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ABSTRACT
Gravitational wave astronomy is expected to provide independent constraints on neutron star properties, such

as their equation of state. This is possible with the measurements of binary components’ tidal deformability,
which alter the point-particle gravitational waveforms of neutron-star binaries. Here we provide a first study
of the tidal deformability effects due to the elasticity/solidity of the crust (hadronic phase) in a hybrid neutron
star, as well as the influence of a quark-hadronic phase density jump on tidal deformations. We employ the
framework of nonradial perturbations with zero frequency and study hadronic phases presenting elastic aspects
when perturbed (with the shear modulus approximately 1% of the pressure). We find that the relative tidal
deformation change in a hybrid star with a perfect-fluid quark phase and a hadronic phase presenting an elastic
part is never larger than about 2 − 4% (with respect to a perfect-fluid counterpart). These maximum changes
occur when the elastic region of a hybrid star is larger than approximately 60% of the star’s radius, which
may happen when its quark phase is small and the density jump is large enough, or even when a hybrid star
has an elastic mixed phase. For other cases, tidal deformation changes due to an elastic crust are negligible
(10−5 − 10−1%), therefore unlikely to be measured even with third generation detectors. Thus, only when the
size of the elastic hadronic region of a hybrid star is over half of its radius, the effects of elasticity could have a
noticeable impact on tidal deformations.
Subject headings: stars: neutron – gravitational waves– dense matter

1. INTRODUCTION

The recent detection of gravitational waves (GWs) from
binary compact systems (Abbott et al. 2016b,a, 2017b,c, 2018,
2019a, 2020) has inaugurated the era of GW astronomy, and
we now have the real possibility of addressing many issues for
compact astrophysical objects. After the first detection of GWs
from neutron stars (NSs) (Abbott et al. 2017c), independent
constraints from X-ray observations—which rely on pulse
profile modelling (see, e.g., Özel et al. 2016; Miller et al.
2019; Riley et al. 2019; de Lima et al. 2020 and references
therein)—have already been obtained, for instance on their
equation of state (EOS) and radii (Annala et al. 2018; Most
et al. 2018; De et al. 2018; Nandi & Char 2018; Paschalidis
et al. 2018). Further constraints are possible due to inferences
of tidal deformations (Hinderer 2008; Damour & Nagar 2009;
Hinderer et al. 2010), which already have known upper limits
(Abbott et al. 2017c, 2018, 2019b). Future GW detections
hold the promise of stronger constraints on the NS parameters
(Abbott et al. 2017a; Chirenti et al. 2017; Baiotti 2019). We
focus here on whether GW observations may be able to provide
evidence for elastic and hybrid phases in NS interiors.

Hybrid NSs are compact systems presenting both quark and
hadronic phases. They might be possible in nature due to the
existence of phase transitions in quantum chromodynamics
(QCD, see Alford et al. 2008; Paschalidis et al. 2018; Bauswein
et al. 2018; Alford et al. 2019). However, the order of this
phase transition is unknown in the parameter range relevant for
NSs (low temperatures and large chemical potentials) (Alford
et al. 2008). In addition, since the surface tension for dense
matter is poorly known, the possibility of a mixed phase re-
mains an open issue (Bombaci et al. 2016; Lugones & Grunfeld
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2017). Astrophysical observations cannot currently exclude
hybrid NSs (Bejger et al. 2017). However, this might be possi-
ble with future, more precise GW measurements from the late
inspiral and also the postmerger phase (Nandi & Char 2018;
Bauswein et al. 2018; Most et al. 2018). Another promising
way of probing hybrid stars is through pulse profile modelling,
timing and polarimetry measurements i.e., with the NICER
(Özel et al. 2016) and eXTP (Zhang et al. 2016) missions.
The former has already provided the first measurements of
an NS radius with an uncertainty of around 10% at the 68%
confidence level (see Bilous et al. 2019; Riley et al. 2019; Raai-
jmakers et al. 2019; Miller et al. 2019; Bogdanov et al. 2019a,b;
Guillot et al. 2019). The eXTP mission promises even more
constraining measurements (∼5% uncertainties or less) (Zhang
et al. 2016). NICER’s precision is already in an interesting
range to probe the interiors of NS (see e.g. Sieniawska et al.
2018), especially hybrid stars that allow for additional stable
branchs (“third family”) with smaller radii than their hadronic
counterparts (Alvarez-Castillo & Blaschke 2017; Alford &
Sedrakian 2017; Christian & Schaffner-Bielich 2019).

It is already known that tidal deformations of hadronic stars
with solid/elastic crusts and liquid cores hardly differ at all
from perfect-fluid stars in ordinary cases (Penner et al. 2011;
Gittins et al. 2020), which assume a continuous energy density
at the interface between a (sizable) core and a solid crust. How-
ever, the situation may be different for hybrid stars. As is well
known, the presence of density jumps in hybrid stars with sharp
phase transitions strongly influences the tidal deformation in
the case of perfect fluids (see, e.g., Damour & Nagar 2009;
Postnikov et al. 2010; Han & Steiner 2019). To the best of
our knowledge, studies have not been carried out probing the
consequences of combined density jumps and shear stresses in
the hadronic phase of a hybrid NS. Therefore, we investigate
how this issue impacts on GW observations. The question is
complementary to the existing studies of hybrid stars in the
context of GW170817 (Jie Li et al. 2019; Montaña et al. 2019;
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Essick et al. 2019; Alford et al. 2019; Han & Steiner 2019;
Bauswein et al. 2019; Paschalidis et al. 2018; Sieniawska et al.
2019), which assume perfect-fluid systems. Natural motiva-
tions for our study are that a discontinuous quark-hadronic
density profile might non-negligibly change the tidal deforma-
bility of solid/elastic hybrid stars and a nonzero shear modulus
right from the bottom of the hadronic phase might be seen as a
simplistic model for an elastic mixed phase.

It is also known that solid aspects of a quark phase could
significantly change the tidal deformation of NSs (Lau et al.
2017, 2019). QCD allows for such a possibility through the
so-called LOFF phase, where shear stresses could be up to a
thousand times larger than crustal ones (Mannarelli et al. 2007).
It has been reported that for purely crystalline quark stars tidal
deformations could decrease up to 60% with respect to their
perfect fluid counterparts (Lau et al. 2017). On the other hand,
if the quark phase is located inside a hadronic phase, tidal
deformations are much subtler: (i) if the (elastic) quark phase
extends beyond around 70% of the whole star, it still follows
that the tidal deformations could change considerably; (ii) in
other cases, changes with respect to a perfect fluid are expected
to be small (Lau et al. 2019).

