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Abstract:

The haze pollution caused by high PM2s concentrations has adverse health effects
worldwide, especially in rapidly developing China. The influencing mechanism of
PM2 s pollution is a complex process affected by both natural and anthropogenic factors.
As meteorological conditions are uncontrollable, this study aims to investigate how
anthropogenic factors affect the PM2s concentration under high, medium and low
emission levels. The distribution of socioeconomic variables is often non-normal, with
important information hidden in the tail. By using balanced panel data of 273 Chinese
cities from 2010 to 2016, two-step panel quantile regression is adopted to examine the
cross-quantile heterogeneity of seven socioeconomic variables: economic growth,
industrial structure, urbanization, foreign direct investment (FDI), population density,
public transportation and energy consumption. The empirical results show that the
relationships of PMas concentration with economic growth, urbanization,
industrialization and FDI are heterogeneous. Compared with other variables, population
density exerts the greatest positive effect on PM.s pollution across all quantile cities.
Moreover, the impact of GDP per capita on PM.s concentration in the lower 25th
quantile cities is stronger than those in the 25th-50th, 50th-75th and upper 75th quantile
cities. The effects of FDI in the upper 75th and lower 25th quantile cities are higher
than those in the 25th-50th and 50th-75th quantile cities, which supports the “pollution
haven” hypothesis. The impact of industrial structure on PM2s concentration in the
upper 75th quantile cities is larger than those in the 0-25th, 25th-50th, and 50th-75th
quantile cities. The heterogeneous effects of these socioeconomic determinants could
assist policymakers in implementing differentiated policies that fit cities with different

levels of air pollution.
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1. Introduction

Globally, outdoor air pollution characterized by atmospheric aerosols causes
millions of premature deaths each year, predominantly in Asia. Fine particulate matter
and carbonaceous particle emissions from residential energy use (such as heating or
cooking) in China and India contribute significantly to this health hazard [1], while in
the United States, emissions from electricity production and transportation are more
important. Cities are centres of human economic and production activities. With the
spread of urban spaces, air pollution has become one of the most important public health
challenges worldwide.

As China is experiencing rapid urbanization and industrialization, its high energy
consumption has been accompanied by a severe deterioration of air quality, and haze
pollution has appeared frequently since 2013 [2, 3]. The highest daily mean
concentration of fine particulate matter with a diameter less than 2.5 pym (PMz5s) in
Beijing, the capital of China, exceeds 500 pg/m? at times, while the 24-hour air quality
guideline (AQG) for PM2 s concentration set by the World Health Organization (WHO)
is 25 pg/me [4]. In 2016, the population-weighted mean PM2.s concentration in Chinese
cities was 61 pg/m®, three times the global mean [5]. Overall, approximately 75.1% of
Chinese cities fail to meet the annual AQGs suggested by the WHO. PM2s and PM1o
are the primary pollutants [6]. Fine particulate matter can be deposited in the airway or
trachea, bronchus and alveoli by inhalation, which may lead to cardiopulmonary disease
and reduce individual immunity [7]. Therefore, air pollution control is a major priority
of the current Chinese government, and research on the spatiotemporal distributions
and socioeconomic drivers of PMzs pollution is particularly important. The Chinese
government has made tremendous efforts to control and eliminate haze pollution. For
instance, the State Council released the Air Pollution Prevention and Control Action
Plan in 2013, which aimed to reduce the PM2s concentration in cities at the prefecture
level and above by more than 10% by 2017 relative to the 2012 level [8]. This plan set
PM2s targets for key regions and has been regarded as China's most influential
environmental policy. In 2018, the State Council continued to promulgate the Three-
Year Action Plan for tackling air pollution, following the expiration of the previous
plan issued in 2013. The Three-Year Action Plan proposes to decrease the urban PMz s
concentration by at least 18% below the standard compared with 2015. Another notable

change is that the Pearl River Delta, which was one of the three key regions in the



