
Mechanical Systems and Signal Processing 147 (2021) 107009
Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier .com/locate /ymssp
Acoustic radiation-based optimization of the placement of
actuators for active control of noise transmitted through plates
https://doi.org/10.1016/j.ymssp.2020.107009
0888-3270/� 2020 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail addresses: stanislaw.wrona@polsl.pl (S. Wrona), marek.pawelczyk@polsl.pl (M. Pawelczyk), j.cheer@soton.ac.uk (J. Cheer).
Stanislaw Wrona a,⇑, Marek Pawelczyk a, Jordan Cheer b

a Silesian University of Technology, Department of Measurements and Control Systems, Gliwice, Poland
b Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom
a r t i c l e i n f o

Article history:
Received 9 December 2019
Received in revised form 30 March 2020
Accepted 27 May 2020

Keywords:
Noise control
Noise reduction
Mathematical modelling
Optimization process
Actuators arrangement
Acoustic radiation
a b s t r a c t

Active Structural Acoustic Control (ASAC) is mostly performed using a passive noise barrier,
vibration actuators, sensors and a control system. ASAC reduces or alters the vibration of
the barrier structure in a way that blocks the noise propagation through it. However, it
is crucial that the actuators are appropriately arranged to be able to effectively control
the vibration of the barrier. If the actuators were not optimally arranged, then certain
modes of the structure may be uncontrollable, or require a very high control effort.
Hence, the locations of the actuators should be determined by a careful optimization pro-
cess employing a model of the structure. A common approach is to maximize the control-
lability of the system over a defined frequency range of operation. However, such an
optimisation procedure often results in a solution that considers numerous vibration
modes, only some of which are acoustically-relevant. That is, certain structural modes
may vibrate considerably, but their contribution to the noise transmission and radiation
would be negligible. Therefore, in the presented research a new acoustic radiation-based
approach to the optimisation of the arrangement of actuators is proposed. A model of
acoustic radiation is introduced and new cost functions are formulated to focus on modes
that strongly contribute to noise transmission or radiation by the noise barrier. For the con-
sidered system, this enables an increase in the controllability measure of more than 5 dB
for acoustically-relevant modes, which is similar to the level of improvement achieved
when the number of actuators is doubled.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Exposure to excessive acoustic noise is an important problem in modern society and it thus stimulates the development
of a variety of noise reduction techniques. One such approach is to separate the recipients from the noise source using noise
barriers. However, common passive barriers are often ineffective for low-frequency noise. They also tend to be thick, heavy,
and introduce considerable heat insulation that may cause additional problems in certain applications. To overcome this lim-
itation, passive barriers can be complemented with or replaced by actively controlled barriers, which incorporate control
sources that may be either acoustic, such as loudspeakers, or structural, such as vibration actuators [1–4]. These active sys-
tems are most effective in the low-frequency range, where passive insulation fails. Under certain circumstances, even open-
ings with dedicated active noise control systems can be integrated into barriers to allow air flow [5–7].
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Nomenclature

a length of the plate
A state matrix
b width of the plate
B control matrix
c sound velocity in the air
Dx;Dy;Dxy

orthotropic rigidities of the plate
Ex, Ey Young’s moduli of the plate along the x and y directions, respectively
f i force generated by a ith actuator
G shear modulus
h plate thickness
ke acoustic wavenumber
K stiffness matrix
ma;i mass of the ith actuator
M mass matrix
Ma;Mp mass matrices corresponding to kinetic energy of actuators and the plate, respectively
N number of employed trial functions
Na number of actuators bonded to the plate’s surface
piðx; y; z Þ modal sound pressure amplitude corresponding to ith vibration mode of the plate
Pi modal acoustic power corresponding to ith vibration mode of the plate
q generalized plate displacement vector
Q vector of generalized forces
Se; Sp surface which encloses the vibrating plate and surface of the plate, respectively
t time
T overall kinetic energy of the system
Ta; Tp kinetic energies of actuators and the plate, respectively
u control vector
U;Up overall potential energy of the system and potential energy of the plate, respectively
v modal displacement vector
wðx; y; tÞ displacement of the plate to the z-direction at time t > 0 and position ðx; yÞ
Wc Gramian matrix of controllability
x state vector
i; j; k positive integers
x; y; z coordinates in the global Cartesian coordinate system
xa;i; ya;i coordinates of the ith actuator.
n;g; c components of the acoustic wavevector
i imaginary number satisfying equation i2 ¼ �1
kc;i (2i)th element at the diagonal of the Gramian matrix, corresponding to the ith mode
mx, my Poisson’s ratios of the plate corresponding to x and y direction, respectively
nd;i damping coefficient corresponding to ith mode
N damping matrix
qe;qp air density and mass density of the plate material
/iðx; yÞ ith time-invariant trial function
/ vector containing a set of time-invariant trial functions /iðx; yÞ
Ui ith eigenvector (ith column in the eigenvector matrix U)
U eigenvector matrix
xi, X ith eigenfrequency and the eigenfrequencies matrix, respectively
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Active noise barriers present many advantages over their passive counterparts, but they have to be carefully implemented
in order to operate efficiently and achieve a high level of performance. One of the critical aspects in the design of an active
barrier is the arrangement of the actuators, such that they are able to effectively control the vibration of the plate that forms
the noise barrier. It is noteworthy that the optimization of the actuator arrangement is also an important step in the design of
systems where plates are intentionally designed to emit sound [8].

