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ABSTRACT 67 

Background: Few epigenome-wide association studies (EWAS) on air pollutants exist, but none on 68 
transportation noise exposures, which also contribute to environmental burden of disease. 69 

Objective: We performed mutually independent EWAS on transportation noise and air pollution 70 
exposures. 71 

Methods: We used data from two time-points of the Swiss Cohort Study on Air Pollution and Lung and 72 
Heart Diseases in Adults (SAPALDIA) from 1,389 participants contributing 2,542 observations. We 73 
applied multi-exposure linear mixed-effects regressions with participant-level random intercept to 74 
identify significant Cytosine-phosphate-Guanine (CpG) sites and differentially methylated regions 75 
(DMRs) in relation to one-year average aircraft, railway and road traffic day-evening-night noise (Lden), 76 
nitrogen dioxide (NO2) and particulate matter with aerodynamic diameter <2.5 µm (PM2.5). We 77 
performed candidate (CpG-based; cross-systemic phenotypes, combined into “allostatic load”) and 78 
agnostic (DMR-based) pathway enrichment tests, and replicated previously reported air pollution 79 
EWAS signals. 80 

Results: We found no statistically significant CpGs at false discovery rate <0.05. However, 14, 48, 183, 81 
8 and 71 DMRs independently associated with aircraft, railway and road traffic Lden, NO2 and PM2.5, 82 
respectively, with minimally overlapping signals. Transportation Lden and air pollutants tendentially 83 
associated with decreased and increased methylation, respectively. We observed significant enrichment 84 
of candidate DNA methylation related to C-reactive protein and body mass index (aircraft, road traffic 85 
Lden and PM2.5), renal function and “allostatic load” (all exposures). Agnostic functional networks 86 
related to cellular immunity, gene expression, cell growth/proliferation, cardiovascular, auditory, 87 
embryonic and neurological systems development were enriched. We replicated increased methylation 88 
in cg08500171 (NO2) and decreased methylation in cg17629796 (PM2.5). 89 

Conclusions: Mutually independent DNA methylation was associated with source-specific 90 
transportation noise and air pollution exposures, with distinct and shared enrichments for pathways 91 
related to inflammation, cellular development and immune responses. These contribute in clarifying the 92 
pathways linking these exposures and age-related diseases, but need further confirmation in the context 93 
of mediation analyses.  94 
 95 
 96 
 97 
 98 
 99 
 100 
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INTRODUCTION 101 

Transportation-related noise (including road traffic, railway and aircraft noise) and air pollution 102 
(including nitrogen dioxide (NO2) and particulate matter with aerodynamic diameter <2.5 µm (PM2.5)) 103 
both make the greatest contribution to the global environmental burden of disease (Fritschi et al. 2011; 104 
Hänninen et al. 2014; Vienneau et al. 2015).  Both exposure groups have been linked to cross-systemic 105 
phenotypes including respiratory (Adam et al. 2015; Eze et al. 2018; Hoek et al. 2013), cardiovascular 106 
(Beelen et al. 2014; Fiorito et al. 2018; Foraster et al. 2017; Heritier et al. 2019; Kempen et al. 2018), 107 
and metabolic diseases (Eze et al. 2015; Zare Sakhvidi et al. 2018), cancers (Andersen et al. 2018; 108 
Hegewald et al. 2017; Raaschou-Nielsen et al. 2013) and neurological disturbances (Clark and Paunovic 109 
2018; Stafoggia et al. 2014; Zhang et al. 2018). The potential mechanisms linking air pollution and these 110 
phenotypes include inflammatory, immune and oxidative stress responses following inhalation (Munzel 111 
et al. 2016), whereas noise is thought to act through annoyance reactions, sleep disturbances, stress and 112 
activation of the hypothalamic–pituitary–adrenal (HPA) axis and sympathetic nervous system, with 113 
subsequent release of stress hormones and inflammatory molecules (Daiber et al. 2019). 114 

DNA methylation alterations may mediate part of the physiological and biochemical changes leading 115 
from these traffic-related exposures to their associated preclinical and clinical phenotypes. There has 116 
been increasing evidence linking short- and long-term air pollution exposure to various measures of 117 
DNA methylation in both children and adults (Abraham et al. 2018; de FC Lichtenfels et al. 2018; 118 
Gondalia et al. 2019; Gruzieva et al. 2017; Lee et al. 2019; Mostafavi et al. 2018; Panni et al. 2016; 119 
Plusquin et al. 2017; Plusquin et al. 2018; Sayols-Baixeras et al. 2019). Although findings from these 120 
studies were largely inconsistent with regard to single Cytosine-phosphate-Guanine (CpG) sites, the 121 
systematic review by Alfano and colleagues (Alfano et al. 2018)  highlighted that air pollution was 122 
consistently linked to global hypomethylation in children (Breton et al. 2016; Cai et al. 2017; Janssen et 123 
al. 2015) and in adults (De Nys et al. 2018; De Prins et al. 2013), and accelerated epigenetic aging in 124 
adults (Nwanaji-Enwerem et al. 2016; Nwanaji-Enwerem et al. 2017; Ward-Caviness et al. 2016). 125 
Overarching epigenomic effects of air pollution identified across these studies include inflammation, 126 
mitochondrial and DNA damage responses, and accelerated biological aging (Alfano et al. 2018). 127 

Transportation noise, like air pollution, may also influence health outcomes via DNA methylation. First, 128 
they might share mechanistic pathways, as there is growing evidence for the inflammatory and oxidative 129 
downstream effects of noise exposure (Daiber et al. 2019; Munzel et al. 2017). Second, oxidative DNA 130 
damage, a correlate of altered DNA methylation and gene expression (Russo et al. 2016) was linked to 131 
occupational noise (Bagheri Hosseinabadi et al. 2019; Nawaz and Hasnain 2013) and traffic noise 132 
(Hemmingsen et al. 2015). Third, DNA methylation changes were reported for noise-related stressors 133 
such as vehicular traffic (Commodore et al. 2018) and insufficient sleep (Gaine et al. 2018). Methylation 134 
changes were also reported in circadian rhythm genes in conditions of acute sleep loss (Cedernaes et al. 135 
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2015) and night-shift work (Zhu et al. 2011). A study investigating brain tissue DNA methylation in 136 
relation to noise exposure in animal models reported gene-specific methylation changes, which were in 137 
turn associated with metabolic health (Guo et al. 2017).  138 

No transportation noise epigenome-wide association study (EWAS) has been performed so far in 139 
population-based studies, and previous air pollution EWAS studies did not account for concurrent noise 140 
exposure (Eze and Probst-Hensch 2018). This is a limitation as both exposures share common sources 141 
and might be potential mutual confounders (Tetreault et al. 2013). As demonstrated by previous studies 142 
(Franklin and Fruin 2017; Heritier et al. 2019; Tetreault et al. 2013), the effect estimates of air pollution 143 
might be overestimated if noise level is unaccounted for, and vice versa. In addition, a parallel 144 
consideration of both exposure groups might elucidate directly shared and independent pathways of 145 
individual exposures, towards an improved understanding of mechanisms linking these exposures to 146 
disease. 147 

In this paper, we aimed within the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in 148 
Adults (SAPALDIA) to: 149 

(i) conduct a multi-exposure EWAS (single CpGs and genomic regions) involving long-term 150 
exposure to source-specific transportation noise (aircraft, railway and road traffic) and air 151 
pollution (NO2 and PM2.5);  152 

(ii) assess in a candidate approach using a priori-curated CpGs, pathway enrichment for 153 
“allostatic load”-related cardio-metabolic, immunological and renal phenotypes (Johnson 154 
et al. 2017; McCrory et al. 2019; Seeman et al. 2010), given that both traffic-related 155 
exposures are chronic stressors of several physiological systems;  156 

(iii) assess in an agnostic approach, functional pathway and network enrichment of EWAS-157 
derived differentially methylated regions (DMRs); and  158 

(iv) replicate previously reported CpGs associated with long-term exposure to NO2 and PM2.5 in 159 
the LifeLines (de FC Lichtenfels et al. 2018), EPIC-ITALY and EPIC-NL (Plusquin et al. 160 
2017), and Korean COPD (Lee et al. 2019) cohorts. 161 

METHODS 162 

Study Population 163 

The SAPALDIA cohort has been described elsewhere in detail (Ackermann-Liebrich et al. 2005; Martin 164 
et al. 1997). SAPALDIA is a population-based study that recruited 9,651 adults from eight 165 
geographically diverse Swiss areas (Aarau, Basel, Davos, Geneva, Lugano, Montana, Payerne, and 166 
Wald) in 1991 (SAP1) to investigate the respiratory effects of air pollution exposure. The first (SAP2) 167 
and second follow-up (SAP3) surveys occurred in 2002 and 2010, included 8,047 and 6,088 participants 168 
respectively, and additionally assessed cardio-metabolic and quality of life phenotypes. At each survey, 169 
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participants had physical examinations, health and lifestyle-related interviews. Measures of 170 
transportation noise and air pollution exposures were modeled at participants’ residences. At both SAP2 171 
and SAP3, whole blood samples were collected, pre-processed and stored in a biobank (−80 °C) for 172 
biomarker assessments including DNA methylation. In the context two SAPALDIA nested studies—173 
Aging Lungs in European Cohorts study (ALEC; www.alecstudy.org) and the EXPOsOMICS study 174 
(Vineis et al. 2017)—SAP2 and SAP3 repeat blood samples from 987 representative participants 175 
(ALEC), and an independent 405 non-smoking participants (for at least one year before SAP2; 176 
EXPOsOMICS), were applied toward DNA methylation assessment. The EXPOsOMICS sample was 177 
an asthma case-control sample of non-smokers (204 cases and 201 controls) where the asthma cases had 178 
methylation assessed only in SAP3 blood sample and the controls had methylation assessment in both 179 
SAP2 and SAP3 blood samples. Following exclusions due to methylation data quality and covariate 180 
data availability, we included SAP2 data from 972 ALEC and 198 EXPOsOMICS (asthma controls) 181 
participants, and SAP3 data from 970 ALEC and 402 EXPOsOMICS (204 asthma cases and 198 182 
controls) participants.  183 

