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Abstract

Active Structural Acoustic Control (ASAC) is mostly performed using a passive noise barrier,
vibration actuators, sensors and a control system. ASAC reduces or alters the vibration of the
barrier structure in a way that blocks the noise propagation through it. However, it is crucial
that the actuators are appropriately arranged to be able to e↵ectively control the vibration of the
barrier. If the actuators were not optimally arranged, then certain modes of the structure may be
uncontrollable, or require a very high control e↵ort. Hence, the locations of the actuators should
be determined by a careful optimization process employing a model of the structure. A com-
mon approach is to maximize the controllability of the system over a defined frequency range of
operation. However, such an optimisation procedure often results in a solution that considers nu-
merous vibration modes, only some of which are acoustically-relevant. That is, certain structural
modes may vibrate considerably, but their contribution to the noise transmission and radiation
would be negligible. Therefore, in the presented research a new acoustic radiation-based ap-
proach to the optimisation of the arrangement of actuators is proposed. A model of acoustic
radiation is introduced and new cost functions are formulated to focus on modes that strongly
contribute to noise transmission or radiation by the noise barrier. For the considered system, this
enables an increase in the controllability measure of more than 5 dB for acoustically-relevant
modes, which is similar to the level of improvement achieved when the number of actuators is
doubled.

Keywords: Noise control, Noise reduction, Mathematical modelling, Optimization process,
Actuators arrangement, Acoustic radiation

1. Introduction

Exposure to excessive acoustic noise is an important problem in modern society and it thus
stimulates the development of a variety of noise reduction techniques. One such approach is to
separate the recipients from the noise source using noise barriers. However, common passive
barriers are often ine↵ective for low-frequency noise. They also tend to be thick, heavy, and
introduce considerable heat insulation that may cause additional problems in certain applica-
tions. To overcome this limitation, passive barriers can be complemented with or replaced by
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Acoustic radiation-based optimization of the placement of actuators for active control of ...

actively controlled barriers, which incorporate control sources that may be either acoustic, such
as loudspeakers, or structural, such as vibration actuators [1, 2, 3, 4]. These active systems are
most e↵ective in the low-frequency range, where passive insulation fails. Under certain circum-
stances, even openings with dedicated active noise control systems can be integrated into barriers
to allow air flow [5, 6, 7].

Active noise barriers present many advantages over their passive counterparts, but they have
to be carefully implemented in order to operate e�ciently and achieve a high level of perfor-
mance. One of the critical aspects in the design of an active barrier is the arrangement of the
actuators, such that they are able to e↵ectively control the vibration of the plate that forms the
noise barrier. It is noteworthy that the optimization of the actuator arrangement is also an impor-
tant step in the design of systems where plates are intentionally designed to emit sound [8].

Di↵erent techniques have been proposed over the years to optimize the arrangement of ac-
tuators for control applications. One approach primarily focuses on selecting a control strategy
and defining a performance index, and then simultaneously optimizing the locations of the ac-
tuators and the controller parameters. Liu et al. [9] used a genetic algorithm and the spatial
H2 norm of the closed-loop system as the performance index. Arabyan and Chemishkian [10]
presented a computational method to design an H1 controller and the corresponding optimal
actuator locations. Kumar et al. [11] considered the performance of an LQR controller as an
objective. Chhabra et al. [12] used the modified control matrix and the singular value decompo-
sition approach for optimal placement of piezoelectric actuators. However, in such approaches,
optimality of the obtained solution is dependent on the choice of the control strategy.

Another approach concentrates on an open-loop system analysis, which is independent of the
controller choice. The controllability Gramian was used in the optimization criterion by Leleu
et al. [13]. Hale and Daraji [14] presented a modified H1 norm based method for the optimal
placement of piezoelectric sensor/actuator pairs mounted on a cantilever plate. The optimal
placement of piezoelectric actuators for active vibration control of a membrane structure using
the controllability Gramian and the particle swarm optimization algorithm was studied by Liu et
al. [15].

The aforementioned studies provide methods for the optimization of actuator locations mainly
for the Active Vibration Control (AVC) of plates. Although the same actuator configuration can
also be used for Active Structural Acoustic Control (ASAC) as employed in active noise bar-
riers [16, 17, 18, 19, 20], it is not necessarily the optimum arrangement for this purpose. The
optimization of the actuator arrangement for vibration control entails a search for a solution that
generally reaches a trade-o↵ between controlling numerous modes of vibration. Some of these
structural modes may radiate sound e�ciently, whilst others may vibrate considerably without
contributing strongly to the noise transmission or radiation; as a result, these modes do not need
to be controlled in the context of a noise barrier. Therefore, in the presented research, a new
acoustic radiation-based approach to the optimization of the arrangement of actuators on a plate
for the control of noise transmission is proposed. A model of acoustic radiation is introduced
into the optimization process and new cost functions are formulated to focus on modes that are
truly relevant to the overarching goal of the barrier, which is to block the transmission of noise.
The main contribution of this paper is thus providing new insight into the optimization process
that should be adopted for the positioning of actuators in active noise barriers.

This paper is organized as follows. Section 2 presents a model of the vibroacoustic system,
including both vibration and acoustic radiation phenomena. Section 3 is devoted to the verifica-
tion of the developed model utilizing a real experimental setup. Then, Section 4 introduces the
proposed actuator arrangement optimization process, including formulation of the optimization
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problem, introduction of new acoustic radiation-based cost functions and a brief description of
the employed memetic algorithm. Then, in Section 5 the obtained optimization results are pre-
sented and analysed. Finally, advantages and limitations of the proposed approach are pointed
out and discussed, and conclusions for future research are drawn.

2. Model of the vibroacoustic system

In this Section, a model of the vibroacoustic system is presented. The derivation begins
with a description of the free vibrations of an orthotropic rectangular plate with inertial actuators
attached to its surface. The Kirchho↵-Love theory of thin plates is used for this purpose. The
boundary conditions of the plate are assumed to be fully-clamped. Then, the Rayleigh-Ritz
method is employed to define an approximate solution, which provides the natural frequencies
and mode shapes of the vibrating system. Subsequently, an appropriate Green’s function is used
to estimate the acoustic radiation from the obtained modes. Finally, a state space form of the
model is developed, which facilitates the controllability analysis and formulation of the cost
functions used in the optimization of the actuator locations.