Different techniques have been proposed over the years to optimize the arrangement of actuators for control applications.
One approach primarily focuses on selecting a control strategy and defining a performance index, and then simultaneously
optimizing the locations of the actuators and the controller parameters. Liu et al. [9] used a genetic algorithm and the spatial
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H2 norm of the closed-loop system as the performance index. Arabyan and Chemishkian [10] presented a computational
method to design an H1 controller and the corresponding optimal actuator locations. Kumar et al. [11] considered the per-
formance of an LQR controller as an objective. Chhabra et al. [12] used the modified control matrix and the singular value
decomposition approach for optimal placement of piezoelectric actuators. However, in such approaches, optimality of the
obtained solution is dependent on the choice of the control strategy.

Another approach concentrates on an open-loop system analysis, which is independent of the controller choice. The con-
trollability Gramian was used in the optimization criterion by Leleu et al. [13]. Hale and Daraji [14] presented a modified H1
norm based method for the optimal placement of piezoelectric sensor/actuator pairs mounted on a cantilever plate. The opti-
mal placement of piezoelectric actuators for active vibration control of a membrane structure using the controllability Gra-
mian and the particle swarm optimization algorithm was studied by Liu et al. [15].

The aforementioned studies provide methods for the optimization of actuator locations mainly for the Active Vibration
Control (AVC) of plates. Although the same actuator configuration can also be used for Active Structural Acoustic Control
(ASAC) as employed in active noise barriers [16–20], it is not necessarily the optimum arrangement for this purpose. The
optimization of the actuator arrangement for vibration control entails a search for a solution that generally reaches a
trade-off between controlling numerous modes of vibration. Some of these structural modes may radiate sound efficiently,
whilst others may vibrate considerably without contributing strongly to the noise transmission or radiation; as a result,
these modes do not need to be controlled in the context of a noise barrier. Therefore, in the presented research, a new acous-
tic radiation-based approach to the optimization of the arrangement of actuators on a plate for the control of noise trans-
mission is proposed. A model of acoustic radiation is introduced into the optimization process and new cost functions are
formulated to focus on modes that are truly relevant to the overarching goal of the barrier, which is to block the transmission
of noise. The main contribution of this paper is thus providing new insight into the optimization process that should be
adopted for the positioning of actuators in active noise barriers.

This paper is organized as follows. Section 2 presents a model of the vibroacoustic system, including both vibration and
acoustic radiation phenomena. Section 3 is devoted to the verification of the developed model utilizing a real experimental
setup. Then, Section 4 introduces the proposed actuator arrangement optimization process, including formulation of the
optimization problem, introduction of new acoustic radiation-based cost functions and a brief description of the employed
memetic algorithm. Then, in Section 5 the obtained optimization results are presented and analysed. Finally, advantages and
limitations of the proposed approach are pointed out and discussed, and conclusions for future research are drawn.
2. Model of the vibroacoustic system

In this Section, a model of the vibroacoustic system is presented. The derivation begins with a description of the free
vibrations of an orthotropic rectangular plate with inertial actuators attached to its surface. The Kirchhoff–Love theory of
thin plates is used for this purpose. The boundary conditions of the plate are assumed to be fully-clamped. Then, the Ray-
leigh–Ritz method is employed to define an approximate solution, which provides the natural frequencies and mode shapes
of the vibrating system. Subsequently, an appropriate Green’s function is used to estimate the acoustic radiation from the
obtained modes. Finally, a state space form of the model is developed, which facilitates the controllability analysis and for-
mulation of the cost functions used in the optimization of the actuator locations.

2.1. Model of plate vibration

For an orthotropic and homogeneous plate, which occupies the x� y plane in the reference stress-free state, free vibra-
tions are governed by a differential system [21]
Dx
@4w
@x4

þ 2 Dxmy þ 2Dxy
� � @4w

@x2@y2
þ Dy

@4w
@y4

þ qph
@2w
@t2
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Dx ¼ Exh
3
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3

12ð1� mxmyÞ ; Dxy ¼ Gh3

12
: ð3Þ
The initial conditions are defined by
wðx; y; t0Þ ¼ 0;
@wðx; y; tÞ

@t
jt¼t0

¼ 0: ð4Þ
In Eq. (1)–(4) the function wðx; y; tÞdenotes the displacement of the plate from the reference state in the z-direction at
time t > 0 and position ðx; yÞ; the lengths of the edges of therectangular plate are assumed to be equal to a and b, respec-
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tively; Dx, Dy, and Dxy are orthotropic rigidities of the plate; Ex and Ey are the Young’s moduli along the x and y directions,
respectively; G is the shear modulus; mxand myare the Poisson ratios corresponding to the x and y directions, respectively;
qp is the mass density of the plate material; and h is the plate thickness.

Considering only the transverse motion and neglecting the effect of rotary inertia, the kinetic and strain energies of the
plate, Tp and Up, can be written as
Tp ¼
qph
2

ZZ
Sp

@w
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� �2

dxdy; ð5aÞ
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:
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where Sp is the surface area of the plate. The definition of the kinetic and strain energies of the plate is particularly important,
as the Rayleigh–Ritz method is used in this research to find an approximate solution of the differential system (the method is
based on the definition of an energy functional).

