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Interiors of neutron stars are ultradense and may contain a core of deconfined quark matter. Such a
core connects to the outer layers smoothly or through a sharp microscopic interface or through an
intermediate macroscopic layer of inhomogeneous mixed phases, which is globally neutral but locally
contains electrically charged domains. Here I employ a nucleon-meson model under neutron star
conditions that shows a first-order chiral phase transition at large densities. In the vicinity of this chiral
transition I calculate the free energies of various mixed phases—different “pasta structures”—in the
Wigner-Seitz approximation. Crucially, chirally broken nuclear matter and the approximately chirally
symmetric phase (loosely interpreted as quark matter) are treated on the same footing. This allows me
to compute the interface profiles of bubbles, rods, and slabs fully consistently, taking into account
electromagnetic screening effects and without needing the surface tension as an input. I find that the full
numerical results tend to disfavor mixed phases compared to a simple steplike approximation used
frequently in the literature and that the predominantly favored pasta structure consists of slabs with a
surface tension Σ ≃ 6 MeV=fm2.
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I. INTRODUCTION

Neutron stars probe a large range of baryon densities,
from subsaturation densities in the outer layers up to
several times nuclear saturation density in the core.
Quantum chromodynamics (QCD) predicts the existence
of deconfined quark matter at ultrahigh densities, but it is
unknown from first principles at which density the
transition from nuclear matter to quark matter occurs.
While theoretically extremely challenging, input to this
question can be obtained from astrophysical observations.
Quark matter has different thermodynamic and transport
properties compared to nuclear matter, and thus a sizable
quark matter core may have observable consequences
for masses, radii, cooling behavior, etc., of single neutron
stars as well as for gravitational wave signals from neutron
star mergers.
In this paper, I am interested not primarily in a bulk

phase of quark matter, but in the interface that separates
nuclear matter from a potential quark matter core. This
interface itself, depending on its size and structure, might
influence observable properties of the neutron star. Since a

continuity between quark and hadronic matter is conceiv-
able [1–5], there may not be an interface at all but rather a
smooth transition. The other possibility, predicted by
various phenomenological models, is a first-order phase
transition. In this case, there can be a sharp interface; i.e.,
the transition from nuclear matter to quark matter occurs
via a domain wall of microscopic thickness. Depending on
the extent of the discontinuity at the transition, it can induce
qualitative changes in the mass-radius curve of the star [6]
and possibly in the signals from neutron star mergers [7,8].
Or, the transition can be made less abrupt by a macroscopic
region of a mixed phase, i.e., an inhomogeneous, possibly
crystalline, phase, where quark and hadronic phases are
separated spatially and occupy different volume fractions
as the density varies [9–11]. Here, quark and hadronic
phases each carry nonzero electric charge, such that their
overall charge is zero in order to maintain global charge
neutrality. The quark-hadron mixed phase can affect
observable properties of the star through its transport
properties [12] or through its rigidity, which may result
in a sustained ellipticity of a rotating neutron star and thus
in the emission of gravitational waves [13,14]. A similar
mixed phase is expected to occur in the crust-core
transition region of the star, where a crystalline coexistence
of nuclei and a neutron (super)fluid is predicted to turn into
homogeneous nuclear matter via different geometric
structures as one moves to higher densities [15,16].
These structures, for example, bubbles, rods, or slabs of
one phase immersed in the other, are often referred to as
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“nuclear pasta” due to their resemblance with gnocchi,
spaghetti, and lasagne [17–20]. Here I will study pasta
phases at the quark-hadron transition, more precisely at the
chiral phase transition.1

Various levels of approximations have been employed in
the literature for mixed phases at the quark-hadron
transition. Usually, nuclear and quark matter are treated
with two different models [21–30]. In this approach, the
profile of a quark-hadron interface cannot be calculated
microscopically since this requires knowledge of an
effective potential that connects the two phases. Instead,
one may approximate the free energies of different mixed
phase geometries by assuming spatially constant profiles
on either side of the interface, with the interface itself
being steplike [10], and treating the surface tension as an
external parameter, either varying this parameter freely
or employing constraints from microscopic calculations
[31–38]. One can improve on this simple estimate by
including the charge screening effect [39–43]. This renders
the profiles nonconstant, but, if two different models are
being used, it still requires an external choice for the
surface tension.
I will employ a nucleon-meson model with a small

explicit chiral symmetry breaking term [44–47], which
shows a first-order transition to an approximately chir-
ally symmetric phase. This model was used in Ref. [38]
to compute the surface tension for isospin-symmetric
nuclear matter at the chiral phase transition. I shall use
the extension of the model to isospin-asymmetric matter
[48] to construct mixed phases explicitly. This model has
the obvious advantage of treating the phases on both
sides of the transition on the same footing. In particular,
location and properties of the chiral phase transition are
determined by fixing all parameters to match known
properties of nuclear matter at saturation, and interfaces
between the two phases can be computed fully consis-
tently, with the surface tension being a side result, not an
input. The disadvantage is that the chirally restored
phase is actually made of very light nucleons, not of
quarks, and thus can only be a toy version of deconfined
quark matter. Therefore, the quark-hadron pasta within
this model is more accurately thought of as “chiral
pasta.” Obviously, it is desirable to have a unified
description of quarks and hadrons which is more realistic
on both sides of the transition. However, this is currently
not possible from first principles and difficult to achieve
even on the level of phenomenological models. (For a
recent attempt in this direction using the gauge-gravity
duality see Refs. [49–52].)

I will work at zero temperature throughout the paper
and employ the mean-field and no-sea approximations
for the evaluation of the model. Furthermore, for the
inhomogeneous phases I use the Thomas-Fermi approxi-
mation to integrate out the fermions and construct the
mixed phase in the Wigner-Seitz approximation. In this
approach, for a given geometry (bubbles, rods, slabs),
the energetically preferred size of a unit cell is deter-
mined from the calculation of the interface profiles; see
Fig. 1 for an illustration. This profile calculation is done
by solving simultaneously and numerically the Euler-
Lagrange equations for the mesonic condensates
together with the Poisson equation for the electrostatic
potential. A similar calculation was performed for the
interface between vacuum and nuclear matter [53], but,
to the best of my knowledge, the present paper is the
first such calculation in the context of the quark-hadron
transition.
The paper is organized as follows. In Sec. II, I introduce

the model, explain the various approximations, derive the
Euler-Lagrange equations, and comment on the model
parameters and the specific choices I make for them.
Section III contains an analysis of the homogeneous phases
and serves to identify the regime in which mixed phases can
potentially be found. The main results are presented in
Sec. IV. After recapitulating the simple steplike approxi-
mation in Sec. IVA and explaining the numerical evalu-
ation in Sec. IV B, I show and interpret the results for the
chiral pasta phases in Sec. IV C. A summary and outlook
are given in Sec. V. I use natural units c ¼ ℏ ¼ kB ¼ 1 and
Heaviside-Lorentz units for the gauge fields, where the
elementary electric charge is e ¼ ffiffiffiffiffiffiffiffi

4πα
p

≃ 0.3 with the fine
structure constant α. The convention for the metric tensor in
Minkowski space is gμν ¼ ð1;−1;−1;−1Þ.

L
L

L

FIG. 1. Illustration of the geometries (bubbles, rods, slabs) of
the “pasta phases” considered in this paper. The inner regions
(shaded) are occupied by one phase, and the rest of the unit
cell (volume bounded by the dashed lines minus the shaded
region) by the other phase. Together with the complementary
structures for bubbles and rods, there are five different
geometries in total. The profiles of the condensates and the
electrostatic potential across the interfaces (here shown as
sharp surfaces for illustrative purpose) are computed numeri-
cally, and the free energy is minimized with respect to the size
of the unit cell L. The unit cell is taken to have the same
geometry as the structure of the pasta, thus approximating the
actual Wigner-Seitz cell.

1To keep the terminology simple, I use “pasta” collectively,
including spherical structures. This is slightly different from the
use of nuclear pasta, which usually does not include the spherical
nuclei in the outer crust of a neutron star.
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II. SETUP

A. Nucleon-meson Lagrangian

The starting point is the Lagrangian [48]

L ¼ ψ̄ðiγμ∂μ þ γ0μ̂Þψ þ 1

2
∂μσ∂μσ þ 1

4
Tr½∂μπ∂μπ�

−
1

4
ωμνω

μν −
1

8
Tr½ρμνρμν� −

1

4
FμνFμν

− Uðσ; πÞ þm2
v

2

�
ωμω

μ þ 1

2
Tr½ρμρμ�

�
− ψ̄ ½gσðσ þ iγ5πÞ þ γμðgωωμ þ gρρμÞ�ψ ; ð1Þ

where the traces are taken over isospin space. The nucleon
field

ψ ¼
�
ψn

ψp

�
ð2Þ

includes neutron and proton spinors with corresponding
chemical potentials μn, μp, such that

μ̂ ¼
�
μn 0

0 μp

�
¼

�
μB þ μI 0

0 μB − μI

�
ð3Þ

is the chemical potential matrix in isospin space, with the
baryon chemical potential μB and the isospin chemical
potential μI. The mesonic fields are σ, ωμ, π ¼ πaτ

a, and
ρμ ¼ ρaμτa, where τa (a ¼ 1, 2, 3) are the Pauli matrices,
normalized such that Tr½τa; τb� ¼ 2δab, ½τa; τb� ¼ 2iϵabcτc.
The vector meson mass will be set to mv ≃ 782 MeV. The
kinetic terms of the vector mesons are defined through

ωμν ¼ ∂μων − ∂νωμ; ð4aÞ

ρμν ¼ ∂μρν − ∂νρμ þ i
gρ
2
½ρμ; ρν�; ð4bÞ

and Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field
strength tensor with the electromagnetic gauge field Aμ.
The potential for the sigma and pion fields is taken to be

Uðσ; πÞ ¼
X4
n¼1

an
n!