The present study therefore includes 1,389 participants contributing 2,542 observations, with an average 184 
of 1.8 observations per participant. Figure 1 presents the details of participant selection and inclusion. 185 
The SAPALDIA study complies with the Helsinki declaration. All participants provided informed 186 
written consent before participating in any aspect of the SAPALDIA surveys and ethical approvals were 187 
obtained from the Swiss Academy of Medical Sciences and the Ethics committees of the participating 188 
cantons. 189 

Assessment of DNA methylation  190 

DNA methylation was measured in the ALEC and EXPOsOMICS samples separately in different 191 
laboratories, but using consistent methodology,  using Illumina Infinium 450K BeadChip and processed 192 
as previously described (Imboden et al. 2019; Jeong et al. 2019). In brief, paired blood samples from the 193 
same participant were randomized across the arrays and placed next to each other on the arrays. Dye-194 
bias correction (Triche et al. 2013) and absolute methylation level (β-values, defined as the ratio of 195 
methylation intensity over total intensity, with offset of 100) were computed using the minfi R-package 196 
(Aryee et al. 2014). Quality control criteria included call rate >95%, detection p-value <10-16, sex 197 
consistency, autosomal chromosome location of probes, and restriction to probes identified in both 198 
ALEC and EXPOsOMICS samples. We applied beta mixture quantile normalization (BMIQ) of the β-199 
values to correct for the Illumina probe design bias (Teschendorff et al. 2013). We further excluded 200 
37,882 CpGs that are cross-reactive or target polymorphic (Chen et al. 2013). For technical bias (batch 201 
effect) correction, these β-values were then regressed on the first 30 principal components derived from 202 
a principal component analysis of the control probes incorporated on the methylation chip (Lehne et al. 203 
2015). Figure S1 shows the distributions of the BMIQ-normalized beta values and technical bias-204 
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corrected residuals. In line with previous studies (Imboden et al. 2019; Jeong et al. 2019), we applied 205 
these residuals (in place of the β-values) in subsequent EWAS covering 430,477 CpG sites that 206 
overlapped between ALEC and EXPOsOMICS samples.  207 

To minimize bias due to extreme values (EVs) of the residuals—the dependent variables in the present 208 
EWAS—while retaining the distribution of DNA methylation at the non-skewed CpG sites, we 209 
performed “modified winsorization” of the CpG sites containing EVs. We defined EVs as values lying 210 
beyond three times the interquartile range (IQR) below and above the first (Q1) and third quartiles (Q3), 211 
respectively (Tukey 1977). We replaced each EV with the corresponding threshold of detection, in a 212 
CpG-specific manner, i.e.  213 

If  !" < $%1 − (3 × +%,). , then EV is replaced with the value of  %1 − (3 × +%,) at the CpG site; 214 

If  !" > $%3 + (3 × +%,). , then EV is replaced with the value of  %3 + (3 × +%,) at the CpG site. 215 

Among the 430,477 included CpGs, 393,397 CpGs (91%) had at least one EV. The EVs comprised 216 
0.04–22% of observations across the “winsorized” CpG sites. We used these “winsorized” data as the 217 
primary outcome variables in subsequent analyses (including EWAS, enrichment and replication), and 218 
only used the “non-winsorized” data for sensitivity testing of the top CpG signals identified in the 219 
EWAS. 220 

Assessment of transportation noise exposure 221 

As detailed elsewhere (Karipidis et al. 2014), annual average day-evening-night noise level (Lden, with 222 
respective 5 dB and 10 dB penalties for evening (19-23h ) and night-time (23-07h; Lnight)) were 223 
calculated for 2001 and 2011 (corresponding to SAP2 and SAP3 respectively), for aircraft, railway and 224 
road traffic noise at the maximum-exposed façade of the residential floors of participants. This was done 225 
in the framework of the Short and Long Term Effects of Transportation Noise Exposure (SiRENE) 226 
project (Röösli et al. 2017). Aircraft noise was modeled with the FLULA2 software (Empa 2010) with 227 
input data covering four airports in Basel, Geneva, Zurich and Payerne. Railway noise emission and 228 
propagation were modeled using the sonRAIL (Thron and Hecht 2010) and the SEMIBEL (FOEN 1990) 229 
models respectively, whereas road traffic noise emission and propagation were separately modeled using 230 
sonROAD (Heutschi 2004) and StL-86 (FOEN 1987). Validation of noise calculations was done by 231 
comparing the calculated noise levels with measured levels from the field. Taking all measurements into 232 
account, a mean Lden difference of 1.6 ± 5 dB  was observed (Schlatter et al. 2017). Lden and Lnight 233 
values were respectively truncated at 30 dB and 20 dB for railway and aircraft noise, and 35 dB and 25 234 
dB for road traffic noise. Calculated Lden and Lnight values below these limits were replaced by the 235 
respective truncation values. Participants with truncated values were assigned a truncation indicator 236 
(yes/no) for subsequent modelling, in line with previous analyses in the context of the SiRENE study 237 
(Eze et al. 2017; Foraster et al. 2017). Given the high correlations of source-specific Lden and Lnight, 238 
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(Spearman rank correlation, raircraft = 0.76, rrailway = 0.97 and rroad traffic = 0.99), and the generally lower 239 
Lnight levels (Table S1 and Figure S2); we focused on source-specific Lden as the noise parameters of 240 
interest in this EWAS. 241 

Assessment of air pollution exposure 242 

Traffic-related air pollutants—NO2 and PM2.5—were also modeled at participant’s residences at SAP2 243 
and SAP3 as outdoor mean exposures. For SAP2, annual mean NO2 was estimated (year 2003) using a 244 
hybrid model that regressed passive sampler measurements against dispersion model estimates, seasonal 245 
and climatic variables, as well as traffic and land use characteristics. Adjusted R2 of the hybrid model 246 
was 0.8 (Liu et al. 2012). PM2.5 was derived from the Swiss PolluMap dispersion model (year 2000). 247 
Modeled values were validated against measured values with an R2 of 0.9 (Heldstab et al. 2003). For 248 
SAP3, NO2 and PM2.5 were modeled as average biennial exposures (2010/2011) using land-use 249 
regression models. The best models were used in each case: the combined PM2.5 with an adjusted R2 of 250 
0.6, and the area-specific NO2 models with adjusted R2s of 0.5-0.9 across SAPALDIA study areas 251 
(Eeftens et al. 2016). We included both pollutants in our analyses, examining their associations in both 252 
single and multi-exposure models. 253 

Assessment of covariates 254 

At the level of the individual, we considered groups of potential confounders measured at both SAP2 255 
and SAP3, which might be associated with transportation noise, air pollution exposures, and DNA 256 
methylome. We considered sociodemographic factors including age (years), sex (male/female), and 257 
educational attainment (primary education/secondary education or apprenticeship/tertiary education)). 258 
We considered lifestyle factors such as smoking status (never/former/current), smoked pack years 259 
(calculated from cigarettes per day and duration of smoking), passive smoking (yes/no), alcohol 260 
consumption (beers, wines, liquors and spirits; ≤1 glass per day/>1 glass per day), frequency of fruit 261 
intake (citrus or non-citrus fruits in any form; ≤3 days per week/>3 days per week), vegetable intake 262 
(raw or cooked; ≤3 days per week/>3 days per week), body mass index (BMI; kg/m2) and sufficient 263 
moderate-to-vigorous physical activity (≥150 minutes per week of engagement in activities that makes 264 
one at least moderately sweat or breathless). To minimize the between-nested study differences, 265 
including residual batch effects and asthma status, we considered the contributing nested study 266 
(ALEC/EXPOsOMICS) and asthma status, defined as ever having a diagnosis of asthma. We also 267 
considered estimates of leukocyte composition for B cells, CD4T cells, CD8T cells, eosinophils, 268 
monocytes, natural killer cells and neutrophils (derived from the DNA methylation data using the 269 
“estimatecellcounts” function in the “minfi” R package (Houseman et al. 2012; Reinius et al. 2012)), to 270 
control the influence of cell proportions on methylation level (Adalsteinsson et al. 2012). 271 
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On the contextual scale, we considered some commonly indicated potential confounders of 272 
environmental health such as study area, a neighborhood index of socio-economic position (SEP; %) 273 
and greenness index within 1 km residential buffer. SEP was derived from a principal component 274 
analysis of household characteristics (education, occupation of household head, occupancy and median 275 
rent of household) based on 2001 census data (Panczak et al. 2012), and assigned to residential geo-276 
coordinates at SAP2 and SAP3. Greenness index was calculated for 2014 as normalized difference 277 
vegetation index based on surface reflectance, and assigned to participants geo-coordinates at SAP2 and 278 
SAP3 (Vienneau et al. 2017). 279 