2.2. Inclusion of the actuators

The plate considered in this paper is assumed to be employed as an actively controlled acoustic barrier. For this purpose,
inertial actuators are bonded to the surface of the plate. Their mass is often comparable to the mass of the plate and, there-
fore, they have a considerable impact on the dynamic response of the plate (both natural frequencies and mode shapes).
Hence, in order to develop a model of the system that would remain valid after mounting the actuators, they must also
be included in the mathematical modelling.

The actuators can be considered to be small in size compared to the dimensions of the plate, hence, their impact (loading
of the plate) can be represented by additional concentrated masses. The influence of the strain caused by these elements
bonded to the plate surface is neglected. Assuming also a perfect bonding and neglecting the stiffness of the actuators,
the total energy introduced into the system by the actuators can be represented by the kinetic energy expressed as
Ta ¼
XNa

i¼1

1
2

ma;i
@w
@t

� �2
( )

jx ¼ xa;i
y ¼ ya;i

; ð6Þ
where Nais the number of actuators bonded to the surface of the plate;ma;i is the mass of the ith actuator; and xa;i and ya;i are
the coordinates of the ith actuator, respectively. For the sake of brevity, mathematical modelling of actuators bonded to the
plate is presented separately from the differential system of the vibrating plate, defining only the kinetic energy related to
the actuators (as it is most important for the Rayleigh–Ritz method used to solve the resulting differential system).

2.3. The Rayleigh–Ritz method

The Rayleigh–Ritz method is used to calculate an approximate solution of the presented differential system, obtaining its
natural frequencies and mode shapes. To utilize this method, the total energy of the system (derived in the previous part of
this section) and carefully selected trial functions need to be defined. More detailed information regarding the Rayleigh–Ritz
method itself is provided in [22].

For free vibration of the plate, the solution ofw can be expressed in the required form using a predetermined set of admis-
sible trial functions
wðx; y; tÞ ¼
XN
i¼1

/iðx; yÞqiðtÞ ¼ /Tq; ð7Þ
where qis a generalized plate displacement vector; / is a vector, which represents a set of time-invariant trial functions
/iðx; yÞ—in this paper, characteristic orthogonal polynomials having the property of Timoshenko beam functions are used;
and the superscript T denotes the transpose operator. All of the mentioned vectors are of dimension (N � 1), where N is
the number of employed trial functions. The procedure for forming orthogonal polynomial trial functions for rectangular
plates is described in detail in [23].

2.4. Total energy definition

Utilizing Eq. (7), the total kinetic and potential energies, T and U, defined by Eqs. (5) and (6), can also be written as func-
tions of the generalized plate displacement vector q, mass matrix M of dimensions (N � N) and stiffness matrix Kof dimen-
sions (N � N) as [24]
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T ¼ Tp þ Ta ¼ 1
2
_qTM _q; U ¼ Up ¼ 1

2
qTKq: ð8Þ
The overall mass matrix M is calculated as the sum of matrices related to different energy components
M ¼ Mp þMa; ð9Þ

where Mpand Ma correspond to the kinetic energies of the plate and the actuators, respectively. The elements of the mass
matrices introduced in Eq. (9) are defined as:
Mp;ij ¼ qph
ZZ
Sp

/i/jdxdy; ð10aÞ

Ma;ij ¼
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: ð10bÞ
The elements Kij of the stiffness matrix K can be derived as
Kij ¼
ZZ
Sp
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2.5. Equation of the vibrating structure and a harmonic solution

Using the Lagrange equation of the second kind, the equation of a vibrating structure can be obtained using the stiffness
and mass matrices defined above as
M€qþ Kq ¼ Q ; ð12Þ

where Q is the vector of generalized forces of dimensions (N � 1). In this paper, inertial actuators are considered and for the
purpose of their positioning, their action can be simplified and taken into account as a force acting at a point. Therefore, the
control vector u of dimensions (Na � 1) can be defined as
u ¼ f 1; f 2; . . . ; f Na

� 	T
; ð13Þ
where f i is a force generated by the ith actuator. Then, the vector of generalized forces can be expressed as
Q ¼ /jx ¼ xa;1
y ¼ ya;1

;/jx ¼ xa;2
y ¼ ya;2

; . . . ;/jx ¼ xa;Na

y ¼ ya;Na

u:
" #

ð14Þ
The harmonic solution of Eq. (12) gives the eigenvector matrix Uof dimensions (N � N) and N eigenfrequencies xi.
Replacing qTby Uv, and multiplying Eq. (12) on the left by UTgives
UTMU€v þUTKUv ¼ UTQ ; ð15Þ

where v denotes a modal displacement vector of dimensions (N � 1):
v ¼ v1; v2; . . . ; vN½ �T: ð16Þ

Taking advantage of the orthonormality of the eigenvectors in the matrix U, the modal mass matrix becomes a unit

matrix INof dimensions (N � N) and the corresponding modal stiffness matrix becomes a diagonal matrix X of N eigenvalues
x2

i [25], which gives
UTMU ¼ IN; ð17aÞ
UTKU ¼ X ¼ diagðx2

1;x
2
2; . . . ;x

2
NÞ

� 	
: ð17bÞ
Then, by substituting Eq. (17) into Eq. (15), gives
€v þXv ¼ UTQ : ð18Þ

