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Abstract. The purpose of this study is to develop a new automated system to
classify susceptibility weighted images (SWI) obtained to evaluate neonatal hy-
poxic-ischaemic injury, by detecting and analyzing ridges within these images.
SW images can depict abnormal cerebral venous contrast as a consequence of
abnormal blood flow, perfusion and thus oxygenation in babies with HIE. In this
research, a dataset of SWI-MRI images, acquired from 42 infants with HIE dur-
ing the neonatal period, features are obtained based on ridge analysis of SW im-
ages including the width of blood vessels, the change in intensity of the veins’
pixels in comparison with neighboring pixels, the length of blood vessels and
Hessian eigenvalues for ridges are extracted. Normalized histogram parameters
in the single or combined features are used to classify SWIs by kNN and random
forest classifiers. The mean and standard deviation of the classification accura-
cies are derived by randomly selecting 11 datasets ten times from those with nor-
mal neurological outcome (n=31) at age 24 months and those with abnormal neu-
rological outcome (n=11), to avoids classification biases due to any imbalanced
data. The feature vectors containing width, intensity, length and eigenvalue show
a promising classification accuracy of 78.67% =+ 2.58%. The features derived
from the ridges of the blood vessels have a good discriminative power for pre-
diction of neurological outcome in infants with neonatal HIE. We also employ
Support Vector Regression (SVR) to predict the scores of motor and cognitive
outcomes assessed 24 months after the birth. Our mean relative errors for cogni-
tive and motor outcome scores are 0.11340.13 and 0.10940.067 respectively.
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1 Introduction

Hypoxic-ischaemic encephalopathy (HIE) as a consequence of perinatal asphyxia, is an
important cause of perinatal death and neurodevelopmental abnormality in neonates
worldwide [1]. There are around 0.2% infants affected by HIE in developed countries.
And 20 and 50 percent of asphyxiated newborns show hypoxic-ischemic encephalopa-
thy, which die in the neonatal period. As many as 25 percent of survivors show perma-
nent neuropsychological disorders. Early diagnosis and intervention can improve the
prognosis of HIE and reduce the occurrence of sequelae [3]. Magnetic resonance image
(MRI) is an important tool for the assessment of hypoxic-ischaemic injury and for aid-
ing early prediction of neurodevelopmental outcomes [4].

Susceptibility weighted imaging (SWI) can significantly increase the sensitivity and
specificity of the diagnosis of neurological diseases in children [5]. The technique em-
ploys a 3D T2* weighted sequence with high spatial resolution and flow compensation
[6]. This sequence is very sensitive to the detection of blood oxygenation level changes
within the venous vasculature, due to the increased magnetic susceptibility of deoxy-
genated blood. It is thus useful in detecting these changes in relation to hypoxia or
ischemia in the brain [7]. Therefore, it is a promising sequence, which, when used in
conjunction with conventional T1-weighted (w) and T2-w images, as well as Diffusion
Weighted Imaging (DWI) [8-9], could improve the predictive value of neonatal MRI
in HIE. In [10], a machine learning tool is developed to predict outcomes for neonatal
HIE patients by building their Apparent Diffusion Coefficient (ADC) map measure-
ments. In [11], the set of Hessian eigenvalues of the ridges in the SWIs is used to cor-
rectly diagnose infants for HIE. They were divided into two categories based on the
radiological report of the scan [12] -10 healthy infants and 48 infants with HIE, and the
best classification accuracy was reported in [11] to be 91.83%. In [13], an extended
three-dimensional local binary patterns (LBP) is developed to distinguish the oxygen-
ated images of three-dimensional SW images of infants with HIE, thought to be related
to the oxygenation levels of the blood — a possible marker of hypoxic ischemic injury.
A total of 17 individuals with their SWIs is considered in [13] where seven of them are
affected by HIE. The best classification accuracy reported in [13] is 89.9%. However,
there are two issues related to the classification accuracies presented in [11] [13]. 1)
The classification accuracies are calculated in [11] and [13] by using Kitamura scores
evaluated by radiologists. 2) The data in these studies is unbalanced. Therefore, the
accuracies reported in these works are somewhat biased.