ðχ2 − f2πÞn
2n

− ϵðσ − fπÞ; ð5Þ

with

χ2 ≡ σ2 þ 1

2
Tr½π2� ¼ σ2 þ π21 þ π22 þ π23; ð6Þ

and with the pion decay constant fπ ≃ 93 MeV and the
model parameters a1, a2, a3, a4, and ϵ. By requiring that in
the vacuum hχi ¼ fπ , the pion mass term fixes a1 ¼ m2

π

with the pion mass mπ ≃ 139 MeV, as well as the explicit

chiral symmetry breaking term ϵ ¼ m2
πfπ . In addition to

these parameters, the model also contains the coupling
constants gσ , gω, gρ, which determine the nucleon-meson
coupling via Yukawa interactions. The choice for the six
remaining free parameters will be discussed in Sec. II D.

B. Free energy density

To facilitate the numerical evaluation of the pasta phases,
I make use of several approximations. Employing the
mean-field approximation, I neglect all meson fluctuations,
such that the meson contributions arise only through the
mesonic condensates σ̄, ω̄, and ρ̄. Here, σ̄ ≡ hσi plays the
role of the chiral condensate, giving rise to the nucleon
mass. The omega condensate is the expectation value of the
temporal component of the omega vector field, ω̄≡ hω0i,
and the rho condensate corresponds to the temporal
component of the third isospin component of the rho
vector field, ρ̄≡ hρ30i. The condensates ω̄ and ρ̄ act as
effective contributions to the baryon and isospin chemical
potentials. The resulting mean-field Lagrangian is equiv-
alent to a Lagrangian of noninteracting fermions, with all
effects of the interactions absorbed in the effective mass
and effective chemical potentials. The ansatz for the
condensates does not include the possibility of a chiral
density wave, where the chiral condensate oscillates spa-
tially between the σ and π3 directions with fixed modulus χ
[54]. The chiral density wave or related, more complicated,
inhomogeneous structures are expected to appear in the
vicinity of a first-order chiral phase transition [55], even
without relaxing the local neutrality constraint to a global
one, which is necessary for the mixed phases discussed
here. I leave the study of the interplay between the chiral
density wave and chiral pasta for the future. For simplicity,
I will also drop the vacuum contribution; i.e., I work in the
so-called no-sea approximation. Since the model is renor-
malizable, it is straightforward to include this contribution,
which would introduce the renormalization scale as an
additional parameter. However, since the model is of a
phenomenological nature to begin with, there is no
guarantee that the vacuum terms would make the results
more realistic, although there are examples where it does
so [56]. There are cases where the sea contribution makes
an obvious qualitative difference, for instance, in the
presence of a magnetic field [57], but such an effect is
not expected here.
In order to describe inhomogeneous mixed phases, the

condensates σ̄, ω̄, and ρ̄ must be allowed to vary in space.
(There is no time dependence since I am only interested in
equilibrium configurations.) Within the Thomas-Fermi
approximation, this spatial dependence is neglected when
integrating over the fermionic fields to compute the
partition function and thus the free energy density Ω of
the system. As a consequence, the resulting free energy
density has the same form as in the homogeneous case with
all mesonic condensates allowed to be inhomogeneous and

CHIRAL PASTA: MIXED PHASES AT THE CHIRAL PHASE … PHYS. REV. D 101, 074007 (2020)

074007-3



with the addition of the mesonic gradient terms. This
approximation is expected to be valid for slowly varying
condensates.
Within these approximations, the calculation of the free

energy density follows the standard procedure, and at zero
temperature one obtains

Ω ¼ −
ð∇ω̄Þ2

2
−
ð∇ρ̄Þ2
2

þ ð∇σ̄Þ2
2

þ ð∇μeÞ2
2e2

þ ΩNðσ̄; ω̄; ρ̄Þ þ Ωl: ð7Þ

Here, the Coulomb energy density is given by the electric
field E ¼ −∇ϕ, where the scalar electric potential ϕ is
related to the electron chemical potential μe by ϕ ¼ μe=e.
In addition to the terms coming from the nucleon-meson
Lagrangian (1), I have added a leptonic contribution from
noninteracting, approximately massless electrons with
chemical potential μe and noninteracting muons with
chemical potential μμ and mass mμ ≃ 106 MeV,

Ωl ¼ −
μ4e

12π2
− pðμμ; mμÞ; ð8Þ

where I have introduced the zero-temperature pressure of a
noninteracting spin-1

2
fermion species with chemical poten-

tial μ and mass m,

pðμ; mÞ≡ Θðμ −mÞ
8π2

��
2

3
k3F −m2kF

�
μþm4 ln

kF þ μ

m

�
;

ð9Þ

with the Fermi momentum

kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

q
: ð10Þ

For m ¼ 0 the pressure reduces to the simple form used for
the electrons in Eq. (8). The nucleonic contribution in
Eq. (7) is

ΩNðσ̄; ω̄; ρ̄Þ≡ −
1

2
m2

vðω̄2 þ ρ̄2Þ þ Uðσ̄Þ
− pðμ�n;MÞ − pðμ�p;MÞ; ð11Þ

where Uðσ̄Þ is the potential (5) with all fields replaced by
their expectation values, i.e., χ ¼ σ̄, where

μ�n ≡ μn − gωω̄ − gρρ̄; ð12aÞ

μ�p ≡ μp − gωω̄þ gρρ̄ ð12bÞ

are the effective nucleon chemical potentials, and where

M ≡ gσσ̄ ð13Þ

is the effective nucleon mass.
For low temperatures, where the neutrino mean-free path

is much larger than the size of the neutron star, equilibrium
with respect to the weak processes pþ l → nþ νl, n →
pþ lþ ν̄l where l ¼ e, μ is either an electron or a muon,
and e → μþ ν̄μ þ νe, μ → eþ ν̄e þ νμ yields the follow-
ing relations between the nucleonic and leptonic chemical
potentials2:

μp þ μe ¼ μn; μμ ¼ μe: ð14Þ

I will use these constraints to eliminate μp and μμ, such that
the only remaining chemical potentials are μn and μe.

C. Euler-Lagrange equations

From the free energy density (7) one can now straight-
forwardly derive the Euler-Lagrange equations,

∇2σ̄ ¼ ∂ΩN

∂σ̄ ¼ ∂U
∂σ̄ þ gσns; ð15aÞ

∇2ω̄ ¼ −
∂ΩN

∂ω̄ ¼ m2
vω̄ − gωnB; ð15bÞ

∇2ρ̄ ¼ −
∂ΩN

∂ρ̄ ¼ m2
vρ̄ − gρnI; ð15cÞ

∇2μe
e2

¼ −
�∂ΩN

∂μe þ ∂Ωl

∂μe
�

¼ −q: ð15dÞ

The last equation is the Poisson equation, which can also be
written as

∇2ϕ ¼ −ρ ¼ −eq; ð16Þ

where ρ is the electric charge density, and

q≡ np − ne − nμ; ð17Þ

such that positive ρ and q correspond to an excess of proton
over lepton charges. The scalar density is

ns¼Θðμ�n−MÞ M
2π2

�
kF;nμ�n−M2 ln

kF;nþμ�n
M

�

þΘðμ�p−MÞ M
2π2

�
kF;pμ�p−M2 ln

kF;pþμ�p
M

�
; ð18Þ

where kF;n and kF;p are the neutron and proton Fermi
momenta. The baryon and isospin densities are

2Notice that these relations hold for the actual chemical
potentials μn and μp, not for the auxiliary quantities μ�n and
μ�p. The reason is that the nucleonic single-particle energies at the
Fermi momentum are μn and μp, not μ�n and μ�p.
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nB ¼ nn þ np, nI ¼ nn − np with the neutron and proton
densities

nn ¼ Θðμ�n −MÞ k
3
F;n

3π2
; np ¼ Θðμ�p −MÞ k

3
F;p

3π2
; ð19Þ

and the electron and muon densities are

ne ¼
μ3e
3π2

; nμ ¼ Θðμμ −mμÞ
ðμ2μ −m2

μÞ3=2
3π2

: ð20Þ

The four coupled second-order differential equations (15)
will later be solved numerically for the four functions σ̄ðrÞ,
ω̄ðrÞ, ρ̄ðrÞ, μ̄eðrÞ. In the homogeneous limit, Eqs. (15)
become coupled algebraic equations. Then, Eqs. (15a)–
(15c) are the stationarity equations of the free energy with
respect to the variables σ̄, ω̄, ρ̄, and Eq. (15d) accounts for
electric charge neutrality.

