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Abstract—Layered Asymmetrically Clipped Optical Orthogo-
nal Frequency Division Multiplexing (LACO-OFDM) has been
proposed for optical communications and has attracted much
attention, thanks to its flexibility in terms of power vs. spectral
efficiency. In this paper, we propose algorithms for optimizing the
Discrete-input Continuous-output Memoryless Channel (DCMC)
capacity of LACO-OFDM. Then, an algorithm is proposed
for maximizing the capacity for twin-layer LACO-OFDM by
optimizing the power sharing between the layers. This is followed
by the conception of a more general algorithm applicable to
LACO-OFDM having an arbitrary number of layers. Numerical
results are provided for quantifying the capacity improvement
attained by the proposed algorithm. Moreover, an adaptive
scheme is proposed for adjusting the number of layers to be
used for maximizing the capacity at different SNRs.

Index Terms—LACO-OFDM, capacity, optimization, power
sharing, adaptive

I. INTRODUCTION

Optical Wireless Communication (OWC) is expected to play
a role as a potential component of next generation wireless
systems, as a benefit of its low delay and low power con-
sumption, as well as high integrity [1], [2]. Apart from these
benefits, the substantial unlicensed visible light band spanning
roughly from 400 to 800 THz band can be readily exploited
by low-cost off-the-shelf transmitters, such as Light-Emitting
Diodes (LEDs) [3]. Intensity Modulation combined with Di-
rect Detection (IM/DD) has attracted much attention as a
benefit of its low-cost components [4]. Following Armstrong’s
seminal contribution, the popularity of Orthogonal Frequency
Division Multiplexing (OFDM) has grown in OWC, since its
design has been well understood in the Radio Frequency (RF)
industry [5], [6], [7]. While RF-OFDM produces complex-
valued signals, the IM/DD can only handle pure real and non-
negative values, which has led to several proposals for OWC-
specific OFDM (O-OFDM) schemes [7].

Historically, Carruthers and Kahn proposed Direct Current
(DC) biased Optical OFDM (DCO-OFDM) [8] by exploiting
that an Hermitian-symmetric Frequency Domain (FD) OFDM
symbol has a real-valued Time Domain (TD) representation
after Inverse Fast Fourier Transform (IFFT) based modulation
[5]. Then, the resultant TD signal having negative and pos-
itive values is offset by a sufficiently high DC voltage for
ensuring that the resultant signal only has negligible negative
samples. These small negative samples are then clipped before
intensity modulation. In 2006, the Asymmetrically Clipped
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Optical OFDM (ACO-OFDM) philosophy was proposed by
Armstrong and Lowery for mitigating the high power con-
sumption of the DC-offset and for reducing the clipping-
induced distortion in DCO-OFDM [9]. In addition to the
50% throughput loss imposed by the Hermitian symmetry
requirement, the ACO-OFDM scheme leaves every other sub-
carriers blank in the FD for ensuring that clipping the negative
contributions results in FD distortions falling onto the blank
subcarriers. As an explicit benefit, the subcarriers loaded with
information symbols are then free from distortion and in this
way no information contamination occurs, but unfortunately
this further halves the throughput. More explicitly, while ACO-
OFDM avoids the high power consumption of DCO-OFDM,
hence requiring a lower SNR, this is facilitated by transmitting
only half the information within the same bandwidth [10].
This then leads to a power- vs. spectral- efficiency trade-
off, when deciding which scheme to utilize. But naturally,
the power saved by using blank subcarriers may be invested
into the active subcarriers either for reducing their BER or for
enhancing their throughput [11], [12].

Hence, several solutions have been conceived for striking a
compromise between the power consumption and bandwidth
efficiency [13], [14], [15], [16]. Layered ACO-OFDM (LACO-
OFDM) proposed by Wang et al. [15] is one of the recent
breakthroughs. But a variety of other schemes like the Spectral
and Energy Efficient OFDM (SEE-OFDM) scheme of [17],
[18] and the enhanced ACO-OFDM arrangement (eACO-
OFDM [19] and EACO-OFDM [20]) have also relied on a
similar philosophy. In simple tangible terms, LACO-OFDM
strategically exploits the subcarriers left blank by ACO-OFDM
and loads an additional ACO-OFDM signal onto them. The
additional signal, termed as the second layer, has half the
bandwidth of the original ACO-OFDM (referred to as the
first layer), thus improving the overall bandwidth efficiency by
50%. After the superposition of the two layers, the resultant
signal is known as a 2-layer (or twin-layer) LACO-OFDM sig-
nal. This operation can be repeated by exploiting the remaining
blank subcarriers, loading the third, fourth and other layers.
Naturally, transmitting more layers increases the overall power
consumption. Therefore, LACO-OFDM beneficially improves
the spectral efficiency of ACO-OFDM at the cost of reducing
its power efficiency [21], [22], [23], striking a flexible trade-
off.

Recent studies of the LACO-OFDM capacity [24], [25], [26]
have been focused on the Continuous-input Continuous-output
Memoryless Channel (CCMC) capacity, which is unbounded
and as dictated by Shannon’s ubiquitous capacity formula
[27], subject to the unipolar IM/DD constraint. To expound
a little further, Li et al. [24] studied the CCMC capacity of
ACO-OFDM under both AWGN and fading channels. The
CCMC capacity of LACO-OFDM was derived in [25] by
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Zhou and Zhang, who also compared it with other O-OFDM
schemes. On the other hand, the Discrete-input Continuous-
output Memoryless Channel (DCMC) capacity of LACO-
OFDM requires more attention. Naturally, the DCMC capacity
is a more realistic bound, since practical discrete modulation
schemes are considered. It was revealed in [28] that mod-
ulation schemes whose modulation-order is excessively high
may not be suitable for O-OFDM, given their vulnerability to
clipping distortion.

Against this background, we focus our attention on maxi-
mizing the total DCMC capacity of a LACO-OFDM system.
Explicitly, our contributions may be summarized as follows:
• We derive the DCMC capacity of a LACO-OFDM system

as a function of the Signal-to-Noise Ratio (SNR) and the
number of layers in the system, as well as the power
sharing amongst the layers. In this paper, the DCMC
capacity is hereafter referred to as “channel capacity” or
simply “capacity”.

• We provide an algorithm for determining the optimum
power-sharing strategy for twin-layer LACO-OFDM at a
given SNR, followed by our generalized algorithm.

• Finally, we compare the optimized capacities of LACO-
OFDM systems relying on different number of layers,
which leads to an adaptive scheme using the optimum
number of layers for maximizing the capacity at a given
SNR.

