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Abstract 26 

A novel approach of combining regionalization and satellite observations of various 27 

hydrological variables were employed to significantly improve prediction of streamflow signatures 28 

at “geopolitically ungauged” basins. Using the proposed step-wise physiography and climate-29 

based regionalization approach, the model performance at ungauged basins reached 80% of 30 

performance of locally calibrated parameters and significantly outperformed the global 31 

regionalization parameters. The proposed water level based flow correlation was found to help 32 

diagnose models and outperform the existing performance metrics of simulated water levels at 33 

ungauged basins. The study also set up the first multi-national, multi-catchment hydrological 34 

model in the Greater Mekong region, the top global biodiversity and major disaster risk hotspot in 35 

the world through sequential and iterative refinement of the existing global hydrological model. 36 

New model setup or existing models in the poorly-gauged and ungauged basins could be benefited 37 

from the proposed approach to predict and evaluate model at ungauged basins. 38 

Keywords: catchment model, regionalization, flow correlation, satellite observations, altimetry, 39 

Mekong  40 
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1. Introduction 41 

Adequate and reliable information about streamflows are imperative for effective 42 

management of water resources. Streamflow data are required for practical applications such as 43 

the design of drainage or water supply infrastructure, as well as planning short-term and long-term 44 

water use with respect to changes of land use and climate. However, only a small fraction of 45 

catchments in any part of the world, possess a stream gauge (Bloschl et al. 2013). Additionally, 46 

the number of actively gauged stations has in recent years declined significantly due to reducing 47 

government funds for monitoring networks (Ad Hoc Group et al., 2001; Shiklomanov et al., 2002). 48 

Given the scarcity of operational gauging stations, the availability of streamflow data is becoming 49 

increasingly limited.  50 

In addition to the global trend of declining streamflow gauges, accessing existing data is 51 

often more difficult in transboundary river catchments. Unfollowing the human-defined political 52 

or administrative boundaries, transboundary river basins account for roughly one-half of the 53 

earth’s land surface, generate about 60% of the global freshwater flow and are home to nearly 40% 54 

of the world’s population (UNEP-DHI & UNEP, 2016). At least one transboundary water body 55 

exists in almost every non-island state in the world. Even if international agreements enabling data 56 

and information sharing among states exist in principle, in practice data sharing is often complex 57 

in transboundary waters (Gerlak et al., 2010). For example, in the Okavango River basin, although 58 

there is agreement between Namibia and Botswana on sharing river flow data, it is of question 59 

how to validate the accuracy of shared data (Turton et al., 2003). Or in the case of the Jordan river 60 

basin, where there are asymmetric power relations, intentionally ambiguous mechanisms were 61 

designed by stronger states to allow no actual data exchange while diffusing domestic opposition 62 

(Fishhendler, 2008). These transboundary river basins are thus considered as “geopolitically 63 
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ungauged” where data observation networks may exist but data are unavailable for use due to 64 

geopolitical constraints (Kibler et a., 2014). 65 

Since streamflow observations are not available and accessible for all locations, 66 

hydrological models often rely on regionalization approaches to transfer information from gauged 67 

to ungauged catchments (see Beck et al., 2016; Razavi and Coulibaly, 2013; Bloschl et al., 2013; 68 

Parajka et al., 2013; Hrachowitz et al., 2013; He et al., 2011 for reviews). There are different 69 

regionalization approaches with their respective advantages and limitations. In general, approaches 70 

that transfer calibrated parameter sets with respect to their climatic and physiographic similarity 71 

and/or simultaneously calibrate multiple catchments with those similar characteristics performed 72 

better than other approaches (Arheimer et al., 2019; Beck et al., 2016; Donnelly et al., 2016; 73 

Garambois et al., 2015; Sellami et al., 2014; Kim and Kaluarachchi 2008; Parajka et al, 2007). 74 

Nonetheless, it is of question if this approach would work in the case of physically-based 75 

distributed hydrological models, which inevitably have a large number of parameters. 76 

Physically-based distributed hydrological models, which have parameters linked to 77 

physiography and/or climate in the context of multi-catchment modeling approach (including both 78 

gauged and ungauged basins), is a type of regionalization (Donnelly et al., 2016; Abbaspour et al., 79 

2015; Arheimer et al., 2019; Hossain et al., 2017; Mohammed et al., 2018). Most of these studies 80 

used physiography-linked parameter sets, except the most recent study by Arheimer et al. (2019) 81 

that included similarity in climate characteristics. Among them, the study by Donnelly et al. (2016) 82 

explicitly evaluated physiography-linked parameter sets and concluded that they were useful for 83 

prediction at ungauged basins. The most recent study by Arheimer et al. (2019) included climate-84 

linked parameter sets by assigning different potential evapotranspiration algorithms for catchments 85 

characterized according to Koppen climate classification. However, it is questionable if the choice 86 
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of climate regions based on Koppen classification was optimal due to no explicit quantification of 87 

improvement in simulating streamflow.  88 

The growing availability of spatially distributed remotely sensed data and open global data 89 

sources, together with better computational capacity and advanced methods to assure better data 90 

quality, has brought the possibility of macroscale hydrological modeling at the continental scale 91 

(e.g. Pechlivanidis and Arheimer, 2015; Abbaspour et al., 2015; Donnelly et al., 2016) and the 92 

global scale (Arheimer et al, 2019; Doll et al., 2003; Beck et al., 2016). However, it is known that 93 

most of the global scale hydrological models do not always have satisfactory performance over all 94 

stations within their expansive domains, constraining their application for management purposes. 95 

Furthermore, the evaluation of model performance has been undertaken at gauged or pseudo-96 

gauged stations. Accordingly, it is of question how to discern at which station model can 97 

satisfactorily capture the observed hydrological regimes. An innovative approach to evaluate 98 

model at ungauged basins without using streamflow data is thus required.   99 

While streamflow data are less available and accessible, water level or stream stage data 100 

are more widely obtainable because there is less investment of people and equipment to measure 101 

them and increasingly more access and coverage of stage data derived from satellite altimetry 102 

become available (Okeowo et al., 2017; Lee et al., 2009). Water level observations either from in 103 

situ observations or derived from satellite altimetry have been increasingly used to calibrate 104 

hydrological models towards replacing streamflow information for poorly and ungauged basins 105 

(Getirana, 2010; Sun et al., 2012; Lindstrom, 2016; Jian et al., 2017) and used innovatively to 106 

estimate important hydrological information for Mekong river basin (Kim et al., 2019a; Chang et 107 

al., 2019). However, the evaluation of hydrological models using the existing performance metrics 108 

based on water level only can yield inaccurate results due to inherent numerical problems 109 
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(Lindstrom, 2016; Jian et al., 2017). Therefore, it is vital to develop methods that more effectively 110 

utilize water level data, where available, for evaluation of model at ungauged basins as a surrogate 111 

for streamflow. 112 

Similar flow dynamics (mean discharge, relative flow variability and catchment response 113 

rates) have been found between catchments having high spatial correlation of daily streamflow (p 114 

> 0.9), rather than catchments having spatial proximity (Archfield and Vogel, 2010; Betterle et al., 115 

2017; Betterle et al., 2019). Instead of using streamflow for ungauged catchments (receptor), water 116 

level observations can be used to find the most highly correlated gauged catchments (donor). This 117 

approach is named as water level based flow correlation in this study. If a model can simulate 118 

similar correlation to the observed correlation patterns between gauged (using streamflow) and 119 

ungauged (using water level), it is hypothesized that performance of simulated ungauged 120 

catchments is as similar as gauged catchments. It is thus worth exploring whether this hypothesis 121 

is valid. 122 

Accordingly, the overarching goal of this work is to develop and test a new method of 123 

using satellite observations and regionalization to improve the prediction of streamflow at 124 

“geopolitical ungauged” basins using Hydrological Predictions for the Environment (HYPE) semi-125 

distributed hydrological model (Lindstrom et al., 2010). A first subcontinent-scale hydrological 126 

model would be setup for the Greater Mekong region, which is a global biodiversity and major 127 

disaster risk hotspot but poorly simulated in the existing global hydrological models, constraining 128 

their use for pressing management purposes (Tordoff et al., 2012; Dilley et al., 2005; Du et al., 129 

2018). The region covers 13 river basins, of which six international river basins make up 90% of 130 

total area, passing the entire territory of Vietnam, Laos, Cambodia and parts of China, Thailand 131 

and Myanmar (Figure 1). The specific objectives of this work are to examine: (i) how far a multi-132 
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catchment HYPE model using global open data sources including satellite observations can predict 133 

flow signatures for gauged catchments in the region; (ii) identify whether physiography and 134 

climate based regionalized parameters could improve prediction of streamflow signatures at 135 

ungauged catchments; (iii) determine whether water level based flow correlation could help to 136 

evaluate model performance at ungauged catchments.  137 
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Figure 1. The study domain of Greater Mekong, covering thirteen river basins, six of which are international 138 

transboundary river basins (red colored legends) (including the entire territory of Vietnam, Laos, Cambodia and part 139 

of China, Thailand and Myanmar) whereas the remaining river basins are located inside Vietnam 140 

2. Data  141 

2.1. Input dataset for HYPE model 142 

The study used HYPE semi-distributed hydrological model, which has been examined in 143 

extensive catchment types worldwide (Arheimer et al., 2019). In this study, HYPE for Greater 144 

Mekong region is named as Greater Mekong HYPE (GMH), which has been developed 145 

incrementally, and the current final version 1.3 (GHMv1.3) was based on the first version 146 

(GMHv1). GMHv1 was the result of multiple collaboration works over multiple years between 147 

Swedish Meteorological Hydrological Institute (SMHI) and National Center for Water Resources 148 

Planning and Investigation (NAWAPI). To be comparable with the Worldwide HYPE model 149 

version 1.3 (WWHv1.3, Arheimer et al., 2019), the catchment model HYPE for the Greater 150 

Mekong region used the same topography and hydrological databases (Table 1). Additionally, 151 

supplementary forcing and gauging data were used. In addition to Hydrological Global Forcing 152 

