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Predicting the Validity of Expert Judgments in Assessing
the Impact of Risk Mitigation Through Failure Prevention
and Correction

Mario P. Brito 1,∗ and Ian G. J. Dawson 2

ABSTRACT: Operational risk management of autonomous vehicles in extreme environ-
ments is heavily dependent on expert judgments and, in particular, judgments of the
likelihood that a failure mitigation action, via correction and prevention, will annul the con-
sequences of a specific fault. However, extant research has not examined the reliability of
experts in estimating the probability of failure mitigation. For systems operations in extreme
environments, the probability of failure mitigation is taken as a proxy of the probability of a
fault not reoccurring. Using a priori expert judgments for an autonomous underwater vehicle
mission in the Arctic and a posteriori mission field data, we subsequently developed a gener-
alized linear model that enabled us to investigate this relationship. We found that the prob-
ability of failure mitigation alone cannot be used as a proxy for the probability of fault not
reoccurring. We conclude that it is also essential to include the effort to implement the fail-
ure mitigation when estimating the probability of fault not reoccurring. The effort is the time
taken by a person (measured in person-months) to execute the task required to implement
the fault correction action. We show that once a modicum of operational data is obtained, it
is possible to define a generalized linear logistic model to estimate the probability a fault not
reoccurring. We discuss how our findings are important to all autonomous vehicle operations
and how similar operations can benefit from revising expert judgments of risk mitigation to
take account of the effort required to reduce key risks.

KEY WORDS: Autonomous unmanned vehicles; expert judgment; extreme environments; risk mitiga-
tion; risk perception

1. INTRODUCTION

In recent decades there has been a rapid growth
in the development and application of autonomous
intelligent vehicles across a variety of contexts and
for a range of purposes (e.g., remote repairs in
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space, military reconnaissance, driverless cars, ma-
terial handling systems in factories and laborato-
ries, etc.) (Bishop, 2000; Cox & Wilfong, 2012).
This growth has been particularly evident in the use
of autonomous technologies to explore remote, un-
charted, or extreme underwater territories for sci-
entific research (Bellingham & Rajan, 2007; Jenk-
ins et al., 2010; Singh et al., 2004). For example,
autonomous underwater vehicles (AUVs) are now
regularly used by oceanographers, marine biologists,
and climate scientists to explore underneath large
ice shelfs and fast-moving sea ice in the Arctic and
Antarctic regions (Banks, Brandon, & Garthwaite,
2006; Dowdeswell et al., 2008).

1928 0272-4332/20/0100-1928$22.00/1
C© 2020 The Authors. Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

https://orcid.org/0000-0002-1779-4535
https://orcid.org/0000-0003-0555-9682
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Frisa.13539&domain=pdf&date_stamp=2020-06-19


Predicting the Validity of Expert Judgments 1929

AUVs are mechatronic systems that operate
without any physical connection to a ship or hu-
man and, once launched, independently navigate un-
derwater following a preplanned mission profile and
typically transmit data to an onshore laboratory for
real-time analysis (McPhail, 2009; Yoerger, Jakuba,
Bradley, & Bingham, 2007). These missions are in-
herently risky due to the potential for technological
failure and the uncertainty surrounding the physi-
cal conditions that the AUVs will encounter (Brito
& Griffiths, 2016). The loss of an AUV can prove
extremely costly due to the expense of developing,
building, deploying, and operating the vehicles. Fur-
thermore, AUV loss may lead to substantial delays
in, or even the termination of, large-scale, long-term
international research projects (Brito, Griffiths, &
Challenor, 2010).

State-of-the-art risk analysis and management
processes have been instrumental in facilitating suc-
cessful AUV missions (Brito et al., 2010, 2012). How-
ever, due to the novel nature of AUV technology and
the unique characteristics of each mission, risk analy-
sis tends to be heavily reliant on expert judgments to
compensate for the absence of past data about mis-
sion success rates and the factors that might influence
the estimated likelihood of failure (Brito et al., 2012).
Expert judgments have been used to effectively re-
duce risk in the field of AUV operations. For exam-
ple, a study by Brito et al. (2012) showed that the
use of expert judgments regarding the effectiveness
of mission failure mitigation measures for an AUV
mission in the Arctic led to a 24% reduction in the
probability of losing the vehicle for a single mission
of 336 km (an estimated reduction of this size can
make the difference between whether a mission is ex-
ecuted or aborted). Therefore, it is important to as-
sess the reliability of experts in assessing the prob-
ability of failure mitigation. Failure mitigation and
probability of failure mitigation are terms that are
used several times in this article. Failure mitigation is
a set actions to correct failures that have occurred in
the past. The probability of failure mitigation is the
likelihood of these corrective actions annulling the
failure. A probability of failure mitigation of 1 means
that the experts expect the mitigation action to annul
the failure. Whereas, a probability of failure mitiga-
tion of 0 means that experts expect that the mitiga-
tion actions will not annul the failure.

Previous research in expert judgment elicitation
has focused on the reliability of experts to estimate
the likelihood of a catastrophic event taking place.
To our knowledge, the reliability of experts in esti-

mating the probability of failure mitigation has not
been addressed before. Some notable limitations of
the extant research in this area are that it is not clear
to what extent (i) experts weight each mitigation vari-
able when assessing their composite influence on the
overall probability of failure mitigation and (ii) the
accuracy of expert judgments about the effectiveness
of overall failure mitigation is determined by their
assessment of the effectiveness of each mitigation
action. This article addresses this knowledge gap.
Specifically, we present a generalized linear model
(GLM) that enables us to use past AUV mission data
to retrospectively assess the accuracy of expert esti-
mates of the probability of failure mitigation. More-
over, we use GLM to identify which actions/variables
(knowledge, past successes, effort needed to mitigate
fault, etc.) most strongly predict the accuracy of the
expert’s probability of mitigation estimates. Our find-
ings provide important insights for autonomous vehi-
cle operations and allow us to suggest how such op-
erations can benefit from revising expert judgments
to increase the probability of successful missions.