A. Paper Structure
This paper is organized as follows. In Sec. II, the architec-

ture of the LACO-OFDM transceiver is discussed, followed by
our DCMC capacity expression derived in Sec. III. Section IV
focuses on the optimization of a twin-layer LACO-OFDM
system’s capacity, which is then extended to a system having
three or more layers in Sec. V. The algorithm proposed is
further evaluated in Sec. VI. Finally, Sec. VII concludes this
paper.

B. Nomenclature
We use C, P and Γ to represent the capacity, power and

SNR, respectively, as defined formally in due course. Their
subscript represents a standalone layer of the LACO-OFDM
scheme, while “RF”, “ACO” and “LACO” refer to the overall
multi-layer scheme. For example, PLACO represents the total
power of the LACO-OFDM system, while P2 represents the
power of the 2nd layer in a LACO-OFDM system.

Furthermore, ∂f
∂x is the partial derivative of the function f

with respect to x, while ∂f
∂x

∣∣∣
x0

, ∂f
∂x

∣∣∣
g(x0)

is the value of the

derivative at the points of x = x0 and x = g(x0), respectively.
In addition, ∂h

∂x

∣∣
(x0,y0)

evaluates the partial derivative of h with
respect to x at the point (x0, y0).

II. SYSTEM MODEL

We commence by introducing the basic structure of an
ACO-OFDM system, before expounding further on more
sophisticated LACO-OFDM systems. The multi-class coded
LACO-OFDM of [22] is employed for exploiting its low inter-
layer interference (ILI).

ACO-OFDM Transmitter Data Processing (ACO-TX)

ACO-OFDM Receiver Data Processing
(ACO-RX)

Mapping Loading K-IFFT Clipping

Optical
Front End

Optical
Channel

Direct
DetectionK-FFT

1st Half
Odd Ext.

De-
mapping

b S S̄ s̄ sc

rR̄Rb̂

Fig. 1. Schematic of an ACO-OFDM transmitter.

A. ACO-OFDM

Figure 1 shows the schematic of an ACO-OFDM system,
where the shaded area at the top represents the transmitter
(ACO-TX), and the one at the bottom the receiver (ACO-RX).

The input bit stream b of the ACO-TX is firstly mapped1

to the discrete symbols of a given Quadrature Amplitude
Modulation (QAM) or Phase Shift Keying (PSK) constellation
pattern. The symbols S = {S[0], S[1], . . . , S[k], . . . } are then
loaded1 to the stream S̄ under the ACO-OFDM loading rule
of (1), where the ACO-OFDM scheme is capable of conveying
K/4 symbols mapped to K subcarriers, with S∗[k] being the
conjugate of symbol S[k].

S̄[u] =

 S[k], u = 2k + 1,
S∗[k], u = K − (2k + 1),
0, otherwise.

0 ≤ u ≤ K
4 ,

0 ≤ k ≤ K, (1)

The resultant signal is processed by a K-point IFFT, which
transforms it to its TD counterpart s̄ = {s̄[0], s̄[1], . . . }. The
mapping rule (1) enforces the Hermitian symmetry in S̄, which
ensures that the TD signal s̄ is purely real-valued. Moreover,
(1) maps a null symbol to every other subcarrier, which results
in further symmetry formulated s̄ as

s̄[k] = −s̄[K − k]. (2)

Hence, despite clipping all negative samples in s̄, all the
information can be losslessly recovered from the resultant
signal s. The clipped signal sc is unipolar, thus it can be
forwarded to the optical front end of Fig. 1.

The received signal of Fig. 1 is then converted back to the
electric TD by the direct detection block of Fig. 1, yielding
the signal r, before passing it to the ACO-RX block. The
unipolar signal r is firstly transformed back to the FD signal
R̄ of length K by the K-point FFT. Again, the “lossless
clipping” operation imposed by the ACO-TX block of Fig. 1
actually results in clipping distortions that are accommodated
by the even-indexed subcarriers, i.e. those marked in (1) as
“otherwise”. Therefore, the desired symbols can be readily

1To avoid confusion, in this paper, we refer to bit-to-symbol “mapping”
when we discuss the action of the “Mapping” block of Fig. 1 generating the
stream S from b. By contrast, the action of the “Loading” block of Fig. 1 is
termed as “loading”, which creates the symbol stream S̄ from S, according
to the ACO-OFDM rules.
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Fig. 2. Schematic diagram of a multi-class coded LACO-OFDM transmitter,
where each “ACO-TX” block is similar, but not identical to the architecture
of Fig. 1.

extracted from the first K/4 odd-indexed subcarriers of R̄
(R̄[1], R̄[3], . . . , R̄[K/2− 1]) to form R of Fig. 1. Following
symbol-to-bit constellation demapping, the receiver obtains the
information bits b̂.

B. Multi-Class Coded LACO-OFDM Transmitter

Figure 2 shows the detailed layer-based schematic of a
multi-class channel-coded LACO-OFDM transmitter.

In LACO-OFDM, the original bit stream is split into L lay-
ers as {b1, . . . , bL}. Forward Error Correction (FEC) channel
encoders are employed for each individual layer’s bit streams,
producing the channel-encoded stream {b̃1, . . . , b̃L}, each
having its own ACO-TX block similar to, but not identical to,
that of Fig. 1. Explicitly, the following modifications have to
be carried out for ensuring that the symbols mapped to higher
layers (i.e. those having a higher layer index l) always fall on
the subcarriers left blank by the lower layers. Explicitly, the
loading rule for the lth layer is now:

S̄l[u] =

 Sl[k], u = 2lk + 2l−1,
S∗l [k], u = K − (2lk + 2l−1),
0, otherwise,

1 ≤ l ≤ L, 0 ≤ u ≤ K
2l+1 for Sl[k], 0 ≤ k ≤ K,

(3)

where Sl[k] is the kth symbol for the lth layer.
Hence, the lth layer is capable of accommodating K/2l+1

symbols, i.e. the signal S̄l should have K/2l+1 non-zero
subcarriers. Therefore, LACO-OFDM having L layers is ca-
pable of conveying a total of

[
(K/2)× (1− 1/2L)

]
symbols,

nearly doubling the normalized throughput of the ACO-OFDM
scheme. The signals loaded onto each layer of Fig. 2 are then
independently subjected to K-point IFFT, whose output should
obey (2), which can have all its negative samples clipped in
order to form the unipolar signals sl.

Observe in Fig. 2 that a power control module is em-
ployed after clipping for ensuring that each layer has the
most appropriate power share. A set of power sharing factors
α = {α1, α2, . . . αL−1} is used by these power controllers for
ensuring that the signal sl has an electric power of Pl. This
process will be further discussed in Secs. IV and V.