D. Parameter values

It remains to fix the parameters gσ, gω, gρ, a2, a3, a4. The
matching procedure is almost the same as in Ref. [38],
where only isospin-symmetric matter was discussed.
We first set gσ ¼ 10.097, which follows from the nucleon
mass in the vacuum mN ¼ 939 MeV and the relation
mN ¼ gσfπ . The remaining five parameters depend, in
a coupled way, on saturation properties of symmetric
nuclear matter which are not all known to high accuracy.
I use the saturation density n0 ¼ 0.153 fm−3 and the
binding energy EB ¼ −16.3 MeV, both known to good
accuracy. Furthermore, I need the incompressibility K≃
ð200–300ÞMeV [58,59], the effective Dirac mass at satu-
ration M0 ≃ ð0.7–0.8ÞmN [10,60–64], and the asymmetry
energy S ≃ ð30.2–33.7Þ MeV [65,66]. For definiteness, I
set S ¼ 32 MeV, as in Ref. [48], and M0 ¼ 0.75mN . One
can easily express the coupling constant gω in an analytical
form in terms of the experimental values,

g2ω ¼ m2
v

n0
ðμ0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F;0 þM2

0

q
Þ ≃ 89.6179; ð21Þ

where μ0 ¼ mN þ EB ¼ 922.7 MeV is the baryon chemi-
cal potential at the onset of symmetric nuclear matter, and
where

kF;0 ¼
�
3π2n0
2

�
1=3

ð22Þ

is the Fermi momentum of symmetric nuclear matter at
saturation. An analogous expression can be derived for the
coupling constant gρ,

g2ρ ¼
3m2

vπ
2

k3F;0

�
S −

k2F;0

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F;0 þM2

0

q �
≃ 17.7737: ð23Þ

This relation is derived in Appendix A. The remaining
parameters a2, a3, a4 are then determined from the
stationarity equation with respect to σ̄, the condition that
nuclear matter at the onset has zero pressure, and that
the incompressibility K at saturation have a certain value,
where the expression for K is also derived in Appendix A;
see Eq. (A15) for the final result. These three conditions are
coupled and have to be solved numerically. Due to the
experimental uncertainty in K, and in order to look for
qualitatively different scenarios, I shall first treat K as a
free parameter. For the actual numerical calculation of
the mixed phases I will then focus on the single parameter
value K ¼ 252 MeV, for which, with the given values for
n0, EB, M0, S, one finds a2 ¼ 45.4695, a3 ¼ −8.42367×
10−3 MeV−2, a4 ¼ 4.97732 × 10−5 MeV−4.

III. IDENTIFYING MIXED PHASE REGIONS

Before calculating the profiles of the condensates in
various mixed phase geometries, one needs to identify the
regions in the phase diagram where the mixed phases are
candidates to replace the homogeneous solutions. At zero
temperature, the only independent thermodynamic variable
is the neutron chemical potential μn; i.e., for a given set of
model parameters, this amounts to identifying a range in μn
around the first-order phase transition.
The model has three different phases: the baryonic

vacuum (V), chirally broken nuclear matter (N), and the
chirally restored phase, which I loosely interpret as quark
matter (Q), as discussed in the Introduction. Since chiral
symmetry is explicitly broken, N and Q are not distin-
guished by symmetry and in principle there can be a
smooth transition between them. However, in the parameter
range of interest it turns out that they are separated by a
first-order transition, and hence it does make sense to label
them as distinct phases. For isospin-symmetric nuclear
matter, there is a first-order transition from V to N, the
“baryon onset,” to whose properties the parameters of the
model are fitted, as discussed above. Then, at larger
chemical potentials, there is a transition to Q. This
transition is of first order unless the incompressibility
assumes unrealistically large values, in which case this
transition becomes a smooth crossover [38].
For isospin-asymmetric, electrically neutral, beta-

equilibrated matter the overall phase structure is similar,
but there are some differences, as Fig. 2 shows. The black
curves in this figure correspond to the phase transitions
between the homogeneous phases. There is a small region
of unrealistically small K where a direct transition from V
to Q occurs. In this region, nuclear matter is only
metastable and never the state of lowest free energy for
any neutron chemical potential. (For symmetric nuclear
matter, this regime is larger, extending into the region of
realistic values of K [38].) Then, there is a very small
regime, hardly visible in the plot, where the onset to neutral
baryonic matter is first order. For most of the parameter
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range—including all realistic values of K—the baryon
onset is second order, shown by the dashed line. The solid
line just next, and almost parallel, to the dashed line
indicates a (weak) first-order phase transition within the
nuclear matter phase. I am not aware of any other model
showing such a first-order transition, and possibly it is an
artifact of the model. In any case, this transition will not be
relevant for the main results of this paper. A more detailed
view of the homogeneous phases, for a particular value of
K, can be found in Figs. 3 and 4, where the free energy
density, the effective nucleon mass, and the electron
chemical potential are plotted. All these results are obtained
by solving the Euler-Lagrange equations (15a)–(15c) with-
out gradient terms together with the local neutrality
constraint from Eq. (15d). Figures 2–4 also contain results
for the VQ and NQ mixed phases in the absence of surface
and Coulomb effects, where Eq. (15d) is turned into a
global neutrality condition, as I explain now.
Mixed phases can appear in the vicinities of the first-

order phase transitions if one allows for spatial regions that
are electrically charged, with the overall charge of the
system being zero. In the simplest approximation, Coulomb
energy and surface tension are neglected, and the mixed
phase is characterized solely by the volume fraction of one
of the phases χ ∈ ½0; 1�. In particular, in this approximation,
the specific spatial structure of the system is completely
irrelevant. Adding Coulomb and surface energies increases
the free energy of the mixed phase, and thus this simple
approximation overestimates the stability of the mixed
phases and gives an upper limit for the range in μn in

FIG. 2. Mixed phase regions in the plane of incompressibility at
saturation K and neutron chemical potential μn, without Coulomb
effects and surface tension for the nuclear-quark (NQ, red shaded
region) and vacuum-quark (VQ, blue shaded region) mixed
phases. Thick black curves are first-order (solid) and second-
order (dashed) phase transitions between homogeneous phases.
The baryon onset is second order almost everywhere, and there is
a first-order transition within the nuclear matter phase just after
the onset. The grey band indicates the experimental uncertainty
for K, and the horizontal thin dashed line shows the value of K
used in all following results.

Q

NV

NQ

VQ

920 940 960 980 1000 1020 1040 1060

–20

–15

–10

–5

0
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[1
07

M
eV

4
]

FIG. 3. Free energy density as a (multivalued) function of the
neutron chemical potential for locally neutral phases N,V, Q (black
lines) and mixed, globally neutral, phases VQ (blue line) and NQ
(red line), neglecting Coulomb and surface effects, and using
K ¼ 252 MeV. Themain point of the paper is to include Coulomb
and surface effects and thus determine the fate of the NQ curve.

FIG. 4. Effective nucleon mass M and electron chemical
potential μe for locally neutral phases (black curves, the NQ
first-order phase transition is indicated by the vertical dashed
lines) and the NQ mixed phases without Coulomb and surface
effects (red curves), for the same parameters as in Fig. 3. The
jump from large to almost vanishing mass M is characteristic for
the chiral phase transition. While N and Q phases have different
values ofM in the mixed phase, there is only a single value of μe.
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which the mixed phase is favored. The calculation is done
as follows. Suppose phases 1 and 2 occupy volume fractions
χ and 1 − χ, respectively. Then, Eqs. (15a)–(15c) for each
phase (six equations in total) together with the condition of
global charge neutrality,

0 ¼ χq1 þ ð1 − χÞq2; ð24Þ

with the charge densities for the two phases defined via
Eq. (17), and the equality of the free energies densities,

Ω1 ¼ Ω2; ð25Þ

are solved simultaneously for the eight scalar variables
σ̄1; ω̄1; ρ̄1; σ̄2; ω̄2; ρ̄2; μe; χ for a given neutron chemical
potential μn. As a result, one finds a range in μn where χ
decreases continuously from χ ¼ 1 at the lower boundary to
χ ¼ 0 at the upper boundary. In other words, as χ goes from
1 to 0, one moves from a pure system in phase 1 through a
mixture of both phases up to the pure phase 2. The resulting
free energy densities for the VQ and NQ mixed phases are
shown in Fig. 3. The VQ phase is shown for all μn where it
exists, even though in a large part of this regime it is not the
state of lowest free energy. Here and throughout the paper
the VN mixed phase is ignored for simplicity. The situation
becomes even more complicated if the mixed phase in the
vicinity of the first-order transition within the N phase is
constructed, made of nuclear matter with two different
densities. This mixed phase is not included in the analysis
either. In any case, the focus of this paper is on theNQmixed
phase, which is stable throughout the regime where it is a
solution. The corresponding curves for the effective masses
and the electron chemical potential in Fig. 4 are therefore
shown only for the NQ phase.
To get an idea of the potential importance of mixed

phases in this model, I have determined the range for the
mixed phases for all values of the incompressibility K. Of
course, there are experimental constraints for K, and one
might argue that large parts of the parameter space are
therefore not interesting. However, one needs to keep in
mind that the model used here is of phenomenological
nature. Therefore, it is useful to scan the parameter space
and look for interesting qualitative features regarding
mixed phases. While certain features might not be realized
in the present model for realistic values of K, these features
might be realized in other models, or in improved versions
of this model, or in QCD. In this spirit, one might also add
variations in M0 and S to extend the result presented here,
as it was done, varying K and M0, for isospin-symmetric
nuclear matter in Ref. [38]. The result for fixed M0 and S,
but K unconstrained, is shown in the form of the red and
blue shaded areas in Fig. 2. In contrast to Fig. 3, the VQ
mixed phase is now indicated only in the regime where it
has lower free energy than all homogeneous phases and the
NQ mixed phase. One observes that the NQ mixed phase

region in the vicinity of the chiral phase transition becomes
smaller asK is increased, eventually vanishing for very large
K, where the transition becomes a smooth crossover.
Interestingly, the results show the possibility of a direct
transition from the VQmixed phase to the NQmixed phase.
Such a behavior is suggested for K ≃ ð30–240Þ MeV. If
realized in QCD, this might, for instance, be relevant for
quark stars, which are usually thought of as having an outer
layer where strangelets are immersed in an electron gas; i.e.,
they have a crystallineVQcrust and a homogeneousQ body.
Figure 2 suggests that stars of the form VQ-NQ-Q are
conceivable. In other words, nuclear matter might find its
way into a quark star through a mixed phase that exists in a
certain layer of the star. Moreover, the transition from the
VQ to the NQ mixed phase raises the question whether a
VQNmixed phase exists in the transition region; i.e., a phase
in which baryonic vacuum, nuclear matter, and quarkmatter
coexist in spatially separated regions. These intriguing
questions are beyond the scope of the present paper but
deserve further studies, be it in the present model or in
another approach.
Here I proceed with the parameter set of Figs. 3 and 4,

which shows the “standard” form of the NQ mixed phase—
surrounded by pure nuclear matter N at lower density and
by pure quark matter Q at higher density—and will no
longer be concerned with the VQ mixed phase and any
complications that are connected with it.