Statistical analyses 280 

EWAS 281 

We described the characteristics of included participants by survey and by nested study, summarizing 282 
categorical variables as counts and proportions, and continuous variables as medians and interquartile 283 
ranges (IQR). Using the combined sample, we performed EWAS by linear mixed-effects regressions on 284 
the “winsorized” technical-bias corrected residuals of 430,477 CpGs, applying random intercepts at the 285 
level of participants. We used the “lmer” function of the “lme4” R package for the regressions (Bates et 286 
al. 2015). We performed single- as well as multi-exposure EWAS for aircraft, railway and road traffic 287 
Lden, NO2 and PM2.5, adjusting for age, sex, education, smoking status, pack years, passive smoking, 288 
fruit, vegetable and alcohol intake, study area, SEP, greenness index, survey, nested study, asthma, Lden 289 
truncation indicator and Houseman estimates of leukocyte composition, in the main model. We 290 
identified genome-wide significant CpGs at false discovery rate (FDR) and Bonferroni-corrected p-291 
value thresholds of 0.05 and 1.16E-07, respectively.  292 

We tested sensitivity of the top 10 CpGs to further adjustment for the potential mediators BMI and 293 
physical activity, which have been associated with transportation noise (An et al. 2018b; Foraster et al. 294 
2016; Roswall et al. 2017) and air pollution exposures (An et al. 2018a; An et al. 2018c). We further 295 
stratified these CpGs by nested study to assess consistency in effect direction, limited these models to 296 
participants who reported regular nighttime opening of windows, and assessed the robustness of top 297 
signals in models using the “non-winsorized” methylation data. 298 

We tested for differentially methylated regions (DMRs) using the “dmrcate” function in the “DMRcate” 299 
R package (Peters et al. 2015) and the multi-exposure EWAS-derived parameters for each CpG, as input 300 
file. Thus, we performed the DMR analyses using the individual estimates of 430,477 CpGs from the 301 
main multi-exposure model. We defined DMRs as significant if they contained at least two CpGs, within 302 
at least 1000 base pairs, and had a minimum FDR p-value <0.05. Except when unannotated, all CpGs 303 
and DMRs are reported with gene annotation in parenthesis. 304 
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Pathway enrichment.  305 

In a candidate pathway approach, we identified previously published EWAS signals for different 306 
physiological systems (captured by selected phenotypes) of potential relevance to transportation-related 307 
noise and air pollution effects. These systems (phenotypes) included (i) immunological (C-reactive 308 
protein, CRP); (ii) metabolic (glycaemia, insulin secretion/sensitivity, lipoprotein cholesterol, BMI, 309 
waist circumference/visceral adipose tissue mass, and metabolic syndrome); (iii) renal (estimated 310 
glomerular filtration rate, eGFR); and (iv) cardiovascular and autonomic nervous systems (blood 311 
pressure and cardiac autonomic responses, CAR). For all phenotypes, we curated CpGs from the EWAS 312 
atlas (Li et al. 2019), at a p-value threshold of 1.10E-05, except for CRP where only the genome-wide 313 
significant signals at p-value of 1.15E-07 were reported (Ligthart et al. 2016). CpGs that overlapped 314 
with those of the SAPALDIA study were finally curated for enrichment analyses (Excel Table S1). 315 

We defined a global “allostatic load” pathway as the entirety of unique CpGs assigned to at least one of 316 
the constituent pathways (n = 1,626). We applied the Weighted Kolmogorov-Smirnov method (Charmpi 317 
and Ycart 2015) to test for enrichment of the candidate and “allostatic load” pathways using the absolute 318 
values of test statistics from multi-exposure EWAS. These test statistics from CpGs mapped to the 319 
pathway were compared to the empirical null distribution derived by 10,000 permutation samples. If the 320 
Kolmogorov-Smirnov test statistic was larger than the 90th percentile of test statistics obtained from the 321 
permutation samples after permutation-based multiple testing correction (van der Laan et al. 2005), we 322 
declared enrichment for the pathway.   323 

In an agnostic approach, we assessed the functional pathways of exposure-specific differential 324 
methylation, using the “Core Analysis” of ingenuity pathway analysis (IPA; Ingenuity Systems, 325 
QIAGEN, CA, USA) on genes annotated to significant DMRs. We identified for each exposure, the 326 
functional pathways which were significantly enriched at p-value <0.05, as well as top disease and 327 
functional networks related to these pathways.  328 

Replication of previously reported air pollution associated CpGs.  329 

Using the SAPALDIA EWAS results, we looked up the single- and multi-exposure EWAS signals for 330 
validation of 22 and 10 previously reported genome-wide significant CpGs for long-term exposure to 331 
NO2 and PM2.5, respectively. These include NO2 signals from the LifeLines cohort (cg04908668, 332 
cg14938677, cg00344801, cg18379295, cg25769469, cg02234653, and cg08500171 (de FC Lichtenfels 333 
et al. 2018)), EPIC-ITALY (cg08120023, cg22856765, cg18164357, cg13918628, cg03870188, 334 
cg20939320, cg13420207, cg04914283, cg21156210, cg16205861, cg12790758, and cg18201392 335 
(Plusquin et al. 2017)), and the Korean COPD cohort (cg05171937, cg06226567 and cg26583725 (Lee 336 
et al. 2019)). PM2.5-associated signals include in cg23890774 from EPIC-ITALY, and cg12575202, 337 
cg08630381, cg17629796, cg07084345, cg04319606, cg09568355, cg03513315, cg25489413, 338 
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cg00005622 from EPIC-NL (Plusquin et al. 2017). We identified CpGs as replicated in our study, if 339 
they showed consistent effect direction at nominal p-value threshold of 0.05. 340 

RESULTS 341 

The characteristics of the study sample at SAP2 and SAP3 are presented in Table 1.  In general, 342 
participants tended to gain weight, smoke less with relatively lower pollutant exposures between 343 
surveys. ALEC and EXPOsOMICS participants mainly differed by design in their smoking habits and 344 
asthma status, but their environmental exposure profiles were comparable (Table S2). Figure S2 shows 345 
the overall distributions of the aircraft, railway and road traffic Lden and NO2 and PM2.5 exposures. The 346 
Spearman rank correlations (r) of the five exposures are shown on Table S1. Correlation of NO2 and 347 
PM2.5 was 0.65. NO2 had higher correlation with road traffic (r = 0.41) than railway (r = 0.23) and aircraft 348 
Lden (r = 0.10) whereas PM2.5 had higher correlation with aircraft (r = 0.23) than railway (r = 0.19) and 349 
road traffic Lden (r = 0.19). Correlation patterns were consistent across SAP2 and SAP3. 350 

EWAS  351 

In the single exposure models (Table S3), we observed one genome-wide significant (FDR = 0.040) 352 
PM2.5-associated CpG (cg26704043 (FARS2)) and one borderline-significant (FDR = 0.077) railway 353 
Lden-associated CpG (cg25201280 (ATPBD4)). There were no genome-wide significant signals in the 354 
multi-exposure model (Table 2). Here, the PM2.5-associated cg26704043 (FARS2) got considerably 355 
weaker (FDR = 0.180) whereas the railway Lden-associated cg25201280 (ATPBD4) remained 356 
borderline-significant (FDR = 0.075). The top 10 CpGs of the single exposure models were not entirely 357 
consistent with those of the multi-exposure models, with varying degrees of overlap across exposures. 358 
However, overlapping CpGs were directionally consistent (for all exposures), and the top CpG was 359 
positionally consistent (except for road traffic Lden) between the single and multi-exposure models 360 
(Tables 2 and S3).  361 

In the multi-exposure model, aircraft Lden (cg02286155), railway Lden (cg25201280 (ATPBD4)) and 362 
road traffic Lden cg09129334 (ARHGEF7) were associated with reduced methylation, whereas NO2 363 
(cg04337651 (ASB1)) and PM2.5 (cg26704043 (FARS2)) were associated with increased methylation, at 364 
their respective top CpG sites. Among the top 10 signals, we observed decreased methylation at nine 365 
(90%), eight (80%) and eight (80%) CpGs in relation to aircraft, railway and road traffic Lden, 366 
respectively, and increased methylation at five (50%) and 10 (100%) CpGs in relation to NO2 and PM2.5, 367 
respectively. These CpGs were generally robust to adjustment for BMI and physical activity (Table 2) 368 
and showed consistent effect direction when stratified by nested study (Table S4). Associations were 369 
also robust in the model limited to participants reporting regular nighttime window opening (Table S5). 370 
The “non-winsorized” model highlighted few CpGs where extreme values would potentially bias their 371 
estimates if unaddressed. These included directionally consistent, but considerably weaker effects on 372 
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aircraft Lden-associated cg11944797 (STK24) and cg10975000; road traffic Lden-associated 373 
cg08351004 (DLX2); NO2-associated cg18776472 (ERCC6), cg12392998 (NPLOC2) and cg26898336 374 
(TEKT3); and a stronger and genome-wide significant effect on PM2.5-associated cg21058520 (Table 375 
S6). Results from the multi-exposure main model of CpGs associated with aircraft, railway and road 376 
traffic Lden, NO2 and PM2.5—at nominal p-value <1.00E-03—are presented in Excel Tables S2-S6.  377 