Model of plate vibration
For an orthotropic and homogeneous plate, which occupies the x�y plane in the reference

stress-free state, free vibrations are governed by a di↵erential system [21]

Dx
@4w
@x4 + 2

⇣
Dx⌫y + 2Dxy

⌘ @4w
@x2@y2 + Dy

@4w
@y4 + ⇢ph

@2w
@t2 = 0 , (1)

for
x 2 (0, a) , y 2 (0, b) , t > t0 > 0 , (2)

where

Dx =
Exh3

12(1 � ⌫x⌫y)
, Dy =

Eyh3

12(1 � ⌫x⌫y)
, Dxy =

Gh3

12
. (3)

The initial conditions are defined by

w(x, y, t0) = 0 ,
@w(x, y, t)
@t

�����
t=t0
= 0 . (4)

In Eq. (1)-(4) the function w(x, y, t) denotes the displacement of the plate from the reference state
in the z-direction at time t > 0 and position (x, y); the lengths of the edges of the rectangular plate
are assumed to be equal to a and b, respectively; Dx, Dy, and Dxy are orthotropic rigidities of the
plate; Ex and Ey are the Young’s moduli along the x and y directions, respectively; G is the shear
modulus; ⌫x and ⌫y are the Poisson ratios corresponding to the x and y directions, respectively;
⇢p is the mass density of the plate material; and h is the plate thickness.

Considering only the transverse motion and neglecting the e↵ect of rotary inertia, the kinetic
and strain energies of the plate, Tp and Up, can be written as

Tp =
⇢ph
2

ZZ

Sp

 
@w
@t

!2

dx dy , (5a)

Up =
1
2

ZZ

Sp

8>><
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@2w
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!29>>=
>>; dx dy , (5b)
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where Sp is the surface area of the plate. The definition of the kinetic and strain energies of
the plate is particularly important, as the Rayleigh-Ritz method is used in this research to find
an approximate solution of the di↵erential system (the method is based on the definition of an
energy functional).

Inclusion of the actuators
The plate considered in this paper is assumed to be employed as an actively controlled acous-

tic barrier. For this purpose, inertial actuators are bonded to the surface of the plate. Their mass
is often comparable to the mass of the plate and, therefore, they have a considerable impact on
the dynamic response of the plate (both natural frequencies and mode shapes). Hence, in order
to develop a model of the system that would remain valid after mounting the actuators, they must
also be included in the mathematical modelling.

The actuators can be considered to be small in size compared to the dimensions of the plate,
hence, their impact (loading of the plate) can be represented by additional concentrated masses.
The influence of the strain caused by these elements bonded to the plate surface is neglected.
Assuming also a perfect bonding and neglecting the sti↵ness of the actuators, the total energy
introduced into the system by the actuators can be represented by the kinetic energy expressed
as

Ta =

NaX

i=1

1
2

8>><
>>:ma,i

 
@w
@t

!2
9>>=
>>;

�����x=xa,i
y=ya,i

, (6)

where Na is the number of actuators bonded to the surface of the plate; ma,i is the mass of the
i-th actuator; and xa,i and ya,i are the coordinates of the i-th actuator, respectively. For the sake of
brevity, mathematical modelling of actuators bonded to the plate is presented separately from the
di↵erential system of the vibrating plate, defining only the kinetic energy related to the actuators
(as it is most important for the Rayleigh-Ritz method used to solve the resulting di↵erential
system).

The Rayleigh-Ritz method
The Rayleigh-Ritz method is used to calculate an approximate solution of the presented dif-

ferential system, obtaining its natural frequencies and mode shapes. To utilize this method, the
total energy of the system (derived in the previous part of this section) and carefully selected trial
functions need to be defined. More detailed information regarding the Rayleigh-Ritz method
itself is provided in [22].

For free vibration of the plate, the solution of w can be expressed in the required form using
a predetermined set of admissible trial functions

w(x, y, t) =
NX

i=1

�i(x, y)qi(t) = �T
q , (7)

where q is a generalized plate displacement vector; � is a vector, which represents a set of time-
invariant trial functions �i(x, y)—in this paper, characteristic orthogonal polynomials having the
property of Timoshenko beam functions are used; and the superscript T denotes the transpose
operator. All of the mentioned vectors are of dimension (N ⇥ 1), where N is the number of
employed trial functions. The procedure for forming orthogonal polynomial trial functions for
rectangular plates is described in detail in [23].
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Total energy definition
Utilizing Eq. (7), the total kinetic and potential energies, T and U , defined by Eqs. (5) and

(6), can also be written as functions of the generalized plate displacement vector q, mass matrix
M of dimensions (N ⇥ N) and sti↵ness matrix K of dimensions (N ⇥ N) as [24]

T = Tp + Ta =
1
2

q̇
T
Mq̇ , U = Up =

1
2

q
T
Kq . (8)

The overall mass matrix M is calculated as the sum of matrices related to di↵erent energy com-
ponents

M =Mp +Ma , (9)

where Mp and Ma correspond to the kinetic energies of the plate and the actuators, respectively.
The elements of the mass matrices introduced in Eq. (9) are defined as:

Mp,i j = ⇢ph
ZZ

Sp

�i� jdx dy , (10a)

Ma,i j =

NaX

k=1

n
ma,k�i� j

o �����x=xa,k
y=ya,k

. (10b)

The elements Ki j of the sti↵ness matrix K can be derived as

Ki j =

ZZ

Sp

(
Dx
@2�i

@x2

@2� j

@x2 + Dy
@2�i

@y2

@2� j

@y2 + 2Dx⌫y
@2�i

@x2

@2� j

@y2 + 4Dxy
@2�i

@x@y
@2� j

@x@y

)
dx dy . (11)