previous action plan, is not included. Furthermore, the new Ministry of Ecology and
Environment (MEE) was formally established for pollution-related functions,
highlighting the importance of environmental affairs in China's policy management.
Identifying and quantifying the socioeconomic determinants of urban PMas
concentration changes could allow a better understanding of air quality problems and
thus assist policymakers in implementing pollution mitigation strategies and health
impact control. This study endeavours to assess how socioeconomic status affects urban
PM: s pollution, and the major influencing variables selected represent the current status
of Chinese cities from various perspectives. Specifically, GDP per capita is regarded as
the most important factor in almost all relevant articles, and regional economic gaps
can be directly reflected by this common indicator. The "pollution haven™ hypothesis
holds that inward FDI leads to the deterioration of local environments [9]. However,
bidirectional causality between these two phenomena has been investigated in some
studies [10]. FDI is regarded to exert an uncertain impact on environmental pollution.
Population density will stimulate living and production activities by continuously
increasing rigid demand. Previous studies have found that air pollution is greater in
more populated cities [11]. Energy activities in the industry sector are considered to
play a key role in pollution discharge. Here, we assume that industrial structure
increases PM2s pollution. Total electricity consumption is used to specify energy
consumption. The expected direction here is positive because the greater the electricity
consumption, the greater the power supply and the more PM.s emissions will be
emitted by coal-fired power plants. The built-up area refers to the area that has been
developed and constructed with basic municipal public facilities. Cities with larger
built-up areas are often first-tier cities with a larger population base, and these cities are
more likely to be polluted. The number of buses per ten thousand people represents the
level of public transport in a city. The number of buses will have a certain substitution
effect on private cars, and we expect that this factor will exert an inhibitory effect on
PMzs pollution. In summary, there are two main reasons why these socioeconomic
factors are chosen as explanatory variables. The first is theoretical relevance; economy,
industrialization and urbanization are closely related to urban air pollution to varying
degrees and are often regarded as the explanatory variables of environmental pollution
in the existing literature [12]. Second, only the availability and consistency of data can
ensure the smooth progress of empirical research. Based on the available statistical data

of 273 prefecture-level cities in China from 2010 to 2016, we quantitatively investigate



how the impacts of these variables change across cities in the lower 10th, 25th-50th,
50th-75th, 75th-90th, and upper 90th quantiles. Table 1 summarizes the variables used
in this study and the expected relationship with PM2s pollution in accordance with

existing studies.

Table 1 Definition of socioeconomic variables

Variable  Definition Unit of measurement  Expected
direction

GDP GDP per capita yuan +

Sl The proportion of added value of percent +
secondary industry in GDP

PUC The proportion of urban percent +
construction land in urban areas

FDI Proportion of FDI in GDP percent -

PD Population density people/km? +

BUS The number of buses per ten number/10000 person -
thousand people

EL Total electricity consumption 10000 kwh +

The main novelties and contributions of this research are as follows. This study
investigates cross-quantile heterogeneous effects of anthropogenic factors on urban
PMb> s concentrations under different emission levels, further enriching the research
perspective on the variation rule of factor coefficients. Compared with most of the
literature, which solely emphasizes the average effect, a more comprehensive
assessment of the relationship between socioeconomic factors and PM; s pollution is
carried out by taking into account the specific disparities between cities. Specifically, a
two-step quantile regression approach is applied to reveal the extent to which the
relationship between socioeconomic factors and PM»s pollution changes across
different levels. Compared with the traditional OLS method, this approach can capture
the heterogeneous effects exerted by socioeconomic factors on different emission
quantiles by presenting the full picture of the conditional distribution. The remainder
of the paper is arranged as follows. Section 2 succinctly reviews the existing related
literature on the relationship between socioeconomic and PM2s pollution. Section 3
describes the applied method as well as the corresponding data. Section 4 presents the
empirical results and discussion. Conclusions and countermeasures are discussed in

Section 5. Table Al shows the abbreviation summary.

2. Literature review



Different meteorological conditions lead to different distributions of fine particles
in the air and thus affect haze pollution [13, 14]. Temperature, precipitation, wind speed
and other meteorological conditions have a combined effect on fine particulate matter.
For example, wind transports suspended particulate matter in the atmosphere parallel
to surrounding cities and dilutes air pollutants. The higher the wind speed, the better
the air quality of a city. When precipitation reaches a certain level, haze particles in the
air will be washed away. The heat island effect makes the temperature of a city higher
than that of the suburbs, and various suspended particulate matter will absorb a large
amount of longwave heat radiation and accumulate over the city, thus increasing the
possibility of haze pollution.

Research on emission—growth-renewables has focused attention on the potential
impact of various socioeconomic activities on pollutant emissions from an energy-
related perspective [15, 16]. A large body of scholarly literature has explored the
complex relationship between PMg2s concentrations and economic and social
development, but the different effects of different variables are still unclear. The most
commonly used methods in previous studies include econometric analysis [17, 18],
spatial econometrics modelling [19-22], remote sensing techniques [23], autoregressive
distributed lag approach (ARDL) [24], input-output models [25-27], and
geographically weighted regression (GWR) [28, 29]. Table 2 lists representative studies
of socioeconomic factors affecting PM2 s pollution using different methods in the past
five years. The expected relationships between different socioeconomic factors and
pollution are indicated by the symbol “+,” representing positive, and “~”, representing

negative.

