correlated with gut function.
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Methods

Study patients

We studied children with persistent diarrhoea (three or more loose stools per day for 14 days

or more) and severe acute malnutrition (SAM) in the malnutrition ward of the University

Teaching Hospital, Lusaka, Zambia, which has been the setting for several previous studies

[11,16]. In total, 20 children with SAM in hospital were studied. They were consecutive admis-

sions to the ward where the inclusion criteria were fulfilled. SAM was defined as WLZ < -3 or

MUAC < 11.5 cm or bilateral oedema. These children were severely malnourished but with

no pathogen detected on first line investigations (stool microscopy and culture). In total 67%

of the children has Kwashiorkor. Their management closely followed WHO guidelines [9]

with standardised treatment protocols and universal administration of antibiotics and oral

rehydration therapy. All children in the SAM group were receiving F100 milk-based formula

in the few days leading up to the day of collection of these samples.

Ethics statement

Children were recruited once stabilised, after the initial treatment phase when mortality is

highest, by approaching the mother and following discussion with the whole family. A parent

or guardian provided written informed consent on behalf of child participants. Approval to

study these children was obtained from the University of Zambia Biomedical Research Ethics

Committee (number 006-01-13, dated 15th April 2013).

Anthropometry

Length and weight were measured using a length board (Seca) and mother-and-child weighing

scales. Mid upper arm circumference (MUAC) was measured in accordance with WHO stan-

dard protocols.

Blood biomarkers

Following a three hour fast, blood (taken with 4% tetracaine topical anaesthesia) and urine

samples were collected. Blood samples were collected into EDTA, plain and lithium heparin

tubes (Vacutainer, Becton Dickinson, Plymouth, UK) and one additional lithium heparin tube

(TekLab) for trace element analysis. Blood samples were kept in the dark for 20 minutes then

centrifuged at 537 g for 15 minutes; serum was then aliquoted into 1.5 mL tubes for storage at

-80˚C. Quantification of lipopolysaccharide (LPS) was by the Pyrochrome Limulus Amoebo-

cyte Lysate (LAL) assay (Associates of Cape Cod, Liverpool, UK). Serum Insulin like growth

factor (IGF) 1, IGF binding protein 3 (IGFBP-3), LPS binding protein (LBP), soluble cluster of

differentiation 14 (sCD14), cluster of differentiation 163 (CD163), fatty acid binding protein

(FABP), and C reactive protein (CRP) were measured by ELISA (R&D systems, Abingdon,

UK). GLP2 was measured by ELISA (Millipore, Watford, UK).

Endoscopy and small intestinal biopsy

Endoscopy was carried out in a subsample of the study (n = 15) under sedation by an anaesthe-

tist, using a Pentax EG-2490i paediatric gastroscope. Gastric acid was aspirated by syringe and

pH tested using indicator paper (Sigma, Poole, UK) to within 0.5 pH units. Three biopsies

were collected from the second part of the duodenum, and placed into saline prior to orienta-

tion under a dissecting microscope and fixation on cellulose acetate paper in formalin-saline.

Morphometric parameters included measures of villus and crypt remodeling as reported in

several previous studies [17–21]. Villus blunting is associated with reduced villus height,
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increased villus width, reduced villus epithelial surface, and increased villus compartment vol-

ume. Morphometry was carried out on digitized images of well-orientated biopsies, and mea-

sures of villus height (VH), villus width (VW), villus perimeter (VP), crypt depth (CD), and

surface area:volume ratio obtained as previously described [19, 20]. At least six villus crypt

units were measured in each case.

Absorption and permeability testing

A test solution containing 0.2 g rhamnose, 1 g lactulose per dose (50 mL) was instilled directly

into the duodenum at the end of the endoscopy, as previously described [19]. The median

time to urine collection was 123 minutes (IQR 75–221) with a range from 34 to 314 minutes.

1H NMR spectroscopic analysis

Urine samples were collected from children prior to endoscopy, and immediately decanted into

a container with 1 mL 0.5% chlorhexidine. These samples were stored at -80˚C until transporta-

tion to London on dry ice. Urine samples (400 μL) were combined with 200 μL of phosphate

buffer (pH 7.4; 100% D2O) containing 1 mM of 3-trimethylsilyl-1-[2,2,3,3-2H4] propionate

(TSP) as an external standard and 2 mM sodium azide as a bacteriocide. Samples were mixed

by vortexing and centrifugated at 10000 g for 10 minutes. The supernatant (550 μL) was trans-

ferred to a 5 mm internal diameter NMR tube. The metabolic profiles of the urine samples were

measured by 1H nuclear magnetic resonance (NMR) spectroscopy using a 700 MHz Bruker