For the above case in particular, lower limits on the tidal
deformations coming from GW170817 (Radice et al. 2018;
Coughlin et al. 2019; Radice & Dai 2019; Kiuchi et al. 2019)
are important for probing hybrid star models and the solidity of
the quark phase. In addition, maximum deformations of stars
with elastic quark phases might lead to observable effects in
current GW detectors (Haskell et al. 2007), and may allow for
the estimation of breaking strains of solid stars (Ushomirsky
et al. 2000). Although the issue of the maximum deformation
of solid stars is very important for determining their maxi-
mum ellipticities in general, in this work we only focus on the
cases of small deformations of elastic hadronic regions of stars
(solid/elastic crusts). The reason for doing so is that the elastic
properties of such matter are currently better understood.

The article is arranged as follows: in Sec. 2 we review
the main ingredients for calculating tidal deformations of per-
turbed stars with static tidal deformations. Sec. 3 is devoted
to presenting simple quark and hadronic models for a hybrid
star, which can be used to estimate tidal deformations when
part of the hadronic phase is elastic. In Sec. 4 we obtain the
appropriate boundary conditions for hybrid stars presenting
sharp phase transitions with no mixed phases. Our results
regarding tidal deformations of hybrid stars with solid crusts
are presented in Sec. 5. We discuss the main issues raised by
our work, and provide the relevant conclusions, in Sec. 6.

We work with geometric units. Our metric signature con-
vention is +2. Unless otherwise stated, ∆X is defined as the
Lagrangian perturbation (Shapiro & Teukolsky 1986; Anders-
son & Comer 2007; Penner et al. 2011; Andersson et al. 2019)
of a physical quantity X, while δX is the corresponding Eule-
rian perturbation.

2. FORMALISM

The formalism we follow has been laid down by Penner et al.
(2011). Here we briefly review it, focusing on the equations
we will use (for further details, see Gittins et al. 2020). For the
background hybrid stars, fluids are assumed to be perfect and
hence described by the Tolman-Oppenheimer-Volkoff (TOV)

system of equations, namely,
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= −
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where p is the pressure, ε is the energy density and m the grav-
itational mass at the radial distance r. The λ and ν functions
are related to background metric, assumed to be given by

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2). (4)

Tidal deformations of stars are taken to be related to nonradial
perturbations with zero frequency. We work within the Regge-
Wheeler gauge (Regge & Wheeler 1957), in which case (even
parity) metric perturbations (hab = δgab) are diagonal and
defined as

hab = diag[H0(r)eν(r),H2(r)eλ(r), r2k(r),
r2 sin2 θk(r)]Ym

l (θ, φ), (5)

where (H0,H2, k) are functions to be determined by the Ein-
stein field equations and Ym

l are the spherical harmonics. With-
out any loss of generality, and due to the spherically symmetric
background, we work with m = 0 and constrain our analysis
to quadrupole deformations (l = 2).

The fluid perturbations are assumed to be given by (Penner
et al. 2011)

ξr =
W(r)

r
P2; ξθ =

V(r)
r2

dP2

dθ
; ξφ = 0, (6)

where P2(θ) ∝ Y0
2 is the Legendre polynomial of second order

and W(r) and V(r) are functions to be determined by the field
equations and conservation laws. Covariant components of the
above perturbations are obtained readily through ξa = gabξ

b.
Note that there is no time dependence in the terms of Eq. (6),
meaning that only ut is different from zero. From the usual
condition uaua = −1 and Eq. (5), we then get

ut = u0
t + δut = e

ν
2

(
1 −

1
2

H0P2

)
, (7)

where δ denotes the Eulerian perturbation.
We also take the baryon number conservation into account. It

geometrically implies that the Lagrangian change of the baryon
number density is given by (Penner et al. 2011; Andersson et al.
2019)

∆n = δn + ξan;a = −
n
2
Pab∆gab, (8)

where the semicolon (; ) represents the covariant derivative
(Landau & Lifshitz 1975) and Pab B gab + uaub is the projec-
tor onto the orthogonal directions of the four-velocity ua. In
addition,

∆gcd = hcd + ξc;d + ξd;c

= hcd + ∂cξd + ∂dξc − 2Γa
cdξa, (9)

with Γa
cd the usual Christoffel symbols (connection coefficients)

(Landau & Lifshitz 1975). The Eulerian change of the energy
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momentum tensor of the fluid is assumed to be given by (Pen-
ner et al. 2011; Andersson et al. 2019)

δT b
a = (δT b

a )perf + δΠb
a, (10)

where the first term is the perturbation of the en-
ergy momentum tensor of the perfect-fluid [(δT b

a )perf =

diag[−δε(r), δp(r), δp(r), δp(r)]P2(θ)] and the second term rep-
resents the contribution from shear stresses (Penner et al. 2011;
Andersson et al. 2019)

δΠb
a = −µ̃

(
Pc

aP
db −

1
3
Pb

aP
cd
)
∆gcd, (11)

with µ̃ the shear modulus. We note that this geometric for-
malism assumes perturbations with respect to an unstrained
background configuration. For further details, see Andersson
et al. (2019) and references therein.

As stressed by Penner et al. (2011), one can check that for
time-independent perturbations δΠb

t = 0. From Eqs. (11), (9)
and (8), it also follows that

δΠr
r B δΠ̃r

rP2 =
2µ̃P2

3r2 [r2(k −H2) + (4− rλ′)W − 2rW ′ − 6V],
(12)

where primes indicate radial derivatives. Also,

δΠθ
θ =

µ̃

3r2 [{−r2(k − H2) − (4 − rλ′)W + 2rW ′}P2

+ 6V(2P2 − 1)], (13)

δΠ
φ
φ =

µ̃

3r2 [{−r2(k−H2)− (4− rλ′)W + 2rW ′}P2 + 6V], (14)

δΠθ
r B δΠ̃θ

r
dP2

dθ
= −

µ̃

r3

dP2

dθ
[eλW − 2V + rV ′]. (15)

As expected, from Eqs. (12)–(14), the trace of δΠa
b vanishes.

Following Penner et al. (2011), for future reference, we define

Tθ(r) B −2µ̃[eλW − 2V + rV ′] (16)

and

Tr(r) B
2
3
µ̃[r2(k − H2) + (4 − rλ′)W − 2rW ′ − 6V], (17)

related to the polar and radial components of the traction in the
star (Tabnb, where nb is the normal four-vector to a given hy-
persurface), respectively, which helps us to apply the relevant
boundary conditions.