Table 2 Representative literature on socioeconomic factors of PM3 s pollution

Sources Socioeconomic factors Methods Data

economic development (U-shaped),

industrial structure (+), road density ~ panel regression  panel data of 287
(+), built-up area (mixed); FDI (+), model cities

population density (no effect)

urban area (+), urban population (+),
Wang et al. (2017) [18] share of secondary industry (+), linear regression
population density (+)
population density (+), industrial
structure (+), industrial dust (+), road
Zhou et al. (2018) [19] density (+), trade openness (no
effect), electricity consumption (no
effect)

Liu et al. (2019) [17]

cross-sectional
data of 190 cities

spatial regression  cross-sectional
model data of 190 cities




Hao and Liu (2016) [20]  population (+), secondary industry spatial error

GDP per capita (U-shaped), vehicle spatial lag model cross-sectional

data of 73 cities

(+) model
. industrial activities (+), city sizes (+), structural panel data of 135
Jiang et al. (2018) [32] residents’ activities (+) equation model cities

economic development (U-shaped),
secondary industry, population

density (+), energy intensity (+), dynamic spatial panel data of 285
Cheng etal. (2017) [33] industrial structure (+), traffic panel model cities
intensity (+), central heating (+), FDI
(no effect)
emission intensity (-), energy Logarithmic
Zhang etal. (2019) [34] intensity (-), economic output (+), Mean Divisia E?t?:sl data of 152
population (+) Index

Specifically, through an analysis of PMa.s concentration datasets of 945
monitoring stations in 190 cities, Wang et al. (2017) found marked seasonal variation
of PM25s concentrations at the city level, with the highest concentration in winter.
Population density in part is responsible for the differences in PM2s concentrations
among Chinese cities. Energy-intensive industries promote the economic development
of most cities and have a positive impact on PM2s concentrations. Furthermore, the
hypothesis of an inverted U-shaped relationship between PM2 s concentrations and the
level of economic development has been strongly supported [18]. Similarly, using data
from China's urban monitoring stations, Zhou et al. (2018) investigated the effects of
population density, industrial structure, industrial dust, road density and economic
growth on PM2 s concentrations [19]. Based on panel data of Chinese cities from 2001
to 2012, Cheng et al. (2017) used dynamic spatial panel models to find the sources of
air pollution. The results indicated that secondary industry, energy structure, population
growth and traffic intensity have driving effects on haze pollution [22]. Given the
possible heterogeneous distribution of PM2s concentrations in space and time, Dong et
al. (2019) developed a geographically and temporally weighted regression (GTWR)
model to identify and investigate the influence of eleven variables on PMgzs
concentrations. The results showed that the effects of various factors are volatile.
Transportation and construction are the main sources of haze pollution and should be
the major targets for pollution mitigation [30]. In addition to major pollutants such as
PM2s and PMuo, the spatial pattern and spatial agglomeration of air quality have
received increased attention. Ye et al. (2018) utilized the Comprehensive Air Quality
Index (CAQI) to explore the spatial distribution patterns of six pollutants (PM, PM, SO,
NO, CO, 0) in 338 Chinese cities and adopted the spatial autocorrelation method to



detect the spatial agglomeration type [31]. Similarly, Xu et al. (2019) used the Air
Pollution Index (API) and Air Quality Index (AQI) to examine the socioeconomic
factors driving the observed spatiotemporal variations in air quality. API is calculated
based on SOz, NO2 and PM1o, while AQI is calculated using six atmospheric pollutants,
i.e.,, SOz, NO2, PMyg, PM25, CO and Os. Car ownership, energy consumption and
secondary industry have been empirically confirmed to be important factors affecting
air quality [21].

Unlike most scholars, Liu et al. (2019) considered that the versatility of cities
affects the degree of environmental pollution. Hence, to compare the varied effects of
natural and anthropogenic factors on PM2s concentrations at different income levels,
287 Chinese cities were categorized into three groups according to income levels [17].
The results showed that in terms of meteorological factors, climate conditions such as
precipitation, wind speed, relative humidity and temperature must be taken into account
in urban construction and planning practices. In terms of anthropogenic factors, road
density is the decisive factor. GDP per capita, industrial structure and FDI will increase
PM2s concentrations. Among these factors, FDI contributes more to PMas
concentrations in low-income cities. The present study is similar to the above research
to some extent, but it differs from that of Liu et al. (2019), who divided cities into
groups for general regression analysis. Our study considers that the impact of variables
on cities at different levels of PM2s concentrations is heterogeneous; thus, quantile
panel regression can more precisely compare this stratified heterogeneity. Overall, the
primary contributions of this study are twofold. First, several studies have used the
traditional OLS method to investigate the average effect of socioeconomic factors on
PMa2s concentrations, despite the tremendous heterogeneity in different cities, which
may undermine the explanatory power of the model for disparate factors. Second,
research at the provincial level or higher has been thorough, but cities or urban
agglomerations are the basic units where environmental policies are implemented.
Consequently, studies of the mechanism of air pollution at the city level remain