IV. PASTA PHASES

Whether chiral pasta phases are preferred or not is
determined by the total free energy per unit volume,
which is given by the spatial integral over the free energy
density (7)

F ¼ wC þ 1

V

Z
d3r

�
m2

v

2
ðρ̄2 þ ω̄2Þ − σ̄

2

∂U
∂σ̄

−
1

2
ðgωω̄nB þ gρρ̄nI þ gσσ̄nsÞ þ ΩN þΩl

�
; ð26Þ

where partial integration and the Euler-Lagrange equa-
tions (15a)–(15c) have been used, where the surface terms
are dropped due to ∇ω̄ ¼ ∇ρ̄ ¼ ∇σ̄ ¼ 0 at the boundaries,
and where the Coulomb energy per unit volume has been
separated,

wC ¼ 1

2V

Z
d3r E2; ð27Þ

with the electric field E ¼ ∇μe=e. One can also compute F
by directly integrating over Ω from Eq. (7), without
rewriting the gradient terms with the help of partial
integration. It is a good numerical check, however, to
use both expressions because Eq. (26) makes explicit use of

CHIRAL PASTA: MIXED PHASES AT THE CHIRAL PHASE … PHYS. REV. D 101, 074007 (2020)

074007-7



the Euler-Lagrange equations. This check can thus be used
to confirm that these equations are solved to good accuracy.
For the determination of the preferred pasta structure,F is

the only relevant quantity and there is no need to extract the
surface tension Σ. Nevertheless, it is useful to compute Σ
because, first, it can be used as an input for simple
approximations that do not rely on the knowledge of the
exact spatial profiles and, second, it is interesting to compare
the result to the surface tension of isospin-symmetric matter.
The surface tension is defined by the difference in free
energies between a domain wall configuration and the
corresponding homogeneous configuration,

Σ ¼
Z

x02

x01

dx

�
−
1

2

�
dω̄
dx

�
2

−
1

2

�
dρ̄
dx

�
2

þ 1

2

�
dσ̄
dx

�
2

þΩN þ Ωl − ðΩN þ ΩlÞ0
�
; ð28Þ

where x01 and x02 are the boundaries of the one-
dimensional structure and ðΩNþΩlÞ0≡ðΩNþΩlÞx¼x01¼
ðΩNþΩlÞx¼x02

is the free energy of either phase at the
boundary. Note that the definition (28) does not include the
Coulomb energy wC.
I will work within the Wigner-Seitz approximation,

which reduces the problem to a single unit cell instead
of the full crystalline structure. Moreover, as already shown
in Fig. 1, the unit cells are assumed to have the form of
the pasta structure itself, i.e., spherical for bubbles, cylin-
drical for rods, and rectangular for slabs, rather than
using the actual Wigner-Seitz cells, which are the unit
cells of the specific lattice structure (for instance, cubic,
face-centered cubic). As a consequence, this approximation
does not distinguish between different lattice structures of
the bubbles or rods. The advantage is of course that the
calculation becomes effectively one-dimensional for all
three geometries.

A. Steplike approximation

The Wigner-Seitz approximation (with conveniently
shaped unit cells) can be further simplified if, additionally,
the profiles of the condensates are assumed to be steplike.
This approximation is well known and frequently used in
the literature. Nevertheless, I will briefly recapitulate it
because it serves as an introduction to the basic concepts of
the chiral pasta phases, which is useful for the more
complete calculation explained subsequently. Also, I will
use the results of the steplike approximation later as a
comparison to the full numerical result.
In the steplike approximation, the sketches in Fig. 1 can

be taken literally: the interfaces that separate the two phases
from each other are assumed to be sharp surfaces. The
condensates and the electron chemical potential assume the
values calculated in the previous section, as shown in
Fig. 4. Therefore, for each μn for which a mixed phase is

conceivable according to Figs. 3 and 4, there are two
electric charge densities, one for each constituent phase,
which I will denote by ρ1 and ρ2, and a volume fraction χ.
This is the input from the microscopic calculation. One can
now choose a certain geometry, and a simple exercise in
electrostatics gives the Coulomb energy per unit volume.
By assumption, the electrostatic potential, which is gen-
erated by the steplike charge distribution and which adds to
the electron chemical potential, does not backreact on the
values of the condensates. The calculation of the Coulomb
energy is presented in Appendix B, which leads to the well-
known result [10]

wC ¼ ðρ1 − ρ2Þ2
2

L2
0χfdðχÞ; ð29Þ

where L0 is the width of the inner region of the Wigner-
Seitz cell (shaded regions in Fig. 1), i.e., the radius of the
bubble or the radius of the rod or (half) the width of the
slab, which is related to the volume fraction by

χ ¼
�
L0

L

�
d
; ð30Þ

where L is the width of the Wigner-Seitz cell (see also
Fig. 1) and d is the codimension of the structure, i.e., d ¼ 3
for bubbles, d ¼ 2 for rods, and d ¼ 1 for slabs. Moreover,

fdðχÞ ¼

8>>><
>>>:

ðχ−1Þ2
3χ for d ¼ 1

χ−1−ln χ
4

for d ¼ 2

2þχ−3χ1=3
5

for d ¼ 3

: ð31Þ

The Coulomb energy is obviously an energy cost for
creating spatial regions that are electrically charged. As
Eq. (29) confirms, this cost increases as the Wigner-Seitz
cell becomes larger at a fixed volume fraction χ. (Increasing
the width of the Wigner-Seitz cell at fixed χ is equivalent to
increasing L0 at fixed χ.) A counteracting effect comes
from the surface energy per unit volume,

wS ¼
dΣχ
L0

; ð32Þ

which decreases as the size of the Wigner-Seitz cell is
increased because a larger Wigner-Seitz cell means fewer
surfaces per volume where the condensates have to inter-
polate between the different phases, which costs energy. For
a given χ, the sum of Coulomb and surface energies

ΔF ¼ wC þ wS ð33Þ

always has a minimum value at a certain nonzero and
finite L0 because the Coulomb energy goes like L2

0 and the
surface energy goes like 1=L0. This will be different in the
full calculation, for instance, due to screening effects.
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Minimizing ΔF with respect to L0 at fixed χ and inserting
the result back into ΔF gives

ΔF ¼ 3

2
ðρ1 − ρ2Þ2=3Σ2=3χ½d2fdðχÞ�1=3: ð34Þ

In order to determine the critical values of χ at which the
geometry of the mixed phase changes, one simply has to
evaluate the function d2fdðχÞ for the five possible phases
that arise from d ¼ 1, 2, 3 and from replacing χ → 1 − χ in
the cases d ¼ 2, 3. The latter accounts for the fact that
the bubbles or rods are made of phase 1 immersed in phase
2 or vice versa. For slabs the situation is symmetric and
no additional information is obtained by the replacement
χ → 1 − χ. One finds that the geometry changes from
bubbles to rods to slabs to complementary rods to comple-
mentary bubbles as the volume fraction is decreased from
1 to 0.With the help of Eq. (31) one finds that the four critical
values of χ are given by Gð1 − χÞ ¼ Hð1 − χÞ ¼ HðχÞ ¼
GðχÞ ¼ 0, where

GðχÞ≡ 23þ 4χ − 27χ1=3 þ 5 ln χ; ð35aÞ
HðχÞ≡ 2χ2 − χ − 3χ ln χ − 1: ð35bÞ

This results in the critical values

χ ≃ 0.785; 0.645; 0.355; 0.215: ð36Þ

These values are completely independent of the details
of the underlying microscopic model. Only the translation
from χ into μn and the actual value of the free energy cost
(34) depends on themicroscopic physics.We show the result
of the steplike approximation in comparison to the full result
in Fig. 8 for two fixed values of the surface tension. (As the
full calculation will show, the surface tension itself is a
function of μn.)