Now we write down the Einstein equations relevant to our
analysis. When one subtracts the [θθ] component of the Ein-
stein equations from the [φφ] component, with the help of Eqs.
(13) and (14), it follows that

H2(r) = H0(r) + 32πµ̃V(r), (18)

confirming that solid stars spoil the equality between H2 and
H0 (Penner et al. 2011; Krüger et al. 2015), which holds for
perfect fluid stars (Hinderer 2008; Hinderer et al. 2010). The
[rθ] component of the Einstein equations tells us that

k′(r) =
8π
r

(4µ̃V − Tθ) + H′0 + H0ν
′ + 16πµ̃Vν′. (19)

The sum of [θθ] and [φφ] components, with the use of Eqs. (13),
(14), (18) and (19) and the background equations, leads to

δp =
Tr

2r2 +
e−λ

4r2 {Tθ[r(λ′ − ν′) − 2] − 16eλµ̃V − 2rT ′θ} +

+
e−λ

16πr
H0(λ′ + ν′), (20)

which determines the radial part of the Eulerian change of the
pressure. The [rr] component of the Einstein equations can
be simplified with Eqs. (18) and (19), and implies another
relation for k(r),

4eλk = H0[6eλ − 2 − r(λ′ + ν′) + (rν′)2] + +r2H′0ν
′ +

+ 8πeλ[8µ̃V − 3Tr + 2e−λµ̃r2V(ν′)2] −
− 4πTθ[2 + r(λ′ + ν′)] + 8πrT ′θ (21)

Another relevant equation is the trace of the Einstein equations.
By subtracting the [tt] component from [rr] + [θθ] + [φφ], one
gets

16πr2eλ(δε + 3δp) =− 2H0[2 − 8eλ + r(λ′ + 3ν′) − r2(ν′)2] − H′0r[4 − r(λ′ − ν′)] − 2r2H′′0 − 16πrTθν′ +

+ 32πµ̃V[r2(ν′)2 − 2r(λ′ + 2ν′) + 4eλ − 4] − 32πr2ν′(µ̃V)′, (22)

where we recall that δε = δε(r) is the radial part of the Eulerian
change of the energy density of the star. For completeness, the
[tt] component of the Einstein equations implies that

8πr2δε =−e−λr2k′′ − e−λ
(
3 −

1
2

rλ′
)

rk′ + 2k

+ e−λrH′2 +
[
3 + e−λ(1 − rλ′)

]
H2. (23)

Consistency with the case where perturbations have zero
frequency is only obtained when the NS EOS is barotropic
(Penner et al. 2011), that is, when p = p(ε), which results in

δε =

(
∂ε

∂p

)
δp ≡

1
c2

s
δp, (24)

where c2
s is the adiabatic speed of the sound.

From thermodynamical considerations, one can easily show
that (Penner et al. 2011)

∆ε ≡

(
δε +

W
rc2

s
p′

)
P2 = (p + ε)

∆n
n
. (25)

From Eqs. (5), (6), (8) and (9), it follows that

∆n =−
n

2r2

[
r2(H2 + 2k) + W(rλ′ + 2)

+ 2W ′r − 12V
]

P2. (26)

When the above equation is combined with Eqs. (24) and (25),
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one gets an additional equation for δp, namely,

δp =−c2
s

p + ε

2r2

[
r2(H2 + 2k) + W

(
rλ′ + 2 −

rν′

c2
s

)
+ 2W ′r − 12V

]
. (27)

Other equations, e.g. associated with the components of
(T a

b );a = 0, may also be deduced. They are the, usually not
obvious, consequence of the field equations, hence it is en-
lightening to write them down. From (T a

r );a = 0, it follows
that

δΠr
r

(
6
r

+ ν′
)
− (ε + p)H′0P2 + 2(δpP2 + δΠr

r)
′ +

(δp + δε)P2ν
′ − 12δΠ̃θ

r P2 + 2p′ + (p + ε)ν′ = 0. (28)

Consider now (T a
θ );a = 0, which implies that

2 µ̃[r2(H2 − k) + 18V + (rλ′ − 4)W + 2rW ′] +

3 r2
{

2δp − H0(p + ε) + e−λr2
[
2(δΠ̃θ

r)′ + δΠ̃θ
r

(
8
r
− λ′ + ν′

)]}
= 0. (29)

This equation reduces to δp = H0(ε + p)/2 when µ̃ = 0
(perfect-fluid case). It is in full agreement with Eq. (20) be-
cause 8πreλ(p + ε) = (λ′ + ν′). These equations will be useful
when we deduce the appropriate boundary conditions to the
perturbations (Sec. 4).

3. DENSE MATTER MODELS

In this first approach to hybrid stars, we assume a simplified
model that contains some aspects of more realistic systems. For
the quark phase, we mostly assume the Bag-like EOS Alford
et al. (2005), such that the grand thermodynamic potential is
given by

Ω = −p = −
3

4π2 a4µ
4 +

3
4π2 a2µ

2 + B, (30)

where µ ≡ (µu + µs + µd)/3 is the averaged quark chemical
potential, a4 is a constant accounting for the strong interac-
tions between quarks, a2 is another constant which takes into
account quark finite masses, quark pairing (color supercon-
ductivity), etc., and B is a third constant encompassing the
nontrivial vacuum of QCD (Alford et al. 2005). In the above
expression, we have ignored the grand thermodynamic po-
tential of electrons, Ωe, because it is usually much smaller
than that of the quarks (Pereira et al. 2018). From Eq. (30),
one can easily obtain other relevant thermodynamic quantities,
such as the baryon number density nb � −1/3(∂Ω/∂µ) and
ε = 3µnb − p. From the above relations, one could isolate µ
and get the following EOS (Pereira et al. 2018)

p(ε) = 1
3 (ε−4B)−

a2
2

12π2a4

1 +

√
1 +

16π2a4

a2
2

(ε − B)

 , (31)

which generalizes the usual bag model. For the hadronic phase
we consider either an effective polytropic EOS of the form
p = Kε2 (n = 1 of p = Kε1+ 1

n , K = 100 km2 (Penner et al.
2011)), or work with hybrid star models involving the SLy4
EOS (Douchin & Haensel 2001; Sieniawska et al. 2019) and a
relativistic mean field theory using the NL3 parameterization
(Pereira et al. 2018), connected to the BPS EOS (Baym et al.
1971) for lower densities. For the model containing the SLy4

EOS, following Sieniawska et al. (2019), we assume that it is
connected to a relativistic polytropic EOS (Tooper 1965) at
a baryon density n0 (freely chosen) with pressure p = κe f n

γ
b

and mass-energy density ε(nb) = p(nb)/(γ− 1) + nbmc2, where
κe f , γ and mb are free parameters (mb denoting the mass of the
baryon in that phase, and nb the baryon density), and extends
up to n1 (transition baryon density of choice), where there is a
sharp phase transition with a given energy density jump (free
parameter). For baryon densities larger than n1 we assume a
quark phase described by a simple approximation to the bag
model (Zdunik 2000), in the form of p = α(ε − ε∗), with α a
constant representing the square of the speed of sound, and
ε∗ a free parameter, denoting the density of the quark phase
at zero pressure. Continuity of the pressure and specification
of the energy density at the hadronic-quark interface uniquely
fixes ε∗. For the particular models we will use, we set γ = 4.5,
n1 = 0.335 fm−3 (above twice the nuclear saturation density,
εsat = 2.7 × 1014 g cm−3) and α = 1 to also investigate
properties of stiff quark matter (see Figure 9 of Sieniawska
et al. 2019 and the text therein for more details).