Equation of the vibrating structure and a harmonic solution
Using the Lagrange equation of the second kind, the equation of a vibrating structure can be

obtained using the sti↵ness and mass matrices defined above as

Mq̈ +Kq = Q , (12)

where Q is the vector of generalized forces of dimensions (N⇥1). In this paper, inertial actuators
are considered and for the purpose of their positioning, their action can be simplified and taken
into account as a force acting at a point. Therefore, the control vector u of dimensions (Na ⇥ 1)
can be defined as

u =
⇥
f1, f2, ... , fNa

⇤T , (13)

where fi is a force generated by the i-th actuator. Then, the vector of generalized forces can be
expressed as

Q =

2
666664�

�����x=xa,1
y=ya,1

,�
�����x=xa,2
y=ya,2

, ... ,�
�����x=xa,Nay=ya,Na

3
777775 u . (14)

The harmonic solution of Eq. (12) gives the eigenvector matrix � of dimensions (N ⇥ N) and N
eigenfrequencies !i. Replacing q

T by �v, and multiplying Eq. (12) on the left by �T gives

�T
M�v̈ +�T

K�v = �T
Q , (15)

where v denotes a modal displacement vector of dimensions (N ⇥ 1):

v = [v1, v2, ... , vN]T . (16)
5
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Taking advantage of the orthonormality of the eigenvectors in the matrix �, the modal mass
matrix becomes a unit matrix IN of dimensions (N ⇥ N) and the corresponding modal sti↵ness
matrix becomes a diagonal matrix ⌦ of N eigenvalues !2

i [25], which gives

�T
M� = IN , (17a)

�T
K� = ⌦ =

h
diag(!2

1,!
2
2, ...,!

2
N)

i
. (17b)

Then, by substituting Eq. (17) into Eq. (15), gives

v̈ +⌦v = �T
Q . (18)

To provide a better representation of the behaviour of a real system, this is extended to

v̈ + ⌅v̇ +⌦v = �T
Q , (19)

where ⌅v̇ is a term introduced to include the damping in the system, and ⌅ is a diagonal matrix
of dimensions (N ⇥ N) defined as:

⌅ =
⇥
diag(2⇠d,1!1, 2⇠d,2!2, ..., 2⇠d,N!N)

⇤
. (20)

In Eq. (20), the damping ratios, 0 < ⇠d,i < 1, are calculated using the thermoelastic damping
model for elastic plates described in detail in [26]. The damping mechanism could also be
included at the beginning of the modelling in the form of complex bending rigidities. However,
this would substantially complicate the derivation. Introducing it instead at this point preserves
the brevity of the derivation and leads to an equivalent solution. This approach was also used,
e.g., in [13].

State space model
To allow standard control analysis tools to be utilised, Eq. (19) can be written in the usual

state-space form
ẋ = Ax + Bu (21)

with the state vector x of dimensions (2N ⇥ 1) given by

x = [v̇1,!1v1, v̇2,!2v2, ..., v̇3N ,!NvN]T . (22)

The state matrix A =
⇥
diag(A1,A2, ...,AN)

⇤
with dimensions (2N ⇥ 2N), is defined by

Ai =
h �2⇠d,i!i �!i
!i 0

i
, i = 1, 2, ...,N . (23)

The matrix B, of dimensions (2N ⇥ Na), can be expressed as

B =
⇥
diag(b1,b2, ... , b3N)

⇤
�T

2
666664�

�����x=xa,1
y=ya,1

,�
�����x=xa,2
y=ya,2

, ...,�
�����x=xa,Nay=ya,Na

3
777775 , (24)

where bi = [ 1 0 ]T.
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Acoustic radiation
The aim of this derivation is to determine an estimate of the radiated acoustic power corre-

sponding to the i-th vibration mode of the considered plate. To describe the acoustic radiation
of the plate, it has been assumed that it is placed in an infinite rigid ba✏e (cf. Fig. 1). Adopting
an appropriate Green’s function that has been derived in [27] and [28], the modal sound pressure
amplitude pi(x, y, z ) can be calculated as

pi(x, y, z ) =
kea b
4⇡2 ⇢ec

+1ZZ

�1

exp
⇥
◆ (⇠x + ⌘y + �z)

⇤
Mi(⇠, ⌘ )

d⇠ d⌘
�
, (25)

for
z > 0 , (26)

where
Mi(⇠, ⌘ ) =

�2 ◆ !i

ab

ZZ

Sp

�T
i � exp

⇥�◆ (⇠x + ⌘y)
⇤
dx dy . (27)

In Eqs. (25)-(27) the symbol ke = !i/c is the acoustic wavenumber; ⇠, ⌘ and � are the components
of the acoustic wavevector; ⇢e and c are the air density and the sound velocity in air, respectively;
◆ is the imaginary number satisfying equation ◆2 = �1; and�i is the i-th eigenvector (i-th column
in the eigenvector matrix �).

To determine an estimate of the modal acoustic power, Pi, the squared modal sound pressure
under freefield conditions, pi(x, y, z ), can be averaged over a surface Se, which encloses the
vibrating plate. Hence, the modal acoustic power Pi can be expressed as

Pi =

ZZ

Se

|pi(x, y, z )|2 dSe . (28)

Figure 1: A schematic representation of the vibrating plate with inertial actuators, placed in an infinite rigid ba✏e.
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In theoretical analysis the enclosing surface Se is often defined as a hemisphere of a su�cient
radius. However, to allow for the experimental verification of the model, the surface Se will
be adopted as a limited plane parallel to the plate and at a distance greater than zero. This
may a↵ect to some extent the overall estimate of the modal acoustic power, but the alteration
is negligible from the point of view of actuator positioning (the absolute values of Pi may be
considerably di↵erent, but the relation between the estimates of Pi obtained for di↵erent modes
remain consistent, thus allowing the weakly radiating modes to be distinguished from stronger
ones).

Controllability of the system
Taking advantage of the fact that the model is expressed in the state-space form, classical

methods can be used to describe the controllability of the system [29, 30]. The energy-based
approach has been employed, and the obtained results are later used in the optimization process
for active control purposes.