To provide a better representation of the behaviour of a real system, this is extended to
€v þ N _v þXv ¼ UTQ ; ð19Þ

where N _v is a term introduced to include the damping in the system, and N is a diagonal matrix of dimensions (N � N)
defined as:
N ¼ diagð2nd;1x1;2nd;2x2; . . . ;2nd;NxNÞ
� 	

: ð20Þ
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In Eq. (20), the damping ratios, 0 < nd;i < 1, are calculated using the thermoelastic damping model for elastic plates
described in detail in [26]. The damping mechanism could also be included at the beginning of the modelling in the form
of complex bending rigidities. However, this would substantially complicate the derivation. Introducing it instead at this
point preserves the brevity of the derivation and leads to an equivalent solution. This approach was also used, e.g., in [13].

2.6. State space model

To allow standard control analysis tools to be utilised, Eq. (19) can be written in the usual state-space form
_x ¼ Axþ Bu ð21Þ

with the state vector x of dimensions (2N � 1) given by
x ¼ ½ _v1;x1v1; _v2;x2v2; . . . ; _v3N ;xNvN�T: ð22Þ

The state matrix A ¼ diagðA1;A2; . . . ;ANÞ½ � with dimensions (2N � 2N), is defined by
Ai ¼
�2nd;ixi �xi

xi 0


 �
; i ¼ 1;2; . . . ;N: ð23Þ
The matrix B, of dimensions (2N � Na), can be expressed as
B ¼ diagðb1;b2; . . . ;b3NÞ½ �UT /jx ¼ xa;1
y ¼ ya;1

;/jx ¼ xa;2
y ¼ ya;2

; . . . ;/jx ¼ xa;Na

y ¼ ya;Na

2
64

3
75; ð24Þ
where bi ¼ 1 0½ �T.

2.7. Acoustic radiation

The aim of this derivation is to determine an estimate of the radiated acoustic power corresponding to the ith vibration
mode of the considered plate. To describe the acoustic radiation of the plate, it has been assumed that it is placed in an infi-
nite rigid baffle (cf. Fig. 1). Adopting an appropriate Green’s function that has been derived in [27,28], the modal sound pres-
sure amplitude piðx; y; z Þ can be calculated as
piðx; y; z Þ ¼
keab
4p2 qec

ZZþ1

�1

exp i nxþ gyþ czð Þ½ �Miðn;g Þdndgc ; ð25Þ
for
Fig. 1. A schematic representation of the vibrating plate with inertial actuators, placed in an infinite rigid baffle.
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z > 0; ð26Þ
where
Miðn;gÞ ¼ �2 ixi

ab

ZZ
Sp

UT
i / exp �i nxþ gyð Þ½ �dxdy: ð27Þ
In Eqs. (25)–(27) the symbol ke ¼ xi=c is the acoustic wavenumber; n, g and c are the components of the acoustic
wavevector; qe and c are the air density and the sound velocity in air, respectively; i is the imaginary number satisfying
equation i2 ¼ �1; andUi is the ith eigenvector (ith column in the eigenvector matrix U).

To determine an estimate of the modal acoustic power, Pi, the squared modal sound pressure under freefield conditions,
piðx; y; zÞ, can be averaged over a surface Se, which encloses the vibrating plate. Hence, the modal acoustic power Pi can be
expressed as
Pi ¼
ZZ
Se

piðx; y; z Þj j2dSe: ð28Þ
In theoretical analysis the enclosing surface Se is often defined as a hemisphere of a sufficient radius. However, to allow
for the experimental verification of the model, the surface Se will be adopted as a limited plane parallel to the plate and at a
distance greater than zero. This may affect to some extent the overall estimate of the modal acoustic power, but the alter-
ation is negligible from the point of view of actuator positioning (the absolute values of Pi may be considerably different, but
the relation between the estimates of Pi obtained for different modes remain consistent, thus allowing the weakly radiating
modes to be distinguished from stronger ones).
2.8. Controllability of the system

Taking advantage of the fact that the model is expressed in the state-space form, classical methods can be used to
describe the controllability of the system [29,30]. The energy-based approach has been employed, and the obtained results
are later used in the optimization process for active control purposes.

The control energy required to reach the desired state xt1 at time t ¼ t1, assuming the optimal solution, can be expressed
as
Ec ¼
Z t1

0
uTðtÞuðtÞdt ¼ ðeAt1x0 � xt1 Þ

T
W�1ðt1ÞðeAt1x0 � xt1 Þ; ð29Þ
where Wðt1Þis the controllability Gramian matrix of dimensions (2N � 2N). To minimize the required control energy with
respect to the locations of the actuators, a measure of the Gramian matrix should be maximized. It has been shown in
the literature that instead of using Wðt1Þ, a steady state controllability Gramian matrix Wc can be used for stable systems
when time tends to infinity [31]. This controllability Gramian matrix can be calculated by solving the Lyapunov equation,
which gives
AWc þWcA
T þ BBT ¼ 0: ð30Þ
The controllability Gramian matrix is convenient to use, because if the ð2iÞth value on the diagonal of the matrix, kc;i,
which corresponds to the ith eigenmode, is small, the eigenmode is difficult to control (it can be regulated only if a large
control energy is available). Hence, the values kc;i should be maximized in order to improve the susceptibility of the system
to control inputs. The values kc;i depend on the actuators arrangement. Such information can be an important criterion in the
optimization of the actuator placement. Formally, controllability is a dichotomous property, but ‘‘controllable” does not indi-
cate the level of control effort that is needed to reach the final state.