1.1. AUV Failure Mitigation

AUV failures are typically caused by a sin-
gle faulty component, human error, or a combi-
nation/sequence of minor faults that, individually,
would not normally thwart the mission (Brito et al.,
2010). A “fault” (e.g., engine breakdown, data trans-
mission failure, etc.) in an AUV mission is deemed
to be any AUV-specific operational error that results
in a failure to achieve the mission plan. Risk mitiga-
tion for an AUV deployment under ice is achieved
by reducing the probability of a given fault occurring.
A fault can be mitigated by redesigning the faulty
system or component, by correcting the fault, or by
not triggering that system/component during deploy-
ment. Failure mitigation is the process of annulling
the consequences of fault by redesigning the system
to correct the fault or by designing a fail-safe or fault-
tolerant system (Leveson & Harvey, 1983). Failure
mitigation is generally regarded as the most impor-
tant strategy for managing catastrophic risks in com-
plex technology failures (Subramanian, Elliott, Vish-
nuvajjala, Tsai, & Mojdehbakhsh, 1996).

Unlike a rover deployment on planet Mars,
when an AUV is deployed underneath an ice shelf
it is not possible to communicate with the vehicle.
Consequently, risk reduction in AUV missions
cannot be achieved by implementing traditional
risk management strategies such as contingency



1930 Brito and Dawson

planning or by designing flexibilities into the system.
The implementation of a contingency plan would
imply that an adverse outcome had occurred and a
predetermined course of action could be taken to
continue to the mission. For example, if an AUV
was lost under ice a contingency might be to deploy
a second AUV. However, in an unexplored and in-
accessible environment, it is generally impossible to
determine with any certainty the cause of AUV loss
because the most important sources of evidence for
the accident investigation are stored in the vehicle
itself. Hence, in such a scenario, the deployment
of another vehicle could lead to another AUV
loss caused by the same systematic fault. Similarly,
adding flexibility into the mission (e.g., varying the
objectives, exploration area, measures, etc.) would
also be ineffective because this would probably
result in a failure to obtain the required data sample
and, thus, failure to meet the mission objectives.

In practice, the risk of AUV loss is typically
managed by running monitoring distance trials be-
fore the actual mission or via failure mitigation pro-
cesses. Monitoring distance is a concept analogous to
“burn in time,” whereby the AUV is monitored un-
der benign conditions for a given period before it is
committed to the mission. In this article, we focus
on failure mitigation, via fault correction and pre-
vention, because this approach to managing opera-
tional risk management has previously demonstrated
the most effective outcomes in practice (Brito et al.,
2010, 2012).

Most high reliability organizations (HROs)
have developed systems for taking into account
fault mitigation (Feather & Cornford, 2003). For
example, Feather and Cornford present a hazard
management framework, developed by the national
aeronautical and space administration (NASA) to
monitor and update the likelihood of design failure
modes occurring. The system, denoted as defect
detection and prevention (DDP), is a probabilistic
model. The key assumption is that each fault may
have a number of prevention, detection, and alle-
viation (PACTs) methods (i.e., fault mitigations).
The expected efficiency of each PACT in mitigating
the fault is assessed by a group of specialized field
experts. The DDP system considers that multiple
PACTs may have an adverse or positive effect on a
failure mode because PACTs are not independent
and, therefore, may introduce a fault in the system.
The probability model aggregates all these effects
to quantify the probability of fault mitigation. As
described below, similar methods have been used in
AUV fault mitigation.

In 2010, the international submarine engineer-
ing (ISE) Explorer AUV conducted a record break-
ing mission, travelling a total of 10,000 km under-
neath fast sea ice (Kaminski et al., 2010). The risk
analysis for the ISE Explorer missions included the
quantification of the impact of risk mitigation actions
(Brito et al., 2012). Specifically, the probability that
a given mitigation action would eliminate a fault was
estimated by experts during a risk assessment work-
shop. The AUV risk profile used for estimating the
probability of AUV loss for a given distance was first
created using the expert’s subjective judgments. It
was then revised based on the probability of failure
mitigation estimated by experts. The subsequent risk
analysis for ISE Explorer considered the risk pro-
file with and without mitigation. Six missions were
later conducted underneath ice in 2011: missions 51
(30.51 km), 52 (55.8 km), 53 (131.22 km), 54 (336.24
km), 55 (325.98 km), and 56 (324.45 km), with fail-
ure mitigation leading to increased risk reductions
(cf. without mitigation) of 11, 13, 16, 24, 16, and 16%,
respectively, for each of the six missions.

Failure mitigation is an integral part of engineer-
ing risk management. Previous research has found
a positive relationship between the extent to which
the causes of a failure are understood and the subse-
quent probability of mitigating that failure in future
AUV missions (Subramanian et al., 1996). The prob-
ability of failure mitigation is assumed to be a proxy
for the probability of fault not reoccurring. Yet, there
is no evidence to relate the probability of failure mit-
igation with the probability of fault not reoccurring.
Moreover, the extent to which each of these factors
influences the probability of failure mitigation has
not been quantitatively assessed. This is important
for two reasons. First current risk models can be up-
dated using the probability of mitigation agreed by
the experts. If other variables are deemed also rele-
vant then these should also be included in the model
(Brito et al., 2012; Hill, Thomas, & Allen, 2000). Sec-
ond, it is important to have a means to assess expert
judgment elicitations regarding the effectiveness of
the fault correction and prevention because this can
be the main contributor to risk reduction.