In this paper, we use a balanced dataset of neonatal SWI MR images and employ the
neurological outcomes of patients at the age of 24 months as the outcome measure. We
therefore present an automated HIE prognosis system, by using four feature vectors:
histograms of the width, intensity, length and the largest eigenvalue of Hessian of ves-
sels detected as ridges to predict neurological outcomes. A ridge detection method is
used for vessel detection and the vessels are segmented in the ridge images to remove
undesirable segmented noise and nonvascular segments. We manually segment 5 slices
as ground truth to inspect the error in vessel segmentation. Pixels on the Canny images
of original SWI and detected ridges are employed to obtain the width, intensity, length
and the largest Hessian eigenvalue. The histograms of these four features are calculated



for each dataset as feature vectors and SWIs are classified by these parameters from
these histograms. Cognitive and motor developments of patients at age 24 months could
be assessed by Bayley Scales, which result in a scaled score that can be used as a con-
tinuous variable to make regression model to predict the scores measured for the pa-
tients. We use Support Vector Regression (SVR) to predict the cognitive and motor
scores of infants from four feature vectors. This paper is structured as follows: The
methods we have used are described in section 3. Our numerical analysis and results
are presented in section 4. The analysis and results of our regression model are detailed
in section 5 and finally we draw conclusions in section 6.

2 Ethics:

We use 42 data sets of infants with neonatal HIE. All infants born at GA > 36+6 weeks
who underwent hypothermia treatment are scanned on a 1.5 T Siemens Symphony MRI
scanner (median 7.8 [range 1-34] postnatal days), including Axial proton density (PD),
T1-weighted, T2-weighted, turbo inversion recovery (IR), DWI and SWI. Pulse se-
quence parameters for SWI is left handed system, flow compensated, spoiled gradient
echo (FLASH), TR/TE/a = 50 ms /40 ms /12° - long TE, voxel size = 0.9 X0.9%2
mm 3, bandwidth = 70 Hz/pixel.

We have been granted permission to use the clinical scans for this dataset (HRA and
Health and Care Research Wales (HCRW); IRAS ID 279072; REC reference
20/HRA/0260 as well as NRES Committee London - City & East; IRAS ID 143392;
REC reference 13/L.0O/1948; Protocol number 1). All infants have neurological assess-
ment at age 24 months (outcome: normal neurology or abnormal neurology i.e. Cere-
bral Palsy, 11 infants (26.2%) have Cerebral Palsy and 31 (73.8%) have normal neuro-
logical outcome). Some of infants are assessed cognitive and motor developments by
Bayley Scales as scaled scores at age 24 months, which result in a scaled score. (29
infants have cognitive scores, 28 have motor scores and the remaining infants have
neither cognitive scores nor motor scores).

3 Methods

3.1 Active Contour Model

Susceptibility-weighted images are very sensitive to the detection of vascular extrane-
ous blood products and hypoxic ischemia [11]. We used an active contour model to
segment the brain and to remove the background from the SW images to enable us to
focus more on the blood vessels in brain [14] as shown in Figure 2(b).

3.2 Ridge Detection

Since the SW images we used are two-dimensional slices, we applied zero-crossing to
find ridges of vessels in SW images. First, scale-space representation can separate out



information effectively. Image I(x,y; o) can be obtained by convolving the image
I(x,y) with a Gaussian kernel G (x, y; o) of variance ¢ to reduce the noise:

I(x,y;0) = I(x,y) * G(x,y;0) (1

Let us denote I(x,y) to be the SW image after segmenting the brain such as the one
shown in Figure 2(b) by using active contours. The first derivative of the image I(x, y)
has a zero-crossing point that corresponds to the ridge. We can set a threshold value to
remove the influence of noise. The center lines in brain which is non-vascular are re-
moved by Hough Transform.

3.3 Ridge Segmentation

Vessel segmentation is a significant step after ridge detection. The ridge map image
shown in Figure 2(d) is a binary image in which 1’s (white pixels) represent ridges.
Ridge maps are used in the connected component labelling algorithms [15-16] for ridge
segmentation to label the white pixels (objects) in the binary image so that each indi-
vidual connected region is assigned a label. We choose a 3 X3 window for to check 8-
connectivity, in which there are eight connected pixels around each pixel, so that these
pixels have to share edge or vertex.

