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Coherent diffraction imaging is a form of microscopy that permits high resolution imaging of
atomic displacements from equilibrium where the use of conventional optics is not feasible. Ap-
proaches to date for the recovery of atomic displacements from equilibrium and subsequently strain
information occur after phase reconstruction of the complex real-space images from at least three
independent Bragg diffraction amplitude measurements. While this is a more accessible and effective
approach to recover strain information, there is potential for erroneous results if the recovered phase
information is not carefully treated. Here we present a strategy for imaging strain with coherent
x-rays that eliminates the technical challenges that exist in conventional approaches by constructing
the strain field concurrently during the phase retrieval process of recovering phase information.

I. INTRODUCTION

Coherent X-ray diffraction Imaging (CXDI) is a pow-
erful lens-less imaging technique for probing nanometre
sized materials with sub-angstrom sensitivity.[1–6] It is
an attractive alternative to electron microscopy because
of the better penetration of the electromagnetic waves
in materials of interest, which are often less damaging to
the sample than electrons. There are a number of im-
portant variations on the conventional CXDI method.
They include curved wavefront Fresnel CXDI [7] and
coherent scanning probe ptychography [8, 9].

Bragg Coherent X-ray diffraction Imaging (BCXDI)
is the ‘classical’ CXDI method used to study nanoscale
crystals.[6, 10–12] It is performed by exciting a Bragg re-
flection from the nanocrystal by illuminating a sample
with a spatially coherent x-ray source so that the co-
herence lengths exceed the dimensions of the nanocrys-
tal. This condition can be satisfied by a synchrotron
x-ray source. In the Bragg reflection geometry, scat-
tered light from the entire volume of the crystal in-
terferes in the far-field, producing a three-dimensional
Fourier-space diffraction pattern. The resulting three-
dimensional diffraction pattern is then recorded in the
far-field Fraunhofer limit. By using small enough de-
tector pixels, a large enough detector distance and fine
enough angle steps in the rocking scan, this pattern can
be oversampled relative to the Shannon-Nyquist sam-
pling frequency in all three directions. Technically, this
operation of measuring a rocking curve with a 2D de-
tector results in ‘binned’ (angularly-averaged) data in
two directions and ‘sampled’ data in the third direction
that can be inverted using computational algorithms
[13, 14]. The curvature of the Ewald sphere is usually
small enough that the speckle pattern can be sampled
on a regular grid in all three directions and subsequently
transformed in the inversion algorithm using a discrete
Fourier transform (Fig. 1).

Along with three-dimensional electron density infor-
mation, BCXDI also offers a means to determine in
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three-dimensions any structural changes due to strain,
most likely to occur for nanocrystals that experience a
structural distortion due to defects or external pertur-
bation [12, 15–17]. Ions displaced from the ideal lat-
tice point result in a spatially dependent phase shift of
φi(r) = Qijuj(r) in the reflected wave from the dis-
torted region where uj is the local ion displacement
vector component set for orthogonal directions j, and
i ∈ N1 labels the images obtained at differing Q-vectors.
Provided this real-space phase is recovered, a compo-
nent of the atomic displacement uj is directly obtained
in the direction of the Q-vector. Diffraction from mul-
tiple Bragg points of the same crystal will in general
provide multiple components of the displacement vec-
tor from which we can construct the displacement field
using the following result [15]:

uj = ξjiQkiφk ; ξji = (QkjQki)
−1 (1)

Here (QkjQki)
−1 is the inverse matrix of QkjQki (with

units of square length). The strain field is directly ob-
tained from the displacement field using the following
result:

εij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
(2)

To date, all approaches have obtained the displace-
ment field ui(r) (and subsequently the strain field) after
reconstruction of the complex real-space images ρi(r)
(described below) from at least N = 3 independent
Bragg diffraction amplitude measurements Ii(q). This
equates to the following sequence of tasks:[15] (1) Ac-
quire diffraction data Ii(q) for at least three indepen-
dent Bragg reflections from a single nanocrystal; (2) Re-
construct the diffraction data for each individual Bragg
reflection to obtain a separate three-dimensional real-
space image ρi(r) for each Bragg reflection; (3) Com-
bine the phase information φi(r) from the complex real-
space images ρi(r) according to equation 1 to obtain the
displacement field ui(r), and subsequently strain tensor
field εij .

A number of technical challenges exist with this ap-
proach that, if not carefully treated, could lead to erro-
neous results. The first arises from the inherent proper-
ties of project algorithms and the phase reconstruction
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FIG. 1. Diffraction experimental geometry and concurrent phase retrieval method. a, Multiple Bragg reflections with
wavevector k̂fN are excited from a single nanocrystal and each speckle pattern acquired (only two are displayed, for clarity).