The control energy required to reach the desired state xt1 at time t = t1, assuming the optimal
solution, can be expressed as

Ec =

t1Z

0

u
T(t)u(t) dt = (eAt1 x0 � xt1 )T

W
�1(t1)(eAt1 x0 � xt1 ) , (29)

where W(t1) is the controllability Gramian matrix of dimensions (2N ⇥ 2N). To minimize the
required control energy with respect to the locations of the actuators, a measure of the Gramian
matrix should be maximized. It has been shown in the literature that instead of using W(t1),
a steady state controllability Gramian matrix Wc can be used for stable systems when time tends
to infinity [31]. This controllability Gramian matrix can be calculated by solving the Lyapunov
equation, which gives

AWc +WcA
T + BB

T = 0 . (30)

The controllability Gramian matrix is convenient to use, because if the (2i)-th value on the di-
agonal of the matrix, �c,i, which corresponds to the i-th eigenmode, is small, the eigenmode
is di�cult to control (it can be regulated only if a large control energy is available). Hence, the
values �c,i should be maximized in order to improve the susceptibility of the system to control in-
puts. The values �c,i depend on the actuators arrangement. Such information can be an important
criterion in the optimization of the actuator placement. Formally, controllability is a dichotomous
property, but “controllable” does not indicate the level of control e↵ort that is needed to reach
the final state.

The state-space system employed in the controllability evaluation includes only vibration
phenomena (the acoustic radiation weighting is not incorporated). This is because expressing
the acoustic radiation as a separate term (cf. Section 4.2) provides more flexibility in the cost
function design step.

Summary
The derived model of the vibroacoustic system, although based on components available in

the literature, combines both vibration and acoustic radiation phenomena in a concise and coher-
ent form, and also takes into account the loading of the plate due to the inertial actuators used for
active control. The employment of the Rayleigh-Ritz method facilitates a numerical solution of

8
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the system to be found, while the state-space representation enables analysis of the controllabil-
ity of the system. All of these components provide a complete and reliable model of thin plates
used as active noise barriers, which can be applied to optimize the actuator arrangement and is
one of the main contributions of this paper.

3. Experimental verification of the model

In this Section, results from an experimental verification of the developed model are pre-
sented. For this purpose, an unloaded aluminium plate was used. The plate was attached to
a rigid cubic frame. The remaining walls, which were constructed from sound-absorbing materi-
als, were also attached to the frame to form a closed box. The aluminium plate was acoustically
excited by a loudspeaker placed inside the box. The loudspeaker was driven by white noise
bandlimited up to 1 kHz. Photographs of the laboratory setup are presented in Fig. 2.

The dimensions of the plate area that was free to vibrate (i.e. the area inside the square
clamping frame) were equal to 0.420 m ⇥ 0.420 m. The plate can be described by the following
parameters, which are defined in the model developed in Section 2:

a = 0.420 m, b = 0.420 m, h = 0.001 m,
Ex = 70 GPa, ⇢p = 2770 kg/m3, ⌫x = 0.3,
Ey = 77 GPa, G = 26.9 GPa.

Firstly, the accuracy of the model of the plate vibration was evaluated. The response of the
plate was measured using a laser vibrometer (Polytec PDV-100). The vibrometer was mounted on

Figure 2: Photographs of the laboratory setup with an unloaded plate attached to a rigid cubic frame and excited with
a loudspeaker placed inside the frame. An automatic positioning system for the laser vibrometer is also shown.
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Figure 3: A comparison of the first 12 natural frequencies of rigid casing wall, and mode shapes calculated with the
mathematical model and experimentally measured operational vibration shapes—1 mm thick aluminium unloaded plate.
Size of the plate is in [m], and the z-axis depicts normalized amplitude.
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Figure 4: A comparison between the theoretically calculated vibration mode shapes 5 and 6, and their superposition
with the experimentally measured operational vibration shape 5.

an automatic positioning system developed by the authors (cf. Fig. 2). Vibration measurements
were taken over a uniform grid of 22⇥22 points (the interval between points was equal to 0.02 m).

Subsequently, the model of the acoustic radiation from the plate was also examined. For
this purpose, the carriage with the laser vibrometer was complemented with an array of six
measurement microphones (Beyerdynamic MM1). The microphones were arranged to measure
the sound pressure just above the laser beam at distances from the plate of between 0.1 m and
0.6 m in steps of 0.1 m; this gives a total of 3120 measurement positions.

3.1. Verification of the modelling of plate vibrations
A comparison between the results from the experimental measurements and those calculated

using the model is presented in Fig. 3. From these results it can be seen that the consistency
between the results is very good, both in terms of the natural frequencies and mode shapes. Some
of the modes could not be distinguished with the laboratory setup, which is due to two facts.
Firstly, not all of the modes were equally excited with the loudspeaker, which means that weakly
excited modes could not be distinguished well enough from the background noise. Secondly, if
two modes have similar natural frequencies but significantly di↵erent magnitudes, then the more
strongly excited mode would dominate and the weakly excited could not be observed. However,
it is clear from the presented results that the majority of the first 12 vibrational modes of the plate
were captured and are very consistent with the model.

It is worthwhile to provide an additional comment regarding the experimentally measured
fifth operational vibration shape. This shape is in fact a superposition of the theoretically calcu-
lated modes 5 and 6. This phenomena is visualized in the Fig. 4, which shows the theoretically
calculated mode shapes for modes 5 and 6 and their combination, along with the experimentally
identified 5th operational vibration shape. This behaviour is typical for square plates, because
pairs of natural frequencies are often very close to each other. If the magnitudes of such modes
are similar, the coupled shapes can be observed, as in the case of the experimental setup consid-
ered here.

It is also noteworthy that the experimentally measured natural frequencies of related pairs of
modes, e.g. mode 2 and 3, are not equal (for a square isotropic plate, these frequencies should
be equal). this leads to the conclusion that even a material that could be expected to be isotropic
(a common flat aluminium plate), may in fact be orthotropic to some extent, which may be due to
the manufacturing process of the metal sheets. This is important because it justifies the selection
of the orthotropic form of the developed model, which could otherwise be replaced by the simpler
isotropic model.
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Figure 5: A comparison of initial 12 modal sound pressure distributions in the near field of the rigid casing wall,
calculated with the mathematical model and experimentally measured—1 mm thick aluminium unloaded plate. Size of
the measurement grid is in [m], and the z-axis depicts normalized amplitude.
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Figure 6: A comparison between the theoretically calculated modal sound pressure distributions in the near field for
modes 5 and 6, and their superposition with the experimentally measured mode 5.