B. Numerical evaluation

A more complete and reliable result is obtained by
solving numerically the coupled differential equations (15)
without further approximations. To get a first idea of the
form of the solution it is useful to discuss the behavior in
the center and at the edge of the unit cell. This behavior is
found by linearizing Eqs. (15) about the boundary values.
A detailed derivation, presented in Appendix C, shows that
the lowest-order behavior is quadratic for all condensates
and the electron chemical potential,

σ̄ðxÞ ≃ σ̄0 þ
�∂U
∂σ̄ þ gσns

�
0

ðx − x0Þ2
k

; ð37aÞ

ω̄ðxÞ ≃ ω̄0 þ ðm2
vω̄ − gωnBÞ0

ðx − x0Þ2
k

; ð37bÞ

ρ̄ðxÞ ≃ ρ̄0 þ ðm2
vρ̄ − gρnIÞ0

ðx − x0Þ2
k

; ð37cÞ

μeðxÞ ≃ μe0 − e2q0
ðx − x0Þ2

k
: ð37dÞ

Here, I have denoted the relevant coordinate collectively
by x for all three geometries; i.e., x is a Cartesian
coordinate for slabs, the cylindrical radial coordinate for
rods, and the spherical radial coordinate for bubbles. The
point at the center or the edge of the unit cell is denoted
by x0, and σ̄0; ω̄0; ρ̄0; μe0 are the boundary values. The
subscripts 0 at the coefficients of the quadratic terms
indicate that the expressions are evaluated at the boun-
dary. Moreover, k ¼ 2 at the outer boundary of the unit
cell for all geometries, while in the center k ¼ 2d.
Importantly, the boundary values themselves are not
known a priori, and they cannot be computed by a
local analysis. They rather have to be computed dynami-
cally by solving the coupled differential equations over
the entire domain of the unit cell. The coefficients of the
quadratic terms are nothing but the right-hand sides of
the Euler-Lagrange equations (15). This shows that the
profiles would be flat (the coefficient of the quadratic
term would be zero) if the boundary values fulfilled the
stationarity and neutrality equations. The more a certain
unit cell deviates from these properties at its boundaries,
the less flat the profiles become. Besides these general
insights into the solution, Eqs. (37) are also useful as a
check for the numerical solution, at least in the vicinity
of the boundaries.
I perform the full numerical calculation along the

following steps:
(1) Fix a neutron chemical potential μn for which

the mixed phase is preferred in the absence of
Coulomb energy and surface tension, i.e., some μn
in Fig. 3 in the range of the (red) NQ curve. At
this given μn, two charged phases with the same
μe have the same pressure and form a globally
neutral system with a volume fraction χ. For
notational compactness, let v≡ ðσ̄; ω̄; ρ̄; μeÞ and
let v1 and v2 be the values of v in these two
charged phases.

(2) Pick a geometry, i.e., bubbles, rods, or slabs. For
bubbles and rods, decide which of the two phases
occupies the interior of the cell. This yields five
cases, and in all cases the Wigner-Seitz approxima-
tion ensures that the problem is effectively one-
dimensional.

(3) Choose a domain, x ∈ ½x01; x02�, such that L ¼
jx01 − x02j is the width of the unit cell. In the case
of bubbles and rods x is a radial coordinate and
thus x01 ¼ 0. Construct four initial guess func-
tions vðxÞ, which are as close as possible to the
(yet unknown) solutions. This can be done by
interpolating between the values of the homo-
geneous phases, vðx01Þ ¼ v1, vðx02Þ ¼ v2, for in-
stance, with the tanh function in the case of the
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condensates and with the constant function
μeðxÞ ¼ μe in the case of the electron chemical
potential.

(4) Solve the four Euler-Lagrange equations (15) for v
numerically with the successive over-relaxation
method.3 Since the initial guess functions contain
a nontrivial electric charge distribution, the Poisson
equation induces a nontrivial behavior μeðxÞ. In
particular, μeðxÞ will differ at the boundaries from
the (constant) starting value. This, in turn, also
changes the condensates at the boundaries. There-
fore, it is important to keep all boundary values
dynamical in the relaxation procedure.

(5) Enforce electric neutrality in each iteration step of
the relaxation procedure: By integrating the charge
density over the unit cell, the total charge is a
functional of the profiles computed at a given
iteration step, in particular of the electron chemical
potential Q ¼ Q½μeðxÞ�. Electric neutrality is en-
forced by adding a constant contribution φ that
solves the algebraic equation Q½μeðxÞ þ φ� ¼ 0.
This defines the corrected electron chemical poten-
tial μeðxÞ þ φ used for the next iteration step. After
sufficiently many iterations, the result is a stable
interface for a given geometry and given L, where
the boundary behavior of vðxÞ is given by Eqs. (37).

(6) Repeat the procedure for different L. For instance, if
L was chosen to be smaller than the (yet unknown)
favorable L, successively increase x02 by a small
amount (while keeping x01 fixed). It is useful to
extend the solution from the previous, smaller,
domain to the larger domain in order to use it as
an initial guess, for instance, by adding constant
pieces to the profiles. Increasing the domain leads to
nontrivial changes, including small changes in the
boundary values, and therefore the relaxation pro-
cedure has to be repeated for every L.

(7) For each L, compute the free energy per unit volume
F via Eq. (26) and determine the (local) minimum of
F as a function of L if such a minimum exists.

The final result, i.e., the preferred size of the unit
cell together with the profile functions, only depends on
μn and the chosen geometry. Quantities such as L0, χ, and
Σ, needed to construct the steplike approximation,

play no role in the calculation, everything is determined
dynamically.

C. Results and discussion

Using the slab geometry as an example, I will first
explain some details of the results and afterwards present
the main conclusions, bringing together the results of all
three geometries.

1. Unit cells and profiles for slabs

In Fig. 5, results for three different neutron chemical
potentials μn are shown as a function of the width of the
unit cell L. In the upper panel the free energy, calculated
from Eq. (26), is plotted. One of the curves has a very
pronounced minimum, as one would expect from the
steplike approximation. However, moving to smaller and
larger chemical potentials, i.e., toward more imbalanced
volume fractions, the minimum becomes more shallow. For
the (red and black) curves shown here the minimum barely

FIG. 5. Upper panel: Free energy per unit volume F for slabs
normalized to its value at the (local) minimum Fmin for
three different neutron chemical potentials as a function of the
width of the unit cell L. Lower panel: Surface tension of the
slab configuration for the same neutron chemical potentials.
The green line is the surface tension at the minimum for all μn
where a minimum exists. Here and in all following results,
K ¼ 252 MeV.

3The same method was used in the calculation of the surface
tension of the VQ, VN, NQ transitions for symmetric nuclear
matter [38] and for flux tube profiles of multicomponent super-
conductors [67,68]. I am working with a grid of about 5000
points on the domain, corresponding to a lattice spacing of about
10−3 fm, and with up to about 106 iterations steps. These
numbers were obtained by checking convergence for selected
cases to reach an accuracy such that the results of all plots in the
paper would be basically indistinguishable if more grid points or
iterations were used. In the slab geometry convergence is much
quicker, and a much coarser lattice and fewer iterations lead to the
same results.
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exists and indeed the minimum ceases to exist for slightly
smaller (red line) or larger (black line) chemical potentials.
At least for the curve μn ¼ 1016 MeV, it is obvious that the
mixed phase with the slab geometry is metastable; i.e., the
minimum is only local, not global. The system seems to be
able to reduce its free energy by forming larger and larger
unit cells. The corresponding profiles show that the volume
partition between the two phases becomes more and more
extreme; i.e., the tendency to form unit cells of large L is
nothing but the tendency to create uniform matter. Since the
numerics become challenging for very large L, it is difficult
to continue the curve much further and show that it indeed
asymptotes to the free energy of the uniform phase. But, it
is easy to check that for the two cases μn ¼ 1016 MeV and
1029 MeV the free energy of the uniform state (N in the
case of the smaller μn, Q for the larger one) is indeed
smaller than the free energy of the local minimum, as
shown explicitly in Fig. 8 below.
The lower panel of Fig. 5 shows the surface tension,

computed from Eq. (28). First of all, not surprisingly, one
sees that the surface tension is not a constant. For instance,
it decreases as the unit cell gets larger for fixed μn. The

figure also shows the values of the surface tension at the
energetic minimum for all μn for which the slab solution is
at least a local minimum. For these values ones reads off
Σ ≃ ð5.2–6.2Þ MeV=fm2. These values are somewhat
smaller than but very similar to the surface tension
computed in the same model with isospin-symmetric matter
from a domain wall configuration with semi-infinite phases
at the chiral phase transition [38].4

Figure 6 shows the corresponding profiles across one
wall of the slab for the same three neutron chemical
potentials as in Fig. 5. In each case, the profiles are shown
for the L at the local minimum. The coordinates are chosen
such that x ¼ 0 corresponds to the center of the slab in all

FIG. 6. Slab profiles of the effective nucleon massM, baryon number density nB, isospin number density nI, and charge density q for
the same three neutron chemical potentials as in Fig. 5 at the energetically preferred widths of the Wigner-Seitz cell L ≃ 10.0 fm (red
lines), 8.41 fm (blue lines), and 10.2 fm (black lines). The chirally broken (restored) phase resides at the left (right) end of the scale in
each plot. The thin dashed lines are the values obtained ignoring surface tension and Coulomb energy with a steplike profile and volume
fractions of the chirally broken phase χ ¼ 0.67 (red lines), 0.56 (blue lines), and 0.45 (black lines).