Before ridge segmentation, we need to detect the bifurcation and end points. Bifur-
cation points are the points in which one vessel splits into two vessels, and end points
are the points in which a ridge (vessel) ends. Bifurcation points can be found by con-
volving the template shown in Figure 1(a) with a ridge map such as the one shown in
Figure 2(d) and looking for maxima. Similarly end points can be detected by and look-
ing for extrema in an image obtained by convolving a ridge map with all rotations of
the template shown in Figure 1(b). Bifurcation points should be deleted in order to sep-
arate crossing vessels and end points are retained in the lists of pixels representing seg-
mented ridges. Each blood vessel is therefore labeled differently and given a different
colour as shown in Figure 2(¢).
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Fig. 1. (a) Bifurcation points template, where convolution with the ridge point is equal
or greater than to 13. (b) End point template



(d)

Fig. 2. (a) The original SW Image (b) The result after using active contour model (c)
Ridge detection with gray value threshold = 40 and threshold of difference between
zero-crossing point and closest point is 270. (d) The centerline of brain removed with
pixel =2. (e) labelled blood vessel

3.4  Feature Extraction

Vessel width measurement. The locations of ridges can be obtained after ridge seg-
mentation followed by Canny edge detection to find the edges of blood vessels. We use
three consecutive points on the ridge (A, B and C) shown in Figure 3(a) and the line
formed by connecting points B and C is known as ‘BC’ here. On the edges of blood
vessels, there are some intersections along a line normal to BC at point A, shown in
Figure 3(a). The minimum Euclidean distance of these intersection points is the vessel
width. Finally, the histogram of all vessel widths is computed as a feature vector.

Vessel intensity measurement. In the SW images of infants with HIE, there will be
various intensity values representing the gray scale values of blood vessels, which de-
pict varying levels of blood oxygenation — thought to be a ‘marker’ of hemody-
namic/vascular changes in brain due to HIE. Therefore, the difference between the pixel
value of the ridge points and the edge points can be used as a feature for HIE outcome



prognosis. In this paper, such a grayscale difference is referred to ‘intensity’. We can
obtain the coordinates of ridge points (A) and the corresponding two edge points,
(x1,¥1) and(x,, y,). By calculating respectively, the intensity difference of pixels on
vessels and its boundary in the original grayscale image, the maximum difference is
used as the vessel intensity. The histogram of all vessel intensities is computed as a
feature vector. Figure 3(b-c) shows the vessel of an infant with HIE and the value of
vessel pixels.
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Fig. 3. (a) The pixels pairs according to vertical line. (b) Gray-scale SWI. (c) The
value in gray-scale SW image.

Ridge Length Measurement. We also measure the length of blood vessels as a feature
for HIE outcome prognosis. Having segmented the vessels, we count the number of
pixels in each segmented vessel as a length measurement. A histogram of all vessel
lengths constitutes a feature vector referred to length in this paper.

Ridge Eigenvalues. Ridge point is the point where the intensity image has a local min-
imum in the direction where the gradient changes the most [11]. The second derivative
information can be derived from the Hessian matrix for the local intensities in the neigh-
borhood of a pixel on the ridge. Therefore, the maximum of the absolute eigenvalue
(I2]) of Hessian matrix of the points on the ridge are calculated as a feature. A histogram
of such eigenvalues for every patient is thus considered as a feature vector.

4 Results

4.1 Error of Vessel Segmentation

We select 6 slices of SW images with the size 290 X256 pixels equally per patient.
Also, five slices of SW images from 5 infants are manually segmented as our ground
truth data. We manually segment a total of 2455 pixels totally as vessels, and also apply
our algorithm to these SW images to measure vessel segmentation errors. The differ-
ence in the number of pixels between manually segmented ridges and automatically
segmented ridges in each slice is the number of error pixels, n. The error is normalized
to be:



n
P = 2
where m is the total number of the ground truth pixels of a vessel. According to the
comparison in figure, the error pixels in these 5 SW images are 187 pixels totally. We
calculate the error accuracy in each of the five images and obtain a mean and standard
deviation of the error to be p = 7.75+1.97% for our vessel segmentation method.