Data (HydroGFD) precipitation and HydroGFD temperature (Berg et al., 2018), Multi-Source 153 

Weighted-Ensemble Precipitation (MSWEP) precipitation, Tropical Rainfall Measuring Mission 154 

(TRMM 3B42) precipitation and National Centers for Environmental Prediction Climate Forecast 155 

System version 2 (NCEP CFSv2) temperature, which have been examined to perform well in the 156 

region, were added (Tang et al., 2019; Mohammed et al., 2018). Since different forcing datasets 157 

have different spatial resolutions (Table 1), the nearest grid approach was used to assign the 158 

characteristics to each sub-catchment. Considering Vietnam to be the country that needs to monitor 159 
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water resources outside of the country (given 60% of water is generated outside of the country; 160 

World Bank, 2019; Du et al., 2016), any streamflow observations inside Vietnam are named as 161 

gauged catchments (used for calibration) whereas the observations outside of Vietnam, where 162 

available, are named as “geopolitically ungauged” catchments (gauged but not used for 163 

calibration). Sources of the additional ground observations of streamflow, water level and 164 

precipitation were supplemented by project partners to calibrate and validate the model 165 

performance in the region (see Figure 1 for their locations. Details of stations’ names, locations 166 

and basic information are provided in Table Supplementary 1). 167 

Table 1  168 
Data description and sources used in the Greater Mekong HYPE project 169 

Data type Source and resolution Reference 

Topography (Flow accumulation, 

flow direction, digital elevation, 

river width) 

SRTM (3 arcsec) 

HYDRO1k (30 arcsec) 

GWD-LR (3 arcsec) 

USGS 

UGGS 

Yamazaki et al., 2014 

Floodplains and Lake Global Lake and Wetland Database (GLWD) Lehner and Doll, 2004 

Reservoirs and dams Global Reservoir and Dam database v1.1 (GRanD) Lehner et al., 2011 

Land Cover characteristics ESA CCI Landcover v1.6.1 epoch 2010 (300m) 

ESA Climate Change 

Initiative – Land Cover 

project 

 

Precipitation 

 

MSWEP (0.25o grid, 1979 – 2014) 

TRMM 3B42 (0.25o grid, 2001 – 2015) 

HydroGFD (0.5o grid, 1961 – 2015) 

In-situ precipitation stations in Vietnam (176 

stations, 1975 – 2006)  

Beck et al. 2017 

Huffman et al., 2006 

Berg et al., 2018 

BIG DREAM project 

(VINIF.2019.DA17) 

Temperature 

 

HydroGFD (0.5o grid, 1961 – 2015) 

NCEP CFSv2 (0.25o grid,1979 – 2014) 

Berg et al., 2018 

Saha et al., 2011 

Potential Evapotranspiration 

 

MOD16A2 (8-day 1 km, 2001 – 2010) 

 

Mu et al., 2016 

 

Streamflow observations in 

Vietnam (Gauged) 

(used for calibration) 

 

19 Stations (daily, 1980 - 2010) 

 

BIG DREAM project 

(VINIF.2019.DA17) 

Observations of streamflow and 

water level in Mekong 

(“geopolitically ungauged”) 

(used for independent evaluation) 

 

12 Stations (daily, 1980 – 2007) 

 

Mekong-SERVIR project 

(ADPC) 

Envisat-derived Water Level 

(Envisat-“ungauged”*) 

(used for independent evaluation) 

 

17 Virtual Stations (daily every 35 days, 2002-

2009) 

Okeowo et al., 2017; Lee et 

al., 2009; Chang et al., 2019; 

Kim et al., 2019; 

CTOH_ENVISAT_2014_01 
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* Envisat-“ungauged” catchments are catchments that have virtual stations of Envisat-derived water level but mostly have no 170 

observations of streamflow (except 3 catchments that are located in “geopolitically ungauged” catchments) (More explanations 171 

are provided in Table 2) 172 

2.2. Radar Altimetry data  173 

The heights of the earth surface every 35 days can be determined using the two-way travel 174 

time of radar pulses by Envisat Radar Altimeter 2 (RA 2) during period from August 2002 to 175 

October 2010 (see Figure 2 and Table 2 for their locations). Altimetric along-track data v2.1 of the 176 

Envisat mission (CTOH_ENVISAT_2014_01) corrected by CTOH (Centre de Topographie des 177 

Océans et de l'Hydrosphère, LEGOS, France) were extracted and time series were generated using 178 

the automation algorithm developed in Okeowo et al. (2017). This algorithm was based on K-179 

means clustering for the automatic detection of outliers. Their method was found to be 180 

computationally effective compared to other methods, such as Kalman filter approach by Schwatke 181 

et al. (2015) and applicable in the Mekong river basin (Kim et al., 2019b). 182 

Table 2  183 
List of seventeen virtual stations (VSs) with Envisat pass numbers and their location 184 

No. VS 
Pass 

number 
Location (Lat/Lon) Located in “Geopolitically ungauged” catchments? 

1. VS 101 737 20.195oN/100.472oE No – Envisat-“ungauged” catchment (EU101) 

2. VS 102 651  20.025oN /101.950oE No – Envisat-“ungauged” catchment (EU102) 

3. VS 103 651 19.817oN /101.994oE No – Envisat-“ungauged” catchment (EU103) 

4. VS 104 565 18.345oN /103.796oE No – Envisat-“ungauged” catchment (EU104) 

5. VS 105 107 18.151oN /103.115oE No – Envisat-“ungauged” catchment (EU105) 

6. VS 106 651 17.980oN /102.443oE No – Envisat-“ungauged” catchment (EU106) 

7. VS 107 21 17.531oN /104.699oE Yes – (GU25) Nakhom Phanom Station (EU107) 

8. VS 108 21 17.137oN /104.789oE No – Envisat-“ungauged” catchment (EU108) 

9. VS 109 21 16.279oN /104.990oE Yes – (GU27) Savannakhek Station (EU109) 

10. VS 110 937 14.044oN /106.944oE No – Envisat-“ungauged” catchment (EU110) 

11. VS 111 479 13.856oN /106.269oE No – Envisat-“ungauged” catchment (EU111) 

12. VS 112 866 13.845oN /105.986oE Yes – (GU31) Stung Treng Stations (EU112) 

13. VS 113 322 13.842oN /106.709oE No – Envisat-“ungauged” catchment (EU113) 

14. VS 114 866 13.372oN /105.881oE No – Envisat-“ungauged” catchment (EU114) 

15. VS 115 939 13.310oN /107.111oE No – Envisat-“ungauged” catchment (EU115) 

16. VS 116 21 12.270oN /105.911oE No – Envisat-“ungauged” catchment (EU116) 

17. VS 117 565 11.933oN /105.276oE No – Envisat-“ungauged” catchment (EU117) 

Note: “Geopolitically ungauged” catchments are catchments that actually have historical observations of daily streamflow and 185 

water level for only cross-validating the proposed method (not used at all for calibration) (Table 1). Envisat-“ungauged” catchments 186 
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are catchments that have virtual stations of Envisat-derived water level but mostly have no observations of streamflow (except 3 187 

catchments that are located in “geopolitically ungauged” catchments). Among 17 Envisat-“ungauged” catchments, 3 of them are 188 

located in “geopolitically ungauged” (shown in bold font), which can be validated with the  actual streamflow observations.  189 
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 190 

Figure 2. Spatial distribution of virtual stations (red triangles) and “geopolitically ungauged” stations (white circles) 191 

employed in the study (Figure 2a). The black lines denote the ground tracks of Envisat altimetry. Figure 2b shows the 192 

names of “geopolitically ungauged” stations. Time series of river elevation at three VS’s are shown in the panels on 193 

the right (Figure 2c, 2d, 2e) (time series of all locations are not presented for reason of brevity). 194 

3. Methods 195 

3.1 The multi-catchment hydrological model HYPE  196 

HYPE is a process-oriented semi-distributed open-source model that is developed and used 197 

operationally to deliver high-resolution model predictions of water and nutrients (Lindstrom et al., 198 

2010; Arheimer and Lindstrom, 2013). Initially developed for use in Sweden, it has more recently 199 

been used in applications in, for example, India (Pechlivanidis and Arheimer, 2015), Europe 200 
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(Donnelly et al., 2016), and across the globe (Arheimer et al., 2019). The HYPE model code has 201 

been developed since 2005 with a flexible approach to start with simple process descriptions and 202 

further refine and increase complexity when necessary (Lindstrom et al., 2005; Bergstrom 1991; 203 

Beven 2001). The model structure is based on a multi-catchment approach allowing simultaneous 204 

modeling of multiple river basins, with each river basin divided into multiple subbasins and each 205 

subbasin further divided into hydrologic response units (HRUs). Each HRU can be divided 206 

vertically into three maximum distinct soil layers (normally the top layer has a thickness of around 207 

25 cm, the second of 1-2 meters and the third can be deeper to account for ground water) (Bui et 208 

al., 2011). The model is forced by precipitation and temperature at either daily or hourly temporal 209 

resolution, and its calculation starts at HRUs and is then aggregated to subbasin level. HYPE 210 

calculates flow paths in the soil based on snow melt, evapotranspiration, surface runoff, 211 

infiltration, percolation, macropore flow, tile drainage and outflow to the stream from soil layers 212 

when water content is above field capacity. Different algorithms are provided to calculate snow 213 

melt, evapotranspiration, and infiltration according to the physical characteristics of the modeled 214 

catchments. The runoff from the land classes is then routed through the network of rivers and lakes 215 

to generate river flow, which could be dampened due to effect of lakes and reservoirs. HYPE can 216 

also simulate the effect of floodplains, which is crucial for large river systems and their deltas 217 