The incident wave vector is denoted as k̂i. The rocking curve method is used to acquire two-dimensional slices of the three-
dimensional speckle pattern by rotating the nanocrystal through the Bragg condition. b, Flow chart of concurrent multiple
Bragg reflection method. Enclosed region shows retrieval processes that are common for a single (N = 1) Bragg reflection.

problem. As the projection from Fourier-space to real-
space is insensitive to translation, each reconstructed
image ρi(r) must first coincide at the same position in
real-space so that a given position r in each image is
equivalent. This can be challenging and can lead to
artefacts in the strain field if not optimally performed.
The second potential issue arises from reconstruction
artefacts in amplitude and phase that might appear in
a given real-space image ρi(r) as a consequence of poor
convergence or stagnation during phase reconstruction.
This can be due to a number of reasons including insuffi-
cient sampling in the presence of noise,[18] strong phase
structure[19] and dynamic structural changes that can
adversely affect speckle visibility. In the following we
demonstrate a route to eliminate phase uniqueness is-
sues primarily associated with alignment by reconstruct-
ing the displacement field ui(r) concurrently with the
phase information contained in images ρi(r).

II. EXPERIMENTAL METHODS

A. Concurrent Phase Retrieval

When BCXDI measurements are performed phase in-
formation is lost and instead we obtain only the re-
ciprocal space scattering intensity distribution I(q) in
the form of an interference pattern. This is closely
approximated by the square of the modulus of the
Fourier transform of the object function ρ̂0(q) such that:
I(q) = |ρ̂0(q)|2 = |ρ̂0(q)eiφ(q)|2. The third dimension
is obtained by rotating the Ewald sphere through the
Bragg condition while maintaining a largely fixed in-
cident (ki) and reflected (kf ) wave vector. The Q-
vector (Q = ki − kf ) is typically rotated through an
angle of θmax ∼ 0.5 angular degrees. The complex
real-space image, given by ρ = |ρ|eiφ(r), is directly pro-

portional to the electron density and is recovered us-
ing iterative projection algorithms that propagate back
and forth between the real-space image plane and the
Fourier-space detector plane while applying a constraint
at each turn [3, 20–23]. The Fourier-space modulus

constraint, P̂M, requires the scattering amplitude to
be proportional to the original measurement such that
P̂M|ρ̂(q)|eiφ(q) = |ρ̂0(q)| eiφ(q). The real-space con-
straint P S defines a support region where the electron
density ρ(r) is unrestricted while all other points are set
to zero.

To recover the three-dimensional strain field of a sin-
gle nanocrystal concurrently, complex real-space images
ρi(r) are reconstructed concurrently from diffraction in-
tensity measurements Ii(q). This method proceeds with
the following steps (depicted in Figure 1): (1) As be-
fore, acquire diffraction data Ii(q) for at least N = 3 in-
dependent Bragg reflections from a single nanocrystal;
(2) For each iteration of the phase reconstruction pro-
cess and for each Bragg reflection, propagate the scat-
tering amplitude to the real-space image plane and cal-
culate ui(r) using equation 1; (3) Use the relationship
φ′i(r) = Qijuj(r) to update the phase information for
each Bragg reflection while leaving the amplitude un-
changed; (4) Propagate back to the Fourier-space detec-
tor plane and apply the amplitude constraint to ρi(q);
Repeat steps (2) to (4) until a sufficiently converged dis-

placement field u(∗)(r) and the final set of images ρ
(∗)
i (r)

are obtained. Use the final result for u(r) to calculate
the strain field as shown in equation 2.

The merit of concurrent phase retrieval for the recov-
ery of strain information is found in its potential to sup-
press or entirely eliminate artefacts in a reconstructed
image that are not consistent with the displacement field
obtained using all reconstructed images. This normal-
ising process is not accessible when each complex real-
space image is reconstructed independently.
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FIG. 2. Reconstructed phase information for each Bragg reflection. Phase is shown in the xy-plane at half distance along
the z-direction. a-d, Ideal phase profile. e-h, Phase reconstructed concurrently shows good agreement with the ideal case
and has few artefacts. i-l, Phase reconstructed independently for each Bragg reflection. The phase is recovered sufficiently
well but contains a greater number of phase reconstruction artefacts as this approach does not benefit from the normalising
process inherent in the concurrent approach.