NMR spectrometer operating at 300 K. For each urine sample a standard noesy experiment was

performed with water-suppression using 8 dummy scans followed by 128 scans collected into

64K data points. A mixing time of 10 ms was used with an acquisition time of 3.8 s and a recycle

delay of 3.0 s.
1H NMR spectra were manually corrected for phase and baseline distortions. Chemical

shifts in the spectra were referenced to the TSP peak at δ 0.0 ppm. Spectra were digitized using

an in-house Matlab (version R2012a, The Mathworks, Inc.; Natwick, MA) script. Resonances

derived from water were removed to minimize distortions to the spectral baseline. Spectra

were normalized to the total area.

Statistical analysis

Normality of continuous variables was assessed by normal probability plots. Non-normally

distributed variables were log transformed if necessary. Pearson correlation analyses were

used to evaluate relationships among variables. The significance level of the correlations was

adjusted to p<0.017. This value of significance threshold (p = 0.017) (α) has been obtained by

dividing the nominal significance threshold for a single test (c) by the number of effectively

independent tests (n): α = c/n = 0.05/3 = 0.017. For the calculation of the n = 3 we used the

hierarchical cluster analysis which was able to classify the 17 variables into three independent

groups of biomarkers (gut function and inflammation, growth, and villus morphometry) (Fig

1). This method was adapted from Cheverud JM et al (2001) and is based on the variance and

dissimilarity of the variables [22]. Furthermore, hierarchical clustering was used to order the

variables and identify hidden structure within the data. Univariate statistical analyses were per-

formed by SPSS 18.0 software (IBN Corp) and cluster/correlation analyses by R 3.2.1 (The R

project).

Orthogonal projection to latent structures (OPLS) analysis with unit variance scaling was

used to study the 1H NMR spectral profiles. Here, the metabolic profiles served as the descrip-

tor (X) matrix and villus height (or classical measurements of gut health) was the response (Y)

vector. The predictive ability of the model (Q2Y) was calculated using a seven-fold cross
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validation approach and its significance was determined by permutation testing (1000 permu-

tations). Statistical analyses related to metabolomics were performed using an in-house Matlab

(version R2012a, The Mathworks, Inc.; Natwick, MA) script.

Results

Anthropometry and growth factors biomarkers

Outliers were detected from the Box-plots in MUAC and FABP variables and eliminated from

future analysis. These studied children were severely stunted (LAZ: mean = -3.06 ± 1.49),

severely underweight (WAZ: mean = -3.49 ± 1.58), and moderately wasted (WLZ: mean =

-2.68 ± 1.58) (Table 1). Correlation analysis found a direct association between IGF-1 and

Fig 1. Correlodendogram with pearson correlations among bacterial translocation, intestinal permeability, villus

structure, metabolites, and growth variables. Color intensity and size of the circle are proportional to the correlation

coefficients. Significant correlations are shown following correction for multiple testing. FABP, fatty acid binding

protein; LAZ, length-for-age Z score; IGF-1, insulin like growth factor 1; IGFBP-3, insulin like growth factor binding

protein 3; LPS, lipopolysaccharide; LBP, lipopolysaccharide binding protein; MUAC, mid-upper arm circumference;

VH, villus height; VPMM, villus perimeter or epithelial surface area; VW, villus weight; WAZ, weight-for-age Z score;

WLZ, weight-for-length Z score.

https://doi.org/10.1371/journal.pone.0192092.g001
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IGFBP-3 (r = 0.656; p = 0.011). IGF-1 was positively correlated with MUAC, and weight-for-

height Z (WLZ) score (r = 0.789; p = 0.002; r = 0.654; p = 0.011, respectively) (Fig 1).

Measures of gut health

Mucosal morphometry showed clear evidence of enteropathy with villus blunting and greatly

increased inflammatory infiltrate (Fig 2) compared to literature controls (S1 Table). Measures

of gut health also indicated villus blunting in the children studied (villus height (VH) mean =

197.94 ± 65.58 μm; villus perimeter (VP) mean = 451.65 ± 196.05 μm, Table 1) and villus infl-

ammation (villus width (VW) median = 148.01 (128.55; 282.12) μm). Gut permeability was

determined in the study children by measuring the lactulose:rhamnose ratio (LR; mean 0.38 ±
0.36) in urine and gut microbial translocation was evaluated by measuring serum LPS binding

protein (LBP) (mean = 219.37 ± 107.71 μg/mL).