(Andersson et al., 2017), and it can also simulate the transport and concentration of nutrients in 218 

both soil, rivers and lakes (Lindstrom et al., 2010). In addition to natural dynamics, the model can 219 

simulate simplified water management schemes, such as regulated reservoirs (hydropower), and 220 

irrigation. There are several parameters used in HYPE that can be constrained in a stepwise manner 221 

using different types of observed data (Arheimer and Lindstrom 2013). The parameters may be 222 

soil type dependent (e.g., field capacity), land cover dependent (e.g., evapotranspiration 223 
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coefficient) or general across the domain (e.g., river routing parameters). Parameters, which are 224 

linked to physiography and/or climate rather than to a specific catchment, are thus assumed to be 225 

transferable to ungauged sites. More details on the HYPE model, including visual schematic 226 

diagram, can be found in the web-based documentation (http://www.smhi.net/hype/wiki/) and 227 

Lindstrom et al. (2010).  228 

 The HYPE model has the explicit lake routing, including two types of lakes, which are 229 

local lakes and outlet lakes. Local lakes, which are located inside the subbasin, only receive a 230 

portion of local surface runoff and then flows to main river of the same subbasin. Outlet lakes, 231 

which are located near the main river, receive both local runoff (after it has passed local lakes) and 232 

the river flow from upstream subbasins. Each lake can be set with an individually defined depth. 233 

The outflow from lakes (when water level is above a defined threshold) can be either determined 234 

by a general rating curve or a specific rating curve.  235 

The rating curve for a lake outlet is written as:  236 

    𝑞 = 𝑘(𝑤 − 𝑤0)𝑝  237 

Thus, water level can be also seen as a transformation of streamflow:  238 

(𝑤 − 𝑤𝑜) = (𝑞/𝑘)1/𝑝 239 

where q is the outflow or streamflow (m3/s), w is water level (m), w0 a threshold (m) and p is an 240 

exponent (Lindstrom, 2016). When w0 is known, (w − w0) is equal to water depth. 241 

Lake water levels, which are easier and cheaper to be measured, are mainly used with the 242 

purpose of estimating streamflow through established rating curves. Meanwhile, there are a lot of 243 

basins that have no observations of streamflow. Therefore, Lindstrom (2016) tested if HYPE can 244 

be calibrated using water level data instead of streamflow. The study found that water levels could 245 

be useful for calibration of hydrological models without measuring streamflow by establishing a 246 

(1) 

(2) 

http://www.smhi.net/hype/wiki/)
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traditional rating curve but using a constant rating curve exponent. His suggestion of using p = 2 247 

while adjusting k and w0 appropriately for all lakes resulted in a reasonable agreement with 248 

observed daily water level records based on the assumption of parabolic lake outlets, which agreed 249 

with the previous study by Maidment (1992).  250 

 Accordingly, to integrate river elevation derived from Envisat altimetry into HYPE, 251 

modeled streamflow must be converted to water level. Using outlet lake routine from HYPE, 252 

negligibly small outlet lakes, which have inflow equal to outflow (no storage capacity to affect 253 

streamflow) were added in subbasin, where there is either in-situ observations of streamflow and 254 

water level or Envisat-derived river elevation. To reduce uncertainty of estimating water depth, in 255 

addition to constant p, constant k = 100 and w0 = 0 were used, so equation (2) becomes 𝑤 =256 

(𝑞/100)1/2. Since the proposed method (water level based flow correlation, explained in section 257 

3.3) emphasized the temporal dynamics rather than the true magnitude of a variable, it was not 258 

necessary to estimate the exact water depth. Simulated w would be compared with either in-situ 259 

observations of water level at “geopolitically ungauged” catchments or Envisat-derived water 260 

elevation at Envisat-“ungauged” catchments.  Envisat-“ungauged” catchments are catchments that 261 

have virtual stations of Envisat-derived water level but mostly have no observations of streamflow 262 

(except 3 catchments that are located in “geopolitically ungauged” catchments) (Table 2). 263 

3.2. Grouping catchments using climatic indexes 264 

 Similar seasonal water balance patterns between catchments, which could be explored 265 

based on three climatic indices alone, i.e., climatic aridity, timing of seasonal precipitation, and a 266 

temperature-based measure of snowiness, was found to provide a useful backdrop to the signatures 267 

of streamflow variability over various time scales (daily to decadal) and states (low flow to floods) 268 
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(Berghuijs et al., 2014). This study applied Berghuijs et al. (2014)’s approach to robustly group 269 

catchments based on their similarity in climatic characteristics. Accordingly, two dimensionless 270 

indices that account for similar water balances among catchments were calculated, namely the 271 

aridity index and the seasonality index (snowiness is not considered in this study since there is 272 

almost no snow impact in the study area).  273 

 Proposed by Budyko (1974), the aridity index is defined as: 274 

𝜑 =  
�̅�

�̅�
 275 

where �̅� is the average potential evaporation rate (mm/day) and �̅� is the average precipitation rate 276 

(mm/day). This average is calculated from 2002-2009, the same time period used to calibrate the 277 

model. 𝜑 can range from 0 to infinity (in theory) with higher values associated with more arid 278 

climate.  279 

 Here, it is assumed that the seasonal variability of precipitation and air temperature can be 280 

modeled as simple sine curves (Milly, 1994; Potter et al., 2005; Woods, 2009) as follows:  281 

𝑃(𝑡) =  �̅� [1 + 𝛿𝑃 sin (
2𝜋(𝑡 − 𝑠𝑃)

𝜏𝑃
)] 282 

𝑇(𝑡) =  �̅� +  ∆𝑇[sin (
2𝜋(𝑡 − 𝑠𝑇)

𝜏𝑇
)] 283 

where t is the time (days), s is a phase shift (days), 𝜏 is the duration of the cycle under 284 

consideration (here, 365 days), �̅� is the average precipitation (mm/day), �̅� is the average 285 

temperature (oC/day) over same period 2002-2009, 𝛿𝑃 and Δ𝑇 are dimensionless seasonal 286 

amplitudes, and the subscripts P and T stand for precipitation (mm/day) and temperature (oC/day) 287 

respectively. P(t) is the precipitation rate (mm/day) and T(t) is temperature (oC/day) as a function 288 

(3) 

(4) 

(5) 
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of t. Using a least squares optimization, 𝛿𝑃 and Δ𝑇 were obtained for all individual 1120 289 

catchments in the HYPE study domain. 290 

Then, the seasonality index 𝛿𝑃
∗  was calculated using Woods (2009): 291 

𝛿𝑃
∗ = 𝛿𝑃. 𝑠𝑔𝑛(∆𝑇). cos (

2𝜋(𝑠𝑃 − 𝑠𝑇)

𝜏
) 292 

where 𝛿𝑃
∗  indicates whether precipitation is in phase with the potential evaporation and temperature 293 

regimes. The parameter 𝛿𝑃
∗  can range from -1 to +1, with the former representing strongly winter-294 

dominant precipitation (P out of phase with T) and the latter showing strongly summer-dominant 295 

precipitation (P in phase with T). 𝛿𝑃
∗  = 0 indicates the uniform precipitation throughout the year. 296 

3.3. Water level based flow correlation between gauged and “ungauged” catchments 297 

 A measured correlation matrix (Pearson’s r correlation coefficient) between daily in-situ 298 

water level of “geopolitically ungauged” catchments and daily streamflow of gauged catchments 299 

was calculated to find the most highly correlated reference gauged catchments to the study 300 

“ungauged” catchments. Similarly, a measured correlation matrix between Envisat-derived water 301 

level of “ungauged” catchments outside of Vietnam and the daily streamflow of gauged 302 

catchments was also computed. To examine the assumption that the correlation between two daily 303 

streamflow series was similar to water level based flow correlation between daily water level 304 

(either insitu observations of water level or Envisat-derived water level) and streamflow, a 305 

corresponding correlation matrix between daily streamflow of “geopolitically ungauged” 306 

catchments and daily streamflow of gauged catchments was made. From previous studies on flow 307 

correlation, correlation coefficients larger than 0.9 were recommended to consider as being highly 308 

correlated catchments (Archfield and Vogel, 2010; Betterle et al., 2019). Because there were less 309 

(6) 
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catchments considered in the study, 𝑟 ≥ 0.7 was selected as the threshold correlation coefficient. 310 

Because r was smaller in the study, only catchments in the same climatic group (section 3.2) were 311 

examined, to ensure they have similar climate characteristics.  312 

3.4. Step-wise physiography and climate based regionalization at gauged basins 313 

 For data-sparse regions, step-wise calibration approach was shown to be a useful method 314 

to reduce the problem of equifinality of the final model output (Stromqvist et al., 2012; Arheimer 315 

and Lindstrom, 2013; Donelly et al., 2016; Andersson et al., 2017). At each key process, lumped 316 

calibration was carried out simultaneously for sub-groups of gauged basins (representative gauged 317 

basins - RGBs) with upstream areas dominated by a specific land-use or soil type. When calibration 318 

for a specific group of RGBs is deemed satisfactory, the parameters for that responding land-use 319 

or soil type can be kept constant and the next parameters for another group can be calibrated using 320 

another set of RGBs. The step-wise separation followed the hydrological pathways through the 321 

landscape, starting with climate inputs (precipitation, evapotranspiration), then subsequently 322 

moving downstream to soils (infiltration, storage, runoff), then the rivers and lakes (routing and 323 

storage). After each step, evaluation of model performance was undertaken for all 19 gauged 324 

stations and the best performance parameter set was used in the next step of the model refinement. 325 

The period 2002 - 2009 was selected as the calibrated period to analyze errors and refine the model. 326 

This period was chosen because it aligned with the availability of Moderate Resolution Imaging-327 

Spectroradiometer (MODIS) - derived potential evapotranspiration (PET) and Envisat-derived 328 

water level. The earlier part of the simulation period (1991-2001) was retained for independent 329 

validation at the same stations.  330 
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A key objective in calibrating the Greater Mekong-HYPE model was to represent the main 331 

hydrological processes of all river basins. Therefore, model evaluation and refinements primarily 332 

focused on achieving satisfactory performance across the whole basin using consistent descriptions 333 

rather than excellent performance at few locations. The streamflow signatures to be evaluated in 334 

the study were the daily and monthly specific streamflow (mm/day and mm/month), high flow (5th 335 

percentile of daily specific flow in mm/day), low flow (95th percentile of daily specific flow in 336 

mm/day) and medium flow (50th percentile of daily specific flow in mm/day). These signatures 337 

were selected because they are the most important and widely used signatures of catchment runoff 338 

response to be applied in water resources planning and environmental studies (Arheimer et al., 339 