Post hoc analysis of overlap among the top 100 exposure-specific CpGs identified from the multi-378 
exposure EWAS showed minimal signal overlap between exposures (Figure 2A). We identified two 379 
overlapping signals between road traffic Lden and NO2 (cg12439232 and cg15590912 (CCSAP)). Yet, 380 
road traffic Lden was associated with decreased methylation whereas NO2 was associated with increased 381 
methylation at both sites (Excel Tables S4 and S5). Complete EWAS results from the single and multi-382 
exposure main models of 430,477 CpGs in relation to aircraft, railway and road traffic Lden, NO2 and 383 
PM2.5 are deposited in the DRYAD public online depository (http://datadryad.org/) at the time of 384 
publication. 385 

We identified independent DMRs (FDR <0.05) across all exposures in the main model (Table 3). There 386 
were 14 (10), 48 (39), 183 (189), 8 (8) and 71 (60) DMRs (genes) respectively associated with aircraft, 387 
railway, and road traffic Lden, NO2 and PM2.5. Among the top 10 CpGs identified in the multi-exposure 388 
model, two aircraft (cg10975000 and cg25462190 (N4BP3)), six railway (cg25201280 (ATPBD4), 389 
cg24653263 (EGFLAM), cg16825060 (LY6H), cg19270309 (ENPP7), cg23113715, and cg24047259), 390 
and five road traffic Lden-associated CpGs (cg17383236, cg23910243 (TGFB1I1), cg06646021 391 
(RAB4A), cg03966094 (TMEM191A), and cg08351004 (DLX2)) were within the exposure-specific 392 
DMRs. Three NO2 (cg04337651 (ASB1), cg01746514 (LRRC16B) and cg26898336 (TEKT3)) and two 393 
PM2.5-associated CpGs (cg20099458 (WIPI2) and cg26750893) were also within the exposure-specific 394 
DMRs. Top DMRs independently associated with exposures annotated to VTRNA2-1 (aircraft and 395 
railway Lden; Chr5:135415129–135416613), OXT (road traffic Lden; Chr20:3051954–3053196), 396 
ZSCAN31 (NO2; Chr6:28303923–28304451) and TRIM39, HCG18, and TRIM39-RPP21 (PM2.5; 397 
Chr6:30296689–30297941). Most of the CpGs within the DMRs associated with source-specific Lden 398 
showed decreased methylation (aircraft = 64%, railway = 69% and road traffic = 93%) whereas those 399 
associated with air pollution showed increased methylation (NO2 = 63% and PM2.5 = 93%). Excel Tables 400 
S7 and S8 show the results from the multi-exposure main model of DMRs associated with aircraft, 401 
railway and road traffic Lden, NO2 and PM2.5 at FDR <0.05. 402 

Post hoc analysis of overlap among the gene-annotated significant DMRs also showed minimal overlap 403 
between exposures (Figure 2B). SLC27A3, B3GALT4, EN2 and AC008060.8 overlapped between 404 
railway and road traffic Lden, TRIM39, TRIM39-RPP21 and HCG18 overlapped between railway Lden 405 
and PM2.5, and HOXA2 overlapped between aircraft, road traffic Lden and PM2.5. Other overlapping 406 
genes include VTRNA2-1 (aircraft and railway Lden), ZFP57 (railway Lden and NO2) and ZSCAN31 407 
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(road traffic Lden and NO2) and PRRT1 (road traffic Lden and PM2.5). Overlapping DMRs showed 408 
opposing effect direction between exposures, except for consistently increased methylation at TRIM39, 409 
TRIM39-RPP21, HCG18 (railway Lden and PM2.5) and HOXA-2 (aircraft Lden and PM2.5), and 410 
decreased methylation at SLC27A3, B3GALT4, EN2 and AC008060.8 (railway and road traffic Lden) 411 
(Excel Tables S7 and S8). 412 

Pathway enrichment  413 

For the candidate single phenotype and combined “allostatic load” pathways, multiple testing-corrected 414 
enrichment analyses showed varying enrichment across exposures (Table 4). Considering the results for 415 
single phenotypes, PM2.5-related methylation was the most enriched whereas NO2-related methylation 416 
was the least enriched. Single pathways (p-values) enriched for PM2.5 included CRP (0.0004), glycaemia 417 
(0.0947), WC (0.0004), BMI (0.0004) and eGFR (0.0004). Aircraft and road traffic Lden-related 418 
methylation were enriched for CRP (0.0038; 0.0395), BMI (0.0007; 0.0008) and eGFR (0.0015; 0.0031).  419 
Railway Lden-related methylation was enriched for eGFR (0.0562) and CAR (0.0229), whereas NO2 –420 
related methylation was only enriched for eGFR (0.0058). Considering the global “allostatic load” 421 
pathway, we found consistent enrichment across all exposures including aircraft (0.0004), railway 422 
(0.0871), and road traffic Lden (0.0004), PM2.5 (0.0004), and NO2 (0.0510). 423 

Agnostic functional enrichment showed significantly enriched canonical pathways for railway, road 424 
traffic Lden and PM2.5, with predominance of inflammatory and immune regulation-related pathways 425 
across exposures (Excel Table S9). Some of the enriched canonical pathways included type 2 diabetes 426 
signaling, tight junction signaling, mTOR signaling and lipopolysaccharide/IL-1 mediated inhibition of 427 
RXR function (railway Lden); Wnt/β-catenin signaling, cholecystokinin/gastrin-mediated signaling, G-428 
protein coupled receptor signaling and Th1 and Th2 activation pathways (road traffic Lden); β-alanine, 429 
4-aminobutyrate degradation; systematic lupus erythematosus signaling, and IL-4 signaling (PM2.5). 430 
Network analyses showed the enrichment for disease mechanisms related to cellular 431 
signaling/interaction and embryonic/organ development (all exposures), cell-mediated 432 
immune/inflammatory responses (road traffic Lden and PM2.5) and diseases related to connective tissue 433 
development/function (railway and road traffic Lden). Pathways related to cardiovascular function, gene 434 
expression and respiratory system disease (railway Lden); carbohydrate and small molecule 435 
transport/biochemistry, cancer and auditory function (road traffic Lden); hematological and nervous 436 
system function (PM2.5) were enriched (Excel Table S10).  437 

Replication of previously reported NO2 and PM2.5-associated CpGs  438 

Using the single-exposure model, corresponding to the previous EWAS studies, we replicated the 439 
increased methylation in cg08500171 (BAT2) associated with NO2 (p = 0.042). This replication 440 
remained robust in the multi-exposure model (p = 0.019). We observed a borderline significant 441 
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decreased methylation in cg17629796 associated with PM2.5 (p = 0.076) in the single exposure model, 442 
which became statistically significant in the multi-exposure model (p = 0.033). Nine (41%) NO2-443 
associated CpGs and five (50%) PM2.5-associated CpGs had the same direction of effect in the 444 
SAPALDIA study (Table 5). 445 

DISCUSSION 446 

In this first multi-exposure EWAS covering long-term aircraft, railway and road traffic noise as well as  447 
NO2 and PM2.5 exposures, we found genome-wide significant signals—at the level of genomic regions—448 
associated with source-specific transportation noise and air pollution exposures. We demonstrated some 449 
mutual confounding of the associations of exposures with DNA methylation, where single exposure 450 
models slightly overestimated the observed methylation effect. Overall, methylation signals minimally 451 
overlapped, but showed common enrichment of inflammation and immune response-related pathways, 452 
across exposures. We also validated in this study, air pollution-related CpG signals identified in external 453 
EWAS.  454 

The railway noise-related decrease in methylation at cg25201280 (transcription start site 200 of 455 
ATPBD4 gene on chromosome 15), and PM2.5-related increase in methylation at cg26704043 (5’ 456 
untranslated region of FARS2 gene on chromosome 6), were the strongest single CpG signals identified 457 
in the study. ATPBD4 (or DPH6) is a protein-coding gene that regulates ATP binding and diphthamide 458 
synthase activity, within the protein metabolism pathway (Chertow 1981; Young et al. 2004). 459 
Polymorphisms in this gene were associated—in various genome-wide association studies (GWAS)— 460 
with adiposity (Kichaev et al. 2019; Pulit et al. 2019), cognitive function (Lee et al. 2018; Li et al. 2015) 461 
and Crohn’s disease progression (O'Donnell et al. 2019). FARS2 is a protein-coding gene that regulates 462 
the translation of mitochondrial proteins and gene expression (Bullard et al. 1999). Variants of this gene 463 
were associated—in GWAS—with extreme obesity (Wheeler et al. 2013) and acute myeloid leukemia 464 
(Lv et al. 2017), whereas cg26704043 was associated—in EWAS—with systemic lupus erythematosus 465 
(Imgenberg-Kreuz et al. 2018) and Grave’s disease (Chen et al. 2019). These highlight the role of DNA 466 
methylation changes in these genes as potential mechanisms by which railway noise and PM2.5 467 
contribute to the resulting inflammatory and neurological phenotypes. 468 