1.2. Expert Judgment Elicitation

Expert judgment elicitation is a discipline in risk
analysis which typically seeks to obtain estimates
of risk and uncertainty from experts when such in-
formation is needed to augment historical/statistical
data or when historical/statistical data is unavailable
(Merkhofer, 1987; Otway & von Winterfeldt, 1992).
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Reviews of expert judgment elicitations indicate that
although previous elicitations have been applied with
good intentions, they have often had methodolog-
ical short comings that have led to judgmental bi-
ases and overconfidence (Kastenberg, 1987; Kouts,
1987; Wright, Bolger, & Rowe, 2002). For exam-
ple, Keeney and Winterfeldt (1991) identified that (i)
elicitation processes often lacked input from a het-
erogeneous range of experts, (ii) the experts were
rarely trained in assessing probabilities, (iii) experts
were not given sufficient time to assimilate the rele-
vant information, and (iv) elicitors neglected to use
state-of-the-art methods for eliciting the judgments
(Keeney & Winterfeldt, 1991). Relatedly, Bolger and
Wright (1994) highlighted that care is needed when
determining whether someone is or is not “an ex-
pert.” Specifically, they stated that an expert should
not be selected based on his/her social, professional,
or political status, but based on the extent to which
he/she can provide a judgment that is both ecolog-
ically valid (i.e., the judgment task is one that the
individual regularly performs in his/her professional
role) and learnable (i.e., the judgment task typically
leads to some form of feedback on the correctness or
reliability of the judgment and that feedback can be
utilized in similar future tasks). Hence, care is needed
in both the selection of experts and in the selection
and application of methods to elicit the judgments.

Formal processes can address many of the poten-
tial shortcomings associated with expert judgment
elicitations. Such processes have been advocated
by academic researchers (Kynn, 2008; Tversky &
Kahneman, 1974) and employed by several HROs
and government institutions (e.g., see Bonano, Hora,
Keeney, & Winterfeldt, 1990; Goossens, Cooke,
Hale, & Rodić-Wiersma, 2008). These formal pro-
cesses typically involve the introduction of elicitation
techniques that aim to minimize biases and use struc-
tured methods to combine and then aggregate the
judgments mathematically or behaviorally (mathe-
matical aggregation implies that expert judgments
are elicited individually and then combined using
analytical functions) (Morris, 1977; O’Hagan et al.,
2006; Otway & von Winterfeldt, 1992; Phillips &
Wisbey, 1993).

1.3. A Static Risk Model for AUVs Using Expert
Judgments

Risk models based on expert judgments have al-
ready been successfully developed for AUV deploy-
ments. For example, Brito et al. (2010) conducted a

formal expert judgment elicitation to build the risk
profile for the Autosub3 AUV missions under the
Pine Island glacier in Antarctica. On this occasion,
eight experts, who included senior AUV engineers
and AUV users based in the United States, took
part in a judgment elicitation process that was closely
based on the elicitation methodology proposed by
Otway and Winterfeldt (1992). Specifically, the ex-
perts were individually asked to estimate the prob-
ability that each fault in the Autosub3 fault history
would lead to the loss of Autosub3 in four differ-
ent operating environments: open water, coastal wa-
ter, sea ice, and ice shelf. In addition to the likeli-
hood that a fault would lead to loss, each expert was
also asked to state his/her confidence in the assess-
ment in the form of a weight which could vary from
1 (not confident) to 5 (very confident). The judg-
ments were aggregated using both the linear and the
log mathematical aggregation methods. A similar ap-
proach was used successfully by Griffiths, Brito, Rob-
bins, and Moline (2009) to build a risk model for two
Remus 100 AUVs. On this occasion, instead of pro-
viding a single-point estimate, each expert provided
the parameters of a distribution for the likelihood of
fault leading to loss. The parameters provided were
the lower bound, upper bound, lower quartile, up-
per quartile, and median. Here the analysis did not
take into account the probability of failure mitiga-
tion. However, a risk model that takes into account
the probability of failure mitigation is presented in
Brito et al. (2012). The risk model considered in pre-
vious research comprised the duplet <Fi, Li>, where
Fi stands for fault i and Li is the likelihood of fault i
leading to AUV loss. Details on how to incorporate
the probability of failure mitigation in the risk model
are presented in the following section.

1.4. Accounting for the Probability of Failure
Mitigation

In 2012, the model proposed by Brito et al.
(2010) was further developed to include the proba-
bility of failure mitigation (Brito et al., 2012). Ana-
lytically, the probability of fault leading to loss given
a mitigation action is quantified using Equation 1.
Brito et al. (2010) define the probability of a fail-
ure i being mitigated as PMi . This probability is es-
timated by experts. A PMi of 0 is assigned if there is
no confidence that the mitigation action will elimi-
nate the failure, and a value of 1 is assigned if there
is certainty that the mitigation strategy will remove
the failure. For each failure, the experts were asked
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to agree on a single figure for the probability of fail-
ure being mitigated given the mitigation actions de-
fined by the project team (PMi ). The probability of
AUV loss given a fault i, Li, in environment E and
the fault mitigation Mi is calculated using Equation 1.
Fi stands for fault i.

P (Li |Fi , E, Mi )) = P (Li |Fi , E)) (1 − PMi ) (1)

This model holds no knowledge of subsequent
missions.

For each mission carried out by an AUV, the
data obtained can be used for assessing the observed
(i.e., objective) probability of fault reoccurring. If a
large number of missions have been conducted, ex-
pert judgments of risk and risk mitigation effective-
ness could then be replaced by the observed data.
However, in reality, it is generally the case that data
from only a few missions, at most, are available
for each AUV. Hence, the ideal scenario would be
to devise a method of ascertaining if expert judg-
ments are representative of the observed probability
of fault reoccurring when only a small sample of past
AUV mission data is available. Such a method would
not only be highly beneficial for AUV operations,
but also for any new technology where something is
known about both the operational risk and risk miti-
gation effectiveness. Such a method would overcome
situations where there is a lack of observed data to
ascertain whether or not expert judgments are repre-
sentative of future observations. How we addressed
the need for such a method is discussed in the follow-
ing section.

2. A NOVEL METHOD TO ASSESS THE
IMPACT OF PROBABILITY OF
MITIGATION

GLMs (McCullagh & Nelder, 1989) neatly syn-
thesize likelihood-based approaches to regression
analysis. There are several extensions of this theory
involving models with random terms in the linear
predictor. In this article, a GLM is employed to es-
timate how the dependent variable, (i.e., probability
of fault not reoccurring) is influenced by several in-
dependent (predictor) variables.