2019; Donnelly et al., 2016) (Table 3). 340 

The entire domain-scale performance was quantified by first calculating key performance 341 

criteria for each of the above flow signatures at each of the 19 streamflow gauges available inside 342 

Vietnam (Figure 1), and then computing summary statistics to describe model performance across 343 

all locations. The model’s ability to simulate daily and monthly streamflow at each gauge was 344 

quantified with standard metrics, including the Kling-Gupta Efficiency (KGE) and its components 345 

r, 𝛽, 𝛼, which are directly linked with Pearson’s correlation coefficient, relative error (RE) and 346 

relative error of standard deviation (RESD, variability ratio) respectively (Gupta et al., 2009) 347 

(Table 4). For constraining PET parameter values, absolute value of RE was used to find the best 348 

agreements between modeled PET and MODIS-derived PET. 349 

 Both automatic and manual calibration approach were employed to take advantage of 350 

strengths of both methods. The advantage of the former is power and speed of computation and 351 

objective parameter constraints. Nevertheless, it is unlikely to provide physically acceptable 352 

parameter estimates, which are mostly addressed by highly labor-intensive manual calibration 353 
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(Boyle et al., 2000). The automatic approach was the Differential Evolution Markov Chain 354 

(DEMC) method (Ter Braak, 2006). DEMC allowed to examine parameter sensitivity, probability 355 

based uncertainty estimate and a better convergence towards the global optimum. Two-step DEMC 356 

automatic calibration was undertaken. Firstly, short runs (around 400 iterations) were done to 357 

examine parameter sensitivity. Secondly, longer runs (with at least 1000 iterations) were 358 

undertaken for only sensitive parameters to allow convergence to global optimum values. DEMC 359 

automation was then followed by manual checks to ensure the physically acceptable parameter 360 

ranges and simulated hydrograph similar to the observed patterns. Table 5 describes the model 361 

parameters to be calibrated and lists the initial parameter values for each parameter. Other 362 

parameters were kept as default as the baseline parameters from the first Greater Mekong HYPE 363 

model version (GMHv1) (the same roughly calibrated parameter sets of the first Worldwide HYPE 364 

model version 1.0 (WWHv1.0, Arheimer et al., 2019).   365 

Step-wise physiography and climate based regionalization framework for estimating 366 

different groups of model parameter values in each step were as follows:  367 

(1) For precipitation and temperature, different datasets of precipitation and temperature were 368 

used with the baseline parameters from WWHv1.0 (roughly calibrated model at global 369 

scale) without undertaking any additional calibration to identify the optimal climate forcing 370 

datasets for the region. Daily KGE was used to evaluate this step. This model step after 371 

selecting the optimal climate data was named as the Greater Mekong HYPE model version 372 

1.0 (GMHv1.0). 373 

(2) PET parameter values (lb, kc5, alb: see Table 5 for description of parameter values) were 374 

constrained using the absolute value of RE between annually simulated PET and MODIS-375 

derived PET. PET algorithm selected in the study was Food and Agriculture Organization 376 
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(FAO) Penman-Monteith, which was integrated inside the HYPE model (Allen et al., 1998; 377 

Monteith, 1965). This algorithm was selected so that it was more comparable to MODIS-378 

based PET, which was also based on Penman-Monteith logic (Mu et al., 2016). Two-step 379 

DEMC automatic calibration was undertaken to obtain the optimal values for each RGB of 380 

each land cover type (10 main land cover types were grouped from 36 European Space 381 

Agency (ESA) Climate Change Initiative CCI v1.6 data, see details of land cover 382 

description and grouping in Arheimer et al., 2019). Thirdly, manual checks of parameter 383 

values for each group were made to ensure their acceptable physical meaning. This model 384 

step after selecting optimal parameter values was named as the Greater Mekong HYPE 385 

model version 1.1 (GMHv1.1). 386 

(3) Parameters related to soil storage, flow paths and runoff generation (19 parameters 387 

provided in Table 5) were first optimally tuned by two-step DEMC calibration with daily 388 

KGE used as the objective function. Because all gauged and ungauged basins were mainly 389 

vegetated areas, only parameters for vegetated soils were calibrated. The remaining 390 

parameters were kept as default. Following automatic calibration, manual check was done 391 

to examine the physical meaning of parameters, and hydrograph simulation of other 392 

signatures (daily streamflow, Q95, Q5 and Q50). This model step after selecting the 393 

optimal parameter values was named as the Greater Mekong HYPE model version 1.2 394 

(GMHv1.2). 395 

(4) Each catchment group (section 3.2) was evaluated separately and calibrated using regional 396 

correction parameters (cevpcorr, rrcscorr: see Table 5 for description of parameter values) 397 

(Hundecha et al., 2013). Two-step DEMC with daily KGE as the objective function and 398 

manual checks were done for all flow signatures (daily streamflow, Q95, Q5 and Q50). 399 
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This model step after selecting the optimal regional correction parameter values was named 400 

as the Greater Mekong HYPE model version 1.3 (GMHv1.3). 401 

Table 3  402 
Flow signatures evaluated in the study (Range estimated from 2002 – 2009 period) 403 

Flow Signatures Description 

MeanDailyQ (QDD) Mean daily specific flow in mm 

MeanMonthlyQ (QMM) Mean monthly specific flow in mm 

Q5 5th percentile of daily specific flow in mm 

Q50 50th percentile of daily specific flow in mm 

Q95 95th percentile of daily specific flow in mm 

MeanDailyW(WDD) Mean daily water level in m 

MeanMonthlyW (WMM) Mean monthly water level in m 

 404 
Table 4  405 
Performance metrics used in the study 406 

Performance metrics  Equation / References Range Variables 

KGE 

 

(Kling-Gupta 

Efficiency) 

  

KGE = 1 – √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2  
 

(Gupta et al., 2009) 

Negative Infinity to 1 

(the closer to 1, the better 

simulation) 

QDD, QMM  

RE  

 

(Relative error) 

𝛽 =  
𝜇𝑠

𝜇𝑜
; 𝑅𝐸 = (𝛽 − 1). 100 

(Gupta et al., 2009) 

 

Infinity to Infinity 

(the closer to 0, the better 

simulation) 

QDD, QMM, 

Q5, Q50, 

Q95  

RESD  

 

(Relative Error of 

Standard Deviation) 

𝛼 =  
𝜎𝑠

𝜎𝑜
; 𝑅𝐸𝑆𝐷 = (𝛼). 100 

(Gupta et al., 2009) 

Infinity to Infinity 

(the closer to 0, the better 

simulation) 

QDD, QMM  

Pearson’s r Correlation 

Coefficient 

 

 

𝑟 =  
𝑐𝑜𝑣 (𝑥𝑜, 𝑥𝑠)

𝜎𝑠𝜎𝑜
 

 

 

-1 to 1 

(the closer to -1 or 1, the 

better simulation) 

QDD, QMM, 

WDD, 

WMM 

 

NSEW 

 

𝑁𝑆𝐸𝑊 = 𝑁𝑆𝐸 +  
(𝛽 − 1)2

𝜎𝑜
2  

(Lindstrom, 2016)  

 

Negative Infinity to 1 

(the closer to 1, the better 

simulation) 

WDD, 

WMM 

 

NSEanom 

 

𝑁𝑆𝐸𝑎𝑛𝑜𝑚 = 1 −
∑ {[𝑛𝑡

𝑡=1 𝑥𝑜(𝑡) − 𝑥𝑜̅̅ ̅] − (𝑥𝑠(𝑡) − 𝑥�̅�]}2

∑ [𝑥𝑜(𝑡) −  𝑥𝑜̅̅ ̅]2𝑛𝑡
𝑡=1

 

 

(Getirana, 2010) 

 

Negative Infinity to 1 

(the closer to 1, the better 

simulation) 

WDD, 

WMM 

 

Note. 𝑥 represents the streamflow or water level time series. 𝜇: the mean value of streamflow or water level time series. 𝜎: the 407 

standard deviation of streamflow or water level time series. The sub-indexes 𝑜 and 𝑠 are observed and simulated streamflow or 408 

water level time series, respectively. 𝑡 is the time step (one month for this application), 𝑛𝑡 is the total number of months.  409 
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Table 5  410 
HYPE Model Parameter Description, Initial parameter range and Posterior parameter values  411 

Hydrological Process Parameter and description 
Initial Parameter 

Range 

Posterior 

parameter 

values 

Potential 

evapotranspiration 

lb: threshold soil water for activation of PET 0.9 0.9 

kc5: crop coefficient for Penman-Monteith algorithm [0.9 – 1.4] [1.2 – 1.9] 

alb: albedo for PET algorithms [0.12 – 0.23] [0.12 – 0.23] 

Soil water storage 

and flow path 

(for vegetated soil 

and land uses) 

rrcs1: recession coefficient for uppermost soil layer 0.3 0.3 

rrcs2: recession coefficient for lowest soil layer 0.03 0.015 

rrcs3: recession coefficient for slope dependent 0.0002 0.0002 

mperc1: maximum percolation capacity from soil layer 1 to 

soil layer 2 

20 20 

mperc2: maximum percolation capacity from soil layer 2 

to soil layer 3 

20 50 

macrate: fraction for macro-pore/subsurface flow 0.3 0.4 

mactrinf: threshold for macro-pore/subsurface flow 10 6 

mactrsm: threshold soil water for subsurface and surface 

runoff 

0.7 0.1 

srrate: fraction for infiltration excess surface runoff 

(Horton overland flow) 