Table 1 summarizes the main aspects of the hybrid star mod-
els we use in this work. We assume the Maxwell construction
(constancy of the pressure and the chemical potential at a sharp
phase-splitting surface) (Bauswein et al. 2018) to determine
the aspects of background hybrid stars. For the HS1 and HS3
models, we take the density jump at the quark-hadronic phase
interface as a free parameter. In the case of the HS1 model
in particular, given a η B εq/εh − 1 (possible values for η are
in the range 0 − 2.0), where εq is the density at the top of the
quark phase and εh the density at the bottom of the hadronic
phase, from pq = ph at the quark-hadronic phase transition
surface one can easily find either εq or εh, which then allows
for the determination of the phase transition pressure and the
chemical potential. For the HS2 model, η is uniquely found by
the Maxwell construction.

TABLE 1
Main aspects of the hybrid star models used in our work.

Hybrid Quark Model η Hadronic

Model

 B
1
4

MeV , a4,
a

1
2
2

MeV

 ( εq
εh
− 1

)
Model

HS1 (137, 0.40, 100) free Polyt. (n=1)
HS2 (140, 0.55, 100) ≈ 0.45 BPS+NL3
HS3 Bag with c2

s = 1 free SLy4+Polyt. (γ = 4.5)

We take the quark phase to be a perfect fluid, even though
it is also theoretically possible that the quark phase is elastic
(Mannarelli et al. 2007). Unless otherwise stated, we assume
that the hadronic phase is elastic only for densities below
ε ≈ 2 × 1014 g cm−3 (≈ 2/3 of the nuclear saturation density)
(Ducoin et al. 2011). For the shear modulus, we take the simple
linear model (Penner et al. 2011; Chamel & Haensel 2008)

µ̃(r) = κp(r) + µ̃0, (32)

where κ and µ̃0 are given constants.
Naturally, our models (for the EOSs and the shear modu-

lus) are simplistic but they are expected to give us the main
aspects hybrid stars with elastic hadronic regions (solid crusts)
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should present, which could be used as input for more accu-
rate descriptions. We assume that the solid crust ends at the
density 107 g cm−3, where the envelope (or the ocean) of a NS
is supposed to start (Penner et al. 2011; Haensel et al. 2007).§

4. BOUNDARY CONDITIONS

In order to integrate the Einstein equations and obtain the
tidal deformations, one needs to impose appropriate boundary
conditions at the center, the liquid-elastic interfaces and the
surface of the star. We describe them here.

At the center of a hybrid star, we impose that all functions
are regular. In other words, we expand a given function F as
(Krüger et al. 2015)

F(r) = F0 +
1
2

F2r2 + O(r4), (33)

where the coefficients F0 and F2 are to be determined from
the field equations (the symmetry of the field equations render
first order terms null, Krüger et al. 2015). One also needs to
expand the background quantities ε, p, λ and ν in the same
fashion. One can always express second order corrections to
the background (F2 in Eq. 33) in terms of the solutions to
the TOV equations; for the explicit expressions, see Krüger
et al. (2015). Naturally, when working numerically, one could
directly find second order corrections to the background in
terms of their second derivatives. When zeroth and second
order coefficients to the perturbations are found, one has the
initial conditions to start the core integration.

For a liquid-elastic interface, boundary conditions could
be easily found from aspects of the extrinsic curvature. We
restrict ourselves to the case of no surface degrees of freedom
(continuity of the extrinsic curvature, see Poisson 2004). We
assume that a liquid-elastic interface is described by Ψ =
r − Rle − ξ

r = 0, where Rle is the background liquid-elastic
phase transition radius.¶ Standard calculations for the extrinsic
curvature (Ka

b , {a, b} = t, θ, ϕ) (Finn 1990; Gittins et al. 2020)
lead to the following nontrivial components at r = Rle:

δKt
t = −4e−

1
2 λ(Rle)P2

(
H′0 +

1
2

H2ν
′ −

W
r
ν′′ +

1
2

W
r
ν′λ′

)
r=Rle

(34)
and

δKθ
θ = δKφ

φ = −
4

R2
le

e−
1
2 λ(Rle)P2

(
rH2 − r2k′ + Wλ′

)
r=Rle

. (35)

The continuity of the extrinsic curvature implies the terms in
parenthesis in the above equations have null jumps. (Note that
the background components of the extrinsic curvature (Gittins
et al. 2020) are automatically continuous when the Maxwell
construction is assumed.) From Eq. (34), one readily finds that

[H′0]+
− = 8πeλ(Rle) W

Rle
[ε]+
− − 16πµ+V+ν′, (36)

where we have made use of [ν′′ − ν′λ′/2]+
− = 8πeλ[ε]+

− (see
e.g. Landau & Lifshitz 1975 for the precise expression for
ν′′ − ν′λ′/2) and Eq. (18). In addition, “+” (“-”) relates to the
bottom of an elastic phase (top of the liquid phase), which
implies that µ̃− = 0. The continuity of the induced metric at
r = Rle also leads to [W]+

− = 0 (see Gittins et al. 2020 for
further details). From Eq. (6), it follows that [ξr]+

− = 0. It
turns out the null discontinuity of Kθ

θ does not add a new jump
condition. This could be readily seen from Eqs. (19) and (36)
and the fact that [λ′]+

− = 8πreλ[ε]+
−.

The interface condition of other functions could be more
easily found when perturbation equations are promoted to
distributions.∗∗ For an alternative and equivalent results based
on the continuity of the induced metric and extrinsic curvature,
see (Gittins et al. 2020). Given that we have second derivatives
of H0 [see Eq. (22)], the promotion of the Einstein equations
to distributions would only make sense if the jump of H0
at Rle is null, i.e., [H0]+

− = 0. Eq. (28) then shows us that
[δp + p′W/r + δΠ̃r

r]
+
− = 0, which, from Eqs. (17) and (12),

implies that [Tr + r2δp + rW p′]+
− = 0. From Eq. (29), we have

that [δΠ̃r
θ]

+
− = 0, which, due to Eq. (16), leads to [Tθ]+

− = 0.
From the above jump conditions, one has [k]+

− = 0, as can be
easily seen from Eq. (19) when promoted to a distribution.