Finally, the signals having the optimal power are superim-
posed for constructing the TD signal sLACO, which completes
the LACO-OFDM transmitter’s signal processing actions seen
in Fig. 4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sub-
carrier
IndexS

1
[0

]

S
1

[1
]

S
1

[2
]

S
1

[3
]

S
∗ 1
[3

]

S
∗ 1
[2

]

S
∗ 1
[1

]

S
∗ 1
[0

]

S
2

[0
]

S
2

[1
]

S
∗ 2
[1

]

S
∗ 2
[0

]

S
3

[0
]

S
∗ 3
[0

]

Fig. 3. FD representation of a 3-layer LACO-OFDM signal having 16
subcarriers [21]. The “North-East” hatching, vertical hatching and “North-
West” hatching represent the clipping distortions of the 1st, 2nd and 3rd layer,
respectively.

C. Frequency Domain Representations of LACO-OFDM

To elaborate further on the operation of LACO-OFDM,
the FD representation of a 3-layer LACO-OFDM signal is
portrayed in Fig. 3.

According to (3), the symbols S1[0], S1[1], S1[2] and S1[3]
assigned to the first layer occupy subcarriers 1, 3, 5, and 7,
while their respective conjugates are loaded onto subcarriers
15, 13, 11 and 9. After clipping the negative part of the TD
signal, the distortions generated will only contaminate the
even-indexed subcarriers, i.e. k = 0, 2, . . . , 14, thanks to the
property of “lossless clipping” inherited from ACO-OFDM.
The 1st layer’s distortions are represented by the “North-East”
hatching in Fig. 3.

Similarly, for the 2nd layer, the symbols are loaded onto
the subcarriers at k = 2, 6, while their conjugates onto
k = 14, 10 and their clipping distortions contaminate the
subcarriers k = 0, 4, 8, 12 marked by vertical hatching. When
k = 16, the 3rd layer may only have 1 symbol, which is
located at subcarrier k = 4 and has its conjugate at subcarrier
k = 12, while its clipping distortions are represented by the
“North-West” hatching blocks at subcarriers k = 0 and k = 8.

Therefore, in LACO-OFDM, a subcarrier-symbol can only
be placed together with distortions produced from its lower
layers, but it remains orthogonal to all other subcarrier-
symbols of the same layer. Moreover, the symbols of the 1st
layer are entirely free from clipping distortion, hence they
can be directly detected without resorting to interference-
cancellation. By contrast, the upper layers have to be decon-
taminated from the distortion products imposed by the lower
layers. But fortunately, this can be readily achieved by an iter-
ative clean-up operation commencing with the uncontaminated
1st layer.

D. Multi-Class Coded LACO-OFDM Receiver

Based on the discussions of Sec. II-C, let us now present
the receiver design of multi-class coded LACO-OFDM, which
is shown in Fig. 4.

Based on classic direct detection, the received optical signal
is first converted into its electric domain representation by a
photo detector, and then from the TD to its FD representation
by the Kl-point FFT, like for the ACO-OFDM signal of Fig. 1.
The subcarrier detection of a LACO-OFDM signal at the re-
ceiver commences from the uncontaminated first layer, whose
symbols are completely free from the interference produced by
the clipping distortion. Hence, they can be directly extracted.
A soft-output QAM demapper is employed to calculate the a
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	ŝ3

⊕r3

P/S
b̂1

b̂2

b̂3

b̂r r1

r2

r3

Fig. 4. Schematic diagram of a multi-class coded LACO-OFDM receiver, where the “HD” blocks represent hard decision makers.

priori Log-Likelihood Ratio (LLR) of the encoded bits La(b̃1)
from the extracted symbol stream Ŝ1. This information will
be forwarded to a channel decoder having the corresponding
FEC code paired with the FEC encoder of Fig. 2, which
provides the a posteriori LLR of the uncoded bit stream
Lp(b1). Following hard-decision (HD), the detected bit stream
b̂1 of layer 1 is obtained. The soft-output demapper also
generates the a posteriori LLR Lp(b̃1) of the coded bit stream
for a better estimation of b̂1, which will then be re-modulated
to reconstruct the layer’s unipolar signal ŝ1 at the receiver
by going through the entire modulation process of mapping,
loading, IFFT, clipping and power sharing, as seen in Fig. 4.
In this way, the TD-clipping-induced FD distortions caused by
the 1st layer can be reproduced at the receiver, which can then
be subtracted from the received signal. Viewing this process
in Fig. 3, it wipes out all interference products at the “bottom
level” of that tripple-level structure.

Still referring to Fig. 3, it becomes clear that the symbols
on the 2nd layer are now free from the TD-clipping-induced
FD interference as well. The detection process of the 1st layer
can then be repeated for the 2nd layer, reproducing the locally
reconstructed 2nd layer information bits and wiping out the
interference, as seen in Fig. 4. This is followed by the same
detection process for the 3rd layer, and if applicable to the 4th
layer and so on.

Finally, the bits output by each layer are combined into a
single bit stream and form the final output stream.

III. DCMC CAPACITY OF LACO-OFDM

A. DCMC Capacity of an RF-OFDM System

Let us define the channel SNR Γ as the channel energy per
symbol (Es) to noise power spectral density (N0) ratio, namely
as Γ = Es/N0 for an RF system. The channel capacity of an
M -QAM scheme is [29], [30]

CRF(Γ) = (Sink Entropy)− (Noise Entropy)

= −
∫ ∞
−∞

p(R) log2 [p(R)] dR︸ ︷︷ ︸
(a)

− log2

(πe
Γ

)
︸ ︷︷ ︸

(b)

, (4)

where part (b) in (4) represents the entropy of the noise, which
is complex-valued having a variance of N0. Furthermore, in

part (a) of (4), the integration should take place across the
entire complex-valued plane, if high order modulation (M >
2) is applied, where the probability p(R[n]) of the received
symbols is given by

p(R[n]) =
1

M

M∑
m=1

p(R[n]|S(m))

=
1

M

M∑
m=1

[
Γ

π
· exp

(
−Γ ·

∣∣∣R[n]− S(m)
∣∣∣2)]

=
Γ

πM

M∑
m=1

exp

(
−Γ ·

∣∣∣R[n]− S(m)
∣∣∣2) ,

(5)

where S(m) is the mth points in the MQAM constellation S
having a unity average power, and p(r|S(m)) is the complex-
valued Gaussian distribution PDF with a mean of S(m) and
variance of 1/Γ. This part cannot be analytically evaluated,
due to the summation within the logarithm shown in (5).
However, Monte-Carlo method can be used for approximating
it by generating a sufficiently high number of received symbol
realizations (R = R[1], R[2], . . . , R[n], . . . ), yielding