Correlation analysis revealed statistical associations between several villus morphometry

parameters and measures of gut function (Fig 1). VH and VP were positively correlated

(r = 0.67; p = 0.007) as were LR and LBP (r = 0.73; p = 0.016). An inverse relationship was seen

between the LR and VP (r = -0.95; p = 0.000) and LR and VH (r = -0.81; p = 0.015). LBP was

positively associated with VW (r = 0.73; p = 0.016). Furthermore, fatty acid binding protein

(FABP) was negatively correlated with MUAC (r = -0.73; p = 0.011).

Table 1. Characteristics of the participants.

Undernourished hospitalized childrena (n = 20)b

GENERAL AND ANTHROPOMETRICS

Sex: male 11 (55%)

Age (months) 15.45 ± 5.42

HIV: positive 8 (40%)

Mid-upper arm circumference (MUAC) (cm) 11.14 ± 1.11

Height for Age Z score (LAZ) -3.06 ± 1.49

Weight for Age Z score (WAZ) -3.49 ± 1.58

Weight for Height Z score (WLZ) -2.68 ± 1.58

Insulin like growth factor 1 (IGF-1) (ng/mL) 9.89 (9.25;14.28)

Insulin like growth factor binding protein 3 (IGFBP-3)

(ng/mL)

736.74 ± 471.65

ENTHEROPATIC AND PERMEABILITY BIOMARKERS

Lactulose/Rhamnose ratio (L/R) 0.38 ± 0.36

Lipopolysaccharide (LPS) (EU/mL) 522.72 ± 594.88

LPS binding protein (LBP) (ng/mL) 219.37 ± 107.71

Glucagon-like peptide 2 (GLP-2) (ng/mL) 2.75 ± 2.06

Fatty acid binding protein (FABP) (pg/mL) 2938.19 ± 1409.89

CD163 (ng/mL) 1421.57 ± 843.26

SCD14 (ng/mL) 2794.97 ± 1272.28

C reactive protein (CRP) (ng/mL) 3950.15 ± 5931.50

GUT BIOPSY PARAMETERS

Villus height (VH) (μm) 197.94 ± 65.58

Villus width (VW) (μm) 148.01 (128.55;282.12)

Crypt depth (CD) (μm) 169.32 ± 31.91

Villus perimeter (VP) (μm) 451.65 ± 196.05

a) Values expressed as mean ± S.D. or median (25th to 75th percentile).
b) The sample size for gut biopsy parameters was 15.

https://doi.org/10.1371/journal.pone.0192092.t001
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Non-significant correlations were observed among CD14, CD163, CRP, gastric pH, GLP2,

and LPS variables neither with other parameters.

Urine metabolic signatures associated with villus height

An outlier was detected from the PCA analysis and eliminated from future analyses. A signifi-

cant OPLS model was obtained identifying metabolic variation associated with VH

(Q2Y = 0.303; p = 0.034). Metabolites found to be significantly correlated with VH in this

model are visualized in a clustergram in Fig 3. Here, the z-scores of the peak integrals for the

metabolites are plotted for each child along with the correlation coefficients extracted from the

OPLS model. Metabolites related to gut microbial metabolism were excreted in lower amounts

by individuals with shorter VH. This included 2−hydroxyisobutyrate (2-HIB), 4

−hydroxyphenylacetate (4-HPA), phenylacetylglutamine (PAG), 3−indoxyl sulfate (3-IS), acet-

amide, 4−hydroxyhippurate (4-HH), and microbial metabolites of choline (dimethylamine

(DMA), trimethylamine (TMA)). Metabolites related to energy and muscle metabolism (succi-

nate, creatinine, β-hydroxy-β-methylbutyrate (HMB)) were also excreted in lower amounts by

children with blunted villi (shorter VH) as were tyrosine, pseudouridine, and N-acetyl-glyco-

protein (NAG). Increased excretion of sucrose was associated with villus blunting although

this was driven by the large excretion of sucrose by two individuals with the shortest villi.

Additional OPLS models were built using the other measures of gut health and classical mea-

sures of EED and growth as the response vector, however, no other significant OPLS models

were obtained (S2 Table).

As markers of muscle mass, creatinine and HMB, were correlated with other measures of

growth and gut health and function (Fig 1). Creatinine and HMB were positively correlated

with each other (r = 0.55; p = 0.016). HMB was positively correlated with VH (r = 0.64;

p = 0.013). Creatinine was also positively correlated to VH reaching a borderline significance

(r = 0.61; p = 0.022). Interestingly, creatinine and HMB were found to cluster with villus health

parameters (VH and VP). In addition, sucrose was found to cluster with measures of impaired

intestinal barrier function. Furthermore, sucrose was positively correlated with LR, LBP, and

VW, and negatively correlated with VH and VP (r> 0.67; p< 0.017) (r = -0.64; p<0.017).