4.2 Classification of results

Having computed the histograms for width, intensity, length and Hessian eigenvalue of
vessels in SWIs in our database, we classify the infants into two groups: infants with 1)
abnormal neurological outcome (Cerebral Palsy) and 2) normal neurological outcome.
In our dataset, the number of SWIs is imbalanced. There are 11 and 31 patients with
abnormal and normal neurological outcomes in our dataset respectively. In order to
balance the dataset, we therefore randomly select 11 patients from the 31 normal pa-
tients to make a balanced dataset for classification. This random selection of 11 patients
among 31 patients with normal neurological outcomes is done ten times in each exper-
iment and the mean and standard deviation of the classification accuracies are then cal-
culated. Histograms of the four aforementioned features are normalized to the area be-
low each histogram. These normalized histograms considered as feature vectors here
are then fed to kNN and random forest classifiers to classify SWIs to two normal and
abnormal groups. In some experiments, we have used a combination of these feature
vectors by concatenating all these feature vectors to constitute a long feature vector.

Table 1. Classification accuracy with selected features of vessels

Classifier Normalized Features Accuracy Result

width
|Width| 69.69+4.23%

Intensity

|Intensity| 7137i431%

Length
ILZZthl 72.931+3.83%

kNN Eigenvalue

72.2714.85%
70.8613.03%
75.45+5.81%

|Eigenvalue|
Width Intensity Length

|width| = |Intensity| = |Length|
Width Intensity Length Eigenvalue

|Width|  |Intensity| ~ |Length| _|Eigenvalue|

Width
|width| 71.17i7.45%
Intensity
|Intensity| 72.83+5.67%
Length
|Length| 74.3318.68%

Random Forest Eigenvalue

|Eigenvalue|
Width Intensity Length

|width| ~ |Intensity| = |Length|
Width Intensity Length Eigenvalue

|width|  |Intensity| |Length| ~|Eigenvalue|

71.17£6.38%
78.33+4.43%
78.6712.58%




Table 2. The Pearson’s Correlation Coefficient between the features

Width Intensity Length Eigenvalue
Width 1 0.4831 0.1667 -0.1714
Intensity 0.4831 1 0.4789 -0.3122
Length 0.1667 0.4789 1 -0.1973
Eigenvalue -0.1714 -0.3122 -0.1973 1

As demonstrated in Table 1, the random forest classifier with four feature vectors
(width, intensity, length and Hessian eigenvalue) produces the best accuracy
78.67+2.58%. However, with a single feature vector, length feature enjoys higher ac-
curacy than Hessian eigenvalue feature vector which has been used in [11]. Compared
with only a single Hessian eigenvalue feature vector employed in [11], the new feature
vectors we propose in this paper, produce higher classification accuracies for HIE out-
come prognosis in SWIs. In Table 1, the strategy used for classification is leave-one-
out cross validation for both classifiers. Figure 4(a to f) shows inter and intra class
variations with various combinations of the four aforementioned features for two nor-
mal and abnormal groups in our dataset. In this figure, blue bars represent the histogram
of distances between features from same groups (intra class variations), and brown bars
are for the histogram of the distances between different groups (inter class variations).
As shown in Figure 4(f), the overlap between two histograms is less than these histo-
grams in Figure 4(a to d). This is in line with our results presented in Table 1 to indicate
that the classification accuracies for a combination of features is higher than those for
single features. Figure 4(g) also shows the Cumulative Match Characteristic (CMC)
Curve for the kNN classifier. The highest accuracy among feature vectors is for the
concatenated vectors of the four features, with 75.4% in rank 1. It is noted that all the
kNN classification accuracies achieve 100% with rank 2. Figure 4(h) shows the ROC
curve for various features and their combination in random forest classifier and for
every feature or their combinations the area under the ROC curve is also presented in
the figure. As observed from figure 4(g and h), the performance of the system with the
four aforementioned features, i.e. width, intensity, length and Hessian eigenvalue (blue
curve) is the best. We have computed Pearson’s correlation coefficient, r, that is calcu-
lated for all possible pairs of feature vectors as shown in Table 2. From table 2, we
observe that some features are somewhat correlated. This explains why the classifica-
tion results with kNN for a combination width, intensity and length presents lower ac-
curacy rate than the accuracy calculated by using only one of the features. To reduce
the effect of dependency among features, we have therefore used random forest pre-
senting better accuracy rate as shown in Table 1.
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5 Regressions Analysis