3.2. Verification of the modelling of the acoustic radiation from the plate
A comparison between the experimental acoustic measurements and the theoretical calcula-

tions is presented in Fig. 5. The visualized modal sound pressure distributions reflect the sound
pressure measured and simulated for the first 12 natural frequencies over a measurement grid.
The presented grid was 1.00 m wide and 0.64 m high, and located at a distance of 0.1 m from
the plate surface, with an interval between the measurement points of 0.04 m; this gives 26 ⇥ 17
measurement points, which is a total of 442 points). Assuming that the origin of the coordinate
system was placed at the lower left corner of the plate, then the covered area can be defined by
the following coordinates: x 2 [�0.29, 0.71], y 2 [�0.08, 0.56] and z = 0.1.

From Fig. 5 it can be seen that there is a high level of consistency between the experimental
and theoretical results. As discussed in the previous section in relation to the measurements of
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Figure 7: A comparison between the mean mode magnitudes obtained by experimental measurements and model simu-
lations. The mean values were obtained by averaging over a plane parallel to the plate at a distance of 0.1 m.
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the vibration response, if a particular mode was su�ciently excited to be accurately measured,
then the measurements are consistent with the model. Once again, the fifth mode is worth an
additional comment—the observed shape, as in case of the vibration response, is a result of the
superposition of the theoretically calculated modes 5 and 6. This phenomena is visualized in the
Fig. 6.

For the acoustic measurements, it is also worthwhile to compare the mean mode magnitudes
obtained by experimental measurements with the theoretical expectations. This comparison is
presented in Fig. 7. Based on the measured vibration magnitudes, the mean sound pressure
magnitudes due to the individual modes obtained through the experimental measurements and
the model simulations can be compared. The mean values were obtained by averaging over the
described measurement grid at a distance of 0.1 m from the plate surface. It follows from the
analysis of Fig. 7 that the accuracy of the theoretical prediction is very high, especially taking
into account the fact that the utilized acoustic laboratory is not an anechoic chamber and the
room acoustics interfere with the measurement to some extent. Hence, the conclusion can be
drawn that the model has been successfully verified and that it can be used for the optimization
process presented in the following Section.

4. Optimization process

In this section an optimization process is presented that aims to find the optimal placement
of a number of actuators mounted to a vibrating plate for the purpose of active control. The
objective of the control system is to reduce the noise radiated from the acoustic enclosure via the
Active Structural Acoustic Control (ASAC) approach [32, 33]. In order to reach this goal, the
control system should be able to control the vibration modes of the plate in the frequency range
of interest. The ability to control the i-th mode can be described by an element on the diagonal of
the controllability Gramian matrix, �c,i, as derived in Section 2. However, some of the vibrational
modes are more important as they more strongly transmit or radiate noise when excited; while
other modes behave in the exactly opposite manner and can be neglected, since they vibrate
without strongly contributing to the radiated acoustic field. In order to reflect this behaviour,
the modal acoustic power corresponding to i-th vibration mode of the plate, Pi, can be used
(cf. Section 2). Taking this into account, an optimization problem defined by an appropriate cost
function will be presented, which will enable an optimal solution to be found for the arrangement
of the given actuators.

4.1. Optimization problem
The optimization variables defined for the considered problem are the coordinates of a pre-

defined number of actuators, Na. A flat rectangular plate is considered, hence two coordinates
per i-th actuator, xa,i and ya,i, are su�cient to unambiguously describe its location. Hence, the
optimization algorithm is required to find a solution in an 2Na–dimensional space.

Due to physical dimensions of the actuators, certain constraints have to be defined in order to
maintain the practicability of the solution. Namely, margins from the plate edges and between the
actuators should be maintained, with the assumption that the actuators can be attached only from
one side of the plate. Inertial actuators are considered in this paper, which are most commonly
manufactured with a round foot print, although the method could be extended to more complex
geometries as required. The first resulting constraint ensures that the actuators are placed within
the boundaries of the plate; the dimensions of the considered rectangular plate are a ⇥ b, hence,
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the coordinates of i-th actuator xa,i 2 ( 1
2 da,i, a � 1

2 da,i) and ya,i 2 ( 1
2 da,i, b � 1

2 da,i), where da,i is
the diameter of the i-th actuator. The second constraint ensures that actuators do not overlap; for
i , j, the i-th and j-th actuators should not be closer than a distance of 1

2 da,i +
1
2 da, j, which is

represented by the following constraint: (xa,i � xa, j)2 + (ya,i � ya, j)2 � ( 1
2 da,i +

1
2 da, j)2.

4.2. Cost functions
The cost functions for the described problem can be formulated in a number of ways. In this

research, six cost functions will be evaluated and analysed. Firstly, three cost functions that do
not take into account the acoustic radiation, J1-J3, are formulated as follows,

J1 = min
i
�c,i , (31a)

J2 = NJ
�1

0
BBBBB@
X

i

�c,i

1
CCCCCA , (31b)

J3 =

0
BBBBB@
Y

i

�c,i

1
CCCCCA

NJ
�1

, (31c)

for i 2 {1, 2, ...,NJ}, where NJ is the number of modes considered in the cost function. The same
range of i is also considered for the other cost functions. All three cost functions J1-J3 focus on
maximizing the controllability of the system, however, they result in a di↵erent balance between
the NJ controllability measures, �c,i, corresponding to the NJ considered modes. Cost function
J1 represents only the least controllable mode, and thus ensures that there are no uncontrollable
resonances within the frequency range of interest. Cost function J2, which represents the mean
controllability of the modes within the frequency range of interest, may increase the controllabil-
ity of certain modes, even if this happens at the expense of reducing the controllability of other
modes. Finally, cost function J3 should lead to solutions that provide a trade-o↵ between J1
and J2, making sure that the smallest of the factors is maximized, whilst also benefiting to some
extent an increase in the controllability of the other modes in the frequency range of interest.