The state-space system employed in the controllability evaluation includes only vibration phenomena (the acoustic radi-
ation weighting is not incorporated). This is because expressing the acoustic radiation as a separate term (cf. Section 4.2)
provides more flexibility in the cost function design step.
2.9. Summary

The derived model of the vibroacoustic system, although based on components available in the literature, combines both
vibration and acoustic radiation phenomena in a concise and coherent form, and also takes into account the loading of the
plate due to the inertial actuators used for active control. The employment of the Rayleigh–Ritz method facilitates a numer-
ical solution of the system to be found, while the state-space representation enables analysis of the controllability of the sys-
tem. All of these components provide a complete and reliable model of thin plates used as active noise barriers, which can be
applied to optimize the actuator arrangement and is one of the main contributions of this paper.
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3. Experimental verification of the model

In this Section, results from an experimental verification of the developed model are presented. For this purpose, an
unloaded aluminium plate was used. The plate was attached to a rigid cubic frame. The remaining walls, which were con-
structed from sound-absorbing materials, were also attached to the frame to form a closed box. The aluminium plate was
acoustically excited by a loudspeaker placed inside the box. The loudspeaker was driven by white noise bandlimited up
to 1 kHz. Photographs of the laboratory setup are presented in Fig. 2.

The dimensions of the plate area that was free to vibrate (i.e. the area inside the squareclamping frame) were equal to
0.420 m � 0.420 m. The plate can be described by the following parameters, which are defined in the model developed in
Section 2:
Fig. 2.
An auto
a ¼ 0:420 m; b ¼ 0:420 m; h ¼ 0:001 m;

Ex ¼ 70 GPa; qp ¼ 2770 kg=m3; mx ¼ 0:3;
Ey ¼ 77 GPa; G ¼ 26:9 GPa :
Firstly, the accuracy of the model of the plate vibration was evaluated. The response of the plate was measured using a
laser vibrometer (Polytec PDV-100). The vibrometer was mounted on an automatic positioning system developed by the
authors (cf. Fig. 2). Vibration measurements were taken over a uniform grid of 22� 22 points (the interval between points
was equal to 0.02 m).

Subsequently, the model of the acoustic radiation from the plate was also examined. For this purpose, the carriage with
the laser vibrometer was complemented with an array of six measurement microphones (Beyerdynamic MM1). The micro-
phones were arranged to measure the sound pressure just above the laser beam at distances from the plate of between 0.1 m
and 0.6 m in steps of 0.1 m; this gives a total of 3120 measurement positions.

3.1. Verification of the modelling of plate vibrations

A comparison between the results from the experimental measurements and those calculated using the model is pre-
sented in Fig. 3. From these results it can be seen that the consistency between the results is very good, both in terms of
the natural frequencies and mode shapes. Some of the modes could not be distinguished with the laboratory setup, which
is due to two facts. Firstly, not all of the modes were equally excited with the loudspeaker, which means that weakly excited
modes could not be distinguished well enough from the background noise. Secondly, if two modes have similar natural fre-
quencies but significantly different magnitudes, then the more strongly excited mode would dominate and the weakly
excited could not be observed. However, it is clear from the presented results that the majority of the first 12 vibrational
modes of the plate were captured and are very consistent with the model.
Photographs of the laboratory setup with an unloaded plate attached to a rigid cubic frame and excited with a loudspeaker placed inside the frame.
matic positioning system for the laser vibrometer is also shown.



Fig. 3. A comparison of the first 12 natural frequencies of rigid casing wall, and mode shapes calculated with the mathematical model and experimentally
measured operational vibration shapes—1 mm thick aluminium unloaded plate. Size of the plate is in [m], and the z-axis depicts normalized amplitude.
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It is worthwhile to provide an additional comment regarding the experimentally measured fifth operational vibration
shape. This shape is in fact a superposition of the theoretically calculated modes 5 and 6. This phenomena is visualized in
the Fig. 4, which shows the theoretically calculated mode shapes for modes 5 and 6 and their combination, along with
the experimentally identified 5th operational vibration shape. This behaviour is typical for square plates, because pairs of
natural frequencies are often very close to each other. If the magnitudes of such modes are similar, the coupled shapes
can be observed, as in the case of the experimental setup considered here.