For a given AUV mission, the fault reoccurrence
can be seen as a binomial trial whereby the mission
either succeeds or fails. Therefore, a causal model
can be defined where the probability of fault reoc-
curring would depend on both (i) an a priori assess-
ments of the probability of fault being mitigated and
(ii) experts perception of the failure mitigation pro-

cess during the subsequent observed missions. There-
fore, the probability of a fault not reoccurring can be
synthesized in the GLM presented in Equation 2:

logit (pi ) = α0 +
m∑

j=1

α j Xj,i + bi (2)

ri = Binomial(pi , ni )

bi ∼ Normal(0, τ )

where logit is:

logit(pi ) = log
(

pi

1 − pi

)
(3)

The pi is the dependent variable and Xij are inde-
pendent variables. In order to test the effectiveness
of fault mitigation, pi is the probability of a fault not
reoccurring. Each mission is seen as a trial for the
fault mitigation action. The noise in the observations
is measured by bi. This variable is assumed to be nor-
mally distributed with standard deviation τ . The pos-
terior is modeled with a binomial distribution, where
ni is the total number of possible outcomes and ri

is the number of favorable outcomes (i.e., fault did
not emerge). The maximum likelihood expression for
the GLM is automatically generated by a Bayesian
inference statistical software tools, such as Open-
Bugs. The inference is conducted using the Markov
Chain Monte Carlo (MCMC) method (Breslow &
Clayton, 1993). The MCMC inference is a stochas-
tic Bayesian inference which estimates the properties
of the marginal probabilities based on samples of the
conditional probability function. The stopping crite-
rion is defined by the MCMC error. Best practice is
to stop the simulation when the MCMC error is 5%
of the standard deviation (Breslow & Clayton, 1993).

2.1. ISE Explorer Case Study

We started by using the behavioral risk model
created by Brito et al. (2012) for the ISE Explorer
AUV. We used this model because the probability
of failure mitigation is provided for each fault. The
information missing from Brito et al. (2012) is with
respect to the variables that may influence the prob-
ability of fault not reoccurring. This risk model was
developed using a behavioral risk elicitation process
denoted as SHELF (Oakley & O’Hagan, 2010). Five
experts participated in the expert risk judgment elici-
tation, which took place in two parts. The first part
took place in Halifax, Canada, on January 26–29,
2010 and the second part took place in Vancouver,
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Canada, in 2011. Five experts were selected because
ISE Explorer is an AUV developed by ISE Ltd. The
number of individuals with knowledge on this vehicle
is extremely small. The experts selected comprised
the most experienced users and developers of the ve-
hicle. It was important to have a balance between
knowledge of the vehicle and knowledge of Arctic
operations. All selected experts had conducted sev-
eral missions in the Arctic and had previously pro-
vided probability judgments for AUV missions risk
assessments.

For the elicitation process that took place in Hal-
ifax, the experts received training in probabilistic in-
ference and statistics and then provided judgments
via the SHELF expert judgment elicitation approach
(O’Hagan et al., 2006). The SHELF (Oakley &
O’Hagan, 2010) process was developed by Sheffield
University as a behavioral approach to eliciting ex-
pert judgments. Distinct features of SHELF are that
experts are specifically encouraged to provide proba-
bility distributions, instead of a single probability as-
sessment, and are expected to agree on the final as-
sessment. In the first round of the elicitation, experts
agree on the lower and upper bound of the proba-
bility assessment. Then individually, experts define
their uncertainty about the assessment by specify-
ing a distribution. This distribution is specified using
the median, lower quantile, and upper quartile. Each
distribution is then plotted for all experts to exam-
ine and the reasons underpinning a given distribution
are discussed. Finally, the experts agree on the val-
ues for the median, lower quartile, and upper quartile
for the distribution that represents the groups view.
This process was adopted for the ISE Explorer to as-
sess the probability of each fault leading to loss in the
target environment. Following the completion of the
risk assessment for each fault, the experts were asked
to assess the probability that each mitigation action
would annul the respective fault. Following a series
of test trials of the ISE Explorer in benign environ-
ments, 54 faults were identified by the engineers and
then assessed by an expert panel.

In June 2011, ISE explorer conducted three mis-
sions under fast moving ice in Greenland. The total
travel distance was 10,000 km. The second part of the
expert judgment elicitation that took place in Van-
couver followed this second AUV campaign in the
Arctic and had two key aims. The first was to update
the risk model in light of the 32 new faults that had
emerged on the ISE Explorer (named B05), and the
second aim was to validate the approach adopted for
risk assessment.

2.2. Preliminary Data

Our aim was to model mitigation at a greater
level of granularity. Specifically, we extended the
previous work in this field by Brito et al. (2010, 2012)
by assessing the extent to which expert risk mitiga-
tion judgments could reduce the estimated risk of
mission failure for an AUV. Moreover, we also ex-
amined the extent to which expert judgments about
the effectiveness of overall failure mitigation is deter-
mined by the expert’s assessment of the effectiveness
of each mitigation action.

The data for our study was collected at the work-
shop held in Vancouver, British Columbia, from July
21–23, 2011. At this workshop, the expert panel was
asked to visit the assessments provided by the panel
in Halifax in 2010 for the probability of failure miti-
gation. The expert group used in the first elicitation
was the same as that used in the second elicitation,
with one difference being that one expert from the
first workshop was unable to attend the second work-
shop and, therefore, was replaced by another expert
from defense research & development Canada. This
expert had been an observer at the first workshop
and received training at both workshops. For each
of the 43 mitigation actions implemented following
the 2010 workshop, the experts were asked to answer
questions in relation to the faults that occurred dur-
ing six subsequent operational deployments:

� Builder’s sea trials: 8 September to 12 October
2009

� Sea acceptance trails: 29 September to 30
September 2009

� Development trials: homing and positioning: 16
November to 4 December 2009; 11 December
2008 to 22 January 2010: 14 February 2010 to 28
February 2010

� Mission Testing: 2 February 2010 to 12 March
2010

The experts answered the following eight ques-
tions (question codes shown in brackets after each
question):

(1) Did the fault turn out to be understood?
(UND)

(2) Was the mitigation method implemented as
described in the workshop? (IMP)

(3) Was a different mitigation strategy imple-
mented? (OIT)

(4) Was the implementation mitigation strategy
tested? (MTE)
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(5) Did the mitigation prove robust in the field?
(ROB)

(6) What was the effort taken to mitigate the
fault? (EFF)

(7) Was the effort as expected? (EEP)
(8) Was the cost of implementing the mitigation as

expected? (CEP)

Subramanian et al.’s (1996) analysis of patterns
of fault mitigation in safety critical software systems
identified effort and knowledge as key factors in the
implementation of the fault mitigation. Questions 1,
5, 6, 7, and 8 attempted to capture the influence of
these factors. Questions 2–5 attempted to establish
whether or not the mitigation action discussed at the
workshop was implement and whether or not the
mitigation action proved robust in the field. The ex-
perts’ agreed (mean) answers to these questions are
presented in Table I.