Subsequently, three additional cost functions are defined, J4-J6, which are analogous to the
initial three cost functions, but take into account the acoustic radiation. These cost functions are
defined as

J4 = min
i

 
�c,i

Pi

!
, (32a)

J5 = NJ
�1

0
BBBBB@
X

i

�c,i

Pi

1
CCCCCA , (32b)

J6 =

0
BBBBB@
Y

i

�c,i

Pi

1
CCCCCA

NJ
�1

. (32c)

In each case, the division of �c,i by Pi forces the optimization algorithm to seek solutions with
better controllability (more energy e�cient) for the i-th mode, if the i-th mode acoustic radia-
tion measure Pi is higher. That is, the cost functions are weighted to focus the e↵ort into the
controllability of the strongly radiating structural modes.
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4.3. Optimization algorithm
The search space that follows from the optimization problem described in the previous sub-

sections is very complicated and contains numerous local maxima. Therefore, an e�cient al-
gorithm must be employed in order to find a solution that satisfies the defined requirements. A
Memetic Algorithm (MA) can be utilised for such a task, which is a hybrid form of a population-
based approach coupled with separate individual learning [34]. The MA combines advantages of
a global search, as o↵ered by evolutionary algorithms, and local refinement procedures, which
enhance convergence to the local maxima [34, 35]. Due to these complementary properties, MA
are particularly suitable for solving complex multi-parameter optimization problems, such as the
placement of sensors and actuators [36, 37].

5. Analysis of optimization results

In this Section, an analysis of the optimization results obtained for the arrangement of real
actuators is presented. Dayton Audio DAEX32EP-4 are considered as actuators in this paper.
They have a circular form factor, with a mass ma,i = 0.115 kg and a diameter da,i = 0.060
m. The dimensions of the considered plate are a = 0.420 m and b = 0.420 m, hence, based
on the constraints defined in Subsection 4.1, the coordinates of the i-th actuator are given as
xa,i 2 (0.030, 0.390), ya,i 2 (0.030, 0.390) and (xa,i � xa, j)2 + (ya,i � ya, j)2 � (0.060)2 for i , j.

The configurations for three, six and nine actuators have been optimized using the six cost
functions, J1-J6, defined in the previous Section. The objective was to maximize the controlla-
bility of the plate used as an active acoustic barrier. The low frequency range was considered,
hence the first NJ = 12 vibration modes of the plate were considered in the optimization process.
The obtained results are summarized in Tab. 1.

It follows from an analysis of the results presented in Tab. 1 that the introduction of an
acoustic radiation estimate into the cost function J1, obtaining J4, enables an increase in the
controllability measure �c,i of more than 5 dB for acoustically-relevant modes (where Pi � 30 dB;
in Tab. 1 they are highlighted with a grey background). An increase in the controllability measure
�c,i means that the i-th mode is more excited with the same control e↵ort (e.g. an increase of �c,i
by 5 dB means that the modal velocity of the i-th mode is by 5 dB greater with the same control
e↵ort). The price that is paid for this increase is a smaller controllability for modes that are
less responsible for acoustic radiation or transmission. The minimal controllability measure �c,i
for J1 is 50 dB, while for J4 it is 40 dB. However, the least controllable mode for the solution
obtained with J4 has Pi = 19 dB, which means that its role in acoustic radiation or transmission
will be minor compared to the other modes that have a Pi that is more than 15 dB higher.

It is also interesting to highlight that modifying cost function J1 to give J4 provides a similar
increase in the controllability of the acoustically-relevant modes to that achieved by employing
additional actuators, as shown by the results presented in Tab. 2. By optimizing the actuator loca-
tions using J4, a similar controllability can be reached as achieved when the number of actuators
are doubled and optimized using J1. In other words, by using J4 the number of actuators, Na,
could be reduced, e.g. from 6 to 3 per plate, whilst maintaining a similar level of controllability
in terms of the acoustically-relevant modes. In practical noise control applications, this reduction
in the required number of actuators o↵ers a significant reduction in the cost and control system
complexity, which is a considerable advantage.

Referring again to the results presented in Tab. 1, it can be seen that the results obtained for
both J2 and J5 are in general inferior to the results obtained with J1 and J4. The reason for this is
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that if a sum is employed in the cost function (J2 and J5), it can be beneficial to maximize only
one component of the sum and neglect the others. In the considered optimization problem, the
controllability of the first mode was maximized, but the remaining modes were neglected and, as
a result, these cost functions do not meet the objective.

It is interesting to note from the results presented in Tab. 1 that both J1 and J3 result in similar
cost function values. The controllability of all considered modes has been maximized using these
cost functions. However, introduction of acoustic radiation measure into cost function J3, which
gives J6, provides unsatisfactory results. It turns out that it is beneficial for J6 to have a single
mode of high acoustic radiation and lower controllability, while maximizing controllability of
the other less acoustically-relevant modes. This is, therefore, an unacceptable solution for the

Table 1: Results of the optimization for cost functions J1-J6 with Na = 3 and NJ = 12. The natural frequencies !i are
given in [Hz], while values of the cost functions J1-J6, �c,i, Pi and �c,i/Pi are given in [dB]. Resulting values of the
cost functions used as the optimization index are marked with bold font. Individual modes of high acoustic radiation
(Pi � 30 dB) are highlighted with a grey background. The actuators placement is also given.