HIE is associated with a high risk of cognitive and motor impairments in children [17].
Such impairments are evaluated by using the clinical outcomes of patients through a
scoring system two years after the birth. It is therefore important to predict such clinical
outcomes immediately after the birth. In our database, motor and cognitive develop-
ment of infants with neonatal HIE are assessed by Bayley Scales at age 24 months,
which result in a scaled score. The scores can either be used as a continuous variable or
for which cut-offs of ‘normal’ or “delayed” can be applied. In normal population, both
motor and cognitive score have a mean of 100 and standard deviation (SD) 15. A patient
is considered to have a normal score, if the score is within 1standard deviation of mean.
Mild delay is score equal or less than 1 SD, and moderate/severe delay is score more
than 1.5 SD below the mean. We have 29 patients with cognitive scores and 28 with
motor scores. All groups include patients with both normal and abnormal neurological
outcome. There is no direct correlation between neurological outcomes and cognitive
and motor scores. SVR is applied to find a regression model to predict the cognitive
and motor scores respectively by using the four features vectors that we have extracted
and a leave-one-out strategy is employed to evaluate the performance of the SVR re-
gression method. By training the SVR model with the four feature vectors (as input,
X,,) and cognitive or motor scores (as output, y,,), the mean absolute and mean relative
score errors in our score calculations for all patients in our dataset can be predicted as
shown in Table 3.

Table 3. SVR models with patients

SVR Regressions Mean Error Mean Relative Error
29 Patients with cognitive scores 11.40+13.24 0.11340.13
28 Patients with motor scores 10.98+7.67 0.10940.067

In Table 3, each patient is given the predicted score by using the trained SVR. Errors
are calculated for each test patient as absolute difference between the true scores of
cognitive or motor and the corresponding predicted scores and we obtain a mean and a
standard deviation for the errors. The error divided by the average value of scores across
the data is also used to compute the relative value. As observed from table 3, the SVR
regression method achieves better performance for predicting motor scores than pre-
dicting cognitive scores, i.e. relative value for patients with motor scores is 0.109
+0.067. However the mean relative errors for the cognitive scores is 0.113+0.13 which
is slightly higher than that for motor scores. It is expected that our regression errors
decrease if we get more data with scores for clinical outcomes.



11

6 Conclusion and Future work

In this paper, we examine the structure of and signal intensities of venous vessels to
extract some features from SW images of infants for HIE outcome prognosis. We pro-
pose to use width, intensity and length to classify an infant into one of neurologically
normal or abnormal groups. In our approach, we use the Snake Active Contour model
to remove the background which is outside the brain tissue. Then we apply ridge detec-
tion method to obtain the ridge of vessels in order to enable us to compute histograms
of width, intensity and length of vessels. To this end, we apply a vessel segmentation
method to segment each vessel in each SW image with a separate label. We compute
1) the minimum Euclidean distance of the pixels on the vessel edge as width value, 2)
the difference of the ridge point pixels intensity and edge pixels intensity as intensity
value of the ridge and 3) the length of segmented ridges by counting the number of
pixels labeled as a ridge. Meanwhile we also measure the eigenvalues of the Hessian
matrix for all ridge pixels and their neighborhood and then normalize as well as con-
catenate all these features for classification. We have balanced our training dataset to
avoid any classification bias. All four features and their combinations are fed to kNN
and random forest classifiers with a leave-one-out cross validation strategy. The con-
catenated features consisting of width, intensity, length and Hessian eigenvalue in ran-
dom forest classifier present the best accuracy rate of 78.67+2.58%. Our result is better
than the classification accuracy reported in [11] which is 72.2744.85%. It is also noted
that the data used in [11] is imbalanced and the classification in [11] has been achieved
using the scale proposed by Kitamura [18]. However, in this paper, our HIE classifica-
tion is carried out by using a balanced dataset and classification accuracies have been
evaluated based on two neurologically normal and abnormal outcomes for infant pa-
tients. Finally, we train SVR model to predict cognitive and motor scores and use mean
relative errors to measure the performance of the regression. Due to the lack of data,
the lowest relative error of our SVR model is associated to motor scores, with mean
relative error of 0.1094+0.067. We expect these results to improve if we get more data
with the scores for clinical outcomes. As a result, our method improves the prognostic
value of SWIs in HIE. The important future work is to determine what location of the
brain has been damaged to be able to predict the behavioral abnormalities of the new
born patients once they are grown up.
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