(a) = E [− log2(p(R))] ≈ − 1

N

N∑
n=1

log2 [p(R[n])] , (6)

where E[·] is the statistical expectation, and the approximation
converges as N →∞. Hence, (4) can be simplified as:

CRF(Γ) ≈ − log2

(πe
Γ

)
− 1

N

N∑
n=1

log2

[
Γ

πM

M∑
m=1

exp

(
−Γ ·

∣∣∣R[n]− S(m)
∣∣∣2)]

= − 1

N

N∑
n=1

log2

[
e

M

M∑
m=1

exp

(
−Γ ·

∣∣∣R[n]− S(m)
∣∣∣2)] ,

(7)

where the “≈” sign can be replaced by “=” as N →∞.
Moreover, the derivative of CRF with respect to Γ indicates

the sensitivity of channel capacity to SNR changes, expressed
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as

∂CRF

∂Γ
=

N∑
n=1

 M∑
m=1
|R[n]−S(m)|2 exp

(
−Γ·|R[n]−S(m)|2

)
ln 2·

M∑
m=1

exp
(
−Γ·|R[n]−S(m)|2

)


N
. (8)

B. DCMC Capacity of an ACO-OFDM System
Recall from Sec. II that in ACO-OFDM only K/4 symbols

can be conveyed by a total of K subcarriers. Therefore, the
channel capacity contribution can be divided into two parts:
• The 3K/4 subcarriers loaded either with the conjugate

of the transmitted symbols or with the FD-product of the
TD clipping distortion, whose capacity-contribution is 0,
because they provide no new information, and

• The K/4 subcarriers loaded with the desired transmitted
symbols.

The K/4 FD subcarriers in the second part may be viewed as
isolated RF carriers, where (4) can be applied. Therefore, the
capacity of an ACO-OFDM system is given by

CACO(Γ) =
K/4

K
CRF(Γ) +

3K/4

K
· 0 =

1

4
CRF(Γ), (9)

where the proportionality coefficient 1/4 represents the re-
duced bandwidth efficiency.

Since the total signal power PACO is equally spread across
the K/4 transmitted subcarrier symbols (25%), the K/4
conjugate symbols (25%) and the K/2 distortion symbols
(50%), we have

ΓACO =
Es

1
2N0

=
1
4PACO

K/4
K

1
2N0

=
PACO
1
2N0

, (10)

where the factor 1
2 in the denominator is because the imaginary

part of the complex-valued TD noise has no effect on the
performance.

C. Power Relationships in LACO-OFDM
Without loss of generality, we denote the electric signal

power of the lth layer in LACO-OFDM as Pl. The TD signal
obeys a one-sided truncated Gaussian distribution [21] with
the PDF given by

PDF(x) =
1

2
δ(x) +

1√
2πσ

exp

[
− x2

2σ2

]
u(x), (11)

where δ(·) and u(·) are the Dirac delta function and Heaviside
step function, respectively, while σ2 is the variance of the sig-
nal before truncation. The power of a layer is then represented
as

Pl =

∫ ∞
−∞

x2 · PDF(x) dx =
1

2
σ2, (12)

because the truncation cuts half of the power. Furthermore, the
mean and variance of a layer’s signal can be expressed using
Pl as

E[sl] =

∫ ∞
−∞

x · PDF(x) dx =
σ√
2π

=

√
Pl
π
,

D[sl] =

∫ ∞
−∞

(x− E[sl])
2 · PDF(x) dx

=
π − 1

2π
σ2 =

(
1− 1

π

)
Pl.

(13)

TABLE I
COMPOSITION OF AN LACO-OFDM SIGNAL SHOWING THE NUMBER OF

SUBCARRIERS (N ) AND AVERAGE SYMBOL POWER (P ) OF THE FOUR
PARTS OF EACH LAYER: DESIRED TRANSMITTED SYMBOLS (TX),

CONJUGATE SYMBOLS (CONJ.), CLIPPING DISTORTIONS OF THE CURRENT
LAYER (DIST.) AND IDLE SUBCARRIERS AFTER CLIPPING (IDLE).

Layer
Index

Layer
Power

TX or Conj. Dist. Idle
N P N P N P

1 P1 K/4 P1 K/2 P1 0 0
2 P2 K/8 2P2 K/4 2P2 K/2 0
3 P3 K/16 4P3 K/8 4P3 3K/4 0

. . .
l Pl

K
2l+1 2l−1Pl

K
2l

2l−1Pl K −
K

2l−1

0

. . .

The overall electric signal power PLACO could be expressed
by its mean and variance as

PLACO = D[s] + (E[s])
2
, (14)

where both the mean and variance are the sum of their L
constituent layers, given by:

PLACO =

(
L∑
l=1

D[sl]

)
+

(
L∑
l=1

E[sl]

)2

=

[
L∑
l=1

(
1− 1

π

)
Pl

]
+

(
L∑
l=1

√
Pl
π

)2

=

(
1− 1

π

) L∑
l=1

Pl +
1

π

 L∑
i=1

L∑
j=1

√
Pi
√
Pj


=

L∑
l=1

Pl +
2

π

∑
i 6=j

√
PiPj .

(15)

D. DCMC Capacity of a LACO-OFDM System

Table I shows the composition of each layer of a LACO-
OFDM signal. On the lth layer of a LACO-OFDM scheme,
only K

2l+1 information-earning symbols can be transmitted,
complemented by K

2l+1 subcarriers for themselves, and another
K

2l+1 subcarriers for their conjugates, as well as by the K
2l

additional subcarriers occupied by the FD-products of the TD
clipping distortion. The power allocated to the lth layer shall
be (statistically) equally shared among these K

2l−1 subcarriers,
which results in 2l−1Pl for each subcarrier. The remaining(
1− 1

2l−1

)
K subcarriers are left empty, having zero power.

Given a sufficiently high SNR, the receiver can be expected
to fully cancel out the TD-clipping distortions with the help
of forward error correction codes (FEC) [22]. When detecting
the lth layer at the receiver, its SNR Γl would be calculated
using the power of the subcarriers loaded with the symbols,
yielding

Γl =
2l−1Pl
N0/2

. (16)

For LACO-OFDM, its first layer signal is constituted by an
ACO-OFDM signal. As a result, the capacity contribution of
LACO-OFDM from its first layer is:

C1(Γ1) = CACO(Γ1) =
1

4
CRF(Γ1). (17)
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Similarly, for the second and higher layer signals, their trans-
mission rate contribution can be written as

Cl(Γl) =
1

2l−1
CACO(Γ1) =

1

2l+1
CRF(Γl). (18)

Therefore, the overall capacity of a LACO-OFDM system
having a total of L layers can be written as

CLACO =

L∑
l=1

Cl(Γl) =
1

2l+1
CRF(Γl). (19)

Explicitly, CLACO is a function of the individual SNR of
each layer (Γ1,Γ2, . . . ,ΓL), which is in turn a function of
the power allocated to each layer (P1, P2, . . . , PL), subject to
the constraint

0 ≤ Pl ≤ PLACO, ∀ l,
and (15).