Cost functions used in the optimization
Neglecting the acoustic radiation Taking into account the acoustic radiation

J1 J2 J3 J4 J5 J6

O
bt

ai
ne

d
va

lu
es J1 50 11 49 40 29 47

J2 55 62 56 58 61 55
J3 53 33 54 51 46 53
J4 17 -12 17 21 8 13
J5 33 41 32 34 43 35
J6 29 9 28 25 22 32

!i �c,i Pi
�c,i
Pi
!i �c,i Pi

�c,i
Pi
!i �c,i Pi

�c,i
Pi

!i �c,i Pi
�c,i
Pi
!i �c,i Pi

�c,i
Pi
!i �c,i Pi

�c,i
Pi

M
od

es

1 43 55 28 27 20 73 21 52 41 60 28 32 29 68 24 44 26 69 23 46 44 54 28 26
2 75 58 22 36 69 41 22 19 65 60 26 34 82 47 23 24 45 65 18 47 72 61 21 39
3 77 59 21 38 72 36 20 16 81 60 21 39 85 43 21 22 67 63 11 52 76 59 21 38
4 102 52 21 31 109 49 37 13 100 54 22 32 113 56 35 21 83 36 20 16 103 51 21 30
5 119 54 22 33 133 34 24 11 113 54 20 33 116 55 34 21 117 53 34 19 110 56 22 33
6 136 56 19 37 142 23 25 -2 129 56 23 33 132 56 35 21 129 29 22 8 130 58 20 37
7 146 50 22 28 155 37 28 9 151 51 29 22 149 52 17 35 137 46 34 12 155 51 16 35
8 178 50 32 19 175 22 21 1 176 49 28 21 166 40 19 21 160 33 23 10 168 48 19 29
9 184 50 33 17 220 13 24 -12 183 51 22 29 186 48 27 21 167 43 31 12 179 48 34 13

10 194 50 19 31 225 11 15 -5 184 51 33 17 189 47 25 22 194 33 26 8 197 47 14 33
11 203 50 30 20 247 38 30 8 201 50 27 23 217 51 23 27 212 42 27 15 199 53 14 38
12 212 52 22 30 301 14 22 -8 212 50 27 22 223 48 22 26 236 42 23 20 203 50 17 34

A
ct

ua
to
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ac
em

en
t i xa,i (m) ya,i (m) xa,i (m) ya,i (m) xa,i (m) ya,i (m) xa,i (m) ya,i (m) xa,i (m) ya,i (m) xa,i (m) ya,i (m)

1 0.379 0.317 0.194 0.254 0.380 0.384 0.377 0.385 0.187 0.239 0.097 0.373
2 0.382 0.383 0.255 0.223 0.358 0.311 0.044 0.390 0.120 0.309 0.308 0.376
3 0.174 0.381 0.194 0.194 0.244 0.376 0.202 0.200 0.293 0.134 0.382 0.372
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Table 2: Results of the optimization for the cost functions J1 and J4 with NJ = 12 and Na equal to 3, 6 or 9. The
natural frequencies !i are given in [Hz], while values of the cost functions J1 and J4, �c,i, Pi and �c,i/Pi are given in
[dB]. Resulting values of the cost functions used as the optimization index are marked with bold font. Individual modes
of high acoustic radiation (Pi � 30 dB) are highlighted with a grey background. The placement of the actuators is also
given.

Cost functions used in the optimization
J1 J4

Na = 3 Na = 6 Na = 9 Na = 3

O
bt

ai
ne

d
va

lu
es J1 50 53 56 40

J2 55 59 63 58
J3 53 56 59 51
J4 17 19 21 21

J5 33 38 44 34
J6 29 31 37 25

!i �c,i Pi
�c,i
Pi
!i �c,i Pi

�c,i
Pi
!i �c,i Pi

�c,i
Pi
!i �c,i Pi

�c,i
Pi

M
od

es

1 43 55 28 27 32 66 25 41 22 71 22 48 29 68 24 44
2 75 58 22 36 46 65 19 47 40 66 14 52 82 47 23 24
3 77 59 21 38 79 56 28 29 61 60 26 34 85 43 21 22
4 102 52 21 31 86 53 23 30 71 60 21 39 113 56 35 21
5 119 54 22 33 104 57 24 33 82 60 14 47 116 55 34 21
6 136 56 19 37 114 56 28 28 90 57 18 38 132 56 35 21
7 146 50 22 28 124 55 31 25 104 58 17 41 149 52 17 35
8 178 50 32 19 132 55 24 31 112 56 31 25 166 40 19 21
9 184 50 33 17 144 53 15 38 121 56 27 29 186 48 27 21

10 194 50 19 31 152 53 34 19 127 56 29 27 189 47 25 22
11 203 50 30 20 174 53 29 24 141 56 20 37 217 51 23 27
12 212 52 22 30 186 53 25 28 147 56 36 21 223 48 22 26

A
ct

ua
to

rs
pl

ac
em

en
t i xa,i (m) ya,i (m) xa,i (m) ya,i (m) xa,i (m) ya,i (m) xa,i (m) ya,i (m)

1 0.379 0.317 0.380 0.272 0.214 0.118 0.377 0.385
2 0.382 0.383 0.037 0.385 0.249 0.050 0.044 0.390
3 0.174 0.381 0.313 0.312 0.381 0.369 0.202 0.200
4 0.035 0.176 0.063 0.256
5 0.385 0.032 0.369 0.033
6 0.123 0.164 0.135 0.248
7 0.380 0.301
8 0.186 0.180
9 0.205 0.382
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considered application.
Acoustic and structural vibration responses of the plate, obtained for the di↵erent optimiza-

tion indices J1-J6, are presented in Fig. 8. These responses are calculated for the solutions
summarized in Tab. 1, hence in all cases the number of actuators Na = 3. Both responses, driven
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Figure 8: Acoustic and structural vibration responses of the plate, obtained for di↵erent optimization indices J1-J6 as
summarized in Tab. 1. Responses are shown for both the primary uniform excitation and when excited using the optimally
arranged actuators.
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with the primary uniform excitation and by the optimally arranged actuators, are presented. The
responses of the plate due to primary uniform excitation are obtained by applying an equal ex-
citation to all structural modes, instead of simulating an external acoustic excitation. These
responses correspond to the result of a uniform wide-band external excitation that can be pro-
duced by many types of common noise sources. The responses due to excitation by the optimally
arranged actuators are obtained by simulating actuator action as forces acting at the optimized
actuator locations (xa,i, ya,i). A wideband signal again was used as the input to the actuators.
The magnitude of the input signals to the actuators was arbitrarily chosen and was the same in
all evaluated cases and for all actuators. The larger the response due to the actuators (shown by
the red line) compared to the response when driven by the primary uniform excitation (shown
by the black line), the easier it will be for the control system to reduce the noise transmission or
radiation in the considered frequency range.