The failure data after the workshops was col-
lected from the operations of two identical vehicles
B05 and B06. These vehicles were operated by the
same team. Table II presents a summary of the mis-
sions conducted after the expert judgment elicitation
conducted in Halifax, January 26–29, 2010.

3. ANALYSIS AND RESULTS

We conducted the analysis in two stages. First,
we attempted to test if it was possible to fit a GLM
to all variables considered by the experts to de-
termine if they are significant in the probability of
fault not reoccurring; this is presented in section 3.1.
Our collinearity analysis and our proposed reduced
model are presented in section 3.2.

3.1. Preliminary Analysis

Subramanian et al.’s (Subramanian et al., 1996)
analysis of patterns of fault mitigation in safety criti-
cal software systems identified knowledge and effort
as key factors in the implementation of the fault mit-
igation. Hence, in the first stage of our analysis, we
tested the proposition that the probability of fault
not reoccurring would depend on knowledge–related
factors (i.e., probability of mitigation [PMIT] and un-
derstanding of the fault mitigation action [UND]),
and effort-related factors (i.e., whether the mitiga-
tion strategy was tested [TES] and effort needed to
implement the mitigation action [EFF]). The vari-
able CEP had strong positive association with EEP.
Consequently, we used only EEP in the analysis. The

logit model, capturing these variables, is presented in
Equation 4.

logit (pi ) = α0 + α1PMIT + α2UND + α3IMP

+ α4OIT + α5MTE + α6ROB + α7EFF

+ α8EEP + bi (4)

This model was implemented in OpenBugs soft-
ware and used MCMC inference to estimate the pro-
portion coefficients as depicted in Equation 4. The
results for the mean, standard deviation (SD), 5%
quantile, median, 95% quantile, and the MCMC er-
ror are presented in the Table III.

The results showed that UND, OIT, MTE, and
ROB were not significant in the estimation of the
probability of failure not reoccurring. The results
also showed that it was not possible to obtain a sig-
nificant intercept. Collinearity analysis was required
to assess whether or not some variables in this model
were linearly related and, therefore, whether their ef-
fect was not significant in the estimation of the prob-
ability of a fault not reoccurring. The correlations
between variables are presented in Table IV. There
was a correlation between UND and ROB, with a
Pearson’s coefficient of 0.632 (p < 0.005). Other no-
table Pearson’s coefficients are presented. For exam-
ple, the coefficients between UND and PMIT and
between UND and IMP were 0.4545 and 0.605, re-
spectively (p < 0.005). Also, there was a correlation
between ROB and UND, with a coefficient of 0.635
(p < 0.005) and between ROB and MTE with a co-
efficient of 0.565 (p < 0.005). Notably, there was a
correlation between OIT and IMP, with a coefficient
of 0.419 (p < 0.005).

This correlation was of interest because it
showed that even amongst variables deemed signif-
icant (PMIT, IMP, EFF, and EEP) for the logistic
GLM presented in Table III there was potential for
multicollinearity. Nevertheless, we elected to explore
the results for a reduced model comprising these four
variables, which is presented in Equation 5:

logit (pi ) = α1 PMIT + α3IMP

+ α7EFF + α8EEP + bi (5)

Note that pi and bi are defined as presented in
Equations 2 and 3. The results obtained using this
model are presented in Table V.

The results obtained for the reduced model pre-
sented in Equation 5 showed that both IMP and EEP
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Table II. Mission Summary Data Since the Expert Judgment Elicitation Workshop Conducted in Halifax, on January 26—29, 2010 Where
the Probability of Failure Mitigation was Elicited for 54 Faults

Mission Vehicle Location Date
Duration (Hours [h]
and Minutes [min]) Faults

1 B05 Arctic survey 4–5th April 2010 5 h 39 min 42 (7), 44 (7), 46 (5)
2 B05 Arctic survey 7th April 2010 10 h 20 min
3 B05 Arctic survey 8–9th April 2010 24 h 18 min 54 (8)
4 B05 Arctic survey 12–14th April 2010 62 h 16 min
5 B05 Arctic survey 16–18th April 2010 60 h 22 min
6 B05 Arctic survey 19– 22nd April 2010 60 h 5min
7 B05 Vancouver trials 17th February 2010 52 min 1 (17), 42 (20), 44 (20), 46 (22)
8 B05 Vancouver trials 18th February 2011 35 min
9 B05 Vancouver trials 22nd February 2011 2 h 38 min 54 (24)

10 B05 Bedford Basin trials 14th June 2011 3 h 8 m
11 B05 Bedford Basin trials 15th June 2011 3 h
12 B06 Vancouver trials 28th of February 2011 1 h 46 min
13 B06 Vancouver trials 1st of March 2011 2 h 43 min 46 (24), 42 (35), 44 (35)
14 B06 Vancouver trials 4th of March 2011 1 h 17 min
15 B06 Bedford Basin trials 17th of March 2011 51 min
16 B06 Bedford Basin trials 18th of March 2011 20 h 18 min
17 B06 Bedford Basin trials 19th of March 2011 14 h 53 min
18 B06 Bedford Basin trials 20th of March 2011 6 h 35 min
19 B06 Bedford Basin trials 21st of March 2011 2 h 33 min
20 B06 Bedford Basin trials 22nd of March 2011 1 h 9 min

The last column presents the fault reference that has reoccurred in from the data set considered by the experts as in presented in Brito et al.
(2012) outside the brackets. The fault number of the fault reoccurrence is presented in the brackets.