4With the chosen parametersM0¼0.75mN and K¼ 252MeV,
symmetric nuclear matter is only metastable in the given model,
such that in Ref. [38] only the surface tension of the transition
between the vacuum and the chirally restored phase was
calculated at this parameter point; see, for instance, Fig. 6 in
this reference. The same figure shows that for slightly larger
values of K orM0, where symmetric nuclear matter is stable, one
finds Σ ≃ 8 MeV=fm2, not far from the result obtained for
asymmetric matter here.
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three cases, while the right end of the scale corresponds to
the size of the largest of the three unit cells. For compari-
son, the figure also shows the constant values obtained by
ignoring surface tension and Coulomb effects, i.e.,
the values that give the results for the NQ phase in
Figs. 3 and 4. The plot confirms that the boundary values
of the profiles deviate—sometimes significantly—from
these constant values. The step that connects the constant
values is chosen to reproduce the volume fractions from the
NQ phases of Figs. 3 and 4, using the preferred unit cell
size from the full calculation.5 One can see from the curves
for the largest and the smallest μn that the full calculation
tends to create a more pronounced imbalance between the
two phases than predicted from the steplike curves.
The profiles for the effective mass M and the baryon

number nB illustrate that the wall interpolates between the
chirally broken (large M), low-density phase and the
chirally restored (small M), high-density phase. One
characteristic feature of the slab is the accumulation of
isospin density at the interface, as the lower left panel
shows. The profiles of the electric charge density q
demonstrate the screening effect, i.e., the accumulation
of negative and positive charge carriers close to the inter-
face. This effect reduces the Coulomb energy cost and thus
works in favor of large unit cells. One might wonder why
the charge accumulation is not an even more pronounced
effect. But of course one has to keep in mind that reducing
the Coulomb energy is not the only effect at work. A more
extreme charge accumulation is, for instance, prevented by
the tendency of the condensates to remain as close as
possible to the local minimum they would assume in the
absence of electrostatic energy costs, in order to reduce the
potential energy of the configuration.
The charge density profiles also show a cusp close to the

interface at negative q. This cusp arises because there is a
regime where there are no protons in the chirally broken
phase: for all x up to the cusp for μn ¼ 1023 MeV and
1029 MeV (blue and black curves) and for x ≃ 4 fm up to
the cusp for μn ¼ 1016 MeV (red curve). Thus, in this
regime, the system decides to create baryon number in the
chirally broken phase only from neutrons, with the lepton
gas providing negative charge. This is possible because the
chirally restored phase is positively charged. At this point,
it is useful to recall that although in some sense the chirally
restored phase can be interpreted as quark matter, there are
important differences to realistic quark matter. First of all,
this phase can, at best, be identified with two-flavor quark
matter because strangeness is not included in the model.
A priori, there is nothing wrong with this restriction
because it is plausible that in the transition region under

realistic neutron star conditions the strange quarks are
sufficiently heavy to only play a very minor role [5].
However, in the context of locally charged mixed phases it
is important to note that the chirally restored phase in the
present model has different charge carriers than realistic
two-flavor quark matter, which is made of up and down
quarks with charges 2=3e and −1=3e. Most notably, in the
present model there is no negative charge carrier that also
carries baryon number, i.e., no analogue of the down quark.
All negative charge is carried by the leptons. This has to be
kept in mind in the interpretation of the results. In fact, this
shortcoming of the model provides a strong motivation to
include strangeness in future studies. The reason is that,
even if hyperons might not play any role in the chirally
broken phase, there will be negative baryonic charge
carriers in the system, which, in the chirally restored phase,
may provide a more realistic description of actual quark
matter.

2. Comparison of all geometries

Figures 7 and 8 combine the results for all geometric
structures considered in this paper. For the bubbles and rods
one has to distinguish whether nuclear matter forms
bubbles or rods immersed in quark matter (“N bubbles,”
“N rods”) or vice versa (“Q bubbles,” “Q rods”). Figure 7
shows the sizes L of the unit cell that minimize the free
energy for a given neutron chemical potential μn; i.e., this is
the result of the analysis illustrated by the upper panel of
Fig. 5, now applied to all five geometries. In the case of the
slabs, the three chemical potentials used for Figs. 5 and 6
are marked by diamonds. The curve for the slabs ends on
both sides at a point, marked by a dot, beyond which the
local minimum of the mixed phase configuration ceases to

FIG. 7. Energetically preferred widths L of the unit cells as a
function of the neutron chemical potential μn for bubbles (green
lines), rods (blue lines), and slabs (red line). Spherical dots mark
the end of the line beyond which there is no stable mixed phase
solution; at the other end of the curves for bubbles and rods the
numerics start becoming too difficult. The (black) diamonds
indicate the three points used for Figs. 5 and 6.

5The steplike approximation has, by construction, the same
volume fraction, but a different preferred unit cell size; i.e., the
dashed curves do not exactly represent the steplike approximation
from Sec. IVA.
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exist. In the case of bubbles and rods the same disappear-
ance of the local minimum occurs on one end of the curves.
This is the end where the preferred uniform phase is the one
that fills the bubbles or rods. In other words, these end
points indicate the critical μn’s above which Q bubbles and
Q rods are no longer a minimum and the critical μn’s below
which N bubbles and N rods are no longer a minimum. The
other end of the curves is in the regime where by reducing
the size of the bubbles or rods to zero one arrives at the
energetically preferred uniform phase. On this side, beyond
a certain point the numerical relaxation algorithm does not
yield any nontrivial profiles, the profiles rather relax to the
homogeneous solution. This may well be a purely numeri-
cal problem; I cannot exclude that nontrivial profiles
continue to exist beyond that point. Therefore, in Figs. 7
and 8 I have not marked these ends of the lines by a dot,

suggesting that the lines potentially continue. Nevertheless,
the range where I did find nontrivial solutions is sufficient
in the sense that at the point where I have to stop one of the
uniform phases is already favored, i.e., this numerical
problem occurs in the regime where the pasta phases are
metastable anyway.
Figure 8 shows the main result of the paper by compar-

ing the free energies of the uniform phases with the ones of
the mixed phases from the full numerical calculation and
from the steplike approximation. All free energies are
plotted relative to the free energy of the mixed phase
without any surface and Coulomb effects. This free energy
difference is denoted by ΔF; i.e., ΔF ¼ 0 corresponds to
the (red) NQ curve in Fig. 3. The steplike approximation
shows the sequence of phases Q bubbles → Q rods →
slabs → N rods → Nbubbles, separated by black dots at
the points given by the critical volume fractions (36). This
sequence is generic for this approximation and does not
depend on the details of the system. As discussed above,
the steplike approximation requires a value for the surface
tension as an input. For a rough comparison with the full
result I have chosen the two constant values Σ ¼
5.2 MeV=fm2 and Σ ¼ 6.2 MeV=fm2, motivated by the
minimal and maximal values obtained from the numerical
calculation; see lower panel of Fig. 5. A density dependent
surface tension between these two boundaries would then
yield a curve within the band given by the two curves of
constant surface tension. Considering only the most
preferred configuration for each μn, the steplike approxi-
mation with this choice of the surface tension predicts a
sequence of phase transitions from uniform nuclear matter
at low densities to Q rods, then to slabs, and then to
uniform quark matter at high densities. I have checked
that surface tensions Σ≳ 13 MeV=fm2 are needed to lift
the entire dashed curve above the free energies of the
uniform phases, i.e., to make the mixed phases disfavored
for all μn.
The solid lines show the full result, with the lower

panel giving a more detailed view of the chiral pasta
regime. The results indicate that the mixed phases are
less favorable than predicted by the steplike approxima-
tion with the same surface tension. They exist in a range
of neutron chemical potentials of Δμn ≃ 2 MeV, com-
pared to Δμn ≃ 15 MeV for the steplike approximation
and Δμn ≃ 66 MeV if Coulomb and surface effects are
entirely neglected. Interestingly, the preferred structures
seem to be identical to the prediction of the steplike
approximation: also in the full result most of the mixed
phase regime consists of slabs, possibly with a small
region of Q rods at the low-density end. All transitions
between the different homogeneous and inhomogeneous
structures are of first order, and in a more complete
treatment more complicated geometries, or mixtures of
different pasta structures, might occur in the vicinities of
these first-order transitions.

FIG. 8. Upper panel: Free energies per unit volume of
homogeneous phases (black lines), chiral pasta phases from
the full numerical calculation (solid red, green, and blue curves)
and from the steplike approximation using the two constant
surface tensions Σ ¼ 5.2 MeV=fm2 and 6.2 MeV=fm2 (thin
dashed curves). All free energies are relative to the mixed phase
without any Coulomb effects and surface tension, i.e., relative to
the (red) NQ curve in Fig. 3. Lower panel: Magnification of the
region where chiral pasta is stable or metastable, showing that
slabs (and possibly Q rods in a tiny regime) are the preferred pasta
configuration.
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One might wonder whether it is a coincidence that the
chiral pasta is just barely preferred and that predominantly
slabs, not bubbles or rods, seem to appear. Is it possible that
pasta is never preferred, i.e., that it is metastable for all
densities? One way to check this would be to repeat the
calculation for different model parameters. After all, there
is some freedom in choosing the parameters due to the
uncertainty in the saturation properties M0, S, and K. Due
to the relatively tedious numerical calculation it is not easy
to present a systematic survey of the parameter space, and I
have not repeated the full-fledged calculation for different
parameters. I did, however, repeat the calculation of the
slabs for a larger value of the incompressibility at
saturation K (still within the experimentally predicted
range) while keeping M0 and S fixed and found the free
energy to be larger for any μn than that of the homo-
geneous phases. This suggests that there is no pasta phase
at all for large K. This is perhaps expected since it was
already demonstrated in Fig. 2 that the potential range for
a mixed phase, even in the absence of surface tension and
Coulomb energy, becomes smaller as K is increased.
Therefore, in this regime, the energy costs from surface
and Coulomb effects can easily destroy the mixed phases.
Consequently, the quantitative and even some of the
qualitative details of Fig. 8 should not be taken too
literally. Even within the chosen model they depend on
the exact values of the model parameters.