III. RESULTS AND DISCUSSIONS

A. Experimental procedure

To determine the efficacy of the concurrent phase re-
trieval technique, we performed a simulated BCXDI ex-
periment on a single nanocube to record the scattering
intensity from multiple Bragg reflections. We subse-
quently reconstructed the strain tensor field informa-
tion using both the concurrent and conventional inde-
pendent phase reconstruction methods under equivalent
conditions for comparison. Numerical experiments were

performed on a well faceted nanocube with x = 100 nm
side lengths and well defined atomic displacement field
information (see Appendix A). An isolated nanocube
was initially oriented to the (200), (111), (111) and
(022) Bragg reflections. In each case, the nanocube
was illuminated with monochromatic x-rays at a wave-
length of 8keV and a three-dimensional far-field inten-
sity speckle pattern was recorded using the rocking-
curve method with an oversampling ratio of 2 relative to
the Shannon-Nyquist sampling frequency. In the kine-
matic approximation, the far-field diffraction intensity
of the nanocubes electron density is well approximated
by the square modulus of the Fourier after applying
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FIG. 3. Two-dimensional slices through the Strain tensor information shown for the ideal, concurrent and independent
phase reconstruction methods. Strain is shown in the xy-plane at half distance along the z-direction. a, Ideal strain tensor
information. b, Strain tensor information reconstructed concurrently shows good agreement with the ideal case. c, Strain
tensor information reconstructed independently for each Bragg reflection shows reasonable agreement with the ideal case.
Artefacts such as ripples in the phase which can occur as a results of sub-optimal alignment are visible in the independently
reconstructed phase information.

corrections specific to the experimental geometry. [24–
28] Utilising the cubic symmetry of the nanocube of
side length x, we can define the fringe periodicity as
wf = 2π/x in units of m-1. The rocking-curve angular
increment is given by δθ = wf/(2β|Q|) where β is the
oversampling ratio.

The recorded speckle patterns were subsequently
transformed onto a regular grid (see Appendix B) and
interpolated as needed to ensure that correspondence
between data points for each speckle pattern.[29, 30]
Poisson noise was added to each speckle pattern of
amount σA = 5%, 10%, 20% and 50% where:

σA =

∑
q ||A(q)| − |A′(q)||∑

q |A(q)| (3)

and A′(q) is the scattering amplitude with Poisson noise
applied (See Appendix B). The recorded speckle pat-
terns were then used to recover the real-space com-

plex electron density images along with the strain in-
formation using both the concurrent and conventional
independent methods of phase retrieval. In all cases,
reconstruction was carried out using 10,000 iterations
of Fienup’s hybrid input-output (HIO) algorithm with
a relaxation parameter of β = 0.9. Reconstruction
proceeded with random phase information and was re-
peated 10 times to confirm reproducibility.

B. Recovery of Strain Information

Figure 2 shows a cut plane of the reconstructed phase
information of the complex real-space images ρi(r) ob-
tained using the concurrent (e-h) and conventional in-
dependent (i-l) phase reconstruction methods.[31] The
recovered phase is contrasted with the ideal case (a-d)
for direct comparison. Phase information recovered us-
ing the concurrent methods shows good agreement with
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TABLE I. Standard deviation σ of the phase difference
∆φ(r) between the ideal and recovered phase in the pres-
ence of Poisson noise σA.

Noise Concurrent σ Independent σ
σA (200) (111) (111) (022) (200) (111) (111) (022)

0% 1.11 1.15 1.16 1.68 1.61 1.60 1.61 1.62
5% 1.14 1.28 1.28 1.61 1.61 1.61 1.61 1.59
10% 1.16 1.28 1.28 1.60 1.63 1.59 1.60 1.62
20% 1.16 1.29 1.28 1.63 1.61 1.61 1.60 1.62
50% 1.16 1.30 1.30 1.63 1.61 1.59 1.56 1.60

the ideal case with only minor deviations visible. All 10
attempts at recovering the phase information showed
good agreement with the ideal case and displayed no
appreciable differences. Phase information recovered in-
dependently shows reasonable agreement with the ideal
case but with an increase in artefacts likely due to stag-
nation of the HIO algorithm as is known to occur for uni-
directional saddle-point optimisation methods.[21, 32]

Figure 3 shows a cut plane of the reconstructed
strain information obtained using the concurrent (e-h)
and conventional independent (i-l) phase reconstruction
methods. Strain information recovered using the con-
current methods shows good agreement with the ideal
case with each tensor component showing comparable
characteristic features. Phase information recovered in-
dependently shows some agreement but deviations from
the ideal case are clearly seen, particularly in the εxy,
εxz and εyz components. This is to be expected as ten-
sor cross terms are more sensitive to misalignment of
the phase components from each Bragg reflection.