Table III. Generic Linear Model Fitted to Explain the Probability of Fault Not Reoccurring based on the Probability of Fault Mitigation
(PMIT), Understanding (UND), Whether or Not the Fault Mitigation Agreed Was Implemented (IMP), Whether or Not a Different

Mitigation Strategy Was Implemented (OIT), Whether or Not the Mitigation Action Was Tested (MTE), if the Mitigation Proved Robust
In the Field (ROB), the Effort Taken to Mitigate the Fault (EFF), and Whether or Not the Effort Was As Expected (EEP)

Variable Mean SD 5% Median 95% MCMC Error MCMC Error/SD

α0 2.871 2.502 −1.752 2.997 6.908 0.1194 0.0477
α1 (PMIT) −267 199.3 −652.2 −232.6 −5.708 9.643 0.0484
α2 (UND) 511.7 699 −557.7 460.5 1731 32.84 0.0470
α3 (IMP) −502.7 375.6 −1229 −437.7 −10.53 18.16 0.0483
α4(OIT) 447.9 754.9 −783.3 432.2 1682 35.28 0.0467
α5(MTE) 0.8072 4.293 −4.03 0.1709 8.416 0.2256 0.0526
α6(ROB) 551.2 739.9 −658.7 548.3 1779 34.43 0.0465
α7 (EFF) 132.1 98.83 2.735 115 323.2 4.777 0.0483
α8 (EEP) −690.8 440.4 −1491 −650.8 −11.67 21.34 0.0485

The simulation was run for 100,000 samples to give a mcmc error of approximately 5% of the standard deviation (SD).

are not significant in the calculation of the probability
of failure not reoccurring.

Based on the results presented by the GLM, the
collinearity analysis, and analysis of the proportional
coefficients, we rejected the hypothesis that for AUV
missions under ice, the probability of fault not reoc-
curring could be estimated based on all the variables
proposed in section 2.2.

An important finding was that the probability of
failure not reoccurring was positively correlated with

the probability of failure mitigation provided by the
experts. Brito and Griffiths (2018) showed that ex-
perts overestimate the probability of failure mitiga-
tion. To our knowledge, there is no existing literature
exploring this issue, which is particularly important
for expert judgment elicitation. The results indicate
that a potential reason for this is because the experts
did not take into account the effort required to
implement the failure mitigation in their assessments
for the probability of failure mitigation. The reduced
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Table IV. Correlation Analysis Between All Variables Presented In Equation 4

Correlations PMIT UND IMP OIT MTE ROB EFF EEP

PMIT Pearson correlation 1 0.454
**

0.291 0.203 0.394
**

0.408
** −0.290 −0.075

Sig. (2-tailed) 0.002 0.052 0.180 0.007 0.005 0.053 0.624
UND Pearson correlation 0.454

**
1 0.605

** −0.125 0.497
**

0.632
** −0.312

* −0.222
Sig. (2-tailed) 0.002 0.000 0.413 0.001 0.000 0.037 0.143

IMP Pearson correlation 0.291 0.605
**

1 −0.419
**

0.467
**

0.339
* −0.207 −0.150

Sig. (2-tailed) 0.052 0.000 0.004 0.001 0.023 0.173 0.325
OIT Pearson correlation 0.203 −0.125 −0.419

**
1 0.195 0.200 0.085 0.300

*

Sig. (2-tailed) 0.180 0.413 0.004 0.199 0.189 0.578 0.045
MTE Pearson correlation 0.394

**
0.497

**
0.467

**
0.195 1 0.565

** −0.201 0.031
Sig. (2-tailed) 0.007 0.001 0.001 0.199 0.000 0.186 0.840

ROB Pearson correlation 0.408
**

0.632
**

0.339
*

0.200 0.565
**

1 −0.233 0.016
Sig. (2-tailed) 0.005 0.000 0.023 0.189 0.000 0.124 0.919

EFF Pearson correlation −0.290 −0.312
* −0.207 0.085 −0.201 −0.233 1 0.385

**

Sig. (2-tailed) 0.053 0.037 0.173 0.578 0.186 0.124 0.009
EEP Pearson correlation −0.075 −0.222 −0.150 0.300

*
0.031 0.016 0.385

**
1

Sig. (2-tailed) 0.624 0.143 0.325 0.045 0.840 0.919 0.009

**Correlation is significant at the 0.01 level (2-tailed).
*Correlation is significant at the 0.05 level (2-tailed).
The Pearson coefficient for each combination of variables, followed by the p value. the number of data points, n, is 45.

Table V. Generic Linear Model Fitted to Explain the Probability of Fault Not Reoccurring Based on the Probability of Fault Mitigation
(PMIT), Whether or Not the Fault Mitigation Agreed Was Implemented (IMP), the Effort Taken to Mitigate the Fault (EFF), and

Whether or Not the Effort Was As Expected (EEP)

Variable Mean SD 5% Median 95%
MCMC
Error

MCMC
Error/SD

α1 (PMIT) 11.2 8.42 2.93 8.42 31.82 0.457 0.0543
α3 (IMP) −1.10 5.64 −13.2 0.0808 5.64 0.295 0.0522
α7 (EFF) 1.30 1.17 0.291 0.944 3.52 0.0609 0.0520
α8 (EEP) −1.91 6.07 −10.57 −2.01 9.36 0.316 0.0520

The simulation was run for 100,000 samples to give a MCMC error of approximately 5% of the standard deviation (SD).

model that attempts to capture the effect of both the
probability of failure mitigation and of the effort for
implementing it is presented in the following section.

3.2. Probability of Mitigation Model

Based on the analysis presented in the previous
section, we were able to reduce the model proposed
in Equation 4. This was achieved using a step-wise
reversed regression. The reduced model is presented
below in Equation 6:

logit (pi ) = α1 PMIT + α7EFF + bi (6)

Results presented in Table VI showed that it was
possible to define a regression model for estimat-
ing the probability of fault not reoccurring, which
took into account the probability of failure mitigation

agreed by the experts and the effort in implementing
the mitigation action.