At the surface of the star (r = R) and outside it, the reasoning
of Hinderer (2008); Damour & Nagar (2009); Hinderer et al.
(2010) ensue. In other words, if H′0 is continuous at the star’s
surface, one can obtain the Love number k2 in terms of y ≡
RH′0(R)/H0(R) as (Hinderer 2008; Damour & Nagar 2009;
Hinderer et al. 2010; Penner et al. 2011)

k2 =
8C5(1 − 2C)2[2 + 2C(y − 1) − y]

5{2C[6 − 3y + 3C(5y − 8)] + 4C3[13 − 11y + C(3y − 2) + 2C2(1 + y)] + 3(1 − 2C)2[2 − y + 2C(y − 1)] ln(1 − 2C)}
, (37)

§ The density where the crust melts depends on the temperature (see, e.g.,
Gittins et al. 2020) and is believed to be in the range of 106 − 108 g cm−3 for
cold NSs (Haensel et al. 2007). The precise value of this density is not crucial
for tidal deformation calculations because the low density region of a star does
not have a significant impact on its quadrupole moment.
¶ If the density at the base of the hadronic phase is larger than the critical

density marking the onset of elasticity, then a hybrid star should have three
main (internal) interfaces: (i) one separating the top of the liquid quark phase
from the bottom of the liquid hadronic phase, (ii) another one between the
top of the liquid hadronic phase and the bottom of the solid crust and (iii)
a third one splitting the top of the solid crust from the bottom of the liquid
ocean. These phase-splitting surfaces are described in the same physical way
with regard to boundary conditions (continuity of the induced geometry and
extrinsic curvature; see Gittins et al. 2020). Therefore, in addition to a perfect

where C ≡ M/R is the compactness of the background hybrid
star. If H′0 is not continuous at the stellar surface, for instance
due to a density discontinuity or a non-zero shear modulus,
as in Eq. (36), then k2 also changes due to the discontinuity
of y (Damour & Nagar 2009; Hinderer et al. 2010). From k2,

fluid-perfect fluid (or liquid-liquid) phase transition, we just need to determine
the boundary conditions for perturbations at a liquid-elastic interface.
∗∗ For further details on distributions, see Poisson (2004). In summary, one

assumes that a physical quantity X(r) is decomposed as X = X−θ(Rt − r) +
X+θ(r − Rt), where Rt is the radius where a sharp phase transition takes place
and θ is the Heaviside (step) function. Boundary conditions are obtained by
collecting the Dirac delta terms in the equations.
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one can construct the physically relevant tidal deformation
Λ � 2/3(M/R)−5k2. We will focus mainly on this quantity for
the ease of comparison with the GW constraints.

We turn now to a simplification of boundary conditions at a
liquid-elastic interface. We recall that in this case, “+” (“-” )
relates to the elastic (liquid) phase. It is easy to show that the
condition [Tr + r2δp + rW p′]+

− = 0 implies

V+ =
1

16πµ̃+R2
leν
′2

[
4eλ{kle + 4πRleWle(p′− − p′+)} − R2

leH′+0 ν
′ + H0(2 + 2eλ{4πR2

le(p− + ε−)} − R2
leν
′2)

]
, (38)

with kle B k− (Eq. 21 evaluated at the top of the perfect-fluid
phase where µ̃ = 0) and W+ = W− B Wle. In this equation it is
tacit that ν′ ≡ ν′(Rle) and λ ≡ λ(Rle). The condition [Tθ]+

− = 0
and Eqs. (38) and (36) actually lead to an algebraic system of
equations to be solved for H′+0 and V+, for instance, and its not
difficult to show that its solution is

Wle = unconstrained,

V+ =
1
2

(
RleV ′+ + eλ(Rle)Wle

)
, (39)

H′+0 = H′−0 − 16πV+Rleµ̃
+ν′(Rle) +

8π
Rle

eλ(Rle)[ε]+
−Wle.

For the solid crust-liquid envelope interface (r = Rce), similarly
to Eq. (39), the relevant boundary conditions are:

T−r = R2
ce[δp]+

− + WceRce[p′]+
−,

T−θ = 0→ V− =
1
2

(
RceV ′− + eλ(Rce)Wce

)
, (40)

H′+0 = H′−0 + 16πV−Rceµ̃
−ν′(Rce) +

8π
Rce

eλ(Rce)[ε]+
−Wce,

k+ = k−,

where now the “-” (“+”) now stands for the top of the
solid crust (base of the ocean) and W+ = W− B Wce =
unconstrained. Given that k+, δp+ are related to a perfect
fluid, it is not difficult to show that the first, third and fourth
equations from Eq. (40) result in only one nontrivial condition
to be fulfilled.

In summary, we have two free parameters (e.g. V ′+ and
Wle) at the base of the solid crust fulfilling Eqs. (39) and
two constraints at the top of the solid crust, e.g., V− and H′−0 ,
compatible with Eqs. (40). Thus, the problem is well posed
and its solution is unique. For the ocean, the boundary condi-
tions for the perfect-fluid tidal deformation integrations are the
continuity of H0 at the crust-envelope interface and H′+0 from
Eq. (40). We assume in our calculations that the density jump
at the interface between the top of the crust and the base of
the envelope is negligible.†† The density jump at the interface
separating the perfect-fluid hadronic phase from the solid crust
is also taken as insignificant (Ushomirsky et al. 2000; Chamel
& Haensel 2008).

The constraints we have derived cover all sets of equations
one might want to integrate in the solid crust. In our cal-
culations, we choose to work with (k,H0,V,W). Due to the
re-scaling invariance of the equations, solutions for the per-
turbations should depend on an arbitrary amplitude which
†† The assumption of the approximate crust-envelope density continuity

along with the expected smallness of µ̃ at be top of the crust and the thin ocean
(. 0.1% of the star radius) imply that y(R) will in general deviate little from
y(Rce). Given that Λ depends non-linearly on y, the differences between Λ(R)
and Λ(Rce) will in general be even smaller. Thus, in this case, one could stop
tidal deformation integrations at the top of the crust.

naturally does not affect physical quantities like the Love num-
bers. Given that we have two arbitrary quantities at the base
of the solid crust (e.g. W and V ′) to be fixed by two boundary
conditions at the top of the crust, a shooting method should be
used to integrate the equations in the elastic region. After the
integration fulfilling all boundary conditions, one is just left to
evaluate Eq. (37).

For completeness, we note that the constraints in Eqs. (39)
(or Eqs. 40) are only meaningful if µ̃+ , 0 (µ̃− , 0). If this is
not the case, then boundary conditions valid for perfect-fluids
should be used. More specifically, the continuity of the radial
traction and the extrinsic curvature at a perfect fluid-perfect
fluid (liquid-liquid) interface (at r = Rll) imply that

Wll = −
[r(δp)ll]+

−

[p′0]+
−

=

[
H0r3

2(m + 4πr3 p)
e−λ

]
r=Rll

,

(H′+0 )ll = (H′−0 )ll + 8πeλ(Rll) Wll

Rll
[ε]+
−. (41)

We use this constraint on (H′0)ll for any tidal deformation cal-
culation involving liquid-liquid interfaces in hybrid stars. In
these cases, naturally, we solve the the perfect-fluid equation
for H0 as in Hinderer (2008).