(20)

IV. CAPACITY MAXIMIZATION FOR TWIN-LAYER
LACO-OFDM

In this section, the total power and capacity of a twin-
layer LACO-OFDM system, i.e. P (2)

LACO and C(2)
LACO, represent

PLACO and CLACO, respectively.

A. Capacity of Twin-Layer LACO-OFDM

Let us consider a LACO-OFDM system consisting of 2
layers only and define the power sharing factor α (0 ≤ α ≤ 1)
as the specific fraction of the total power belonging to layer
1. Naturally, the second layer has then (1− α) portion of the
power, i.e. we have

P1

P2
=

α

1− α
. (21)

Substituting this into (15), we arrive at

PLACO = P1 + P2 +
2

π

√
P1P2

= P1 +
1− α
α

P1 +
2

π

√
P1 ·

1− α
α

P1

= P1

(
1

α
+

2

π

√
1− α
α

)
.

(22)

Therefore, P1 can be represented as

P1 =
α · PLACO

1 + 2
π

√
α(1− α)

. (23)

Similarly,

P2 =
(1− α) · PLACO

1 + 2
π

√
α(1− α)

. (24)

For a given power constraint PLACO and noise power
N0, the overall channel SNR of LACO-OFDM is defined as
ΓLACO = PLACO/N0. Using (16), the corresponding SNR of
each of the two layers becomes

Γ1 =
P1

N0/2
=

α · ΓLACO

1 + 2
π

√
α(1− α)

, (25a)

and Γ2 =
2P2

N0/2
=

2(1− α) · ΓLACO

1 + 2
π

√
α(1− α)

. (25b)

Note that the layer SNRs defined in (25) can be treated as
a function of both the overall SNR ΓLACO and the power
sharing ratio α.

In this way, the overall capacity of this twin-layer LACO-
OFDM system can be written according to (19) as

CLACO = C1(Γ1) + C2(Γ2) =
CRF(Γ1)

4
+
CRF(Γ2)

8
. (26)

The chain rule of functions indicates that CLACO shall also
be a function of ΓLACO and α. Therefore, the maximum
throughput at a given SNR Γ can be determined by solving
the following problem:

max
α

CLACO(ΓLACO, α)

s.t. 0 ≤ α ≤ 1 (27)
and (22).

B. Characteristics of CLACO

1) Existence of Maxima: For a given Γ, CLACO is non-
negative by definition, having a lower bound of zero. On
the other hand, the DCMC capacity is upper bounded by the
general CCMC capacity [6] of

0 ≤ CLACO(Γ, α) ≤ log2(1 + Γ), ∀ α. (28)

Since CLACO is formed of elementary functions, it is also
continuous within α ∈ [0, 1]. According to the extreme value
theorem [31], at least one maximum must be attained by
CLACO for any given Γ within the interval α ∈ [0, 1].

2) Monotonicity of SNRs: If we take the partial derivative
of CLACO in (26) with respect to α, we have

∂CLACO

∂α
=

∂

∂α

CRF(Γ1)

4
+

∂

∂α

CRF(Γ2)

8

=
1

4

∂CRF

∂Γ1︸ ︷︷ ︸
(c1)

∂Γ1

∂α︸︷︷︸
(c2)︸ ︷︷ ︸

(c)

+
1

8

∂CRF

∂Γ2︸ ︷︷ ︸
(d1)

∂Γ2

∂α︸︷︷︸
(d1)︸ ︷︷ ︸

(d)

. (29)

Since the channel capacity is always monotonically non-
decreasing vs. the SNR [6], we have

∂CRF

∂Γ1
≥ 0, and

∂CRF

∂Γ2
≥ 0. (30)

Using (25), the partial derivative of Γ1 with respect to α is

∂Γ1

∂α
=

∂

∂α

(
α · ΓLACO

1 + 2
π

√
α(1− α)

)

=
π
(
α+ π

√
(1− α)α

)
ΓLACO√

(1− α)α
(

2
√

(1− α)α+ π
)2 ,

(31)

where CLACO is locally treated as a positive constant. Sym-

bolic analysis of (31) in Sec. IV-D shows that
∂Γ1

∂α
is always

positive within α ∈ [0, 1], with a minimum of 0.7241 ·
ΓLACO > 0 at α = 0.3074. Similarly, the partial derivative
of Γ2 with respect to α is

∂Γ2

∂α
= −

2π
(

1− α+ π
√

(1− α)α
)

ΓLACO√
(1− α)α

(
2
√

(1− α)α+ π
)2 , (32)
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which is always negative within α ∈ [0, 1] having a maximum
of −1.4483ΓLACO < 0 at α = 0.6926. Therefore, upon
referring to (29), we have

(c) =
1

4

∂CRF

∂Γ1

∂Γ1

∂α
≥ 0, (33a)

and (d) =
1

8

∂CRF

∂Γ2

∂Γ2

∂α
≤ 0. (33b)

3) Maximum of CLACO: As α approaches 0 from the right
hand side, i.e. for α→ 0+, the majority of the power would be
assigned to layer 2 according to (21), resulting in P1 → 0 and
in turn Γ1 → 0 (linear) or Γ1 → −∞ (dB). Therefore, (c1) in
(29) tends to plus infinity according to Sec. III-A, while (c2)
is a smaller value based on ΓLACO. In this case, we have

(c) =
1

4
(c1) · (c2) > −1

8
(d1) · (d2) = −(d), (34)

which yields
∂CLACO

∂α

∣∣∣∣
0

> 0. (35)

By symmetry, when α = 1, part (d) in (29) obeys

∂CLACO

∂α

∣∣∣∣
1

< 0. (36)

According to Bolzano’s theorem [31], due to having opposite
sign for ∂CLACO

∂α at the two edges, we arrive at

∃ α∗ ∈ [0, 1], s.t.
∂CLACO

∂α

∣∣∣∣
α∗

= 0. (37)

As it will be shown in the next Section,
∂CLACO

∂α
is actually

monotonically decreasing throughout the interval α ∈ [0, 1].
Hence, the maximum of CLACO for a particular Γ is obtained
at α = α∗.