Our observation of numerous independent DMRs (for all five exposures) despite paucity of single CpG 469 
signals highlights the relevance of concurrent investigation of genomic regions in EWAS. Analyses of 470 
genomic regions contextualizes CpGs to identify DMRs with possible functional relevance in regulation 471 
of gene transcription (Rakyan et al. 2011). Interestingly, transportation noise showed mostly decreased 472 
methylation whereas air pollution showed mostly increased methylation at the respective DMRs. This 473 
difference in direction of association was also observed at the levels overlapping CpGs and annotated 474 
DMRs. The relevance of these findings remains to be clarified as DNA hypermethylation is often 475 
associated with transcriptional gene repression, while hypomethylation is associated with a chromatin 476 
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configuration that allows transcription (Sawalha 2008). However, concordant hypermethylation in 477 
TRIM39 (railway noise and PM2.5) and HOXA2 (PM2.5 and aircraft noise and PM2.5), and 478 
hypomethylation in SLC27A3 and EN2 (railway and road traffic noise) protein-coding genes indicate 479 
some synergistic pathways between exposures. TRIM39 activates the apoptotic signaling pathway, plays 480 
a role in cellular signaling and response to stimuli (Zhang et al. 2012), and its hypermethylation was 481 
associated with depression (Crawford et al. 2018). HOXA2 encodes a transcriptional regulator that 482 
controls cellular differentiation during development (Akin and Nazarali 2005). Hypermethylation at this 483 
gene was associated transcriptional suppression in various cancers (Li et al. 2013). SLC27A3 is involved 484 
in lipid metabolism and brain development (Stahl 2004), and hypomethylation in this gene was 485 
associated with recurrent endometrial carcinoma (Hsu et al. 2013). EN2 functions in the development 486 
of the central nervous system and is commonly associated with autism (Lupu et al. 2018; Márquez-487 
Valadez et al. 2018). Aberrant methylation in EN2 was recently linked to clear cell renal carcinoma (Lai 488 
et al. 2017). While these highlight certain distinct and shared pattern of associations, they demonstrate 489 
the complex network in the mechanisms linking these exposures to disease. The integration of gene 490 
expression or transcriptomic data in future studies will improve our understanding of the mechanisms 491 
going from divergence in directions of associations to convergence on pathway level across these 492 
exposures. 493 

The results demonstrating enrichment for DNA methylation associated with phenotypes of “allostatic 494 
load” for both, air pollution and noise exposure are novel, but in line with previously hypothesized 495 
mechanisms. Chronic low-level exposure to air pollution and noise are established risk factors for 496 
cardio-metabolic disease and were previously linked to the single phenotypes making up the allostatic 497 
load pathway in this paper (Munzel and Daiber 2018; Thomson 2019). Recent experimental evidence 498 
specifically linked particulate matter and ozone pollution as well as transportation noise to alterations 499 
in the HPA axis (Jafari et al. 2017). The findings of “allostatic load” enrichment agrees with the 500 
functional enrichment of pathways related to oxidative stress and immune responses across all 501 
exposures. Furthermore, the enriched disease networks identified for PM2.5 overlaps the networks that 502 
recently reported for PM10 in another study (Lee et al. 2019). Taken together, the evidence especially 503 
supports the recent links of transportation noise to markers of inflammation and oxidative stress (Bagheri 504 
Hosseinabadi et al. 2019; Munzel et al. 2016; Munzel et al. 2017; Munzel and Daiber 2018). However, 505 
our findings on the inflammatory pathway might have been influenced by the higher prevalence of 506 
asthma in this sample (22%) compared to the entire SAPALDIA study (12%), but our models contained 507 
asthma status, in addition to smoking and pack years, and should minimize this potential bias. In line 508 
with recent evidence on the early life methylome effects of air pollution (Cai et al. 2017; Gruzieva et al. 509 
2017) and potentially noise exposures, we observed enrichment of pathways related to embryonic and 510 
organ development for all exposures. Altered DNA methylation due to these exposures might therefore 511 
explain the reported associations of PM and poor birth outcomes (Liu et al. 2019; Smith et al. 2020), as 512 
well as the early life theory of age-related disease (Walhovd et al. 2016). This is even more relevant if 513 
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these methylation changes are heritable, and when confirmed, improves our understanding of the 514 
relevance of this pathway in relation to these exposures. 515 

The relevance of confounding by leukocyte composition, on the association between exposures and 516 
peripheral blood DNA methylation has been of interest (Heiss and Brenner 2017; van Rooij et al. 2019). 517 
We demonstrated—in post hoc analyses—the general weakening of top CpGs (with some signals not 518 
attaining nominal significance) when leukocyte composition was not considered.  However, main effect 519 
sizes remained robust (Table S7). Source-specific transportation noise and air pollution exposures were 520 
also associated with various leukocyte types (Table S8).  These indicate that changes in leukocyte 521 
composition probably drive methylation at certain sites, and should be considered potential confounders 522 
in this and similar studies. Our findings in this EWAS (adjusted for leukocyte composition) therefore 523 
reflect more of actual DNA methylation changes rather than underlying leukocyte composition changes, 524 
in relation to transportation noise and air pollution exposure. This would otherwise be difficult to 525 
interpret given the observed associations of exposures with leukocyte types. 526 

The strengths of our study include being the first EWAS to assess mutually independent effects of 527 
source-specific transportation noise and air pollution exposures. Our study considered in parallel, the 528 
independent effects of these exposures on DNA methylation at single CpG sites and in genomic regions. 529 
The availability of individually assigned, source-specific noise and air pollution data, derived from 530 
validated models, allowed the exploration of mutual confounding of these exposures on DNA 531 
methylation. We were able to control for potential confounders given the detailed characterization of 532 
the participants in the SAPALDIA study. The multi-exposure approach also allowed the investigation 533 
of the independent pathway enrichment using both candidate and agnostic approaches, to improve 534 
mechanistic understanding of transportation noise and air pollution exposures. We used a novel 535 
approach to investigate indirectly, the effect of these exposures on physiological stress systems. We 536 
could also explore the influence of leukocyte composition, among other sensitivity analyses. The 537 
availability of genome-wide methylation data allowed the validation of previously reported air pollution 538 
signals, contributing to their external validity in the SAPALDIA study.  539 

Our study is limited in its cross-sectional design, which precludes causal inferences and differentiating 540 
short-term vs. long-term exposure effects. Our noise and air pollution estimates may have been biased 541 
by errors in input data, which could be exposure-specific, and potentially accounting for variations in 542 
observed effects. Such bias, however, would most likely be non-systematic and non-differential. The air 543 
pollution and noise levels in the SAPALDIA study are relatively low and may have reduced statistical 544 
power of identifying signals, and limited the replication of previous findings in settings of higher 545 
exposure. Unlike road traffic noise, which was ubiquitous, railway and aircraft noise in the SAPALDIA 546 
study were less common, with only about 45% exposure to these sources. Nevertheless, we made some 547 
significant observations. We could not identify any EWAS on stress hormones, which directly captured 548 
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alterations in the HPA axis, thus, our definition of allostatic load may have been biased. However, we 549 
expect any bias to be minimal given our inclusion of CAR, and other downstream biomarkers of 550 
physiological stress. As demonstrated in a recent review (Johnson et al. 2017), there is yet no consensus 551 
on what markers best capture allostatic load. Interestingly, allostatic load score was always associated 552 
with negative health outcomes regardless of constituent biomarkers or phenotypes (Castagné et al. 2018; 553 
Johnson et al. 2017; Ribeiro et al. 2019).  554 

In conclusion, DNA methylation was independently associated with transportation-related noise and air 555 
pollution exposures in the SAPALDIA study, with enrichment for pathways related to inflammation and 556 
immune response. Differential methylation due to these exposures may therefore explain the link 557 
between these exposures and several age-related outcomes. More EWAS with combined exposures and 558 
gene expression or transcriptome data are needed, especially from more polluted areas (including low- 559 
and middle-income countries), to corroborate present findings, and capture better, the full extent and 560 
relevance of DNA methylation changes associated with these exposures. In particular, it remains to be 561 
seen if DNA methylation related to the identified pathways mediates the association between 562 
transportation noise and air pollution exposures and incident age-related phenotypes.  563 
 564 
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Table 1. Summary of the included SAPALDIA sample 1119 

 SAPALDIA2a SAPALDIA3a 
Categorical variables, n (%) 1,170 (100) 1,372 (100) 
Women 623 (53) 737 (54) 
Formal education, ≤9 years 56 (5) 62 (4) 
Formal education, 10-12 years 759 (65) 887 (65) 
Formal education, >12 years 355 (30) 423 (31) 
Smoking status, never  539 (46) 659 (48) 
Smoking status, former 355 (30) 496 (36) 
Smoking status, current 276 (24) 217 (16) 
Passive smoke exposure 289 (25) 159 (12) 
Alcohol intake >1 glass per day 456 (39) 529 (38) 
Fruit intake ≤3days/week 326 (28) 280 (20) 
Vegetable intake ≤ 3days/week 86 (7) 100 (7) 
Urban area 689 (59) 897 (60) 
Prevalent asthma 161 (14) 398 (21) 
MVPA <150 minutes per week  330 (28) 354 (26) 
Regular nighttime opening of windows  971 (83) 1,131 (82) 
Nested study, ALEC 972 (83) 970 (71) 
Nested study, EXPOsOMICS 198 (17) 402 (29) 
Continuous variables, median (IQR)   
Age 50 (18) 58 (18) 
Body mass index (kg/m2) 24.9 (5) 25.8 (6) 
Smoking pack years 0.4 (15) 0 (14) 
Neighborhood index of socio-economic position (%) 64.6 (13) 64.8 (13) 
Greenness index within 1 km buffer  0.61 (0.2) 0.62 (0.2) 
Aircraft Lnight (dB) 20 (2) 20.1 (5) 
Railway Lnight (dB) 22.9 (14) 20 (10) 
Road traffic Lnight (dB) 44.9 (111) 45.1 (11) 
Aircraft Lden (dB) 30 (9) 32.7 (8) 
Railway Lden (dB) 30 (11) 30 (7) 
Road traffic Lden (dB) 53.7 (11) 53.9 (11) 
NO2 (µg/m3) 20.2 (14) 16.7 (10) 
PM2.5  (µg/m3) 14.3 (5) 12.9 (2) 