It is also noteworthy that the experimentally measured natural frequencies of related pairs of modes, e.g. mode 2 and 3,
are not equal (for a square isotropic plate, these frequencies should be equal). this leads to the conclusion that even a mate-



Fig. 4. A comparison between the theoretically calculated vibration mode shapes 5 and 6, and their superposition with the experimentally measured
operational vibration shape 5.
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rial that could be expected to be isotropic (a common flat aluminium plate), may in fact be orthotropic to some extent, which
may be due to the manufacturing process of the metal sheets. This is important because it justifies the selection of the ortho-
tropic form of the developed model, which could otherwise be replaced by the simpler isotropic model.
3.2. Verification of the modelling of the acoustic radiation from the plate

A comparison between the experimental acoustic measurements and the theoretical calculations is presented in Fig. 5.
The visualized modal sound pressure distributions reflect the sound pressure measured and simulated for the first 12 natural
frequencies over a measurement grid. The presented grid was 1.00 m wide and 0.64 m high, and located at a distance of
0.1 m from the plate surface, with an interval between the measurement points of 0.04 m; this gives 26 � 17 measurement
points, which is a total of 442 points). Assuming that the origin of the coordinate system was placed at the lower left corner
of the plate, then the covered area can be defined by the following coordinates: x 2 ½�0:29;0:71�, y 2 ½�0:08;0:56� and
z ¼ 0:1.

From Fig. 5 it can be seen that there is a high level of consistency between the experimental and theoretical results. As
discussed in the previous section in relation to the measurements of the vibration response, if a particular mode was suffi-
ciently excited to be accurately measured, then the measurements are consistent with the model. Once again, the fifth mode
is worth an additional comment—the observed shape, as in case of the vibration response, is a result of the superposition of
the theoretically calculated modes 5 and 6. This phenomena is visualized in the Fig. 6.

For the acoustic measurements, it is also worthwhile to compare the mean mode magnitudes obtained by experimental
measurementswith the theoretical expectations. This comparison is presented in Fig. 7. Based on themeasured vibrationmag-
nitudes, themean sound pressuremagnitudes due to the individualmodes obtained through the experimental measurements
and the model simulations can be compared. The mean values were obtained by averaging over the described measurement
grid at a distance of 0.1 m from the plate surface. It follows from the analysis of Fig. 7 that the accuracy of the theoretical pre-
diction is very high, especially taking into account the fact that the utilized acoustic laboratory is not an anechoic chamber and
the room acoustics interfere with the measurement to some extent. Hence, the conclusion can be drawn that the model has
been successfully verified and that it can be used for the optimization process presented in the following Section.
4. Optimization process

In this section an optimization process is presented that aims to find the optimal placement of a number of actuators
mounted to a vibrating plate for the purpose of active control. The objective of the control system is to reduce the noise radi-
ated from the acoustic enclosure via the Active Structural Acoustic Control (ASAC) approach [32,33]. In order to reach this
goal, the control system should be able to control the vibration modes of the plate in the frequency range of interest. The
ability to control the ith mode can be described by an element on the diagonal of the controllability Gramian matrix, kc;i,
as derived in Section 2.8. However, some of the vibrational modes are more important as they more strongly transmit or
radiate noise when excited; while other modes behave in the exactly opposite manner and can be neglected, since they
vibrate without strongly contributing to the radiated acoustic field. In order to reflect this behaviour, the modal acoustic
power corresponding to ith vibration mode of the plate, Pi, can be used (cf. Section 2.8). Taking this into account, an opti-
mization problem defined by an appropriate cost function will be presented, which will enable an optimal solution to be
found for the arrangement of the given actuators.
4.1. Optimization problem

The optimization variables defined for the considered problem are the coordinates of a predefined number of actuators,
Na. A flat rectangular plate is considered, hence two coordinates per ith actuator, xa;i and ya;i, are sufficient to unambiguously
describe its location. Hence, the optimization algorithm is required to find a solution in an 2Na–dimensional space.



Fig. 5. A comparison of initial 12 modal sound pressure distributions in the near field of the rigid casing wall, calculated with the mathematical model and
experimentally measured—1 mm thick aluminium unloaded plate. Size of the measurement grid is in [m], and the z-axis depicts normalized amplitude.
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Due to physical dimensions of the actuators, certain constraints have to be defined in order to maintain the practicability
of the solution. Namely, margins from the plate edges and between the actuators should be maintained, with the assumption
that the actuators can be attached only from one side of the plate. Inertial actuators are considered in this paper, which are
most commonly manufactured with a round foot print, although the method could be extended to more complex geometries
as required. The first resulting constraint ensures that the actuators are placed within the boundaries of the plate; the dimen-
sions of the considered rectangular plate are a� b, hence, the coordinates of ith actuator xa;i 2 ð12 da;i; a� 1

2da;iÞ and
ya;i 2 1

2da;i; b� 1
2 da;i

� �
, where da;i is the diameter of the ith actuator. The second constraint ensures that actuators do not over-



Fig. 6. A comparison between the theoretically calculated modal sound pressure distributions in the near field for modes 5 and 6, and their superposition
with the experimentally measured mode 5.

Fig. 7. A comparison between the mean mode magnitudes obtained by experimental measurements and model simulations. The mean values were
obtained by averaging over a plane parallel to the plate at a distance of 0.1 m.
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lap; for i– j, the ith and jth actuators should not be closer than a distance of 1
2 da;i þ 1

2da;j, which is represented by the follow-

ing constraint: ðxa;i � xa;jÞ2 þ ðya;i � ya;jÞ2 P 1
2 da;i þ 1

2da;j
� �2.