C. Maximum Search

Here, we propose an algorithm for finding the maximum of
CLACO for any given Γ, as well as the corresponding optimum
α∗.

As seen in Alg. 1, we commence by entering the modulation
order M and the overall channel SNR ΓLACO, as well as the
number of Monte-Carlo simulations N used for approximating
the capacity and a decision threshold ε to determine if the
stationary point of CLACO is sufficiently accurate.

A binary search philosophy is adopted to find the optimum
α∗. A pair of variables, p and q, are employed as the left
and right search boundaries, having initial values of 0 and
1, respectively. The testing point of α is their average ᾱ =
p+q

2 . As elaborated on before, the optimum value α∗ is the
stationary point of CLACO. Therefore, a subroutine is provided
for calculating the derivative of CLACO at α0.

The program commences by calculating the SNR Γ1(α) and
Γ2(α) of each layer at the initial ᾱ, using their corresponding
relationships with α presented in (25). These two SNR values
are subsequently substituted into the partial derivatives of the
capacity expression with respect to the layer SNR formula,
which is provided in (8) by differentiating (7). This leads
to the value of (c1) and (d1) in (29). Meanwhile, ᾱ is also

Algorithm 1 Power sharing in twin-layer LACO-OFDM
Input: M , ΓLACO, N , ε
Output: α∗, C∗LACO

1: p := 0, q := 1;
2: repeat
3: ᾱ := (p+ q)/2,
4: Calculate Γ1(ᾱ) and Γ2(ᾱ) using (25),
5: Calculate ∂CLACO

∂Γ1

∣∣∣
ᾱ

and ∂CLACO

∂Γ2

∣∣∣
ᾱ

, by substituting
Γ1(ᾱ) and Γ2(ᾱ) into (8), respectively,

6: Calculate ∂Γ1

∂α

∣∣
ᾱ

using (31) and ∂Γ2

∂α

∣∣
ᾱ

using (32),
7: Calculate ∂CLACO

∂α

∣∣
ᾱ

at α by substituting the above 4
terms into (29);

8: if ∂CLACO

∂α

∣∣
α=ᾱ

> 0 then
9: p := ᾱ,

10: else
11: q := ᾱ,
12: end if
13: until

∣∣∂CLACO

∂α

∣∣ < ε ;
14: return α∗ = ᾱ ;
15: return C∗LACO = CLACO(α∗) ;
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Fig. 5. The normalized derivatives of Γ1 and Γ2 in (31) and (32) vs. α.

substituted into (31) and (32) for obtaining (c2) and (d2) of
(29), respectively. Having all components of (29) available,
the algorithm becomes capable of providing ∂CLACO

∂α for the
current ᾱ.

With the process of calculating ∂CLACO

∂α

∣∣
ᾱ

completed (cor-
responding to states 4-7 of Alg. 1), the problem can be
simplified to finding the root of an equation. We have shown in
Sec. IV-B that there is only a single root α∗ and that ∂CLACO

∂α
is monotonically decreasing from a positive value down to a
negative value as a function of α. Therefore, by checking the
sign of ∂CLACO

∂α

∣∣
ᾱ

at both ends of the search region of [0, 1]
and gradually shrinking the searching window, the root can be
eventually obtained within an accuracy of ε.

D. Numerical Results

Figure 5 plots the partial derivatives of Γ1 and Γ2 with
respect to α based on (31) and (32), whose derivatives have
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been normalized by ΓLACO. It is clearly shown that ∂Γ1

∂α is

always positive, while
∂Γ2

∂α
is always negative, in line with

(35) and (36).
Figure 6 shows the channel capacity of twin-layer LACO-

OFDM using 16QAM both vs. the overall SNR and vs. the
power sharing factor α. Focusing our attention on the SNR
axis, it is clear that the channel capacity converges to 1.5
bits/symbol upon increasing the SNR. This agrees with (26),
because we have lim

Γ→∞
CRF(Γ) = 4 for 16QAM. Similar trends

can be found for all SNR values, namely that as α is increased
from 0 to 1, the corresponding capacity first significantly
increases and then decreases, albeit its maximum is not very
pronounced.

A more clear view is provided in Fig. 7, where both the
capacity as well as its derivative are plotted against α at
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Fig. 8. Optimized capacity of twin-layer LACO-OFDM using Alg. 1 vs. the
SNR.

SNR = 12 dB. The channel capacity increases up to the
power sharing factor of α = 0.6841, reaching a maximum
of 1.3498 bits/symbol, before falling again. The corresponding
derivative is monotonically decreasing and has a zero-crossing
at α = 0.6841, which verifies Alg. 1.

Meanwhile, Fig. 7 also indicates that the conventional power
sharing strategy of P1

P2
= 1

2 , corresponding to α = 2
3 ≈ 0.6666,

yields a lower capacity. Up to this point, the derivative still
remains positive, hence the capacity still increases with α. This
trend will be further discussed in Sec. VI.

Moreover, the optimum channel capacity versus SNR for
twin-layer LACO-OFDM associated with different modulation
schemes is portrayed in Fig. 8.

V. CAPACITY MAXIMIZATION FOR MULTI-LAYER
LACO-OFDM

In this section, we explore the capacity maximization prob-
lem of 3-layer LACO-OFDM systems, before generalizing it
to multi-layer LACO-OFDM systems. In subsections A to
C, the variables PLACO, ΓLACO and CLACO represent the
corresponding metrics of a 3-layer LACO-OFDM system,
while in subsection D, they are for L-layer LACO-OFDM
systems.

A. Capacity of 3-Layer LACO-OFDM

For 3-layer LACO-OFDM systems, the relationships be-
tween the power of the three layers can be reflected by
introducing a pair of power sharing factors: α1 and α2:

P1

P2
=

α1

1− α1
and

P1

P3
=

α2

1− α2
, (38)

where 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 1.
Based on (15), the overall power of the 3-layer LACO-

OFDM system can now be expressed purely in terms of P1,
as seen in (39). Therefore, with the additional help of (38),
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PLACO = P1 + P2 + P3 +
2

π

(√
P1P2 +

√
P1P3 +

√
P2P3

)
= P1 +

1− α1

α1
P1 +

1− α2

α2
P1 +

2

π

(√
P1 ·

1− α1

α1
P1 +

√
P1 ·

1− α2

α2
P1 +

√
1− α1

α1
P1 ·

1− α2

α2
P1

)

= P1

1 +
1− α1

α1
+

1− α2

α2
+

2

π

√1− α1

α1
+

√
1− α2

α2
+

√
(1− α1)(1− α2)

α1α2


=

P1

α1α2
·
[
α1 + α2 − α1α2 +

2

π

(
α2

√
α1(1− α1) + α1

√
α2(1− α2) +

√
α1α2(1− α1)(1− α2)

)]
︸ ︷︷ ︸

P?