The Pearson’s correlation coefficient between
PMIT and EFF was −0.290 (p < 0.053). There was no
linear relationship between these two variables. The
scatter plot showing proportional coefficients values
of α1 and α7 is presented in Fig. 1. This supported the
argument that there was not a relationship between
PMIT and EFF because the correlation between the
two proportional coefficients was -0.03266.

4. DISCUSSION

Risk analysis of autonomous systems deploy-
ment in extreme environments is highly dependent
on the assessment provided by experts. Our re-
sults showed that expert judgments alone were not
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Table VI. Generic Linear Model Fitted to ISE’s Explorer Failure Mitigation Data to Explain the Probability of Fault Reoccurring Based
On the Probability Of Fault Mitigation Agreed By the Experts (PMIT) and Effort (EFF)

Variable Mean SD 5% Median 95% MCMC Error MCMC Error/SD

α1 (PMIT) 6.67 3.27 3.23 5.98 13.1 0.174 0.0532
α2 (EFF) 0.865 0.687 0.241 0.686 2.13 0.0370 0.0538

The simulation was run for 60,000 samples to give an MCMC error of approximately 5% of the standard deviation (SD).

Fig 1. Scatter plot of the proportional coefficients of the general-
ized linear model presented in Equation 6.

effective at estimating the probability of a fault not
reoccurring. The probability of fault not reoccurring
was dependent on both the probability of failure mit-
igation agreed by the experts and the effort taken to
implement the fault mitigation action. This insight is
important because in such risk analyses it is often as-
sumed that the probability of mitigation agreed by
the experts is a static estimate and a proxy for the
probability of failure not reoccurring (Brito et al.,
2012; Brito, Griffiths, & Mowlem, 2012). Our results
showed that these expert estimates can be updated
using subsequent operational data. Specifically, for
the two dependent variables (PMIT and EFF), we
found that the probability of failure mitigation was
more significant than the effort alone. Hence, the
probability of mitigation estimated by experts can
be used as a proxy for calculating the probability
of a fault not reoccurring based on an assessment
of the intended mitigation action. Expert judgment
elicitation is applied in many domains but, to our
knowledge, this is the first comprehensive study that
has attempted to validate expert judgments in this
operational context and using this novel modeling
technique.

The successful deployment of critical systems in
extreme environments depends on effective risk mit-
igation. However, the novel nature of these systems
often means that there is a lack of past data regard-
ing the factors that determine whether a mission is
successful or unsuccessful. Consequently, managers,
engineers, and scientists are often forced to rely on
expert subjective judgements about specific risks and
effective risk management actions. This practice is
now adopted in many contexts. Given the potential
for variation in the extent to which expert judgments
on the probability of risk mitigation are reliable, it
is important to assess the effectiveness of such judg-
ments, even when only a small set of operational data
is available. We achieved this by using a GLM tech-
nique that estimates the probability of fault not re-
occurrence in light of the subsequent operation and
the prior expert estimate on the probability of fail-
ure mitigation. Previous research has found that the
probability of failure mitigation agreed by experts
can contribute to reducing the risk of AUV loss by
up to 24%; a reduction high enough to determine
whether a mission is accepted or aborted. However,
our analysis showed that the probability of fault re-
occurrence is not only dependent on the probabil-
ity of failure mitigation agreed by the experts, but
also on the effort required to implement failure mit-
igation actions. This finding suggested that current
approaches that are used for updating systems or
missions risk (Brito & Griffiths, 2018) should better
take into account the effort to implement the failure
mitigation action in the estimation of the fault reoc-
currence instead of only using the probability of fail-
ure mitigation agreed by the experts. Since effort is a
significant variable in the estimation of the probabil-
ity of fault not reoccurring, ignoring this variable can
lead to an underestimation of the probability of fault
not reoccurring.

There are number of ways in which effort can
have such an impact on systemic and operational
risk. For example, tight project delivery schedules of-
ten lead to pressures on time and resources that can
substantially influence the amount of effort that is
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invested into risk mitigation actions. This can lead
to “quick fixes” which can decrease reliability by not
correcting the root cause for failure. From this per-
spective, the failure of experts to take into account
the effort taken to implement the mitigation presents
a variation of the “planning fallacy” observed in
project duration estimation (Jørgensen, 2004). The
planning fallacy is the tendency for individuals to
continue to overestimate their own future perfor-
mance in spite of evidence that they were overly
optimistic in past estimates (Kahneman & Tversky,
1979). This fallacy may have been evident in our
study because less effort than required was put into
the failure mitigation actions. This also illustrates the
benefits of “unpacking” an elicitation to help experts
better understand and estimate the relevant compo-
nents (Hill et al., 2000). Therefore, it may have been
beneficial to change the elicitation so that it decom-
posed the mitigation implementation task into its re-
lated subtasks.

A reduction in the effort would lead to a reduc-
tion in the probability of fault not reoccurring. In
other words, effort is linked with the quality of the
task, but with fault correction this is not the case.
Hence, an increase in effort can lead to an increase
in the quality of the task carried out by those respon-
sible for risk mitigation and, consequently, to an in-
crease in the probability of a failure not reoccurring.

Our findings are important for several reasons.
First, research has shown that, following a series
of subsequent successes, organizations tend to “fine
tune” risk management processes in order to exploit
the opportunity to increase operational and financial
efficiencies. However, this can reduce the probability
of success to such an extent that it can have catas-
trophic consequences. For example, such fine tuning
was reported to be one of the key factors that led to
the NASA Challenger disaster in 1986 (Starbuck &
Milliken, 1988). By contrast, the approach we have
demonstrated here allows engineers to refine the risk
model in order to develop a more accurate model of
risk and, therefore, to avoid authorizing a risky mis-
sion or to cancel a mission with an acceptable risk
level.