4.2. Cost functions

The cost functions for the described problem can be formulated in a number of ways. In this research, six cost functions
will be evaluated and analysed. Firstly, three cost functions that do not take into account the acoustic radiation, J1-J3, are
formulated as follows,
J1 ¼ min
i

kc;i;ð31aÞ

J2 ¼ N�1
J

X
i

kc;i

 !
;ð31bÞ

J3 ¼
Y
i

kc;i

 !N�1
J

;ð31cÞ
for i 2 1;2; . . . ;NJ
� �

, where NJ is the number of modes considered in the cost function. The same range of i is also considered
for the other cost functions. All three cost functions J1-J3 focus on maximizing the controllability of the system, however,
they result in a different balance between the NJ controllability measures, kc;i, corresponding to the NJ considered modes.
Cost function J1 represents only the least controllable mode, and thus ensures that there are no uncontrollable resonances
within the frequency range of interest. Cost function J2, which represents the mean controllability of the modes within the
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frequency range of interest, may increase the controllability of certain modes, even if this happens at the expense of reducing
the controllability of other modes. Finally, cost function J3 should lead to solutions that provide a trade-off between J1 and J2,
making sure that the smallest of the factors is maximized, whilst also benefiting to some extent an increase in the control-
lability of the other modes in the frequency range of interest.

Subsequently, three additional cost functions are defined, J4-J6, which are analogous to the initial three cost functions, but
take into account the acoustic radiation. These cost functions are defined as
Table 1
Results
kc;i , Pi a
acoustic
J4 ¼ min
i

kc;i
Pi

� �
; ð32aÞ

J5 ¼ N�1
J

X
i

kc;i
Pi

 !
; ð32bÞ

J6 ¼
Y
i

kc;i
Pi

 !N�1
J

: ð32cÞ
In each case, the division of kc;i by Pi forces the optimization algorithm to seek solutions with better controllability (more
energy efficient) for the ith mode, if the ith mode acoustic radiation measure Pi is higher. That is, the cost functions are
weighted to focus the effort into the controllability of the strongly radiating structural modes.
of the optimization for cost functions J1-J6 with Na = 3 and NJ = 12. The natural frequencies xi are given in [Hz], while values of the cost functions J1-J6,
nd kc;i=Pi are given in [dB]. Resulting values of the cost functions used as the optimization index are marked with bold font. Individual modes of high
radiation (Pi P30 dB) are highlighted with a grey background. The actuators placement is also given.
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4.3. Optimization algorithm

The search space that follows from the optimization problem described in the previous subsections is very complicated
and contains numerous local maxima. Therefore, an efficient algorithm must be employed in order to find a solution that
satisfies the defined requirements. A Memetic Algorithm (MA) can be utilised for such a task, which is a hybrid form of a
population-based approach coupled with separate individual learning [34]. The MA combines advantages of a global search,
as offered by evolutionary algorithms, and local refinement procedures, which enhance convergence to the local maxima
[34,35]. Due to these complementary properties, MA are particularly suitable for solving complex multi-parameter optimiza-
tion problems, such as the placement of sensors and actuators [36,37].
Table 2
Results of the optimization for the cost functions J1 and J4 with NJ = 12 and Na equal to 3, 6 or 9. The natural frequenciesxi are given in [Hz], while values of the
cost functions J1 and J4, kc;i , Pi and kc;i=Pi are given in [dB]. Resulting values of the cost functions used as the optimization index are marked with bold font.
Individual modes of high acoustic radiation (Pi P30 dB) are highlighted with a grey background. The placement of the actuators is also given.
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5. Analysis of optimization results

In this Section, an analysis of the optimization results obtained for the arrangement of real actuators is presented. Dayton
Audio DAEX32EP-4 are considered as actuators in this paper. They have a circular form factor, with a massma;i = 0.115 kg and
a diameter da;i = 0.060 m. The dimensions of the considered plate are a = 0.420 m and b = 0.420 m, hence, based on the con-
straints defined in SubSection 4.1, the coordinates of the ith actuator are given as xa;i 2 ð0:030;0:390Þ, ya;i 2 ð0:030;0:390Þ
and ðxa;i � xa;jÞ2 þ ðya;i � ya;jÞ2 P ð0:060Þ2 for i– j.

The configurations for three, six and nine actuators have been optimized using the six cost functions, J1-J6, defined in the
previous Section. The objective was to maximize the controllability of the plate used as an active acoustic barrier. The low
frequency range was considered, hence the first NJ = 12 vibration modes of the plate were considered in the optimization
process. The obtained results are summarized in Table 1.

It follows from an analysis of the results presented in Table 1 that the introduction of an acoustic radiation estimate into
the cost function J1, obtaining J4, enables an increase in the controllability measure kc;i of more than 5 dB for acoustically-
relevant modes (where Pi P30 dB; in Table 1 they are highlighted with a grey background). An increase in the controllability
measure kc;i means that the ith mode is more excited with the same control effort (e.g. an increase of kc;i by 5 dB means that
the modal velocity of the ith mode is by 5 dB greater with the same control effort). The price that is paid for this increase is a
smaller controllability for modes that are less responsible for acoustic radiation or transmission. The minimal controllability
measure kc;i for J1 is 50 dB, while for J4 it is 40 dB. However, the least controllable mode for the solution obtained with J4 has
Pi = 19 dB, which means that its role in acoustic radiation or transmission will be minor compared to the other modes that
have a Pi that is more than 15 dB higher.