SAPALDIA: Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults. MVPA: moderate to 1120 
vigorous physical activity. ALEC: Aging Lungs in European Cohorts. PM2.5: particulate matter with aerodynamic 1121 
diameter <2.5 µm. NO2: nitrogen dioxide. ALEC and EXPOsOMICS are European cohort consortia in which 1122 
SAPALDIA participates. a Population included in the analysis was limited to participants with complete 1123 
methylome, exposure, and covariate data. 1124 
 1125 
 1126 
 1127 
 1128 
 1129 
 1130 
 1131 
 1132 
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Table 2. Top ten CpGs independently associated with source-specific transportation noise and air pollution in the SAPALDIA study, multi-exposure models. 1133 

      Model 1    Model 2   
Exposure CpG ID CHR Location Gene  Feature Beta SE P-value P (FDR) Beta SE P-value 
Aircraft Lden cg02286155 5 176826262 N.A. N.A. -0.007 0.001 1.48E-06 0.637 -0.007 0.001 2.13E-06 
 cg15063530 2 17716941 N.A. N.A. -0.009 0.002 8.14E-06 0.659 -0.009 0.002 7.80E-06 
 cg16218477 7 1066167 C7orf50 Body -0.004 0.001 8.53E-06 0.659 -0.004 0.001 7.05E-06 
 cg21602842 18 46291908 KIAA0427 Body -0.005 0.001 9.84E-06 0.659 -0.005 0.001 9.84E-06 
 cg09042449 10 44064225 ZNF239 5’UTR -0.002 0.0004 1.06E-05 0.659 -0.002 0.0004 1.18E-05 
 cg10975000 a 13 28371375 N.A. N.A. -0.002 0.0005 1.12E-05 0.659 -0.002 0.0005 1.16E-05 
 cg06220958 17 10452851 MYH2 5’UTR 0.011 0.002 1.24E-05 0.659 0.010 0.002 1.43E-05 
 cg25462190 a 5 177547067 N4BP3 Body -0.007 0.002 1.32E-05 0.659 -0.007 0.002 1.06E-05 
 cg11944797 13 99135711 STK24 Body -0.001 0.0003 1.38E-05 0.659 -0.001 0.0003 1.70E-05 
 cg04635504 11 2829241 KCNQ1 Body -0.005 0.001 1.61E-05 0.664 -0.005 0.001 1.62E-05 
Railway Lden cg25201280 a 15 35838552 ATPBD4 TSS200 -0.001 0.0002 1.74E-07 0.075 -0.001 0.0002 1.99E-07 
 cg24653263 a 5 38258335 EGFLAM TSS200 -0.003 0.001 8.97E-07 0.193 -0.003 0.001 1.01E-06 
 cg16825060 a 8 144242342 LY6H TSS1500 -0.003 0.001 2.34E-06 0.256 -0.003 0.001 2.56E-06 
 cg23468045 5 12669584 N.A. N.A. 0.001 0.0002 2.37E-06 0.256 0.001 0.0002 2.19E-06 
 cg19270309 a 17 77712853 ENPP7 3’UTR 0.002 0.0005 3.25E-06 0.266 0.002 0.0005 3.56E-06 
 cg07461273 7 99697172 MCM7 Body -0.004 0.001 3.78E-06 0.266 -0.004 0.001 3.70E-06 
 cg01301319 7 27153580 HOXA3 5’UTR -0.003 0.001 4.60E-06 0.266 -0.003 0.001 4.32E-06 
 cg23113715 a 22 25800663 N.A. N.A. -0.004 0.001 5.79E-06 0.266 -0.004 0.001 5.73E-06 
 cg13402217 1 151584375 SNX27 TSS1500 -0.003 0.001 6.03E-06 0.266 -0.003 0.001 5.50E-06 
 cg24047259 a 14 65347275 N.A. N.A. -0.001 0.0003 7.35E-06 0.266 -0.001 0.0003 4.90E-06 
Road traffic Lden cg09129334 13 111837676 ARHGEF7 Body -0.007 0.001 1.73E-06 0.384 -0.007 0.001 2.12E-06 
 cg17383236 a 7 100167504 N.A. N.A. -0.002 0.0005 2.76E-06 0.384 -0.002 0.0005 2.74E-06 
 cg01066220 6 31696240 DDAH2 Body 0.001 0.0001 3.48E-06 0.384 0.001 0.0001 4.29E-06 
 cg23910243 a 16 31484618 TGFB1I1 Body -0.002 0.0005 4.32E-06 0.384 -0.002 0.0005 7.13E-06 
 cg06646021 a 1 229406520 RAB4A TSS1500 -0.005 0.001 4.47E-06 0.384 -0.005 0.001 4.78E-06 
 cg03066594 20 10415919 C20orf94 TSS200 0.0005 0.0001 6.00E-06 0.386 0.0004 0.0001 7.82E-06 
 cg03966094 a 22 21058792 TMEM191A Body -0.003 0.001 7.06E-06 0.386 -0.003 0.001 6.73E-06 
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 cg13948857 5 131763756 C5orf56 Body -0.003 0.001 7.17E-06 0.386 -0.003 0.001 7.22E-06 
 cg08351004 a 2 172965650 DLX2 Body -0.002 0.0005 9.53E-06 0.456 -0.002 0.0005 1.23E-05 
 cg13777730 1 234793300 N.A. N.A. -0.003 0.001 1.07E-05 0.458 -0.003 0.001 1.10E-05 
NO2 cg04337651 a 2 239344738 ASB1 Body 0.004 0.001 2.06E-06 0.657 0.003 0.001 2.67E-06 
 cg18776472 10 50732819 ERCC6 Body -0.001 0.0002 8.20E-06 0.657 -0.001 0.0002 1.00E-05 
 cg18601596 6 39283313 KCNK16 Body 0.006 0.001 8.21E-06 0.657 0.006 0.001 8.62E-06 
 cg12392998 17 79550668 NPLOC4 Body -0.002 0.0004 8.72E-06 0.657 -0.002 0.0004 1.04E-05 
 cg16550606 13 50160670 RCBTB1 TSS1500 0.004 0.001 1.33E-05 0.657 0.004 0.001 1.44E-05 
 cg25266109 19 12404608 ZNF44 Body -0.0004 0.0001 1.38E-05 0.657 -0.0004 0.0001 1.20E-05 
 cg01746514 a 14 24520922 LRRC16B TSS1500 -0.001 0.0002 1.43E-05 0.657 -0.001 0.0002 1.58E-05 
 cg15811902 15 75918385 SNUPN 5’UTR -0.002 0.0005 1.61E-05 0.657 -0.002 0.0005 1.48E-05 
 cg26898336 a 17 15244519 TEKT3 5’UTR 0.002 0.0005 1.65E-05 0.657 0.002 0.0005 1.89E-05 
 cg21099332 5 39270715 N.A. N.A. 0.004 0.001 1.66E-05 0.657 0.004 0.001 1.88E-05 
PM2.5 cg26704043 6 5282702 FARS2 5’UTR 0.014 0.003 4.18E-07 0.180 0.014 0.003 6.22E-07 
 cg05157625 14 93153553 RIN3 Body 0.021 0.004 1.08E-06 0.231 0.021 0.004 1.13E-06 
 cg20099458 a 7 5272275 WIPI2 3’UTR 0.014 0.003 1.61E-06 0.231 0.014 0.003 1.58E-06 
 cg06587257 12 50452135 ACCN2 5’UTR 0.022 0.005 2.71E-06 0.292 0.023 0.005 2.04E-06 
 cg14531665 9 91058614 SPIN1 Body 0.012 0.003 5.91E-06 0.398 0.011 0.003 7.07E-06 
 cg06526020 6 34308880 NUDT3 Body 0.029 0.006 6.43E-06 0.398 0.028 0.006 8.80E-06 
 cg21058520 6 100914733 N.A. N.A. 0.004 0.001 6.76E-06 0.398 0.004 0.001 8.31E-06 
 cg16259904 10 134146220 LRRC27 5’UTR 0.027 0.006 8.90E-06 0.398 0.027 0.006 1.01E-05 
 cg12770741 17 883776 NXN TSS1500 0.018 0.004 9.15E-06 0.398 0.018 0.004 1.01E-05 
 cg26750893 a 2 38043481 N.A. N.A. 0.016 0.004 1.05E-05 0.398 0.016 0.004 1.28E-05 