0.04 0 

wcwp1: wilting point as a fraction for uppermost soil layer 0.2 0.2 

wcwp2: wilting point as a fraction for second soil layer 0.2 0.2 

wcwp3: wilting point as a fraction for lowest soil layer 0.2 0.2 

wcfc1: fraction of soil available for evapotranspiration for 

uppermost soil layer 
0.15 0.15 

wcfc2: fraction of soil available for evapotranspiration for 

second soil layer 

0.15 0.15 

wcfc3: fraction of soil available for evapotranspiration for 

lowest soil layer 

0.15 0.15 

wcep1: effective porosity as a fraction, for uppermost soil 

layer 

0.04 0.015 

wcep2: effective porosity as a fraction, for second soil 

layer 

0.04 0.3 

wcep3: effective porosity as a fraction, for lowest soil layer 0.04 0.4 

srrcs: recession coefficient for saturated surface runoff 

(Dunne overland flow) 

[0.05 – 0.2] [0 – 0.4] 

Seasonal water 

balances among 

catchment groups 

cevpcorr: correction factor for PET  0 0 

rrcscorr: correction factor for soil recession coefficient 0 [-0.5 – -0.2] 

  Note. Posterior parameter values different from initial parameter range are shown in bold font. 412 

3.5. Performance of regionalized parameters at ungauged basins 413 

The performance of physiography and climate based regionalized parameters was assessed 414 

with the following approach. At 12 “geopolitically ungauged” to be used for independent 415 

evaluation (Figure 3), KGE, RE for daily streamflow, RE for Q95, Q5, Q50 were obtained by 416 

using the following sets of parameters: 417 
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(1) Step-wise physiography and climate based regionalization parameters transfer from 418 

gauged catchments (par GMHv1.3) (section 3.4). 419 

(2) Global regionalization parameters from the WWHv1.3 (Arheimer et al., 2019). This 420 

parameter set was forced with the same climate data as the WWHv1.3 model (HydroGFD 421 

Precipitation and Temperature). 422 

(3) Locally calibrated parameters in the ideal situation where observed streamflow were 423 

available for calibration (Step one to three of section 3.4 without manual calibration so that 424 

selected parameters can be objective). 425 

The performance metrics from the three parameter sets were compared to address research 426 

objective 2 (section 1) if the proposed regionalization method could help improve prediction of 427 

streamflow signatures at ungauged basins. 428 

 429 

 430 
Figure 3. Flow chart summarizing steps of proposed method in the study 431 
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3.6. Model evaluation at ungauged basins using water-level based flow correlation  432 

At 12 “geopolitically ungauged” and 17 Envisat-“ungauged” catchments, which were 433 

assumed to have no observations of streamflow but only water level, different performance metrics 434 

were used to examine if water level can be modelled with a satisfactory level of performance. 435 

Pearson’s correlation coefficient was first examined to see if the modeled water level has similar 436 

temporal dynamics with the recorded water level, irrespective of their magnitudes. Getirana (2010) 437 

proposed Nash-Sutcliffe efficiency for anomalies (NSEanom), which was a modified NSE metrics 438 

to eliminate the anomalies or bias caused by different reference water level between modeled and 439 

recorded water levels. Similarly, Lindstrom (2016) introduced Nash-Sutcliffe efficiency adjusted 440 

for bias (NSEW) to eliminate bias between them (Table 4). However, due to numerical problems, 441 

both equations can still yield inaccurate results because magnitudes of variation between the two 442 

variables are significantly different (modeled water level with few meters whereas recorded water 443 

level with several hundred meters above sea level).  444 

 Because of numerical problems to evaluate the performance of catchments based on water 445 

level only, this study proposed applying hydrologic similarity theory by assuming that the most 446 

highly correlated reference gauged catchments (using daily streamflow) also have similar 447 

performance to that of the study “ungauged” catchments (using water level). To use this method, 448 

first, the modeled water levels of the “ungauged” catchments were evaluated against recorded 449 

water levels using Pearson’s correlation coefficient, NSEanom and NSEW. For in-situ water 450 

levels, evaluation was undertaken at both daily and monthly time steps. For Envisat-derived water 451 

levels, evaluation was performed at any day step that has recorded data (one daily observation 452 

every 35 days). NSEanom and NSEW were used only to examine if numerical problems of 453 

evaluating models based on water levels existed. When only modeled water level had good 454 
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correlation with recorded water level (r ≥ 0.7), following steps were undertaken. This condition 455 

ensured that the temporal variation of modeled water levels against observations was captured. 456 

Secondly, the modeled correlation between modeled water levels of the “ungauged” catchments 457 

and modeled streamflow of the reference most highly correlated catchments was computed. If 458 

there was similar result between modeled correlation and measured correlation (modeled 459 

correlation can range from 0.5 to 0.9 compared to measured correlation), performance of reference 460 

gauged catchment was assumed to be the performance of “ungauged” catchment. To cross-validate 461 

this assumption, performance of “ungauged” catchments against the historical observations of 462 

streamflow, where available, was evaluated and compared with the assumption (Figure 4). 463 

 464 

Figure 4. Model evaluation framework at “ungauged” catchments using water level based flow correlation method. 465 

Q, W represents daily or monthly streamflow and water level time series respectively. The subscripts s and o are 466 

simulated and observed time series respectively. The second subscripts 1 and 2 are “ungauged” (either “geopolitical 467 

ungauged” or Envisat-“ungauged”) and their most highly correlated gauged catchments respectively. Qo1 (if available) 468 

is not used in model setup or calibration, but only used to cross-validate the assumption that performance of 469 
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“ungauged” catchments is similar to that of the reference most highly correlated gauged catchments. The expression 470 

“=” is understood as between +/- 0.2 (so modeled correlation can range from 0.5 to 0.9 compared to measured 471 

correlation).  472 

4. Results 473 

4.1. Catchment delineation and characteristics 474 

 The World Hydrological Input Set-up Tool (WHIST) developed by SMHI (Swedish 475 

Meteorological and Hydrological Institute, developer of HYPE model) was used to delineate 476 

catchment borders (Arheimer et al., 2019). Consistent with the WWHv1.3, catchment delineation 477 

was defined using the same approach according to the locations of gauging stations in the river 478 

network (including 19 “gauged” stations and 12 “geopolitically ungauged”), the outlets of large 479 

lakes/reservoirs, and seeking to reach an average catchment size of ~ 1,000 km2 (Arheimer et al., 480 

2019). As a result, the Greater Mekong region (~1,2 million km2) was divided into 1,120 sub-481 

catchments with an average size of 1,047 km2. Sub-catchments within low-lying areas with 482 

extensive floodplains tended to have a larger size (average 3,600 km2), among which the TonleSap 483 

basin had the largest size of 10,000 km2. The outputs of catchment delineation were quality 484 

checked with station metadata (obtained from governmental reports). 100% of the estimated 485 

catchment areas were found to fall within +/- 5% of the areas reported by these metadata. For lakes 486 

and reservoirs, in total, 15 lakes and 18 reservoirs (only lakes and reservoirs larger than 10 km2 487 

recorded by GLWD and GRanD were considered in this version) were identified. 488 

 Similar to WWHv1.3, HRUs represented a combination of land cover characteristics and 489 

elevation, resulting in 169 HRUs (details of HRUs can be found in Arheimer et al., 2019). Different 490 

hydrological active soil depths were assigned for the HRUs, based on the variability in vegetation, 491 
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and elevation they represented as suggested by Troch et al. (2009) and Gao et al. (2014) and 492 

currently used in WWHv1.3 (Arheimer et al., 2019). Similar to WWHv1.3, detailed description of 493 

soil properties was not included in HYPE model to reduce number of parameters. Nevertheless, 494 

five general distinct soil classes (including (i) no soil (water), (ii) urban soil, (iii) rock (no texture), 495 

(iv) vegetated soil and (v) irrigated soil) based on impermeable conditions and infiltration of land 496 

covers were identified to describe the hydrological processes in the region. 497 

4.2. Grouping catchments using climatic indexes  498 

Across all 1,120 catchments and during the 2002 to 2009 study period, the aridity index 499 

ranged from 0.4 to 1.7 whereas seasonality index ranges from -0.3 to 1. Accordingly, consistent 500 

with Berghuijs et al. (2014), four catchment groups were made, including group (1): Humidity 501 

(𝜑 ≤ 0.75) with Mild seasonality (𝛿𝑃
∗ ≤ 0.5); group (2): Humidity (𝜑 ≤0.75) with High seasonality 502 

(𝛿𝑃
∗ > 0.5); group (3): Sub-humidity (𝜑 > 0.75) with Mild seasonality (𝛿𝑃

∗ ≤ 0.5); and group (4): 503 

Sub-humidity (𝜑 > 0.75) with High seasonality (𝛿𝑃
∗ > 0.5) (Table 6). Figure 5 shows the 504 

geographic spread and organization of four catchment groups obtained from this classification 505 

approach (See Figure Supplementary 2 for spatial distribution of all catchments based on group 506 

classification). Most catchments having historical streamflow observations (both gauged and 507 

ungauged) were classified as group 3 or group 4. Catchments of group 1 were mostly located near 508 

the coastal area with stronger humidity and more wet-season dominant precipitation. Catchments 509 

of group 3 were located mostly in the southwest of the region with less humidity and less seasonal 510 

water variability. Catchments of group 4 were located mostly in the northwest of the region with 511 

less humidity and more dry-season dominant precipitation.  512 
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Grouping catchments using climatic indexes could provide a robust reference to further 513 

regionalize parameters for each climate group. This study adapted a simple regional calibration 514 

approach, following Hundecha et al. (2016). After step-wise calibration of the model for all 515 

catchments, we evaluated the model for each catchment group to find out which signatures need 516 

to be refined and then performed regional calibration separately by using group-specific correction 517 

parameters. It should be noted that only catchment group 1, 3 and 4 could be calibrated and 518 

validated whereas catchment group 2 had no validation because there were no gauged stations for 519 

this group. 520 

Table 6  521 
Catchment groups using climatic indexes 522 

Note: Humidity (𝜑 ≤ 0.75); Sub-humidity (𝜑 > 0.75); Mild seasonality (𝛿𝑃
∗ ≤ 0.5); High seasonality (𝛿𝑃