Table I hows the standard deviation of the phase dif-
ference ∆φ between the ideal and recovered phase in
the presence of Poisson noise σA (Equation 3). In each
case, the concurrently recovered phase generally has a
lower value of standard deviation than the indepen-
dently recovered phase. This implies greater agreement
with the ideal phase due the suppression of artefacts
which persist in the independently reconstructed phase
information.[33]

Figure 4 shows the mean error residual (of each inde-
pendent intensity measurements Ii(q)) obtained for the
concurrent and conventional independent phase recon-
struction methods plotted against the respective itera-
tion. The error metric is defined as[22, 23]:

ε(ρ) = ε2M(ρ)− ε2S(ρ)

εM = ||PMρ− ρ||
εS = ||P Sρ− ρ||

(4)

where PM = FP̂MF−1 and F is the Fourier trans-
form. While both the concurrent and conventional inde-
pendent phase reconstruction methods show good con-
vergence, the concurrent methods shows consistently
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FIG. 4. Error residual plotted for the concurrent and con-
ventional independent phase reconstruction methods. The
error plotted is the mean error for each Bragg reflection at
a given iteration. The concurrent approach clearly shows
stronger convergence down to 5 × 10−4 while the indepen-
dent phase reconstruction method was found to stagnate at
just above 10−3.

stronger convergence at a given iteration and converges
below 10−3 down to 5 × 10−4 while the independent
phase reconstruction method was found to stagnate at
just above 10−3. In addition, this was found to oc-
cur for all attempts at reconstruction staring with ran-
dom phase suggesting a route to deterministic phase
retrieval.

IV. CONCLUSION

Concurrent phase retrieval provides a route to the
reconstruction of complex real-space images ρi(r) and
their phase information φi(r) that are inherently con-
sistent. Our findings have shown that reconstructing
strain tensor information concurrently avoids many of
the pitfall of independent phase reconstruction such as
phase artefacts. In addition twinned objects, i.e. those
with conjugated image ρ∗(−r) but equal Fourier am-
plitude to the image ρ(r), are also avoided inherently
as their phase information cannot consistently combine
with un-conjugated images during phase retrieval. This
suggests that recovering phase information concurrently
could provide a route to deterministic phase retrieval
and strain field reconstruction.

The approach demonstrated herein will also greatly
facilitate the reconstruction of strain field information
from materials with phase information that is challeng-
ing to reconstruct. Examples include highly strained
materials or those undergoing a structural transforma-
tion from one crystal structure to another. There is also
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potential to further refine the above method by util-
ising additional algorithms including error reduction,
higher dimensional saddle point optimisation and ac-
counting for partial coherence in the Fourier-space mod-
ulus constraint[22, 34, 35]. In addition, recent advances
in machine learned iterative deep neural networks that
encode high-level information about the class of images
could also facilitate in mitigating artefacts during re-
construction [18].

Appendix A: BCXDI experimental setup

Nanocubes with the face-centred cubic structure of
silver metal and side lengths of x = 100 nm were con-
structed with displacement field information given by:

u(r) = cos(πs/d1)
2(|s|/d2+1)2 r̂

s = (|r| − d1)
(A1)

where d1 = x/4 is a displacement of a quarter distance
of the nanocube length and d2 = x/8 is a displacement
of an eighth distance of the nanocube length. With
coherent x-ray illumination in the far-field Fraunhofer
limit, the scattering amplitude is given by:

A(q) =

∫
dr ρ(r) exp(iq · r) exp(iq · u(r)) (A2)

from which we measure the intensity I(q) = A∗(q)A(q).
δα = wf/(2β|k|) is defined as the angle subtending a
single detector pixel dx,y for an oversampling ratio of
β. From this we can directly obtain the distance from
the sample to the detector as R = dx,y/δα. This con-
dition ensures that each sampling interval is acquired
by a single pixel on the detector. The maximum in-
tensity per pulse per m2 at the center pixel is given by
Isc = r20Φ0F

2N2/R2, where r0 is the Thomson scatter-
ing length and F is the unit cell structure factor. The
envelope function of the scattering intensity is given by
I(q) = Isc/((πq/wf )2 + 1) and takes its minimum value
when I(qmax) = n0/d

2
x,y, where n0 is the minimum pho-

ton count a detector pixel can detect. The total rocking
width is then given by

θmax =
2wf
|Q|π

(
Iscd

2
x,y

n0
− 1

)1/2

(A3)

and the resolution is ∆x = 2π/|Q|θmax.
Using 8 keV x-rays with a photon flux density of

9.3×1021 photons/m2, the resulting speckle pattern is
sampled onto a photon counting detector with 50×50
µm2 pixels and an oversampling ratio of 2 is maintained
at a sample-to-detector propagation distance of approx-
imately 0.14 m. Real-space images were reconstructed
using intensity information above 5 photon counts per
second and recovered with a resolution of approximately
4.5 nanometres.