It follows from analysis of Fig. 8 that in the case of the structural responses obtained for
J1 and J3, the responses due to optimally arranged actuators nearly match for all considered
peaks in the responses due to primary uniform excitation. However, in the case of the acous-
tic responses obtained for J1 and J3, the highest peaks in the responses due to primary uniform
excitation are higher than the corresponding responses due to the actuators, while the response
due to the optimally arranged actuators obtained for J4 dominates the highest peaks in the acous-
tic response of the plate due to primary uniform excitation. Still, an enhanced performance in
acoustic response obtained for J4 is traded for a weaker structural response for the modes that
are less responsible for acoustic radiation or transmission. These remarks are consistent with the
previous conclusions drawn from the analysis of Tab. 1.

6. Conclusions

Active noise control methods are gaining growing attention as a practical method for control-
ling noise in the increasingly noise-polluted world. This paper develops a new acoustic radiation-
based method to optimize the arrangement of actuators for active noise barriers. A model of
acoustic radiation was introduced into the optimization process and new cost functions were for-
mulated in order to focus on modes that are truly relevant to the noise transmission and radiation.
This optimization process constitutes the main novelty of the presented research. The study in-
volved mathematical modelling, laboratory experiments and numerical simulations in order to
evaluate the proposed optimization method.

The employed model was validated experimentally and employed in the optimization of the
actuators for a real laboratory setup. It follows from an analysis that introduction of the acoustic
radiation measure into the cost function in the form of J4 o↵ers best performance and enables
an increase in the controllability measure of more than 5 dB for acoustically-relevant modes.
The increase in controllability for these modes is comparable to that achieved by employing
additional actuators (at least doubling the number of actuators for the considered system). From
a di↵erent point of view, this method could also be used to rearrange the actuators in order to
try to reduce their number, while maintaining the same level of controllability. Such reduction
in practical noise control applications entails a significant reduction in the cost and the control
system complexity.

These advantages are traded for a reduction in the controllability of the modes that are less
responsible for acoustic radiation or transmission. However, such modes have been shown to
have a modal acoustic power that is at least 15 dB lower than that due to the dominant modes,
which means that their contribution to the noise transmission and radiation is negligible.
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[17] L. Morzyński and G. Szczepański. Double panel structure for active control of noise transmission. Archives of
Acoustics, 43(4):689–696, 2018.

[18] S. Wrona and M. Pawelczyk. Active reduction of device narrowband noise by controlling vibration of its casing
based on structural sensors. In Proceedings of 22nd International Congress on Sound and Vibration, Florence,
Italy, 12-16 July, 2015.

[19] A. Chraponska, S. Wrona, J. Rzepecki, K. Mazur, and M. Pawelczyk. Active structural acoustic control of an active
casing placed in a corner. Applied Sciences, 9(6):1059, 2019.

[20] J. Milton, J. Cheer, and S. Daley. Active structural acoustic control using an experimentally identified radiation
resistance matrix. The Journal of the Acoustical Society of America, 147(3):1459–1468, 2020.

[21] S. S. Rao. Vibration of continuous systems, volume 464. Wiley Online Library, 2007.
[22] D. Young. Vibration of rectangular plates by the ritz method. Journal of Applied Mechanics-Transactions of the

ASME, 17(4):448–453, 1950.
[23] K. Kim, B.-H. Kim, T.-M. Choi, and D.-S. Cho. Free vibration analysis of rectangular plate with arbitrary edge

constraints using characteristic orthogonal polynomials in assumed mode method. International Journal of Naval
Architecture and Ocean Engineering, 4(3):267–280, 2012.

21



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Acoustic radiation-based optimization of the placement of actuators for active control of ...

[24] S. S. Rao. Mechanical Vibrations. Prentice Hall, 2011.
[25] R. R. Craig and A. J. Kurdila. Fundamentals of structural dynamics. John Wiley & Sons, 2006.
[26] A. N. Norris and D. M. Photiadis. Thermoelastic relaxation in elastic structures, with applications to thin plates.

The Quarterly Journal of Mechanics and Applied Mathematics, 58(1):143–163, 2005.
[27] W. Rdzanek. Structural vibroacoustics of surface elements [in Polish: Wibroakustyka strukturalna elementów

powierzchniowych]. Rzeszów University of Technology Publishing House, 2011.
[28] E. Skudrzyk. The foundations of acoustics: basic mathematics and basic acoustics. Springer Science & Business

Media, 2012.
[29] J. Klamka. Controllability of dynamical systems. a survey. Bulletin of the Polish Academy of Sciences: Technical

Sciences, 61(2):335–342, 2013.
[30] J. Wyrwał. Simplified conditions of initial observability for infinite-dimensional second-order damped dynamical

systems. Journal of Mathematical Analysis and Applications, 478(1):33–57, 2019.
[31] B. D. Anderson and J. B. Moore. Optimal control: linear quadratic methods. Courier Corporation, 2007.
[32] K. Mazur, S. Wrona, and M. Pawelczyk. Design and implementation of multichannel global active structural

acoustic control for a device casing. Mechanical Systems and Signal Processing, 98C:877–889, 2018.
[33] K. Mazur, S. Wrona, and M. Pawelczyk. Active noise control for a washing machine. Applied Acoustics, 146:89–

95, 2019.
[34] F. Neri, C. Cotta, and P. Moscato. Handbook of memetic algorithms, volume 379. Springer, 2012.
[35] J. Nalepa and M. Kawulok. Adaptive memetic algorithm enhanced with data geometry analysis to select training

data for svms. Neurocomputing, 185:113–132, 2016.
[36] S. Wrona, M. de Diego, and M. Pawelczyk. Shaping zones of quiet in a large enclosure generated by an active

noise control system. Control Engineering Practice, 80:1–16, 2018.
[37] S. Wrona and M. Pawelczyk. Shaping frequency response of a vibrating plate for passive and active control

applications by simultaneous optimization of arrangement of additional masses and ribs. Part II: Optimization.
Mechanical Systems and Signal Processing, 70-71:699–713, 2016.

22