.

(39)

the SNR of each layer can be expressed as

Γ1 =
P1

N0/2
=
α1α2 · ΓLACO

P?
, (40a)

Γ2 =
2P2

N0/2
=

2(1− α1)α2 · ΓLACO

P?
, (40b)

Γ3 =
4P3

N0/2
=

4α1(1− α2) · ΓLACO

P?
, (40c)

where P? was defined in (39), which is a function of both α1

and α2. The overall DCMC capacity of 3-layer LACO-OFDM
can then be expressed as the sum of the 3 layers’ capacities:

CLACO = C1(Γ1) + C2(Γ2) + C3(Γ3)

=
CRF(Γ1)

4
+
CRF(Γ2)

8
+
CRF(Γ3)

16
.

(41)

Apparently, for any given total SNR (ΓLACO), CLACO de-
pends2 on both α1 and α2. Bearing this in mind, let us now
study the associated capacity maximization problem.

B. Maximization of 3-Layer LACO-OFDM Capacity

The extreme values of the dual-variable function CLACO

will only occur at points, where its gradient equals zero.
Therefore, the partial derivatives of CLACO with respect to
α1 and α2 are expressed as:

∂CLACO

∂α1

=
1

4

∂CRF

∂Γ1

∂Γ1

∂α1
+

1

8

∂CRF

∂Γ2

∂Γ2

∂α1
+

1

16

∂CRF

∂Γ3

∂Γ3

∂α1
,

(42a)

∂CLACO

∂α2

=
1

4

∂CRF

∂Γ1

∂Γ1

∂α2
+

1

8

∂CRF

∂Γ2

∂Γ2

∂α2
+

1

16

∂CRF

∂Γ3

∂Γ3

∂α2
.

(42b)

The characteristics of CLACO are similar to those of its twin-
layer counterpart shown in Sec. IV-B, which is monotonically
increasing and then decreasing within [0, 1] for both α1 and
α2. The optimum point (α∗1, α

∗
2) can be found by solving

diag{∇CLACO(α1, α2)} = 0. (43)

2At the moment, all other variables, such as M and N , are treated as
constants.

Note that

∂Γ1

∂α1
=

ΓLACO

(P?)2

(
α2P? − α1α2

∂P?

∂α1

)
, (44a)

∂Γ2

∂α1
=

ΓLACO

(P?)2

(
−2α2P? − α1α2

∂P?

∂α1

)
, (44b)

∂Γ3

∂α1
=

ΓLACO

(P?)2

(
4(1− α2)P? − α1α2

∂P?

∂α1

)
, (44c)

where
∂P?

∂α1
= 1− α2 +

2

π

√
α2(1− α2)+

(1− 2α1)
(
α2 +

√
α2(1− α2)

)
π
√
α2(1− α2)

;

(44d)

and
∂Γ1

∂α2
=

ΓLACO

(P?)2

(
α1P? − α1α2

∂P?

∂α2

)
, (44e)

∂Γ2

∂α2
=

ΓLACO

(P?)2

(
2(1− α1)P? − α1α2

∂P?

∂α2

)
, (44f)

∂Γ3

∂α2
=

ΓLACO

(P?)2

(
−4α1P? − α1α2

∂P?

∂α2

)
, (44g)

where
∂P?

∂α2
= 1− α1 +

2

π

√
α1(1− α1)+

(1− 2α2)
(
α1 +

√
α1(1− α1)

)
π
√
α2(1− α2)

.

(44h)

Since α1 appears in the expressions of (44e-44h) and α2 in
(44a-44d), a nested algorithm is required for solving (43).

As shown in Alg. 2, the search is conducted in the twinned
directions: of α1 and α2, respectively. The inner loop is
detailed in Alg. 3, which takes a given value of ᾱ1 and
substitutes it into (42b), followed by finding the corresponding
α2 coordinate, where the zero-crossing occurs, using similar
methods to those in Alg. 1. The outer loop of Alg. 2 then takes
the returned value ᾱ2 to determine whether a zero-crossing has
also be found for (42a). If not, ᾱ1 will be updated in a binary-
search manner and forwarded to Alg. 3 for the corresponding
new ᾱ2. The process continues by checking and updating ᾱ1

and ᾱ2, until a zero-crossing occurs in both directions, thus
reaching the stationary point.
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Algorithm 2 Power sharing in 3-layer LACO-OFDM
Input: M , ΓLACO, N , ε
Output: α∗1, α∗2, C∗LACO

1: p1 := 0, q1 := 1
2: repeat
3: ᾱ1 := (p1 + q1)/2,
4: Find ᾱ2 under current ᾱ1 using Alg. 3;
5: Calculate Γl(ᾱ1, ᾱ2) for l = 1, 2, 3 using (40),
6: Calculate ∂CLACO

∂Γl

∣∣∣
(ᾱ1,ᾱ2)

for l = 1, 2, 3 using (32),

7: Calculate ∂Γl
∂α1

∣∣∣
(ᾱ1,ᾱ2)

for l = 1, 2, 3 using (44),

8: Calculate ∂CLACO

∂α1

∣∣∣
(ᾱ1,ᾱ2)

by substituting the above 6

terms into (42a);
9: if ∂CLACO

∂α1

∣∣∣
(ᾱ1,ᾱ2)

> 0 then
10: p1 := ᾱ1,
11: else
12: q1 := ᾱ1,
13: end if
14: until ∂CLACO

∂α1

∣∣∣
(ᾱ1,ᾱ2)

< ε at (α1, α2);

15: return α∗1 = ᾱ1, α∗2 = ᾱ2 ;
16: return C∗LACO = CLACO(α∗1, α

∗
2) ;

Algorithm 3 Zero Crossing Finder for Eq. (42b)
Input: M , ΓLACO, N , ε, ᾱ1

Output: ᾱ2

1: p2 := 0, q2 := 1;
2: repeat
3: ¯̄α2 := (p2 + q2)/2,
4: Calculate Γl(ᾱ1, ¯̄α2) for l = 1, 2, 3 using (40),
5: Calculate ∂CLACO

∂Γl
at Γl(ᾱ1, ¯̄α2) for l = 1, 2, 3 using

(32),
6: Calculate ∂Γl

∂α2

∣∣∣
(ᾱ1, ¯̄α2)

for l = 1, 2, 3 using (44),

7: Calculate ∂CLACO

∂α2

∣∣∣
(ᾱ1, ¯̄α2)

by substituting the above 6

terms into (42b);
8: if ∂CLACO

∂α2

∣∣∣
(ᾱ1, ¯̄α2)

> 0 then
9: p2 := ¯̄α2,

10: else
11: q2 := ¯̄α2,
12: end if
13: until ∂CLACO

∂α2

∣∣∣
(ᾱ1, ¯̄α2)

< ε ;

14: return ᾱ2 = ¯̄α2 ;

C. Numerical Results

In Fig. 9, we portray the channel capacity of a 3-layer
LACO-OFDM system vs. its power sharing factors α1 and α2,
using 16QAM at an SNR of 12 dB. Observe that the capacity
first increases and then decreases with respect to both α1 and
α2, resulting in a global peak in the middle.