5. RESULTS

In our analysis, we have taken κ = 1.5 × 10−2 and µ̃0 = 0
(physically, µ̃0 . 10−25cm−2). These parameters are reason-
able, given that shear moduli should be around 1% of the crust
pressure (Chamel & Haensel 2008; Cutler et al. 2003). As a
first cross-check of our equations, we have applied them to the
case investigated in Penner et al. (2011). We have worked with
the coupled system of equations for (H0, k,W,V) and applied
the standard 4th order Runge-Kutta method. The number of
steps used in the solid crust integration is 106, and we have kept
an accuracy of 12 significant digits (and a much higher preci-
sion). The values obtained for k2 in the case of elastic crusts is
smaller than the perfect fluid case, and relative changes were
10−6 − 10−3, one order of magnitude smaller than the results
quoted in Penner et al. (2011). This is in full agreement with
the approach of Gittins et al. (2020). We have varied the value
of µ̃ in the solid crust and have found that indeed the solution
to H0 converges to the perfect fluid case when shear stresses
go to zero. This shows that the system of equations we have
chosen does not present numerical instabilities.

We have solved the same system of equations for the models
presented in Table 1, taking some representative values for the
free parameters. Figure 1 shows some of the corresponding
M − R relations. We stress that the HS1 model is simply an
example of a hybrid EOS and has been used because it is
convenient for numerical checks and is expected to give us the
main results of the problem of tidal deformations of hybrid
stars with elastic crusts. We have chosen the HS1 parameters
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so that the largest masses of hybrid stars are above two solar
masses and the tidal deformations of 1.4 M� stars is smaller
than the upper limits found by LIGO/VIRGO (Abbott et al.
2017c, 2019b). The same has been done for the parameters of
the somewhat more realistic HS2 and HS3 models (see Table
1).‡‡ The masses marking the appearance of the quark phase
(the cusps of the M(R) relations) also vary, reaching larger
values for the HS3 EOSs (Sieniawska et al. 2019). In our
study, we focus on the cases where ∂M/∂εc > 0, with εc the
central density of a family of solutions for an EOS. We do not
enter into the details of the stability of hybrid stars with elastic
phases, but rather assume that the conditions valid for perfect
fluids are also valid here.

10 12 14 16
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R[km]

M
[M

⊙
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η=1.0, HS1

η=0.83, HS3

η=0.81, HS3

η=0.79, HS3

η=0.77, HS3

η=0.50, HS1

η=0.45, HS2

η=0.0, HS1

Fig. 1.— Mass-radius M(R) relations for the hybrid star models of Table 1
used in this work. The HS1 model is used as an example which is convenient
for numerical calculation checks and general aspects of the tidal deformations
of hybrid stars with solid crusts. The HS2 and HS3 models are somewhat
more realistic. From bottom to top of the M(R) thick curves (from red to
brown), we have chosen n0 = (0.235, 0.21, 0.185, 0.16) fm−3, respectively. All
models lead to different values of η ≡ εq/εh − 1 (see the text for details), as
shown for each curve. The same can be said regarding the critical masses (the
cusps of each curve) above which a quark phase appears. For all models, tidal
deformations of 1.4 M� perfect-fluid stars (with different η) are smaller than
≈ 650.

Figure 2 shows the expected relative tidal deformation
changes [(Λperf − Λsol)/Λperf] for 1.4M� hybrid stars
(Λ1.4

perf ≈ 640) with large quark phases (∼80% of the star’s

radius) and small elastic crusts (∼10% of R). We use the HS1
model for these calculations, given its flexibility with den-
sity jumps. Relative changes are very small, of the order of
10−3 − 10−2%. We find a weak dependence of the relative
tidal deformation change on the density discontinuity for val-
ues smaller than the critical density jump, above which the
whole hadronic phase is elastic. For the parameters chosen,
ηcrit ≈ 0.91. The sharp change at this density appears as
the boundary conditions for tidal perturbations are changed
due to the absence of a perfect fluid layer (of hadronic mat-
ter) separating the quark phase from the elastic crust. The
above-mentioned weak dependence is mostly due to the fact
that a density discontinuity is accompanied by a change of
radius and mass of the star, which almost counteracts the tidal
deformation changes.

Table 2 shows some consequences (all satisfying the condi-
tion ∂M/∂εc > 0) of the models of Table 1, for instance their

‡‡ The HS1 and HS3 EOSs are stiffer than the HS2 EOS, which allows us
to (roughly) estimate upper limits to the relative tidal deformation changes.

relative tidal deformation changes with respect to perfect-fluid
hybrid stars. We have assumed that the shear modulus of all
EOSs is given by Eq. (32) and we have taken κ and µ̃0 the
same as in the beginning of this section. We find that for all
models the relative tidal deformation changes are of order of
2 − 4% for solid hadronic phases larger than ∼60% of the
star’s radius. For the other cases, the changes are much smaller.
We conclude that, in addition to the EOS itself, relative tidal
deformation changes depend mostly on the sizes of the elastic
phases. As expected, (∆Λ/Λperf) decreases with the decrease
of the thickness of the elastic crust. We comment on aspects
of the last column of Table 2 in the following.
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Fig. 2.— Tidal deformations of 1.4 M� solid hybrid stars as a function of the
density jump (η) for the HS1 EOS. For different ηs, different central pressures
have been chosen to have the same mass. For the HS1 model, η ≈ 0.91
determines the critical density discontinuity above which the elastic crust
directly touches the quark phase. For lower density jumps, there is a hadronic
perfect-fluid layer separating the quark phase from the elastic hadronic phase.
We have assumed that the density is approximately continuous at the inter-
face separating the hadronic perfect-fluid from the hadronic elastic phase
(Ushomirsky et al. 2000; Chamel & Haensel 2008). This is the main reason
for the discontinuous behavior of the relative change of the tidal deformation
in this plot. For the model used, the quark phase covers a significant part of
the star. In this case, tidal deformation changes due to an elastic phase should
be small and around 10−3 − 10−2%.

Figure 3 shows some relative tidal deformation changes for
selected η of Table 2 as a function of the thickness of the elastic
hadronic phase. We find that (different) cubic fits (of the form
ax + bx2 + cx3) could describe (∆Λ/Λperf) as a function of

(∆Rsol
had/R) for all hybrid models. We note that the fits agree

with the expected condition that ∆Λ→ 0 when the thickness
of the elastic crust goes to zero. We have also found similar
dependencies of the relative tidal deformation change as a
function of (1/C)∆Rsol

had/R for each model, where we recall
that C is the compactness.