∗ > 0.5). 523 

Group Description 
Total 

catchments 

Available observations within 

Gauged 

catchments 

“Geopolitically 

ungauged” 

catchments 

Envisat-“ungauged” 

catchments 

1 Humidity with Mild Seasonality 54  4 0 0 

2 Humidity with High Seasonality 68  0 0 1 

3 Sub-humidity with Mild Seasonality 322 5 3 9 

4 Sub-humidity with High Seasonality 680 10 9 7 
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 543 

 544 

 545 

 546 

 547 

 548 

 549 
Figure 5. The geographic distribution of all 31 evaluated catchments (gauged catchments inside Vietnam boundary 550 

and “geopolitically ungauged” catchments outside of Vietnam) into 4 climatic catchment groups. 551 
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4.3. Water level based flow correlation between gauged and “ungauged” catchments 552 

Figure 6 validates the assumption that water level based flow correlation using daily 553 

observed in-situ water levels and streamflow had similar results to the correlation using both daily 554 

observed streamflow observations. In the case of Envisat-derived water levels, because there were 555 

less observations (one daily observation every 35 days), the correlation coefficient became slightly 556 

smaller but the difference was negligible. Accordingly, for the “geopolitically ungauged” and 557 

Envisat-“ungauged” catchments in catchment group 3, Talai (G18) was found to be the reference 558 

most highly correlated gauged catchment. For the “geopolitically ungauged” and Envisat-559 

“ungauged” catchments in catchment group 4, LaoCai (G2), LaiChau (G4), YenBai (G6), Xala 560 

(G9) were the reference most highly correlated gauged catchments. 561 

 562 
 563 
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Figure 6. Matrices show Pearson’ correlation coefficient between gauged catchments (horizontal positions: G1 G18 564 

using daily streamflow) and “ungauged” catchments (vertical positions, including “geopolitical ungauged” 565 

catchments: GUQ20  GUQ31 using daily streamflow; GUW20  GUW31 using daily in-situ water levels; and 566 

Envisat-“ungauged” catchments EU101  EU109 using daily Envisat-derived water level). Each dotted box shows 567 

the same “ungauged” catchment using different datasets (either streamflow GUQ or in-situ water level GUW or 568 

Envisat-derived water level EU) correlated with same gauged catchments. Figure 6a is correlation matrix of 569 

“ungauged” catchment group 3 and Figure 6b is correlation matrix of “ungauged” catchment group 4 (Table 6). Red 570 

color box highlights the most highly correlated gauged catchments with “ungauged” catchments (𝑟 ≥ 0.7). For details 571 

of the location and name of catchments, see Table S1. 572 

4.4. Step-wise physiography and climate-based regionalization at gauged basins 573 

4.4.1. Baseline model performance (GMHv1.0) 574 

 Six sets of precipitation and temperature data were used to identify the most appropriate 575 

climate inputs for the model. Among them, HydroGFD had the coarsest resolution (0.5o grid) 576 

whereas MSWEP, TRMM and NCEP were gridded at had 0.25o resolution. There were 176 in-situ 577 

precipitation stations to examine the quality of different climate data inputs of the model. The 578 

period 2000-2006 was selected to examine their correlation as it was the period that all datasets 579 

were available. In terms of magnitudes, it was found that HydroGFD and TRMM precipitation 580 

datasets overestimated during wet months (5% and 7% respectively) and underestimated during 581 

dry months (13% and 5% respectively) compared to the in-situ precipitation, resulting in weaker 582 

correlation with in-situ precipitation (0.65 and 0.53 respectively) (Table 7). MSWEP had smaller 583 

bias (less than 1% for the entire year) and stronger correlation with in-situ precipitation. There 584 

was, unfortunately, no in-situ temperature dataset to compare with HydroGFD and NCEP. 585 

Monthly average temperature from HydroGFD was larger than monthly average NCEP (Figure 7).  586 
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Using the initial default parameter set WWHv1.0 with different sets of climate data, no 587 

significant difference in model performance was found between them. Any temperature dataset 588 

combined with the same precipitation dataset resulted in almost similar performance. Among the 589 

precipitation datasets, MSWEP led to the highest model performance, followed by HydroGFD and 590 

TRMM. Since the MSWEP precipitation and NCEP temperature datasets had better resolution 591 

(both at 0.25o), this set of forcing data was selected as the climate input data to be used for the 592 

baseline model (GMHv1.0) (Table 8). 593 

Table 7  594 
Correlation between different precipitation datasets 595 

Precipitation HydroGFD MSWEP TRMM In-situ Precipitation 

MSWEP 0.78 
   

TRMM 0.61 0.85 
  

In-situ Precipitation 0.65 0.75 0.53 
 

  Note. Precipitation dataset has the highest correlation with in-situ precipitation are shown in bold font. 596 
 597 

 598 

Figure 7. Monthly time series of different climate datasets (Figure 7a: precipitation datasets; Figure 7b: temperature 599 
datasets).   600 
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Table 8 601 
Model performance using different climate datasets  602 

Precipitation Temperature KGE Absolute RE (%) Absolute RESD (%) r 

HydroGFD HydroGFD 0.25  16.8  53.55  0.59  

HydroGFD NCEP 0.32  22.61  54.75  0.59  

MSWEP HydroGFD 0.31  21.57  50.16  0.74  

MSWEP NCEP 0.29  19.34  47.59  0.74 

TRMM HydroGFD 0.25  25.27  69.15  0.73  

TRMM NCEP 0.20  25.56  73.64  0.73  

Note. Table presents median performance metrics for 19 gauged Vietnamese stations. For clarity, in each column, the two best 603 

values are shown in bold font (the highest values (the better) for KGE and r, the smallest values (the better) for absolute RE and 604 

absolute RESD). 605 

4.4.2. Refining potential evapotranspiration (GMHv1.1) 606 

Evaporation is a significantly important process in all river basins in Vietnam, accounting 607 

for around 50% of precipitation on average (Nguyen, 2005). Given the importance of evaporation 608 

in the region and large errors of streamflow variability in many locations of the baseline model, 609 

calibration was undertaken to estimate PET – the upper limit of evaporation in the model. Among 610 

three PET related parameters, land use dependent parameter (kc5) was found to be sensitive. The 611 

posterior kc5 was found to reduce relative volumetric errors (RE) between modeled PET and 612 

MODIS-derived PET by 40% compared to initial kc5 value (Table 5). With this posterior kc5 613 

values, model performance for all flow signatures significantly improved over all stations, 614 

particularly for KGE (from 0.3 to 0.47 for daily streamflow). In this model version, nevertheless, 615 

low flows were significantly underestimated while high flow were overestimated, requiring 616 

refinement of the soil storage and flow paths process (Figure 8). 617 

  618 
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 619 

 620 

 621 

 622 

Figure 8. Model performance (all values are median values) of all model versions at gauged stations in both calibration 623 

(Figure 8a) and validation periods (Figure 8b). Dotted box for daily flow signatures and dashed box for monthly flow 624 

signatures. Color interpretation of the Figure: blue is good and yellow/red/purple is poor performance. 625 

  626 
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 627 

Figure 9. Total hydrograph of simulated streamflow of all model versions against observed streamflow (Figure 9a), 628 

annual hydrograph (Figure 9b) and flow duration curve of simulated streamflow of all model versions against observed 629 

streamflow (Figure 9c) at one sample gauged location at Lao Cai (located in Red River basin). 630 

4.4.3. Refining soil storage and flow paths (GMHv1.2)  631 

The GMHv1.1 model displayed a quick and peaky response of streamflow to rainfall 632 

events, resulting in the underestimation of low flows and the overestimation of high flows (Figure 633 

9). DEMC automation found the sensitive parameters that needed to be calibrated. They were 634 

parameters governing the soil porosities (wcep1, wcep2, wcep3), percolation (mperc2), subsurface 635 
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runoff and surface runoff (macrate, mactrinf, mactrsm, rrcs2). Parameters of the GMHv1.1 model 636 

represented significantly little soil storage, and high recession coefficients. Therefore, soil related 637 

parameters were adjusted to increase soil storage capacity, more infiltration and lower recession 638 

coefficients for subsurface runoff. In addition, runoff components (Horton overland Flow, Dunne 639 

overland flow, subsurface flow) for different soil classes were unreasonable compared to Dunne 640 

theory (Dunne, 1978; Li et al., 2014). Accordingly, srrcs (Dunne overland flow related parameter) 641 

and srrate (Horton overland flow related parameter) were manually calibrated so that Horton 642 

overland flow dominated in urban and bare soil class whereas subsurface runoff and Dunne 643 

overland flow dominated in vegetated soil class. Refining these descriptions helped to maintain 644 

physical meaning of parameters, whereas significantly improve overall simulated flow signatures 645 

for all gauged catchments during both the calibration and validation period. For instance, for the 646 

calibration period, compared to the GMHv1.1 model, the KGE for daily streamflow improved 647 

from 0.47 to 0.7. On the other hand, volumetric errors of low flows significantly reduced to -27% 648 

from -95% and high flow from 35% to 1.7% (Figure 8).  649 

4.4.4. Refining seasonal water balances among catchment groups (GMHv1.3) 650 

 The model GMHv1.2 had an overall satisfactory performance for both daily and monthly 651 

streamflow time series in both the calibration and validation periods (KGE for daily streamflow 652 

was above 0.5). However, the low flow signature (Q95) was underestimated for few stations. In 653 

the model GMHv1.2, the global physiography-based parameters, which were based on soil and 654 

land cover characteristics of catchments, were used for all catchments. Evaluating the model 655 

GMHv1.2 for each catchment group (only 3 groups having gauged stations), the global 656 

physiography-based parameters were more suitable for catchment group 3, whereas low flow 657 

signatures for both catchment groups 1 and 4 were still underestimated (Figure 10). Catchment 658 
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group 1 with humidity and mild seasonality has more wet-season dominant storage variation 659 

whereas catchment group 4 with sub-humidity and high seasonality has more dry-season dominant 660 

storage variation (Berghuijs et al., 2014). Accordingly, various correction factors 661 