Second, the technique directly and pragmatically
addresses the question of “how good are expert judg-
ments?” This is a question faced by many researchers
who facilitate and use expert judgment elicitations.
One could argue that if experts were perfect, the
number of variables that could determine success or
failure could be reduced to an absolute minimum.
The probability of fault reoccurring would then, for

example, only depend on the probability of failure
mitigation as agreed by the experts. Yet, our results
show that to estimate the probability of a fault re-
occurring, several variables must be considered, as
must the effort to mitigate the risk. For some risk as-
sessments, experts are not asked to assess both the
probability of a hazard leading to catastrophic event
and the probability of the mitigation actions being
effective in reducing the likelihood of the hazard
occurring (Brito et al., 2010). Here, in order to esti-
mate the probability of a catastrophic event, our ex-
perts had to estimate the a priori risk and then build
a mental model of the effectiveness of any poten-
tial hazard mitigation action. Our analysis shows that
when doing this, experts should pay greater atten-
tion to the effort required to implement the mitiga-
tion action. This is particularly important in scenar-
ios where there are several faults to mitigate (which,
as in present case study, is a common occurrence) be-
cause the effort to mitigate these faults can become
substantial. This can result in a failure to implement
the mitigation action and, consequently, decrease
the reliability of autonomous systems (Feather &
Cornford, 2003). Our results suggest that “effort”
is underweighted in expert probability estimates of
risk mitigation in autonomous vehicle missions. This
is potentially the case for other novel technologies
with high levels of operational and systemic risk and,
therefore, future similar projects should explore this
problem in detail.

There has been a significant amount of research
on expert judgments validation (Colson & Cooke,
2017). In risk assessment, the term cross-validation
is used to assess experts’ judgment reliability with
respect to a number of seed variables, where in a
group of seed variables some seed variables are used
to form a training set and the remaining seed vari-
ables are used to form a test set (Eggstaff, Mazzuchi,
& Sarkani, 2014). Validation of expert judgments
have also been conducted to estimate asset residual
life (Wang & Zhang, 2008), project task duration
(Hill et al., 2000), and to forecast product demand
(Alvarado-Valencia, Barrero, Önkal, & Dennerlein,
2017). To our knowledge, there is currently no for-
malized mechanism for individuals and organizations
to revisit and evaluate the probability of mitigation
once this has been assessed. The method proposed
in this paper allows experts to validate expert judg-
ments with respect to mitigation actions. Specifically,
the technique verifies the accuracy of the probability
of failure mitigation and then uses that data to
further refine the accuracy of the risk model. Hence,
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our technique for analyzing the accuracy of expert
probability judgments could be utilized by project
designers, engineers, scientists, and operators across
a range of domains to better manage the risk of
failure.

The central importance of risk mitigation and
monitoring is commonly highlighted in risk manage-
ment standards like that published by the institute
of risk management (IRM, 2002). Our methodology
provides a reliable means for retrospectively assess-
ing expert estimates of the probability of mitigation.
Moreover, our analysis shows that the experts in our
case study would have needed to retune their assess-
ments to take into account the required risk mitiga-
tion effort because their subjective assessments alone
were not sufficient to accurately estimate the proba-
bility of specific faults reoccurring.

Researchers in other subject areas have con-
cluded that the ideal number of experts for fore-
casting should be between four and five (Libby &
Blashfield, 1978). In our study we did not attempt to
quantify if the number of experts had an influence
on the agreed judgment. We selected five experts
because this has typically been accepted as good
practice and, at the same time, it allowed us to cover
all areas of expertise while reducing intercorrelation
between experts (Jørgensen, 2004). Furthermore,
although it is widely accepted that a group of experts
cannot out-perform the best expert in the group
(Clemen, 1989), the challenge can then become how
to identify who is the best expert. In this study, we
did not attempt to identify who was the best expert
because we elicited the agreed judgment for the
probability of failure mitigation and not individual
judgments.

The SHELF expert judgment elicitation was con-
ducted to obtain the probability of fault leading to
AUV loss. Other group elicitation processes (e.g.
DELPHI) could have been used to obtain the data
required for this type of study. In this study, we did
not attempt to quantify the impact of the expert judg-
ment elicitation method on the reliability of experts’
judgment for the probability of failure mitigation.
Hence, future research could explore if group size
and the type of expert judgment elicitation method
have an impact on the reliability of probability of fail-
ure mitigation judgment.

We found that our sample of experts tended to
underestimate the risks. This tendency might be ex-
plained by over confidence that stems from, opti-
mism bias and confirmation bias. Optimism bias is
a belief commonly held by individuals that they or

something they control is less likely to experience a
negative event (Weinstein, 1980).Confirmation bias
is tendency for individuals to interpret, recall, or fa-
vor information that confirms their existing beliefs,
while neglecting or ignoring information that contra-
dicts these beliefs (Nickerson, 1998).

Future studies could specifically set out to test
the potential for such overconfidence to lead to un-
derestimations of risk in expert assessments of risk
mitigation actions. If such bias were evident in expert
judgments, researchers could evaluate the effective-
ness of various methods (e.g., decomposition, fault
trees) that have previously been found to reduce such
bias (Fischhoff, Slovic, & Lichtenstein, 1978; Hora,
Dodd, & Hora, 1993).

5. CONCLUSION

Autonomous underwater vehicles provide a
means to explore uncharted and extreme environ-
ments, and the risk assessment for these missions
is inevitably subject to epistemic uncertainty. The
quantification of risk of a catastrophic event is, there-
fore, only possible by resorting to expert judgments
and, in some fortunate cases, the analysis of small
amounts of data. Nonetheless, such technology gives
researchers a unique opportunity to test the feasibil-
ity of using expert subjective judgments to better as-
sess and mitigate risk. In other domains, such as the
nuclear industry, expert judgments have often been
used to evaluate risk, but it has not always been pos-
sible to assess the effectiveness of these judgments
(see Bonano et al., 1990).

In this article, we have focused on the effective-
ness of expert judgments regarding the probability
of failure mitigation. While we have identified that
expert risk judgments are relevant to understand-
ing the probability of failure reoccurrence, we also
found that the effort needed to mitigate faults is an
important consideration. Furthermore, we have iden-
tified that multiple linear regression models can be
defined to estimate the probability of failure reoccur-
rence and that this does not appear to have been con-
sidered in existing literature. It is possible that these
multiple linear regression models could be applied to
any other novel technologies and domains in which
there is only a modicum of historical data and where
there is limited technical knowledge about the oper-
ational performance of autonomous devices in real-
world conditions.
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