Table 2 also explores the cases where the elastic hadronic
phase comprises a significant portion of a hybrid star. In
order to consider this case, we have assumed a nonzero shear
modulus (around 1 − 2% of the local pressure) right from the
bottom of the hadronic phase. The results for the relative tidal
deformation changes are given in the last column of this table.
At this level these results are merely indicative, but they are
motivated by the presence of an elastic mixed phase in a hybrid
star (Sotani et al. 2013). In this case, we find that very different
models (for example the HS1, HS2 and HS3) roughly agree
with the “largest” relative tidal deformation changes, which are
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Fig. 3.— Relative tidal deformation changes as a function of the relative
thickness of the elastic hadronic phase for η = 0.45 and 0.77 of Table 2.
Cubic fits (ax + bx2 + cx3) describe well the relationship between relative tidal
deformation changes and ∆Rsol

had/R.

also around 3 − 4% when the solid hadronic region comprises
over 75% of the star’s radius.

When realistic shear moduli are considered, the results for
the tidal deformation changes might change. For instance, the
SLy4 shear modulus (Haskell et al. 2006; Sotani et al. 2007;
Zdunik et al. 2008) is around 1-5 times smaller than the one of
Eq. (32) in the range where the hadronic phase is elastic. This
means, roughly speaking, that similar changes are expected for
tidal deformation quantities we have calculated before. Indeed,
numerical calculations with the SLy4 shear modulus for all the
models of Table 1 lead to this level of decrease in (∆Λ/Λperf).
Therefore, relative tidal deformation changes of hybrid NSs
are not expected to be larger than 3 − 4% of their perfect-fluid
values.

5.1. Phase-splitting surface quantities
An interesting issue in hybrid stars is the possibility of in-

ducing, due to perturbations, surface quantities on the phase-
splitting interfaces (see, e.g., Pereira & Lugones 2019). Sur-
face quantities induced by perturbations could significantly
change the boundary conditions, which, in turn, may change
the tidal deformations of elastic stars. We show in this section,
nonetheless, that the Einstein equations for quasi-static per-
turbations do not allow the induction of surface quantities at
phase-splitting surfaces.

From the Darmois-Israel formalism (see, e.g., Pereira et al.
2014), we know that surface quantities are in general necessary
for the consistent match of two spacetimes, and are related to
the presence of a surface energy-momentum tensor S a

b of the
form (Pereira et al. 2014)

S a
b = −

1
8π

[Ka
b − δ

a
bK]+

−, (42)

where we recall that Ka
b is the extrinsic curvature and K =

Ka
a = Kabh̄ab (h̄ab is the induced metric on the hypersurface

splitting two given spacetimes) is its trace. From Eqs. (34)
and (35), it is easy to see that S a

b should be related to a perfect
fluid, so that one could write

S ab = (σ + P)uaub + Ph̄ab, (43)

where
σ = −

1
4π

[Kθ
θ ]+
− (44)

and

P =
1

8π
[Kt

t + Kθ
θ ]+
− =

1
8π

[Kt
t ]

+
− −

σ

2
. (45)

The physical reason for the perfect fluid nature of the sur-
face energy momentum tensor is the axial symmetry of the
spacetimes (perturbed core and crust).

Equation (19) allows us to easily find [k′]+
−, which, from

Eq. (44), relates [H′0]+
− to σ. The discontinuity of H′0, [H′0]+

−,
on the other hand, can be determined by Eqs. (45) and (34).
When one solves the associated equation, it follows that P = 0.
Since P is a monotonic function of σ in ordinary cases, we
have σ = 0, too. Thus, the intrinsic curvature components
should always be continuous at any phase-transition interface.

6. CONCLUDING REMARKS

We have investigated tidal deformations of hybrid stars with
elastic hadronic phases, building on previous works and ex-
tending them to the case of sharp phase transitions, which is
a possibility for hybrid stars. In the case of a shear modulus
around 1% of the hadronic pressure, stars with small elastic
hadronic phases (large perfect-fluid quark phases) lead to neg-
ligible changes in Λ. However, there are cases where the tidal
deformation changes with respect to perfect fluids could be as
large as 2 − 4%. These cases relate to elastic hadronic regions
larger than ∼60% of the stellar radius. This would imply, for
instance, small quark phases and configurations with large
enough density jumps at the interface separating the quark
phase from the hadronic phase, or even small quark phases
with lower phase transition pressures. One would expect these
cases to maximize the relative tidal deformation changes be-
cause they are exactly the ones where a solid phase would
comprise the largest fraction of the star.

Although '5% changes in the tidal deformability will be
difficult to register for current GW detectors, for signals emit-
ted from typical distances of 100 Mpc, the issue of detecting
elastic hadronic regions of stars may become relevant for fu-
ture detectors, such as the Einstein Telescope (Punturo et al.
2010). Indeed, in the recent review of the Einstein’s Telescope
science case (Maggiore et al. 2019), the expected increase of
sensitivity translates into more than one order of magnitude
larger values for the signal-to-noise. In the limit of high signal-
to-noise, Fisher-information matrix approximation suggests
that the errors on the measured quantities scale inversely pro-
portional to the signal-to-noise (Jiménez Forteza et al. 2018;
Chatziioannou et al. 2017; Vallisneri 2008). For example, for
a GW170817-like event observed by the Einstein Telescope,
the errors of the measured component mass-weighted tidal
deformability Λ̃ (equal to 300+420

−230 in the low-spin prior case,
Abbott et al. 2019b) would be sufficiently small to allow for
studies of the elastic properties.

We have also found that there is a weak dependence of the
tidal deformations of solid stars on density jumps. The reason
seems to be a competition between larger density discontinu-
ities and smaller masses (radii) for stars with a given central
density. However, a sudden change might appear whenever
there is not a layer of perfect fluid separating the quark phase
from the solid crust. This might happen when density jumps
are large or the critical density favoring dense matter to arrange
as a lattice is high enough. We recall that this critical density
is not known (it is EOS dependent), but it is believed to be
smaller than the nuclear saturation density (Ducoin et al. 2011).
This means that one might expect the presence of a layer of
hadronic perfect-fluid matter separating a quark phase from the
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elastic crust even in the case of sharp phase transitions. Thus,
from Figure 2, one would expect that relative tidal deformation

changes are very small for systems with large perfect-fluid
regions.

