The University of Southampton
University of Southampton Institutional Repository

Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications

Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications
Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications
The development of advanced materials for heterogeneous catalytic applications requires fine control over the synthesis and structural parameters of the active site. Mesoporous silica materials have attracted increasing attention to be considered as an important class of nanostructured support materials inheterogeneous catalysis. Their large surface area, well-defined porous architecture and ability to incorporate metal atoms within the mesopores lead them to be a promising support material for designing a variety of different catalysts. In particular, SBA-15 mesoporous silica has its broad applicability in catalysis because of its comparatively thicker walls leading to higher thermal and mechanical stability. In this review article, various strategies to functionalize SBA-15 mesoporous silica have been reviewed with a view to evaluating its efficacy in different catalytic transformation reactions. Special attention has been given to the molecular engineering of the silica surface, within the framework and within the hexagonal mesoporous channels for anchoring metal oxides, single-site species and metal nanoparticles (NPs) serving as catalytically active sites.
2040-3364
11333-11363
Verma, Priyanka
a826bc8d-272c-4a8b-82ae-2d86affd497f
Kuwahara, Yasutaka
ce81d21e-b744-47ec-b184-ae9fb96be800
Mori, Kohsuke
6c5edbbc-7202-486e-be49-dfd06dd7778e
Raja, Robert
74faf442-38a6-4ac1-84f9-b3c039cb392b
Yamashita, Hiromi
fec03e29-7093-4b3d-bf7f-6a58a152b838
Verma, Priyanka
a826bc8d-272c-4a8b-82ae-2d86affd497f
Kuwahara, Yasutaka
ce81d21e-b744-47ec-b184-ae9fb96be800
Mori, Kohsuke
6c5edbbc-7202-486e-be49-dfd06dd7778e
Raja, Robert
74faf442-38a6-4ac1-84f9-b3c039cb392b
Yamashita, Hiromi
fec03e29-7093-4b3d-bf7f-6a58a152b838

Verma, Priyanka, Kuwahara, Yasutaka, Mori, Kohsuke, Raja, Robert and Yamashita, Hiromi (2020) Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications. Nanoscale, 12 (21), 11333-11363. (doi:10.1039/D0NR00732C).

Record type: Article

Abstract

The development of advanced materials for heterogeneous catalytic applications requires fine control over the synthesis and structural parameters of the active site. Mesoporous silica materials have attracted increasing attention to be considered as an important class of nanostructured support materials inheterogeneous catalysis. Their large surface area, well-defined porous architecture and ability to incorporate metal atoms within the mesopores lead them to be a promising support material for designing a variety of different catalysts. In particular, SBA-15 mesoporous silica has its broad applicability in catalysis because of its comparatively thicker walls leading to higher thermal and mechanical stability. In this review article, various strategies to functionalize SBA-15 mesoporous silica have been reviewed with a view to evaluating its efficacy in different catalytic transformation reactions. Special attention has been given to the molecular engineering of the silica surface, within the framework and within the hexagonal mesoporous channels for anchoring metal oxides, single-site species and metal nanoparticles (NPs) serving as catalytically active sites.

Text
Nanoscale_Accepted Manuscript - Accepted Manuscript
Download (4kB)

More information

Accepted/In Press date: 31 March 2020
e-pub ahead of print date: 1 April 2020

Identifiers

Local EPrints ID: 440772
URI: http://eprints.soton.ac.uk/id/eprint/440772
ISSN: 2040-3364
PURE UUID: 1145734e-fd9e-4ec7-a319-55fdb64e67fa
ORCID for Priyanka Verma: ORCID iD orcid.org/0000-0002-2616-0489
ORCID for Robert Raja: ORCID iD orcid.org/0000-0002-4161-7053

Catalogue record

Date deposited: 15 May 2020 16:57
Last modified: 13 Apr 2021 02:06

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×