V. SUMMARY AND OUTLOOK

I have computed pasta structures and their free energies
consistently within a single model at the chiral phase
transition. To this end, I have employed a phenomenologi-
cal model where nucleons and mesons are the fundamental
degrees of freedom, to which noninteracting electrons and
muons are added. For model parameters that reproduce
saturation properties of nuclear matter and with the con-
straints of electric charge neutrality and beta equilibrium,
this model shows a first-order chiral phase transition at zero
temperature and in the absence of mixed phases. I have first
identified the region in the vicinity of this phase transition
where globally, but not locally, neutral mixed phases are
possible without taking into account surface and Coulomb
effects. These effects have then been taken into account by
calculating the profiles of the meson condensates and the
electrostatic potential in a consistent way, solving the
Euler-Lagrange equations for the condensates coupled with
the Poisson equation for the electrostatic potential. Doing
this for three different geometries—bubbles, rods, and
slabs—and determining the preferred sizes of the unit cells
dynamically for each case, this calculation yields the free
energies of the different pasta structures. I have compared
these free energies with each other, with the free energy of
the homogeneous phases, and with the free energy obtained
from a simple steplike approximation of the profiles, which
is often used in the literature. As a result, I have found that

for the chosen model parameters chiral pasta is favored in a
vicinity of the first-order phase transition which is only
about 2 MeV wide, measured in the neutron chemical
potential, and that the predominant structure that
appears consists of slabs. As a by-product, I have extracted
the density dependent surface tension, computed from
domain walls in the slab geometry, at the energetically
preferred unit cell sizes. I have found values Σ≃
ð5.2–6.2Þ MeV=fm2, which are comparable to, although
slightly smaller than the surface tension of isospin-
symmetric nuclear matter at the chiral phase transition in
the same model. All these results depend on the model
parameters, which are not uniquely fixed due to the
experimental uncertainty of some of the saturation proper-
ties of nuclear matter. Exploring this parameter space and
the fate of the mixed phases systematically is left for future
work, but I have pointed out that larger values of the
incompressibility at saturation lead to even smaller and
eventually vanishing regimes for the pasta phases.
I have used various approximations, which can be

improved in future studies. For instance, one may go
beyond the mean-field approximation, which becomes
particularly relevant for nonzero temperatures, or improve
on the Thomas-Fermi and Wigner-Seitz approximations
that I have used for the inhomogeneous phases. Also, it
should be emphasized that the high-density phase in the
present model is only a very crude approximation to a real-
world quark matter phase. In particular, there are no
baryonic charge carriers with negative electric charge,
which is relevant for the structure of the mixed phases.
Therefore, one interesting extension would be to include
strangeness, which introduces negative charge carriers in
the form of hyperons and their chirally restored counter-
parts. Another extension would be to allow for an inho-
mogeneous chiral condensate in the form of a chiral density
wave and study the interplay of the mixed phases with this
inhomogeneous structure. Furthermore, the present model
suggests that a vacuum-quark mixed phase might be
adjacent in chemical potential to a quark-hadron mixed
phase if the chiral phase transition is sufficiently close to
the baryon onset. As a consequence, a layer containing
nuclear matter within an inhomogeneous phase in quark
stars or even the existence of a three-component mixed
phase are conceivable. I have not addressed these intriguing
possibilities in detail here, and it would be interesting to
study them in the future. Finally it would, of course, be
desirable to implement the results of this paper into a
calculation of the structure of a neutron star or into a
simulation of a neutron star merger, which potentially
probes the fate of chiral pasta at nonzero temperatures.
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APPENDIX A: ASYMMETRY ENERGY AND
INCOMPRESSIBILITY AT SATURATION

The asymmetry energy is defined as [10]

S ¼ 1

2

∂2ðϵ=nBÞ
∂ðnI=nBÞ2 ¼

nB
2

∂2ϵ

∂n2I ¼
nB
2

∂μI
∂nI ; ðA1Þ

where ϵ is the energy density, where the derivatives are
taken at fixed nB, and where the thermodynamic relation

μI ¼
∂ϵ
∂nI ðA2Þ

has been employed. The isospin chemical potential is
μI¼ðμn−μpÞ=2, and thus with Eqs. (12), (15c), and (19)
one computes

μI ¼
g2ρ
m2

v
nI þ

1

2

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3π2

2

�
2=3

ðnB þ nIÞ2=3 þM2

s

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3π2

2

�
2=3

ðnB − nIÞ2=3 þM2

s 1
A: ðA3Þ

Consequently,

∂μI
∂nI ¼

g2ρ
m2

v
þ1

6

�
3π2

2

�
2=3

�
1

μ�nðnBþnIÞ1=3
þ 1

μ�pðnB−nIÞ1=3
�

þM
2

∂M
∂nI

�
1

μ�n
−

1

μ�p

�
: ðA4Þ

For the evaluation of this expression at the symmetric point,
where μ�n ¼ μ�p, the derivative ofM with respect to nI is not
needed. With nI ¼ 0, evaluating the result at saturation and
inserting it into the definition (A1) yields

S ¼ k3F
3π2

g2ρ
m2

v
þ k2F
6μ�B

; ðA5Þ

where

μ�B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þM2

q
: ðA6Þ

This is in accordance with Eq. (4.218) in Ref. [10] (after
gρ → gρ=2 due to the different definition of gρ) and gives
Eq. (23) in the main text.
The derivation of the incompressibility is similar. Since

the incompressibility is needed for symmetric matter at
saturation and no isospin derivatives are required, one can
perform the entire calculation in the symmetric scenario.

The incompressibility is defined as

K ¼ 9nB
∂2ϵ

∂n2B ¼ 9nB
∂μB
∂nB ; ðA7Þ

again using the thermodynamic relation

μB ¼ ∂ϵ
∂nB : ðA8Þ

In analogy to Eq. (A3) one has

μB ¼ g2ω
m2

v
nB þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3π2

2

�
2=3

n2=3B þM2

s
; ðA9Þ

where the omega condensate has been eliminated with the
help of Eq. (15b). Consequently,

∂μB
∂nB ¼ g2ω

m2
v
þ 1

3

�
3π2

2

�
2=3 1

μ�Bn
1=3
B

þ M
μ�B

∂M
∂nB ; ðA10Þ

and thus, with the definition (A7),

K ¼ 6k3F
π2

g2ω
m2

v
þ 3k2F

μ�B
þ 9nBM

μ�B

∂M
∂nB : ðA11Þ

Now the derivative of M does not drop out, and one has to
compute it with the help of Eq. (15a). First note that at zero
temperature

ns ¼
2M
π2

Z
kF

0

dk
k2

ϵk
; ϵk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
: ðA12Þ

Taking the derivative with respect to M on both sides of
Eq. (15a) yields

∂M
∂nB ¼ −

∂ns∂nB
∂2U
∂M2 þ ∂ns∂M

: ðA13Þ

With Eq. (A12) one finds

∂ns
∂M ¼ 2

π2

Z
kF

0

dk
k4

ϵ3k
; ðA14aÞ

∂ns
∂nB ¼ ∂ns

∂kF
∂kF
∂nB ¼ M

μ�B
: ðA14bÞ

Inserting this into Eq. (A13) and the result into Eq. (A11)
yields the incompressibility

K¼ 6k3F
π2

g2ω
m2

v
þ3k2F

μ�B
−
6k3F
π2

�
M
μ�B

�
2
�∂2U
∂M2

þ 2

π2

Z
kF

0

dk
k4

ϵ3k

�−1
;

ðA15Þ
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where the momentum integral can be done analytically,

Z
kF

0

dk
k4

ϵ3k
¼ k3F þ 3kFM2

2μ�B
−
3M2

2
ln
kF þ μ�B

M
: ðA16Þ

APPENDIX B: COULOMB ENERGY IN
STEPLIKE APPROXIMATION

In order to compute the Coulomb energy density (27) in
the steplike approximation one first needs to compute the
electric field. Due to the symmetry of the problem in all
three cases (bubbles, rods, and slabs in unit cells of
corresponding shapes), this is best done with the method
of Gaussian surfaces. The integral form of Gauss’s law is
(in Heaviside-Lorentz units)I

E · dS ¼ Q; ðB1Þ

where the integral is taken over a closed surface, which
contains the total charge Q. With the charge densities ρ1
(inner phase, shaded in Fig. 1) and ρ2 (outer phase) and the
volume fraction χ from Eq. (30), charge neutrality of the
total cell can be written as

ρ1 − ρ2 ¼
ρ1

1 − χ
: ðB2Þ

1. Bubbles

For the spherical geometry one has EðrÞ ¼ EðrÞer,
where r is the radial coordinate, and thus with a spherical
Gaussian surface of radius r Eq. (B1) yields

EðrÞ ¼ Q
4πr2

; ðB3Þ

whereQ is the charge contained in a sphere of radius r. The
calculation of the electric field thus reduces to the calcu-
lation of that charge and one easily obtains

EðrÞ ¼ 1

3

8<
:

ρ1r for 0 < r < L0

ðρ1 − ρ2Þ L
3
0

r2 þ ρ2r for L0 < r < L
: ðB4Þ

Piecewise integration over the radial coordinate then yields
the Coulomb energy (27) per unit volume,

wC ¼ χL2
0

30
½ρ21ð6 − 5χ1=3Þ þ ρ22ð9 − 5χ1=3 − 5χ−2=3 þ χ−5=3Þ

þ 5ρ1ρ2ð2χ1=3 − 3þ χ−2=3Þ�

¼ ðρ1 − ρ2Þ2L2
0χ

10
ð2þ χ − 3χ1=3Þ; ðB5Þ

where the first result is general for any charge densities ρ1,
ρ2, and in the second step the neutrality condition (B2) has
been used.