TABLE 2
Hybrid NS properties for the models of Table 1. Solid (elastic) phases start at 2 × 1014g cm−3 or at the base of the hadronic phase (related to the relative
tidal deformation changes of the last column) and end at 107 g cm−3 (for more explanation of the models, see the text). In our notation, ∆Λ B Λperf − Λsol.
The radius of the quark phase is denoted by Rquark whereas ∆Rsolhad B R − rε=2×1014 is the thickness of the elastic phase. For some η and the HS1, HS2 and
HS3 models, we have calculated relative tidal deformation changes for different masses (central densities, εc) in order to check their dependencies on other
quantities. For clarity, they are split by horizontal lines. All results for tidal deformations are related to µ̃ as in Eq. (32), with µ̃0 = 0 and κ = 1.5 × 10−2.

For the HS3 model, we have used the same parameters of Figure 1.

Hybrid η εc M Rquark R ∆Rsol
had/R Λperf ∆Λ/Λperf

(
∆Λ/Λperf

)
had

model (εsat) (M�) (km) (km) %
HS1 0.0 1.530 0.43 1.06 11.71 38.1 2.558×105 2.32×10−3 3.56×10−2

" 0.16 1.485 0.37 1.19 11.90 45.0 5.984×105 5.25×10−3 3.56×10−2

" 0.30 1.46 0.33 1.02 11.86 51.5 1.148×106 9.92×10−3 3.56×10−2

" 0.45 1.9 0.95 9.28 11.84 16.6 4444.43 9.84×10−5 3.59×10−3

" 0.45 2.2 1.27 10.36 12.30 12.0 1041.92 4.29×10−5 1.89×10−3

" 0.45 2.358 1.40 10.69 12.43 10.7 629.5 3.25×10−5 1.53×10−3

" 0.45 3.0 1.73 11.29 12.62 8.0 178.61 1.65×10−5 9.26×10−4

" 0.45 5.0 2.02 11.33 12.27 5.8 42.24 7.57×10−6 5.74×10−4

" 0.60 1.442 0.27 2.25 11.90 64.6 3.314×106 2.34×10−2 3.47×10−2

" 0.70 " 0.25 2.69 11.80 67.7 4.392×106 2.63×10−2 3.39×10−2

" 0.80 " 0.23 3.00 11.67 70.1 5.695×106 2.83×10−2 3.33×10−2

" 0.90 " 0.22 3.03 11.61 73.9 7.223×106 3.07×10−2 3.56×10−2

" 0.91 " 0.22 3.26 11.52 71.7 7.388×106 3.25×10−2 3.56×10−2

" 1.0 " 0.20 3.43 11.36 69.8 8.96×106 3.19×10−2 3.19×10−2

" 1.5 " 0.16 3.99 11.47 61.9 1.924×107 2.81×10−2 2.81×10−2

HS2 0.45 1.625 0.62 1.68 14.41 43.2 8.019×104 3.81×10−3 3.57×10−2

" 0.45 2.1 1.09 8.49 13.29 22.0 2593.44 3.30×10−4 1.13×10−2

" 0.45 2.483 1.40 9.7 13.24 16.3 643.21 1.30×10−4 6.46×10−3

" 0.45 3.1 1.69 10.43 13.13 12.5 196.28 6.86×10−5 4.03×10−3

" 0.45 5.1 1.98 10.68 12.55 9.0 45.282 3.36×10−5 2.42×10−3

HS3 0.77 3.925 1.12 2.71 12.32 14.1 1607.36 2.28×10−5 3.50×10−2

" 0.77 4.3 1.30 6.05 11.40 10.6 351.49 8.25×10−5 2.25×10−2

" 0.77 4.456 1.40 6.64 11.22 9.3 195.47 6.42×10−6 1.86×10−2

" 0.77 4.6 1.49 7.03 11.09 8.4 123.99 5.88×10−6 1.60×10−2

" 0.77 5.0 1.68 7.71 10.88 6.7 48.033 1.20×10−7 1.14×10−2

" 0.79 4.01 1.32 3.26 12.64 11.9 745.94 1.51×10−5 3.46×10−2

" 0.81 4.11 1.55 3.65 12.99 10.0 356.99 7.57×10−6 3.45×10−2

" 0.83 4.359 1.88 4.62 13.43 7.8 122.55 5.55×10−6 3.37×10−2

" 0.83 5.2 2.01 7.09 12.25 6.0 32.229 3.18×10−6 2.42×10−2

Hybrid stars where an elastic hadronic phase would start
right after the quark phase (and would extend until the ocean)
could also be seen as a simplistic model for a solid star with an
elastic mixed phase. Although we have not made any direct cal-
culation in this regard, our numerical integrations with nonzero
shear stresses right after the quark phase indicate that elastic
mixed phases could lead to non-negligible tidal deformation
changes (around 2−4% or even larger). One would expect this,
given that the shear modulus of a mixed phase might be much
larger than the crustal shear modulus, still roughly 1 − 2% of
the local pressure (Sotani et al. 2013). However, there is an im-
portant, though subtle, point in this case. In the presence of a
mixed phase, one would expect physical quantities such as the
energy density and shear modulus to be continuous anywhere
in the star. If one takes the quark phase as a perfect fluid, then
µ̃ should go continuously from zero to a nonzero value inside

the mixed phase. This would render equations ill-defined at the
quark-mixed phase interface since there are terms of the form
1/µ̃ in the perturbation equations. Clearly, the main source of
the problem is the perfect-fluid approximation. If one takes
the shear modulus to be small but finite, the tidal deformation
equations for the mixed phase would be well defined. We leave
this issue to be investigated elsewhere. In this case, boundary
conditions for the problem change, which could have a non-
negligible effect on tidal deformation changes when compared
to perfect fluids. It would also be of interest to investigate
the case of dynamical tides (see, e.g., Andersson & Pnigouras
2019b,a; Schmidt & Hinderer 2019 and references therein). Al-
though they would change tidal deformations by some percent
in the case of perfect fluids (Andersson & Pnigouras 2019b),
dynamical tides might have a larger impact on hybrid stars
with solid phases due to aspects of the fundamental mode.
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We have explicitly shown that surface degrees of freedom
cannot be induced on phase-splitting surfaces. This is expected
due to the assumption of no reactions around phase transitions
and the static nature of the problem. It implies that there would
be no way of significantly changing tidal deformations of
solid crusts from the results we have found when the Einstein
equations are taken into account. However, surface degrees
of freedom could play an important role in more exotic cases
with background degrees of freedom, such as boson stars or
gravstars (Johnson-McDaniel et al. 2018).

Our results suggest that when the accuracy of tidal defor-
mations is around 5%, even in the most conservative cases,
shear stresses should not be disregarded. In the worst case,
they would be an important part of systematic uncertainties

for some models. It would be of interest to advance the anal-
ysis proposed here for more realistic hybrid EOS in order to
single out particularities lost in our idealized approach. Most
importantly, one should also calculate consistently the shear
modulus for a given EOS.
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