Appendix B: Diffraction Pattern Coordinate
Transformation

Diffraction amplitude measurements are in general
recorded in the coordinate system of the experimental
setup which is typically not a rectilinear coordinate sys-
tem. As a result, the amplitude and phase information
reconstructed from diffraction amplitude measurements
will also not reside in a rectilinear coordinate system. It
is however possible to transform the experimental coor-
dinate system into a rectilinear coordinate system.[30]
We demonstrate this using the following procedure for
a θ rocking curve measurement. Analogous procedures
apply for a φ rocking curve measurement. If î, ĵ and k̂
are unit vectors in a rectilinear coordinate system, unit
vectors for the incident ki and reflected kf wavevectors
are generally given by:

k̂i = {cos (φ) sin (θ)}̂i
+ sin (φ)̂j

+{cos (φ) cos (θ)}k̂
k̂f = {cos (φ+ φ0 + φ′0) sin (θ + θ0 + θ′0)}̂i

+ sin (φ+ φ0 + φ′0)̂j

+{cos (φ+ φ0 + φ′0) cos (θ + θ0 + θ′0)}k̂

(B1)

where θ and φ are angular rotations about the ĵ and
î axes respectively. This system of rotations is chosen
so that the k̂i unit vector is aligned along the k̂ vector
direction in the absence of rotation. Angles θ0 and φ0
are additional angular rotations about the ĵ and î axes
respectively needed for the kf vector to adopt the Bragg
condition for diffraction. Angle θ′0 and φ′0 are small
increments of θ0 and φ0 respectively which allow each
point on the diffraction pattern to be addressed by a
general rotation of the kf vector about the origin. The
unit Q-vector is then given by:

Q̂ =
kf − ki
|kf − ki|

(B2)

In order to define a rectilinear coordinate system, we
determine, with zero order approximation, the change in
Q̂ with, θ′0, φ′0 and θ. This is because the rocking-curve

rotates about Q̂.

∂Q̂

∂θ′0
= {cos (φ0) cos (θ0)}̂i

−{cos (φ0) sin (θ0)}k̂
(B3)

∂Q̂

∂φ′0
= −{sin (φ0) sin (θ0)}̂i

+ cos (φ0)̂j

−{sin (φ0) cos (θ0)}k̂

(B4)
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∂Q̂

∂θ
= {cos (φ0) cos (θ0)− 1}̂i
−{cos (φ0) sin (θ0)}k̂

(B5)

It is then possible to define reciprocal lattice vectors
a∗, b∗ and c∗ in a rectilinear coordinate system as fol-

lows:

a∗ = |kf | ∆φ0
∂Q̂

∂φ′0

b∗ = |kf | ∆θ0
∂Q̂

∂θ′0

c∗ = |kf | ∆θ
∂Q̂

∂θ

(B6)

where ∆θ are angular increments in the rocking-curve
measurement and ∆θ0, ∆φ0 are angular displacements
of the k̂f vector. The coordinates generated will in gen-
eral differ for each speckle pattern that is obtained from
a unique Bragg reflection. In order to generate a coor-
dinate points common to all speckle patterns, it is in
general necessary to interpolate onto a regular grid.[29]
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[18] J. Adler and O. Öktem, Solving ill-posed inverse prob-
lems using iterative deep neural networks, Inverse Prob-
lems 33, 124007 (2017).

[19] X. Huang, R. Harder, G. Xiong, X. Shi, and I. Robinson,
Propagation uniqueness in three-dimensional coherent
diffractive imaging, Phys. Rev. B 83, 224109 (2011).

[20] R. W. Gerchberg and W. O. Saxton, A practical algo-
rithm for the determination of phase from image and
diffraction plane apertures, Optik 35, 237 (1972).

[21] J. Fienup, Phase retrieval algorithms - a comparison,
Applied Optics 21, 2758 (1982).

[22] S. Marchesini, Phase retrieval and saddle-point opti-
mization, J. Opt. Soc. Am. A 24, 3289 (2007).

[23] H. Stark, New York: Academic Press, 1987, edited by
Stark, Henry (Academic Press, 1987).

[24] A. L. Patterson, The diffraction of x-rays by small crys-
talline particles, Phys. Rev. 56, 972 (1939).

[25] I. Robinson and I. Vartanyants, Use of coherent x-ray
diffraction to map strain fields in nanocrystals, Applied
Surface Science 182, 186 (2001), proceedings of the
International Workshop on Nanomaterials.



8
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