CpG: Cytosine-phosphate-Guanine. SAPALDIA: Swiss cohort study on air pollution and lung and heart diseases in adults. CHR: chromosome. SE: standard error. Lden: day-evening-night 1134 
noise level. NO2: nitrogen dioxide. PM2.5: particulate matter with aerodynamic diameter <2.5 µm. Beta coefficients represent increase or decrease in DNA methylation per 10 dB increase in 1135 
aircraft, railway or road traffic Lden or 10 µg/m3 increase in NO2 or PM2.5. All estimates were from multi-exposure epigenome-wide linear mixed-effects models, with random intercept at 1136 
the level of participant. Multi-exposure models included all five exposures (Aircraft, railway, road traffic Lden and respective truncation indicators, NO2 and PM2.5) at the same time. In a 1137 
preliminary step, DNA methylation β-values were regressed on the Illumina control probe-derived first 30 principal components to correct for correlation structures and technical bias, and 1138 
residuals of these regressions covering 430,477 CpGs were used as the technical bias-corrected methylation level at the CpG sites. Extreme values of the residuals (lying beyond three times 1139 
the interquartile range below the first quartile and above the third quartile at each CpG site) were replaced with their corresponding detection threshold value (“modified winsorization”). 1140 
The “winsorized” data were then used as the dependent variables in the EWAS. Model 1: adjusted for age, sex, educational level, area, neighborhood socio-economic status, greenness index, 1141 
smoking status, smoking pack years, exposure to passive smoke, consumption of fruits, vegetables and alcohol, nested study, asthma status, noise truncation indicators, survey and leukocyte 1142 
composition (main model). Model 2: Model 1 + body mass index and physical activity. a Location overlaps with significant differentially methylated region. N.A.: not annotated   1143 
 1144 
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Table 3. Summary of EWAS-derived differentially methylated regions and enrichment in relation to transportation noise and air pollution exposure in the 1145 
SAPALDIA study 1146 

Exposure DMRs 
(Genes), n 

Average 
effect on 
DMRs 

Top DMR  (Gene) CpGs in 
top 
DMR, n 

FDR p-
value, top 
DMR 

Top enriched canonical 
pathway (TECP) 

Genes in TECP Top enriched disease networks  

Aircraft Lden 14 (10) ↓methylation 
(64%) 

Chr5:135415129–
135416613 (VTRNA2-1) 

19 8.04E-14 N.A. N.A. Cell Cycle, Embryonic 
Development, Organismal 
Development 

Railway Lden 48 (39) ↓methylation 
(69%) 

Chr5:135415129–
135416613 (VTRNA2-1) 

19 3.61E-05 Type II Diabetes Mellitus 
Signaling; Diphthamide 
Biosynthesis 

PRKAA1, SLC27A3, 
TNFRSF11B; DPH6 

Cardiovascular System 
Development and Function, Gene 
Expression, Organ Development 

Road traffic 
Lden 

183 (189) ↓methylation 
(93%) 

Chr20:3051954–3053196 
(OXT) 

13 3.93E-06 Wnt/β-catenin Signaling; 
Cholecystokinin/Gastrin-
mediated Signaling 

CDH1, CSNK1E, 
SOX2, SOX8, 
WNT16; MEF2D, 
PXN, SHC1, TNF 

Cell-mediated Immune Response, 
Cell-To-Cell Signaling and 
Interaction, Cellular Movement 

NO2 8 (8) ↑methylation 
(63%) 

Chr6:28303923–
28304451 (ZSCAN31) 

11 2.57E-06 N.A. N.A. Cell Cycle, Cell-To-Cell Signaling 
and Interaction, Post-Translational 
Modification 

PM2.5 71 (60) ↑methylation 
(93%) 

Chr6:30296689–
30297941 (TRIM39, 
HCG18, TRIM39-
RPP21) 

14 4.28E-08 β-alanine and 4-
aminobutyrate Degradation 
I; Systemic Lupus 
Erythematosus signaling 

ABAT1; PRPF31, 
PRPF8, PTPN6 

Cell Cycle, Nervous System 
Development and Function, 
Organismal Injury and 
Abnormalities 

EWAS: epigenome-wide association study. Lden: day-evening-night noise level. NO2: nitrogen dioxide. PM2.5: particulate matter with aerodynamic diameter <2.5 µm. FDR: false discovery rate. 1147 
SAPALDIA: Swiss cohort study on air pollution and lung and heart diseases in adults. CpG: Cytosine-phosphate-Guanine. Each DMR analysis had the corresponding multi-exposure EWAS-derived 1148 
parameters as input. Multi-exposure EWAS derived from linear mixed-effects models, with random intercept at the level of participant, and adjusted for age, sex, educational level, area, neighborhood 1149 
socio-economic status, greenness index, smoking status, smoking pack years, exposure to passive smoke, consumption of fruits, vegetables and alcohol, nested study, asthma status, survey, noise 1150 
truncation indicators and leukocyte composition. In a preliminary step, DNA methylation β-values were regressed on the Illumina control probe-derived first 30 principal components to correct for 1151 
correlation structures and technical bias, and residuals of these regressions covering 430,477 CpGs were used as the technical bias-corrected methylation level at the CpG sites. Extreme values of the 1152 
residuals (lying beyond three times the interquartile range below the first quartile and above the third quartile at each CpG site) were replaced with their corresponding detection threshold value 1153 
(“modified winsorization”). The “winsorized” data were then used as the dependent variables in the EWAS. Significant (FDR <0.05) and annotated DMRs were used for canonical pathway and 1154 
network enrichment in the Ingenuity Pathway Analysis software (Ingenuity Systems, Redwood City, CA, USA). ↓ denotes a decrease in methylation whereas ↑ denotes an increase in methylation. 1155 
N.A.: not applicable due to few significant and annotated DMRs, limiting statistical power to detect enriched canonical pathways. 1156 
 1157 
 1158 
 1159 
 1160 
 1161 
 1162 
 1163 
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Table 4. Pathway enrichment tests (p-values) for transportation noise and air pollution exposures based on curated CpGs reported for selected cross-systemic 1164 
outcomes.  1165 

Exposure CRP Metabolic 
syndrome 

Lipids FG/ 
HbA1c 

Insulin WC  BMI  Blood 
pressure 

eGFR CAR “Allostatic 
load” 

N (CpGs) 256 10 14 9 158 168 893 20 296 7 1626 
Aircraft Lden  0.0038 0.5915 0.6326 0.4545 0.6630 0.2925 0.0007 0.1020 0.0015 0.9096 0.0004 
Railway Lden  0.3163 0.4943 0.9533 0.5778 0.6284 0.3001 0.9023 0.6773 0.0562 0.0229 0.0871 
Road traffic Lden  0.0395 0.2434 0.9969 0.3879 0.3461 0.5361 0.0008 0.2858 0.0031 0.8013 0.0004 
NO2 0.2117 0.1237 0.7831 0.5733 0.3697 0.6873 0.8818 0.5355 0.0058 0.9728 0.0510 
PM2.5 0.0004 0.4517 0.1263 0.0947 0.3451 0.0004 0.0004 0.3759 0.0004 0.3814 0.0004 

CpG: Cytosine-phosphate-Guanine. CRP: C-reactive proteins. FG: fasting glucose. HbA1c: glycated hemoglobin. WC: waist circumference. BMI: body mass index. eGFR: 1166 
estimated glomerular filtration rate. CAR: cardiac autonomic response. Lden: day-evening night noise level; NO2: nitrogen dioxide; PM2.5: particulate matter <2.5 microns in 1167 
diameter. Lipids includes triglycerides, high-, low- and very low-density lipoprotein cholesterol. Insulin includes measures of insulin secretion and resistance. WC also includes 1168 
central obesity and adiposity. BMI also includes general obesity. Blood pressure includes systolic and diastolic blood pressure. eGFR also includes impaired renal function. CAR 1169 
includes acceleration and deceleration capacity. “Allostatic load” combines all the phenotypes. Pathway enrichment p-values derived from Weighted Kolmogorov-Smirnov method 1170 
using the absolute values of test statistics from multi-exposure epigenome-wide association studies (EWAS), and comparing the EWAS-derived CpGs mapped to each pathway to 1171 
the empirical null distribution derived by 10,000 permutation samples. The overall procedure included permutation-based multiple testing correction. EWAS was done using linear 1172 
mixed-effects models, with random intercept at the level of participant, and adjusted for age, sex, educational level, area, neighborhood socio-economic status, greenness index, 1173 
smoking status, smoking pack years, exposure to passive smoke, consumption of fruits, vegetables and alcohol, nested study, asthma status, noise truncation indicators, survey and 1174 
leukocyte composition. In a preliminary step, DNA methylation β-values were regressed on the Illumina control probe-derived first 30 principal components to correct for correlation 1175 
structures and technical bias, and residuals of these regressions covering 430,477 CpGs were used as the technical bias-corrected methylation level at the CpG sites. Extreme values 1176 
of the residuals (lying beyond three times the interquartile range below the first quartile and above the third quartile at each CpG site) were replaced with their corresponding 1177 
detection threshold value (“modified winsorization”). The “winsorized” data were then used as the dependent variables in the EWAS. 1178 
 1179 
 1180 
 1181 
 1182 
 1183 
 1184 
 1185 
 1186 
 1187 
 1188 
 1189 
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Table 5. Replication of previously reported EWAS signals for long-term exposure to NO2 and PM2.5, in the SAPALDIA study, single and multi-exposure models 1190 

        SAPAL
DIA 
(single 
exposure 
model) 

  SAPAL
DIA 
(multi- 
exposure 
model) 

  

Air pollutant; 
Cohort 
(Reference) 