It is also interesting to highlight that modifying cost function J1 to give J4 provides a similar increase in the controllability
of the acoustically-relevant modes to that achieved by employing additional actuators, as shown by the results presented in
Table 2. By optimizing the actuator locations using J4, a similar controllability can be reached as achieved when the number
of actuators are doubled and optimized using J1. In other words, by using J4 the number of actuators, Na, could be reduced,
e.g. from 6 to 3 per plate, whilst maintaining a similar level of controllability in terms of the acoustically-relevant modes. In
practical noise control applications, this reduction in the required number of actuators offers a significant reduction in the
cost and control system complexity, which is a considerable advantage.

Referring again to the results presented in Table 1, it can be seen that the results obtained for both J2 and J5 are in general
inferior to the results obtained with J1 and J4. The reason for this is that if a sum is employed in the cost function (J2 and J5), it
can be beneficial to maximize only one component of the sum and neglect the others. In the considered optimization prob-
lem, the controllability of the first mode was maximized, but the remaining modes were neglected and, as a result, these cost
functions do not meet the objective.

It is interesting to note from the results presented in Table 1 that both J1 and J3 result in similar cost function values. The
controllability of all considered modes has been maximized using these cost functions. However, introduction of acoustic
radiation measure into cost function J3, which gives J6, provides unsatisfactory results. It turns out that it is beneficial for
J6 to have a single mode of high acoustic radiation and lower controllability, while maximizing controllability of the other
less acoustically-relevant modes. This is, therefore, an unacceptable solution for the considered application.

Acoustic and structural vibration responses of the plate, obtained for the different optimization indices J1-J6, are pre-
sented in Fig. 8. These responses are calculated for the solutions summarized in Table 1, hence in all cases the number of
actuators Na = 3. Both responses, driven with the primary uniform excitation and by the optimally arranged actuators, are
presented. The responses of the plate due to primary uniform excitation are obtained by applying an equal excitation to
all structural modes, instead of simulating an external acoustic excitation. These responses correspond to the result of a uni-
form wide-band external excitation that can be produced by many types of common noise sources. The responses due to
excitation by the optimally arranged actuators are obtained by simulating actuator action as forces acting at the optimized
actuator locations ðxa;i, ya;iÞ. A wideband signal again was used as the input to the actuators. The magnitude of the input sig-
nals to the actuators was arbitrarily chosen and was the same in all evaluated cases and for all actuators. The larger the
response due to the actuators (shown by the red line) compared to the response when driven by the primary uniform exci-
tation (shown by the black line), the easier it will be for the control system to reduce the noise transmission or radiation in
the considered frequency range.

It follows from analysis of Fig. 8 that in the case of the structural responses obtained for J1 and J3, the responses due to
optimally arranged actuators nearly match for all considered peaks in the responses due to primary uniform excitation.
However, in the case of the acoustic responses obtained for J1 and J3, the highest peaks in the responses due to primary uni-
form excitation are higher than the corresponding responses due to the actuators, while the response due to the optimally
arranged actuators obtained for J4 dominates the highest peaks in the acoustic response of the plate due to primary uniform
excitation. Still, an enhanced performance in acoustic response obtained for J4 is traded for a weaker structural response for
the modes that are less responsible for acoustic radiation or transmission. These remarks are consistent with the previous
conclusions drawn from the analysis of Table 1.



Fig. 8. Acoustic and structural vibration responses of the plate, obtained for different optimization indices J1-J6 as summarized in Table 1. Responses are
shown for both the primary uniform excitation and when excited using the optimally arranged actuators.
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6. Conclusions

Active noise control methods are gaining growing attention as a practical method for controlling noise in the increasingly
noise-polluted world. This paper develops a new acoustic radiation-based method to optimize the arrangement of actuators
for active noise barriers. A model of acoustic radiation was introduced into the optimization process and new cost functions
were formulated in order to focus on modes that are truly relevant to the noise transmission and radiation. This optimization
process constitutes the main novelty of the presented research. The study involved mathematical modelling, laboratory
experiments and numerical simulations in order to evaluate the proposed optimization method.

The employed model was validated experimentally and employed in the optimization of the actuators for a real labora-
tory setup. It follows from an analysis that introduction of the acoustic radiation measure into the cost function in the form
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of J4 offers best performance and enables an increase in the controllability measure of more than 5 dB for acoustically-
relevant modes. The increase in controllability for these modes is comparable to that achieved by employing additional actu-
ators (at least doubling the number of actuators for the considered system). From a different point of view, this method could
also be used to rearrange the actuators in order to try to reduce their number, while maintaining the same level of control-
lability. Such reduction in practical noise control applications entails a significant reduction in the cost and the control sys-
tem complexity.

These advantages are traded for a reduction in the controllability of the modes that are less responsible for acoustic radi-
ation or transmission. However, such modes have been shown to have a modal acoustic power that is at least 15 dB lower
than that due to the dominant modes, which means that their contribution to the noise transmission and radiation is
negligible.
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