(evapotranspiration and recession coefficients) were used to simultaneously consider the variety 662 

of climate characteristics between catchments (Hundecha et al., 2016). In a trial and error, the 663 

correction factor for the soil recession coefficient (rrcscorr) has resulted in improvement for the 664 

low flow signatures for group 1 and group 4 for both calibration and validation periods whereas 665 

other parameter (cevpcorr) did not result in any improvement. 666 

 667 

 668 
 669 

 670 

Figure 10. Model performance by different catchment groups for 19 gauged catchments for calibration (Figure 10a) 671 

and validation (Figure 10b). Color interpretation of the Figure: blue is good and yellow/red/purple is poor 672 

performance.  673 
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4.5. Performance of regionalized parameters at ungauged basins 674 

Table 9 summarizes the performance in terms of KGE, RE for daily streamflow, RE for 675 

Q5, Q95, Q50 obtained in 12 “geopolitically ungauged” evaluation catchments using 676 

physiography-based regionalized parameters (par GMHv1.2), physiography and climate based 677 

regionalized parameter sets from gauged catchments (par GMHv1.3), global regionalization 678 

parameter sets (par WWHv1.3) and locally calibrated parameter sets. Similar to Arheimer et al. 679 

(2019), although global regionalization parameters could characterize spatial variability of flow 680 

signatures across the globe, they had difficulties in capturing low flows, particularly in tropical 681 

catchments. The difference between physiography-based regionalized parameters and 682 

physiography and climate-based regionalized parameters was not significant. Nevertheless, the 683 

later could significantly reduce volumetric errors of low flow because only one extra parameter 684 

was used in the WWHv1.3 compared to previous model version. Compared to locally calibrated 685 

parameters, physiography and climate-based regionalized parameters reached nearly 80% in terms 686 

of KGE for daily streamflow and was even a slightly better in terms of volumetric errors for low 687 

flow, medium and high flow.  688 

  689 
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Table 9 690 
Model performance using multiple performance metrics of different flow signatures with various parameter sets for 691 
the 12 “geopolitically ungauged” evaluation catchments for the period 2002 – 2009  692 

Performance 

metrics 
Flow Signatures 

Par GMHv1.2 

(section 4.4.3) 

Par GMHv1.3 

(section 4.4.4) 

Par WWHv1.3 

(global 

regionalization 

parameters) 

Locally calibrated 

parameters 

KGE QDD 0.68 0.68 0.32 0.88 

RE QDD -1.3 -1.7 -61 1 

KGE QMM 0.76 0.76 0.21 0.87 

RE QMM -1.3 -1.7 -61 0.99 

RE Q95 -32.35 -10.6 -98.17 -14.12 

RE Q5 -4.43 4.06 -48.23  6.45  

RE Q50 1.54 4.51 -80.82 10.61 

Note. Table presents median performance metrics for 12 “geopolitically ungauged” evaluation catchments. For clarity, in each row, 693 

the two best scores are shown in bold font (the highest values (the better) for KGE, closest values to 0 (the better) for RE). 694 

Figure 11 shows performance of daily simulated streamflow of all catchments in terms of 695 

KGE compared to their historical observations of streamflow during validation period (1991 – 696 

2001) for two model versions, including baseline GMHv1.0 and final GMHv1.3. The catchments 697 

presented in Figure 11 include both gauged catchments located inside black Vietnamese boundary 698 

and “geopolitically ungauged” catchments located outside of black Vietnamese boundary. Most of 699 

simulated catchments using the final model version have captured better hydrological processes of 700 

the region, resulting in a substantial improvement (mostly blue dots in Figure 11b). In both model 701 

versions, streamflow in Lang Son (located in Bang Giang Ky Cung basin, Northeast of Vietnam, 702 

the only yellow dot in Figure 11b) was not well simulated. The reason could be the 703 

underrepresented spatial variation of precipitation in the catchment owing to the its small size (the 704 

smallest size 1,500 km2 in all evaluated catchments in the study). Future research could be further 705 

improved by using the average of the nearest precipitation grids or higher resolution precipitation 706 

datasets like NASA Global Precipitation Measure integrated multi-satellite retrievals with 0.1o 707 

resolution (GPM IMERGF-V6) (Le et al., 2020). 708 
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Figure 11. Spatial overview of the model performance for GMHv1.0 (Figure 11a), GMHv1.3 (Figure 11b) and their 709 

changes from GMHv1.0 to GMHv1.3 (Figure 11c) in terms of KGE for daily streamflow time series. Model 710 

performance for both gauged (inside boundary of Vietnam) and “ungauged” catchments for validation periods (1991 711 

– 2001). See Figure Supplementary 3 for model performance of simulated low flows and high flows. 712 

  713 

(a) (b) 

(c) 
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4.6. Model evaluation at ungauged basins using water level based flow correlation  714 

To evaluate the performance of model at ungauged catchments that have observed water 715 

levels, evaluation framework using water level based flow correlation (Figure 4) and existing 716 

performance metrics of simulated water levels was used. This section applied the framework and 717 

performance metrics for both baseline and final model versions to examine if this method and/or 718 

performance metrics can work for both scenarios (Figure 12 and Figure 13). Accordingly, firstly, 719 

the daily and/or monthly simulated water levels were evaluated against the recorded water levels 720 

using the existing performance metrics for simulated water levels, including Pearson’s correlation 721 

coefficients, NSEanom and NSEW. From Figure 12 and Figure 13, conflicting performance results 722 

of simulated water levels compared to observed water levels were found. In any row of both 723 

figures, inconsistent colors between r, NSEanom and NSEW for simulated water levels (especially 724 

for Envisat-derived water level) were shown. For example, from Figure 12d, at EU_107 station, 725 

Pearson’s correlation coefficient (dark blue color – good result) showed that simulated water level 726 

had good temporal correlation with observed water levels; NSEanom (blue color – acceptable 727 

result) informed that they had acceptable magnitude bias; NSEW (orange color – bad result) 728 

advised that they had significantly high magnitude bias. Comparing simulated streamflow of this 729 

station with observed streamflow (blue color of KGE – acceptable result), the model was found to 730 

simulate daily flow at acceptable level but could not capture high flows (light purple color of Q5 731 

– overestimated) and low flows (yellow color of Q95 – highly underestimated). This finding 732 

confirmed previous studies that model performance using on only water levels could yield 733 

inaccurate results in modelling streamflow signatures (Lindstrom, 2016; Jian et al., 2017). 734 

Additionally, unlike water levels that have limited performance metrics and derived hydrological 735 

signatures, there is a high variety of performance metrics to evaluate various signatures of 736 



 43 

streamflow that could help diagnose model problems and inform where to improve. For example, 737 

KGE metric can inform whether temporal pattern or variation or magnitude of daily flow is not 738 

good (Gupta et al., 2009) whereas relative volumetric errors of flow signatures from flow duration 739 

curve (high, low and medium) can inform which part of runoff (surface or subsurface runoff) is 740 

not well represented (Yokoo and Sivapalan, 2011). Accordingly, it raised a question how to have 741 

extra important model diagnostic information if only observations of water levels are available.  742 

Water level based flow correlation was found to possibly address the above question. Using 743 

water level based flow correlation evaluation framework, firstly, temporal patterns of simulated 744 

water levels were examined against observations using correlation coefficients, which were all 745 

above 0.7 for both model versions (Figure 12, Figure 13). Secondly, modeled correlation between 746 

simulated water levels of “ungauged” catchments and simulated streamflow of gauged catchments 747 

were compared against measured correlation between observed water levels of “ungauged” 748 

catchments and observed streamflow of gauged catchments. The difference between them was 749 

within +/- 0.2 for both model versions, thus the performance of “ungauged” catchments was 750 

similar to the performance of the most highly correlated gauged catchments (see Figure 751 

Supplementary 4). Accordingly, in both baseline and final model versions, performance of 752 

“ungauged” catchments were similar to performance of the most highly correlated gauged 753 

catchments for all flow signatures. It was then validated with any “ungauged” catchments that have 754 

historical observed streamflow to cross-validate the hypothesis. Consistent results were found for 755 

all flow signatures between the reference most highly correlated gauged catchments and 756 

“ungauged” catchments having observed streamflow (where available for cross-validation) to 757 

accept the hypothesis. For catchments having only Envisat-derived water level without observed 758 

streamflow, its performance cannot be validated. Nevertheless, since this method worked for both 759 
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in-situ water levels and 3 catchments having both Envisat-derived water level and observed 760 

streamflow, performance of the remaining 14 catchments with Envisat-derived water level could 761 

be evaluated using the reference most highly correlated gauged catchments.  762 

Accordingly, it showed that water level based flow correlation method could be used to 763 

evaluate the model performance at ungauged catchments having only observations of water levels. 764 

Furthermore, compared to previous studies that used water levels to evaluate model performance, 765 

this approach can not only overcome numerical problems of existing performance metrics for 766 

water levels but also provide important model diagnostic information on how to improve model 767 

performance without streamflow observations.  768 

  769 
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 770 
Figure 12. Evaluation of the baseline model GMHv1.0 for “geopolitically ungauged” catchment group 3 (Figure 12a), 771 

“geopolitically ungauged” catchment group 4 (Figure 12b), Envisat-“ungauged” catchment group 3 (Figure 12c) and 772 

Envisat-“ungauged” catchment group 4 (Figure 12d). Simulated water levels were evaluated against in-situ water level 773 

(left images) and Envisat-derived water level (right images). Since modeled correlation was similar to measured 774 

correlation, simulated streamflow of “geopolitically ungauged” or Envisat-“ungauged” catchments were similar to 775 

that of the reference most highly correlated gauged catchments (red highlight box). This simulation was then validated 776 

against observed streamflow for any “ungauged” catchments that have historical observations (observed streamflow 777 

of “ungauged” catchments were only used for cross-validation, not used in calibration). For the reference most highly 778 

correlated gauged catchment 4, there were 4 catchments, thus both minimum and maximum performance metrics were 779 

presented  780 
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 781 
Figure 13. Evaluation of the final model GMHv1.3 for “geopolitically ungauged” catchment group 3 (Figure 13a), 782 

“geopolitically ungauged” catchment group 4 (Figure 13b), Envisat-“ungauged” catchment group 3 (Figure 13c) and 783 

Envisat-“ungauged” catchment group 4 (Figure 13d). Simulated water levels were evaluated against in-situ water level 784 