CpG ID  CHR Location Gene Beta SE P-value Beta SE P-value Beta SE P-value 

NO2; LifeLines 
(de FC 
Lichtenfels et al. 
2018) 

cg04908668 6 32823941 PSMB9 -0.012 0.002 7.94E-09 0.0003 0.0003 0.333 0.0004 0.0004 0.322 

 cg14938677 7 127231698 ARF5 0.023 0.004 1.05E-08 0.0004 0.001 0.619 0.0004 0.001 0.663 

 cg00344801 22 46685728 TTC38 -0.028 0.005 2.38E-08 0.001 0.001 0.209 0.001 0.001 0.282 

 cg18379295 14 52326155 GNG2 0.020 0.004 3.50E-08 -0.001 0.001 0.204 -0.001 0.001 0.367 

 cg25769469 5 71643841 PTCD2 0.035 0.006 3.69E-08 0.001 0.002 0.547 0.002 0.002 0.237 

 cg02234653 2 224625080 AP1S3 -0.017 0.003 4.70E-08 0.0005 0.001 0.553 0.0003 0.001 0.752 

 cg08500171a 6 31590674 BAT2 0.024 0.004 9.81E-08 0.002 0.001 0.042 0.003 0.001 0.019 

NO2; EPIC-
ITALY 
(Plusquin et al. 
2017) 

cg08120023 1 116947203 C1orf203 -0.003 0.0005 3.02E-09 0.001 0.001 0.586 0.002 0.001 0.179 

 cg22856765 8 42693384 THAP1 -0.008 0.001 4.27E-09 -0.00001 0.0002 0.960 -0.00001 0.0002 0.930 

 cg18164357 11 77534497 C11orf67 -0.009 0.001 9.61E-09 0.0005 0.0003 0.042 0.001 0.0003 0.016 

 cg13918628 9 35610380 CD72 -0.012 0.002 1.02E-08 -0.0003 0.0002 0.184 -0.0005 0.0003 0.074 

 cg03870188 13 113717830 MCF2L -0.004 0.001 1.02E-08 0.0001 0.0003 0.670 0.0001 0.0003 0.650 

 cg20939320 3 132563279 NCRNA00119 -0.006 0.001 3.49E-08 0.001 0.001 0.091 0.001 0.001 0.185 

 cg13420207 7 81666278 CACNA2D1 -0.010 0.002 5.56E-08 -0.00004 0.001 0.947 -0.00003 0.001 0.973 

 cg04914283 1 23181832 EPHB2 -0.005 0.001 5.85E-08 0.001 0.001 0.298 0.001 0.001 0.118 

 cg21156210 4 100485208 RG9MTD2 0.010 0.002 6.03E-08 -0.00002 0.0002 0.941 0.0001 0.0003 0.731 

 cg16205861 12 54146572 N.A. -0.004 0.001 6.57E-08 -0.0001 0.0005 0.788 -0.0001 0.0005 0.882 

 cg12790758 15 37369914 MEIS2 -0.004 0.001 7.06E-08 0.0006 0.0005 0.287 -0.0001 0.001 0.898 
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 cg18201392 1 185023741 RNF2 -0.005 0.001 8.02E-08 0.0002 0.0001 0.118 0.0002 0.0001 0.133 

NO2; Korean 
COPD Cohort 
(Lee et al. 2019) 

cg05171937 12 27396765 STK38L 0.010  0.002  1.10E-08 0.003 0.001 0.068 0.002 0.002 0.125 

 cg06226567 20 22559676 C20orf56 0.003  0.001  3.50E-08  0.00002 0.0001 0.863 0.0001 0.0002 0.514 

 cg26583725  13 110397643  N.A. − 0.001  2.3E-04  4.90E-08  0.0001 0.0001 0.183 0.0001 0.0001 0.228 

PM2.5; EPIC-
ITALY 
(Plusquin et al. 
2017) 

cg23890774 19 36618841 N.A. 0.078 0.014 1.98E-08 0.0001 0.0003 0.704 0.0003 0.0003 0.263 

PM2.5; EPIC-NL 
never-smokers 
(Plusquin et al. 
2017) b 

cg12575202 10 133331128 N.A. -0.467 0.080 5.40E-09 -0.001 0.003 0.786 -0.002 0.003 0.529 

 cg08630381 13 100612277 N.A. 0.461 0.073 2.58E-10 -0.001 0.001 0.415 -0.001 0.001 0.394 

 cg17629796a 13 30707265 N.A. -0.563 0.094 2.11E-09 -0.002 0.001 0.076 -0.003 0.001 0.033 

 cg07084345 15 61972967 N.A. -0.512 0.075 7.26E-12 0.002 0.008 0.816 0.002 0.008 0.769 

 cg04319606 2 26785290 C2orf70 0.261 0.068 1.31E-07 0.0002 0.002 0.893 -0.00002 0.002 0.989 

 cg09568355 2 45228633 N.A. 0.261 0.049 1.41E-07 0.003 0.002 0.286 0.004 0.003 0.179 

 cg03513315 2 30988383 PES1 0.307 0.058 1.35E-07 -0.0003 0.001 0.631 -0.0001 0.001 0.837 

 cg25489413 7 44794343 ZMIZ2 -0.365 0.068 6.48E-08 0.001 0.002 0.712 0.0002 0.002 0.933 

 cg00005622 8 145180403 N.A. -0.398 0.064 5.16E-10 -0.004 0.001 0.109 -0.004 0.003 0.136 

EWAS: epigenome-wide association study. CpG: Cytosine-phosphate-Guanine. CHR: chromosome. SE: standard error. All SAPALDIA estimates were derived from linear mixed-effects EWAS 1191 
models, with random intercept at the level of participant, adjusted for age, sex, educational level, area, neighborhood socio-economic status, greenness index, smoking status, smoking pack years, 1192 
exposure to passive smoke, consumption of fruits, vegetables and alcohol, nested study, asthma status, noise truncation indicators, survey and leukocyte composition,. In a preliminary step, DNA 1193 
methylation β-values were regressed on the Illumina control probe-derived first 30 principal components to correct for correlation structures and technical bias, and residuals of these regressions 1194 
covering 430,477 CpGs were used as the technical bias-corrected methylation level at the CpG sites. Extreme values of the residuals (lying beyond three times the interquartile range below the first 1195 
quartile and above the third quartile at each CpG site) were replaced with their corresponding detection threshold value (“modified winsorization”). The “winsorized” data were then used as the 1196 
dependent variables in the present EWAS. The multi-exposure model contained all five exposures at same time. a Validated in the SAPALDIA study. b SAPALDIA estimates derived from never-1197 
smoker sample comparable to the EPIC-NL never-smoker estimates. N.A.: not annotated.  1198 
 1199 
 1200 



35 
 

Figure Legends 1201 
 1202 

Figure 1. Selection of participants included in the present study 1203 

SAPALDIA: Swiss cohort study on air pollution and lung and heart diseases in adults. ALEC: Aging lungs in 1204 
European cohorts. ALEC and EXPOsOMICS are European cohort consortia in which SAPALDIA participates. 1205 
DNA methylation was measured using Illumina Infinium 450K BeadChip and processed in the same manner across 1206 
the ALEC and EXPOsOMICS samples, to derive the residuals of the beta values (corrected for technical bias) of 1207 
overlapping 430,477 CpGs, which were subsequently applied to the present epigenome-wide association study. 1208 
 1209 
 1210 
Figure 2. Overlap of top 100 CpG signals (A) and genes annotated to significant differentially 1211 
methylated regions (B) in relation to aircraft, railway, and road traffic Lden, NO2 and PM2.5 identified 1212 
from multi-exposure EWAS in the SAPALDIA study 1213 

Lden: day-evening-night noise level. NO2: nitrogen dioxide; PM2.5: particulate matter <2.5 microns in diameter.  1214 
EWAS: epigenome-wide association study. SAPALDIA: Swiss cohort study on air pollution and lung and heart 1215 
diseases in Adults. CpGs were identified by multi-exposure EWAS using multivariable linear mixed-effects 1216 
models with random intercepts at the level of participants, and adjusted for age, sex, educational level, area, 1217 
neighborhood socio-economic status, greenness index, smoking status, smoking pack years, exposure to passive 1218 
smoke, consumption of fruits, vegetables and alcohol, nested study, asthma status, noise truncation indicators, 1219 
survey and leukocyte composition. In a preliminary step, DNA methylation β-values were regressed on the 1220 
Illumina control probe-derived first 30 principal components to correct for correlation structures and technical 1221 
bias, and residuals of these regressions covering 430,477 CpGs were used as the technical bias-corrected 1222 
methylation level at the CpG sites. Extreme values of the residuals (lying beyond three times the interquartile range 1223 
below the first quartile and above the third quartile at each CpG site) were replaced with their corresponding 1224 
detection threshold value (“modified winsorization”). The “winsorized” data were then used as the dependent 1225 
variables in the present EWAS. CpGs (annotated gene) intersecting at the level of road traffic Lden and NO2 were 1226 
cg12439232 and cg15590912 (CCSAP). Genes (DMR) intersecting at the level of road traffic Lden and PM2.5 was 1227 
PRRT1 (chr6:32115964–32117401); and at the level of aircraft, road traffic Lden and PM2.5 was HOXA2 1228 
(chr7:27141774–27143806). VTRNA2-1 (chr5:135415129–135416613) intersected between aircraft and railway 1229 
Lden, ZFP57 (chr6:29648161–29649084) between railway Lden and NO2, and ZSCAN31 (chr6:28303923–1230 
28304451) between road traffic Lden and NO2. TRIM39, TRIM39-RPP21 and HCG18 (chr6:30296689–30297941) 1231 
intersected between between railway Lden and PM2.5, whereas SLC27A3 (chr1:153746588–153747856), 1232 
B3GALT4 (chr6:33244976–33246185), EN2 and AC008060.8 (chr7:155249398–155251925) intersected between 1233 
railway and road traffic Lden.  1234 