2. Rods

In this case, using cylindrical coordinates whose radial
component I also denote by r, the electric field has the form
EðrÞ ¼ EðrÞer. Using a cylindrical Gaussian surface with
length Lz and radius r, Gauss’s law gives

EðrÞ ¼ Q
2πrLz

: ðB6Þ

Calculating the enclosed electric charge Q yields the
electric field

EðrÞ ¼ 1

2

(
ρ1r for 0 < r < L0

ðρ1 − ρ2Þ L
2
0

r þ ρ2r for L0 < r < L
: ðB7Þ

Therefore, the Coulomb energy per volume is

wC ¼ χL2
0

16
½ρ21ð1 − 2 ln χÞ þ ρ22ð3 − 4χ−1 þ χ−2 − 2 ln χÞ

þ 4ρ1ρ2ðln χ þ χ−1 − 1Þ�

¼ ðρ1 − ρ2Þ2L2
0χ

8
ðχ − 1 − ln χÞ; ðB8Þ

again using charge neutrality in the second step.

3. Slabs

In this case, let the x direction be perpendicular to the
slab, i.e., the slab is extended in the y and z directions, and
let the point x ¼ 0 be such that the y − z plane is in the
middle of the slab. Then one can focus on x > 0, and the
electric field is EðrÞ ¼ EðxÞex and Eð0Þ ¼ 0 for symmetry
reasons. As a Gaussian surface one can, for instance, take a
cylinder extended in the x direction with one end at x ¼ 0,
such that the surface integral in Gauss’s law only receives a
contribution from the opposite end,

EðxÞ ¼ Q
A
; ðB9Þ

where A is the circular area of the cylinder. The charge
enclosed by the cylinder is easily computed, and one
obtains

EðxÞ ¼
(
ρ1x for 0 < x < L0

ðρ1 − ρ2ÞL0 þ ρ2x for L0 < x < L
: ðB10Þ

This yields for the Coulomb energy
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wC ¼ χL2
0

6
½ρ21ð3χ−1 − 2Þ þ ρ22ðχ−3 − 3χ−2 þ 3χ−1 − 1Þ

þ 3ρ1ρ2ðχ−2 − 2χ−1 þ 1Þ�

¼ ðρ1 − ρ2Þ2L2
0

6
ð1 − χÞ2; ðB11Þ

again showing both general and charge neutral expressions.
Equations (B5), (B8), and (B11) give the result (29) in the
main text.

APPENDIX C: BOUNDARY BEHAVIOR
OF THE PROFILES

In this Appendix I derive Eqs. (37), which show the
lowest-order behavior of the profiles at the boundaries of
the unit cells. In order to compute this behavior, it is useful
to write the Euler-Lagrange equations (15) in the compact
vector form

∇2vðxÞ ¼ f ½vðxÞ�; ðC1Þ

where x is a Cartesian coordinate for slabs, the cylindrical
radial coordinate for rods, or the spherical radial coordinate
for bubbles, and the Laplacian is

∇2 ¼ ∂2

∂x2 þ
d − 1

x
∂
∂x ; ðC2Þ

where the codimension is d ¼ 1, 2, 3 for slabs, rods,
bubbles, respectively. The components of v are the func-
tions σ̄; ω̄; ρ̄; μe, and the components of f are the right-hand
sides of Eqs. (15). Let x0 be the point at the boundary or the
center of the unit cell, and denote

v0 ≡ vðx0Þ; f 0 ≡ f ½v0�: ðC3Þ

For rods and bubbles one later has to distinguish whether x0
is in the center, x0 ¼ 0, or at the edge, x0 > 0, of the unit
cell. Until I make this distinction explicitly, the following
equations hold for any geometry. A small deviation in the
vicinity of x0 is introduced via

vðxÞ ¼ v0 þ δvðxÞ: ðC4Þ

Then, the linearized version of Eq. (C1) reads

∇2δvðxÞ ¼ f 0 þ JfδvðxÞ; ðC5Þ

where Jf is the Jacobian matrix of f with respect to v,

ðJfÞij ¼
∂fi
∂vj ; ðC6Þ

where i; j ¼ 1;…; 4. These derivatives can easily be
calculated analytically. It will turn out, however, that to

lowest order they drop out of the final result and thus there
is no need to write them down explicitly. The linearized,
coupled differential equations (C5) can be solved by first
diagonalizing them,

∇2δṽðxÞ ¼ f̃ 0 þU−1JfUδṽðxÞ; ðC7Þ
with a 4 × 4 matrix U which diagonalizes Jf, i.e., denoting
the eigenvalues of Jf by λi one has

U−1JfU ¼ diagðλ1;…; λ4Þ; ðC8Þ

and with

δṽ≡U−1δv; f̃ 0 ≡U−1f 0: ðC9Þ
Each component of the vector equation (C7) now reads

∇2δṽðxÞ ¼ f̃0 þ λδṽðxÞ; ðC10Þ

where I have omitted the index i at every quantity for
notational convenience. In each case, d ¼ 1, 2, 3, the
solution can be found analytically. One obtains

δṽðxÞ ¼ −
f̃0
λ
þ CηðxÞ þDζðxÞ; ðC11Þ

where C and D are integration constants, and

d ¼ 1∶ ηðxÞ ¼ e
ffiffi
λ

p
x; ζðxÞ ¼ e−

ffiffi
λ

p
x; ðC12aÞ

d ¼ 2∶ ηðxÞ ¼ I0ð
ffiffiffi
λ

p
xÞ; ζðxÞ ¼ K0ð

ffiffiffi
λ

p
xÞ; ðC12bÞ

d ¼ 3∶ ηðxÞ ¼ e
ffiffi
λ

p
x

x
; ζðxÞ ¼ e−

ffiffi
λ

p
x

x
; ðC12cÞ

where In and Kn are the modified Bessel functions of the
first and second kinds, respectively. The integration con-
stants are now determined by the boundary conditions

δṽðx0Þ ¼ δṽ0ðx0Þ ¼ 0; ðC13Þ

where prime denotes the derivative with respect to x.
At this point, one needs to distinguish between zero and

nonzero x0. First assume x0 > 0, such that all functions and
their derivatives are regular at x0. Then, the boundary
conditions yield

C ¼ f̃0
λ

ζ00
ζ00η0 − η00ζ0

; D ¼ −
f̃0
λ

η00
ζ00η0 − η00ζ0

; ðC14Þ

where the subscript 0 denotes evaluation of the function
at x0. With the expansions

ηðxÞ ≃ η0 þ ðx − x0Þη00 þ
ðx − x0Þ2

2
η000; ðC15aÞ
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ζðxÞ ≃ ζ0 þ ðx − x0Þζ00 þ
ðx − x0Þ2

2
ζ000; ðC15bÞ

one finds

−
f̃0
λ
þ CηðxÞ þDζðxÞ ≃ ðx − x0Þ2

2
f̃0; ðC16Þ

where

ζ00η
00
0 − η00ζ

00
0

ζ00η0 − η00ζ0
¼ λ ðC17Þ

has been used, which can be checked explicitly for
all three cases with the help of Eqs. (C12). One now has
to remember that Eq. (C10) denotes only one of four
components, and thus, returning to vector notation, the
solution of Eq. (C7) close to x0 is

δṽðxÞ ≃ ðx − x0Þ2
2

f̃ 0: ðC18Þ

Multiplying both sides from the left with U and thus
undoing the rotation that was necessary for the diagonal-
ization, one obtains the simple result

δvðxÞ ≃ ðx − x0Þ2
2

f 0: ðC19Þ

Note that only the lowest-order result allows for such a
simple expression. The full result (for the linearized
problem) is obtained by inserting C and D from
Eq. (C14) into δṽ from Eq. (C11), and then undoing the
rotation by multiplication withU. Since each of the four δṽi
depends on a different eigenvalue λi, this leads to a linear
combination with coefficients which are impossible to write
down in a compact way (they can, of course, be evaluated
numerically without problems). Only because the lowest-
order result for δṽi does not depend on the eigenvalue λi it
yields such a simple form for the unrotated functions δvi.

It remains to discuss the case x0 ¼ 0. Obviously, in the
case of slabs, there is no qualitative difference between the
two ends of the domain, i.e., between the center of the slab
and the boundary of the unit cell. Therefore, both ends are
covered by the result (C19). In the center of the rod, where
x0 ¼ 0, the function ζðxÞ from Eq. (C12b) diverges, and
thus regularity requires D ¼ 0. The boundary conditions
(C13) are fulfilled with C ¼ f̃0=λ, and thus (again omitting
the index i)

δṽðxÞ ¼ f̃0
λ
½I0ð

ffiffiffi
λ

p
xÞ − 1�: ðC20Þ

This can easily be expanded and again one is left with a
result proportional to f̃0, such that after reinstating the
vector index and undoing the rotation one obtains

rod center : δvðxÞ ≃ x2

4
f 0: ðC21Þ

Finally, for the center of the bubble, regularity and the
boundary conditions (C13) yield C ¼ −D ¼ f̃0=ð2λ3=2Þ,
such that

δṽðxÞ ¼ f̃0
λ

�
sinh

ffiffiffi
λ

p
xffiffiffi

λ
p

x
− 1

�
: ðC22Þ

In analogy to the center of the rod, one thus obtains

bubble center : δvðxÞ ≃ x2

6
f 0: ðC23Þ

The results (C21) and (C23) differ from the result (C19) in
the numerical prefactor. It is easy to see that this difference
comes from the different form of the Laplacian (C2) and
that the number in the numerator is simply 2d.
In summary, Eqs. (C19), (C21), and (C23) show the

behavior of the profiles at the center and the edge of the unit
cell for all geometries considered in this paper and are
written in the form (37) in the main text.
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