Discussion

The lack of significant progress in reducing mortality in the most severely ill children with

SAM and intestinal disease over the last few decades requires fresh approaches. Here we report

a study of the metabolome in 20 hospitalized children with SAM and diarrhoea, in our experi-

ence the group with the worst outcome, in order to identify urinary and plasma biomarkers of

enteropathy. An integrated multi-tier approach was used combining morphological assess-

ments of gut health using intestinal biopsy samples with anthropometric and biochemical

Fig 2. Mucosal abnormalities in biopsies from hospitalized children. The biopsies showed a range of abnormalities

including (A) moderate villus blunting or (B) total villus atrophy.

https://doi.org/10.1371/journal.pone.0192092.g002
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Fig 3. Dendogram and heatmap representation of unsupervised hierarchical clustering (HCA) of the metabonome for all children sorted according to the villus

height (VH). Each column corresponds to a single children and each row corresponds to a specific metabolites. Only metabolites identified to correlate with VH
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measures of gut function, growth and metabolic status. We have identified signatures of dis-

turbed metabolism of the gut microbiota, notably choline metabolism, and reduction of several

specific host metabolic pathways including energy and muscle metabolism as well as tyrosine,

pseudouridine, and N-acetyl glycoprotein. In contrast, sucrose excretion was increased with

villus blunting.

Environmental enteric dysfunction arises from a vicious cycle of undernutrition and enteric

infections. It is characterized by villus blunting, loss of barrier function (leaky gut), and malab-

sorption and has been implicated in growth stunting and cognitive impairments [23,24]. Intesti-

nal biopsies collected in this study indicated that all children studied exhibited severe enteropathy

with blunted villi (VH: 197.94 ± 65.58 μmm), severe enteric dysfunction (L/R ratio: 0.38 ± 0.36,

LBP: 219.37 ± 107.71 μg/mL) and inflammation (CRP: 3950.15 ± 5931.50 ng/mL). Reductions in

epithelial surface area, measured as VP, have been previously observed in Zambian adults with

EED [20], and we found evidence that this could be an adaptation process to reduce microbial

translocation.

Correlation analysis identified a statistical relationship between altered morphological

structure and disrupted function with an inverse correlation between VH (positive correlation

with villus blunting) and small intestinal permeability (LR ratio). VW, another parameter asso-

ciated with villus blunting, showed a positive correlation with LBP linking villus atrophy with

bacterial translocation. LBP, LR, and LPS in our studied children with SAM were higher than

in community children who were not acutely malnourished [21]. Furthermore, in the studied

children, LPS was two orders of magnitude higher than in Italian children with fatty liver dis-

ease [25] and higher than in adults with EED [20]. As well as functional consequences associ-

ated with morphological changes in the gut several markers of gut health/function were also

associated with growth. FABP, a marker of enterocyte death and gut barrier disruption, was

negatively correlated with MUAC, a key measure of growth. Similar observations have been

reported in a cohort of community children with EED in Brazil [26]. As expected, MUAC was

positively associated with other measures of growth (WAZ, WLZ) and promoters of growth

(IGF-1).

Metabolic phenotyping was applied to characterize the urinary metabolic profiles of these

children to better understand the biochemical mechanisms underlying growth shortfalls

resulting from impaired gut health. Using a high-resolution untargeted 1H NMR spectroscopy

based approach we found numerous urinary metabolites strongly correlated with villus height

which is currently the gold standard for defining enteropathy. Villus blunting was associated

with a lower excretion of creatinine and HMB, metabolites related to muscle metabolism and

anabolism, indicating that muscle mass is reduced with villus blunting. Consistent with this

observation, we have recently reported a reduction in creatinine excretion in undernourished

Brazilian children with impaired growth [15]. HMB is a metabolite of leucine and reduced

excretion of HMB with blunted villi may reflect impaired uptake of this branched chain amino

acid from the diet. Muscle loss results from an imbalance between muscle protein synthesis

and muscle protein degradation. HMB has been found to stimulate muscle protein synthesis

through the mTOR-p70S6K1 pathway [27]. Moreover, the ubiquitin-proteasome proteolytic

pathway is responsible for increased protein degradation in many disorders and can be

induced by the pro-inflammatory cytokine tumor necrosis factor- α (TNF-α) following LPS

through and OPLS model were used for metabolite clustering. Metabolite z-score transformation was performed on the levels of each metabolite across samples, with

blue denotating a lower and red a higher level compared to the mean. Metabolites were clustered using correlation distance and average linkage. DMA, dimethylamine;