(left images) and Envisat-derived water level (right images). Since modeled correlation was similar to measured 785 

correlation, simulated streamflow of “geopolitically ungauged” or Envisat-“ungauged” catchments were similar to 786 

that of the reference most highly correlated gauged catchments (red highlight box). This simulation was then validated 787 

against observed streamflow for any “ungauged” catchments that have historical observations (observed streamflow 788 

of “ungauged” catchments were only used for cross-validation, not used in calibration). For the reference most highly 789 

correlated gauged catchment 4, there were 4 catchments, thus both minimum and maximum performance metrics were 790 

presented.   791 
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5. Discussion 792 

5.1. Step-wise physiography and climate-based regionalization at gauged basins 793 

Catchment models are important tools to support decision makers in sustainable planning 794 

of water resources. The Greater Mekong region is the top global biodiversity hotspot but 795 

increasingly facing urgent socio-economic development and climate change impacts. Accordingly, 796 

it is imperative to have a multi-national and multi-catchment model to support river basin 797 

authorities. It could thus help predict river flows across administrative borders and allocate water 798 

resources among water users in a harmonized manner. For the first time, a multi-national and 799 

multi-catchment Greater Mekong HYPE was set up in this important region. The analysis of the 800 

final model GMHv1.3 version (KGE of daily and monthly streamflow is 0.7 and 0.8 respectively) 801 

shows that the model is useful for water authorities in managing water related issues. The model 802 

has been setup on the foundation of the Worldwide HYPE model and successfully refined to 803 

capture the hydrological processes for the region. It shows that global hydrological model, in this 804 

case the worldwide HYPE model, could be a useful starting point as a time-saving alternative for 805 

other regions to further refine it with local expert knowledge, so that it could be useful in 806 

supporting decision makers for water management. Additionally, further refining an existing 807 

model would allow critical knowledge and experiences shared between research groups and 808 

practitioners, thus increasing full transparency in the research process, further understanding of 809 

general hydrological patterns, process and functions between catchments. It can thus ultimately 810 

advance hydrological sciences toward a unified theory of hydrology at catchment scale (Sivapalan, 811 

2005) and better predict flow signatures at ungauged basins (Bloschl et al., 2013).  812 

The approach of sequentially and iteratively (both automatically and manually) refining 813 

inadequately described hydrological processes, together with local knowledge can substantially 814 
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improve the appropriateness of model application in a new region. Calibration is inevitable in 815 

physically distributed model because of impossibility to measure all required model parameters at 816 

the model simulation scale (Beven, 1989; Bloschl and Sivapalan, 1995). This study combined both 817 

automatic and manual calibration to combine the strengths of both methods to achieve more 818 

physically acceptable parameters at a timely efficient manner at each step in hydrological 819 

processes. The study area has various seasonal water variability due to its substantial precipitation 820 

and evaporation variability from tropical monsoon effect. Therefore, using climatic indexes 821 

(aridity index and seasonality index) is a useful approach to group catchments so that all 822 

catchments can be simulated in the same modeling domain. Adding one simple step (step 4 in the 823 

step-wise calibration approach in section 3.4) into the common step-wise physiography-based 824 

parameters helped reduce the underestimation of low flow of two catchment groups. In this study, 825 

simple regionalized parameter approach (correction parameters) were used. More substantial 826 

model improvement could be made if other regionalization approaches could be employed, such 827 

as linear parameter estimation based on catchment descriptors (Hundecha et al., 2016). Future 828 

studies could examine this hypothesis.  829 

5.2. Performance of regionalized parameters at ungauged basins 830 

 HYPE with physiography and climate based regionalized parameters appears to perform 831 

as good as locally calibrated parameters and outperform global regionalization parameters in all 832 

flow signatures. This result confirms findings of the previous studies that similarity in catchment 833 

characteristics and climate characteristics can lead to similarity in rainfall-runoff responses (Beck 834 

et al., 2016; Berghuijs et al., 2014). Climatic indexes based on observations of precipitation and 835 

temperature during the same period with observations of streamflow could provide more 836 

dynamically agreeing characteristics of each catchment rather than using Koppen climate 837 
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classification, which has different timeline with streamflow observation (Kottek et al., 2006). The 838 

evaluated catchments are all vegetated (either forest or agricultural lands) catchments so the 839 

difference in physiography is not significant. Nevertheless, physiography-based regionalized 840 

parameters are demonstrated to predict well flow signatures in ungauged basins across Europe 841 

(Donnelly et al., 2016). This approach could be helpful for existing model using physiography-842 

based regionalized parameters to be further improved without altering the current parameter sets. 843 

Since this is a poorly-gauged region, obtaining more streamflow observations would be 844 

challenging. Therefore, it is important to develop more approaches to validate the simulated 845 

streamflow from model for ungauged catchments. The next section is one of those attempts. 846 

Another approach to cross-validate simulated streamflow for ungauged catchments could be using 847 

ensemble learning regression combining satellite altimetry data and a hydrologic model, which 848 

could be HYPE model in this case (Kim et al., 2019c).  849 

5.3. Model evaluation at ungauged basins using water level based flow correlation 850 

To evaluate model performance at ungauged basins, both existing performance metrics of 851 

water levels and proposed water level based flow correlation were adopted. Inconsistent and even 852 

conflicting performance results using different performance metrics happened for both baseline 853 

and final models, which make diagnosing and evaluating the model at ungauged basins difficult 854 

(Figure 12 and 13). Meanwhile, using water level based flow correlation method (both in-situ and 855 

Envisat derived water levels) can provide more details regarding model diagnostics of which 856 

signature needs to be further refined. For instance, in the baseline model (Figure 12), using the 857 

performance of the reference most highly correlated gauged catchments, it informed that model 858 

could not capture low flow for both catchment group 3 and catchment group 4. For this study, the 859 

threshold for identifying the most correlation catchments were only 0.7 because of limited ground 860 
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observations. Data access in this region is particularly arduous, therefore correlation threshold was 861 

lower than other studies (Archfield and Vogel, 2010; Betterle et al., 2017; Betterle et al., 2019). 862 

Lower correlation threshold could have reduced the matching performance between the reference 863 

most highly correlated gauged catchments and “ungauged” catchments although the difference is 864 

not significant. Future researches could further examine this hypothesis. Findings show that flow 865 

correlation method with in-situ water level can be used to evaluate the performance of ungauged 866 

catchments through the most highly correlated gauged catchments. For Envisat-derived water 867 

level, since there are only 3 virtual stations located in catchments having ground observations, 3 868 

out of 17 Envisat-“ungauged” catchments have been validated. Nevertheless, since this method 869 

was found to work with both in-situ water level and 3 Envisat virtual stations, it is assumed that 870 

the remaining 14 Envisat-“ungauged” catchments could have similar satisfactory simulation to the 871 

reference gauged catchments.  872 

It is expected that not only sub-continental multi-catchment hydrological models but also 873 

multi-continental multi-catchment hydrological models would be benefited from this approach if 874 

water level-based flow correlation was found between altimetry-derived water level in ungauged 875 

catchments of a poorly gauged continent and streamflow in gauged catchments of another 876 

excessively gauged continent. In this study, expanding possibility of study area of GMv1.3, along 877 

with water level based flow correlation, could further validate the performance of the current non-878 

validated catchment group 2 of model. Meanwhile, global-scale model could more satisfactorily 879 

capture the full range of variability of hydrological regimes that actually exist within their large 880 

domains. Thus, it can further increase the ability of hydrological models to be employed routinely 881 

and with confidence to ungauged basins. More altimetry satellite missions with denser coverage 882 
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in the future could further advance this approach to improve predictions of flow regimes in 883 

ungauged basins. 884 

6. Conclusion  885 

The study uses a novel approach to combine regionalization and satellite observations of 886 

various hydrological variable to improve prediction of streamflow signatures at “geopolitically 887 

ungauged” basins. Using the proposed step-wise physiography and climate-based regionalization 888 

approach, the model performance at ungauged basins reached 80% of performance of the ideal 889 

situation, where observed streamflow data were available for calibration, and significantly 890 

outperformed the global regionalization parameters using the Koppen climate classification. This 891 

approach would be helpful for both new model setup and existing physically distributed models 892 

because it is flexible and does not change the current parameter values of existing models. 893 

Additionally, the proposed water level based flow correlation was found to help diagnose models 894 

and outperform the existing performance metrics of simulated water levels at ungauged basins. It 895 

is expected that more satellite altimetry missions with a denser coverage in the future, together 896 

with macroscale hydrological model, either at continental scale or global scale with a wide variety 897 

of observed streamflow patterns (Alemaw and Chaoka, 2003; Arheimer et al., 2019; Doll et al., 898 

2013; Beck et al., 2016) could be benefited from this approach to further evaluate model 899 

performance in ungauged basins. 900 

The study also helps to setup the first multi-national, multi-catchment hydrological model 901 

in the Greater Mekong region, the top global biodiversity and major disaster risk hotspot in the 902 

world. This model version would be useful for water authorities to monitor and plan sustainable 903 

use of water resources across administrative boundaries under rapid changing development 904 
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activities and climate impacts. Using a common hydrological model concept and setup approach 905 

compared to the global hydrological model would allow critical sharing of knowledge and 906 

experiences to advance toward a unified theory of hydrology at catchment scale and better predict 907 

flow signatures at ungauged basins. Nevertheless, knowledge gaps in aquifers, floodplain effect, 908 

and water extraction by human have not been addressed. Future model version could be further 909 

improved, such as using average of the nearest precipitation grids (for better reproducing regimes 910 

in small catchments), incorporating other hydrological data (e.g. groundwater level, total terrestrial 911 

storage change, soil moisture), and adding water management modules (e.g. regulated reservoirs, 912 

irrigation, water quality) to explore impacts of various changing scenarios from climate and human 913 

activities on the vital water, food and energy security in the region. Web data portal could be 914 

developed to allow more data accesses and knowledge sharing of water status in this important 915 

region (McDonald et al., 2019; Biswas and Faisal, 2018).  916 

  917 
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