To elaborate a little further, in Fig. 10 we provide cross-
sectional views of the capacity by slicing the 3D surface of
Fig. 9 along α1 and α2, respectively. The derivatives with
respect to the corresponding variables are also depicted in the
same figure. In Fig. 10a, the capacity peak can be found at
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Fig. 9. Channel capacity of 3-Layer LACO-OFDM using 16QAM at SNR =
12 dB vs. α1 and α2.
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Fig. 10. Channel capacity of 3-layer LACO-OFDM extracted from Fig. 9
and its derivatives.

the zero crossing of its derivative, namely at α1 = 0.701.
Fig. 10b is then sliced by the vertical plane at α1 = 0.701,
leading to the same capacity peak at α2 = 0.6841, which
in turn decides where to slice it for generating Fig. 10a.
Since the capacity derivatives are zero in both directions at
(α1, α2) = (0.701, 0.6841), the peak constitutes a global
capacity maximum.

To provide further insights, Fig. 11 depicts the optimum
channel capacity versus SNR for 3-layer LACO-OFDM in
conjunction with different modulation schemes.

D. Generalization of the Algorithm

Let us now continue by summarizing the optimum power
sharing of 3-layer LACO-OFDM systems and by generalizing
it for L-layer LACO-OFDM.
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Fig. 11. Optimized DCMC capacity of 3-Layer LACO-OFDM vs. SNR using
the proposed algorithm.

1) Let us establish the power sharing factors using α =
[α1, . . . , αl, . . . , αL−1], and

P1

Pl
=

αl−1

1− αl−1
, 0 ≤ αl−1 ≤ 1. (45)

2) Let us then express the SNRs of each layer Γl in terms
of the total SNR ΓLACO and α, using (15) and (16).

3) Obtain the total capacity formula CLACO using (19), and
differentiate it with respect to every element of α.

4) Using an (L−1)-stage nested loop in the power-sharing
algorithm to find the maximum of CLACO, we carry out
the following steps:

a) Fix the values of α1, ...αL−2 and substitute them
into ∂CLACO

∂αL−1
= 0. Find the root αL−1 using binary

search within [0, 1] and return to its upper loop.
b) Sweep the value of αL−2 across its legitimate

range and calculate the corresponding αL−1 each
time, until ∂CLACO

∂αL−2
= 0 is reached. Forward αL−1

and αL−2 to the upper loop.
c) Repeat this procedure until the top stage of the

loop is reached and find the values of all elements
in α so that we have diag{∇CLACO} = 0.

VI. DISCUSSIONS

A. Comparison to Conventional Power Sharing Strategy

In previous contributions on LACO-OFDM [15], [21], [23],
the “equal power per bit” strategy has been employed, where
the same amount of power is assigned to all information
bits in the system, regardless of their location in the layers.
Explicitly, if the same modulation order is applied for all
layers, each layer should have twice the energy of its directly-
following layer, because the former transmits twice the amount
of information bits than the latter. This leads to a fixed
α = {α1, α2, . . . αL−1} vector, regardless of the channel
SNR. According to (45), we have

αl =
P1

P1 + Pl+1
=

2lPl+1

2lPl+1 + Pl+1
= 1− 1

2l+1
. (46)
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Fig. 12. Capacity comparison for LACO-OFDM schemes using conventional
and proposed power sharing algorithms. 16QAM modulation is used for all
simulations.

In Fig. 12, we compare the capacity improvement attained
by using the Algorithm proposed. Observe that the “equal
power per bit” strategy is outperformed by the proposed one.

Specifically, at SNR = 12 dB, a beneficial capacity im-
provement of about 0.18 bits/symbol can be attained by 3-layer
LACO-OFDM using 16QAM. From a different prospective,
this can also be equivalently expressed as a 1.8 dB SNR gain,
because the conventional strategy reaches the same capacity at
a 1.8 dB higher SNR. By contrast, the difference for a twin-
layer system remains negligible.

B. Adapting the Number of Layers

It may also be observed from Fig. 12 that the capacity
curves do cross each other, before saturating for SNR ≥ 20
dB. LACO-OFDM schemes having more layers have lower
capacity in the low-SNR region before crossing all other
curves. In the spirit of achieving the maximum capacity, we
propose to adapt the number of layers based on the overall
SNR.

In Fig. 13, an example is provided for 16QAM LACO-
OFDM, where the number of layers ranges from 1 to 4,
with 1 representing ACO-OFDM instead of LACO-OFDM.
In this case, when the SNR is lower than 0.7303 dB, using
the second layer is in fact detrimental, because the power has
to be shared between two layers. Beyond that point, utilizing
LACO-OFDM shows capacity benefits. The handover between
2- and 3-layer LACO-OFDM occurs at SNR = 6.0653 dB,
where they have equal capacity, and for 3- and 4-layer it is at
SNR = 10.4124 dB.

The transmitter would require the channel SNR to be
fed back from the receiver to the transmitter and determine
the number of layers to use, based on which interval of
Fig. 13 the SNR lies in. It will then find the optimum power
sharing strategy using our proposed algorithm, which can be
represented by a look-up table.
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VII. CONCLUSIONS

The DCMC capacity of LACO-OFDM has been derived
for a given number of layers relying on our power sharing
strategy. The capacity formula was then used as our objective
function to maximize the capacity by tuning the power sharing
factors and the number of layers as well. Specific algorithms
have been proposed for solving optimization problem with the
help of partial derivatives. Recursive algorithms were designed
for our systems having more than 2 layers. The numerical
results show an up to 0.18 bits/symbol increase of the capacity
upon adopting the proposed power sharing strategy instead of
the conventional one for 4-layer LACO-OFDM. Finally, an
adaptive scheme was conceived for maximizing the DCMC
capacity of LACO-OFDM relying on adapting the number of
layers depending on the SNR encountered.
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