2-HIB, 2−hydroxyisobutyrate; 4-HPP, 4-hydroxypurate; 4-HPA, 4-hydroxyphenylacetate; 3-IS, 3−indoxyl sulfate; NAG, N-acetylglycoprotein; PAG,

phenylacetylglutamine; TMA, trimethylamine.

https://doi.org/10.1371/journal.pone.0192092.g003
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exposure. Interestingly, HMB has been shown to attenuate the increase in protein degradation

induced by TNF-α [28]. Furthermore, when given in combination with L-arginine and L-glu-

tamine, HMB has been demonstrated to prevent lean tissue loss in patients with AIDS-associ-

ated wasting [29]. As such, further work is required to greater understand the multiple factors

driving muscle loss with SAM and to evaluate the potential for HMB or leucine supplementa-

tion to ameliorate such effects.

In this study, urinary excretion of sucrose was associated with a shorter villus height. The

two children with the most blunted villi drove these observations although comparisons with

healthy children are not possible. In health, sucrose is derived from the diet and is hydrolyzed

by sucrase in the brush border to glucose and fructose. In our unit, children with SAM are

treated with standard nutritional rehabilitation which includes formula feeds containing

sucrose. Increased sucrose excretion with blunted villi suggests that urinary sucrose is not suf-

ficiently broken down when the mucosa is damaged and that paracellular absorption occurs

following a loss of barrier function. This is supported by the positive correlation between

sucrose excretion and LBP and LR. Sucrose excretion could be used as a diagnostic test to eval-

uate barrier function without the need for prior consumption of test sugars (e.g. lactulose,

rhamnose, mannitol). However, further work is required to evaluate the mucosal damage

threshold at which sucrose is absorbed. Previous studies by other groups discounted the

sucrose permeation test as a test of small intestinal permeability [30–32], but sucrose excretion

in urine may reflect the more extreme enteropathy in SAM.

Reductions in epithelial surface area seen in these children have been previously observed

in Zambian adults with EED. This might represent an adaptive response to reduce microbial

translocation [20]. Although the composition or abundance of the gut microbiota has not been

measured in these children, our approach does enable to functional state of the microbiome to

be characterized. Villus blunting was associated with a reduced excretion of gut bacterial-host

co-metabolites. This included a range of metabolites derived from the bacterial breakdown of

amino acids including tryptophan (3-IS, acetamide), phenylalanine (PAG, 4-hydroxyphenyla-

cetate), as well as bacterial metabolism of polyphenols (4-hydroxyhippurate), choline (DMA,

TMA), and carbohydrates (2-hydroxyisobutyrate). A reduction in epithelial surface area, or a

change in the abundance or composition of mucins, would decrease availability of binding

sites for community assembly. It is feasible that this may reduce or modify the microbial popu-

lations present in the gut and reduce the flow of microbial products to the host. In agreement

with this, compositional and functional variation in the gut microbiota has been previously

observed with undernutrition in rodent and human studies [14,33,34,35]. However, the

reduced excretion of microbial-derived metabolites observed with villus blunting may also be

driven by reduced uptake of microbial products due to malabsorption. As such, further studies

are necessary to characterize the gut microbial changes associated specifically with villus blunt-

ing to clarify this observation.

No gold standard biomarker for EED currently exists and an invasive gut biopsy is required

for a definitive diagnosis. In this study, we have combined intimate measures of gut health

with information-rich metabolic phenotypes to illuminate novel urinary biomarkers indicative

of specific gut damage. To this effect, several biomolecular features were discovered to be asso-

ciated with villus height. This panel of non-invasive biomarkers included metabolites from

endogenous and exogenous sources and warrant further exploration. A major limitation of

this work is the lack of a comparative control group studying children from the same setting

with a healthy gut. However, as an endoscopy could not be performed on community control

children this was not possible. In addition, due to the intensive and time-consuming nature of

the procedure used the sample size was relatively small. While a larger sample size may have
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yielded additional biomarkers of gut health, the detection of the current biomarkers in this

smaller group indicates the significance of their relationship with villus height.

Conclusions

To the best of our knowledge, this is the first time that morphological assessments of gut health

have been correlated with non-invasive measures of growth, gut health and metabolic status.

These findings imply that structural alterations induced by the chronic cycle of undernutrition

and infection impact on the functioning of the gut with a downstream impact on protein syn-

thesis, muscle development, and ultimately growth. Furthermore, modifications to the villus

environment also modulate the important relationship between the intestinal microbiota and

the host. These finding brings new knowledge to EED and may lead to non-invasive biomark-

ers of enteropathy.
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