desperately needed.
3. Methodology and model specification

3.1. Panel quantile regression



Due to the tremendous heterogeneity of urban modalities in China [14], the
relationships between multiple socioeconomic factors and PM2s levels are likely to
vary across quantiles. In this regard, it is inadequate to model the mean value. We are
interested in predicting not the average PM2s level of a particular group of cities but
rather what kinds of cities are likely to experience the highest PM:s levels. Ordinary
least squares (OLS) is a statistical tool used to describe the relationship between a set
of independent variables and a dependent variable. OLS estimates the mean value of
dependent variables for independent variables at a given level. However, this approach
is parametric and usually relies on assumptions that are often not satisfied [35].
Previous studies traditionally use OLS to identify predictor variables for PM2s
concentration, but this approach can address only the question of how, on average, the
predictor variables affect the level of PM> s concentration and cannot answer whether a
predictor variable has a different weight in cities with low PM2s levels than in cities
with average PM2 s levels. A more comprehensive picture of the different effects of the
independent variables on dependent variables can be obtained by panel quantile
regression. This method makes no assumptions about the distribution of residuals, and
it has a distinct advantage for detecting variation effects [36].

In the context of the above debate, this study aims to empirically examine how the
economic and social development of cities affect PM2 s pollution. Economic and social
factors, such as energy structure, urban area, population density, and economic level,
can adequately represent the development status and differences among cities, but not
every factor has a significant impact on PM2s pollution in a statistical sense. The
“socioeconomic determinants” used here include the effective factors that may slow
PM:2s pollution as determined by modelling. Based on previous research and data
availability, we select the possible influencing factors of PM2s concentrations — the
effect of GDP per capita (GDP), proportion of added value of secondary industry in
GDP (Sl), proportion of urban construction land in urban areas (PUC), proportion of
FDI in GDP (FDI), population density (FD), number of buses (BUS) and total
electricity consumption (EL) — and analyse these factors across 273 Chinese cities
using panel quantile regression (see Table 2).

To this end, we follow the theoretical Stochastic Impacts by Regression on
Population, Affluence, and Technology (STIRPAT) model proposed by Dietz and Rosa
(1997) [37], which considers environmental impact and neo-classical growth. The

STIRPAT model is derived from the following basic environmental impact:



I = aPPA°T%e (1)

where I, P, Aand T (IPAT) represent environmental impact, population size, per capita
economic activity and technology, respectively. For the convenience of estimation and
hypothesis testing, Eq. (1) can be converted to linear logarithmic form as follows:

Inl =a+b(nP)+c(InA)+d(nT) +e (2)

Therefore, the multivariate framework in the study is as follows:
PM2.5;, = f( GDP,,SI;;, PUC;, FDI;, PD;, BUS; , EL; ),

wheret=1, 2,..., Tand i = [, 2,..., N stand for time period and cross-section (cities),
respectively. In the energy and environment areas, the data often have a distinct peak
or fat tails [35, 38]. In this situation, quantile regression can provide more robust
estimation results [39, 40]. To account for impact effects and unobserved individual

heterogeneity, we consider the following model:

QPMZ.Si_t (| ") = @1;GDP;; + @ SIiy + a3 PUC; + a4 FDI; + a5 PD;,

+ a6,TBUSl-,t + a7,TELl-,t + ,Bl',
i=1,.,Nt=1,.,T (3)

The main problem in the estimation of Model (3) is unobserved individual
heterogeneity. To control for unobserved heterogeneity, we consider a two-step panel
quantile method proposed by Canay (2011) [41]. This approach considers the fixed
effect as a pure location shifter. The first step is to apply the standard panel model with

a fixed effect:
Vie =Xio B+ u+ €y (4)

where u; is the unobserved fixed effect. Then, we can subtract the fixed effect obtained

in (4) from the response variable:
Vie =Vie — U ®)

From Eq. (5), we can obtain the PM2.5;,free of the influence of unobserved
heterogeneity. Then, the quantile regression estimator introduced by Koenker and

Bassett Jr (1978) can be applied to estimate our model [40] as follows:



T
D Wipe {PPIZ5;, — @ (GDP, = Sl = 3, PUCL, — @y FDI,

t=1

— as.PD;; — 6. BUS;; — a7 EL; .}

K
argmin z
a

N
k=1i=1

i=1,..,Nt=1,.,T (6)

where p,(y) = y(t — 1y<0) is the traditional check function, 1, is the indicator
function of set A, K is the index for quantiles, and w;, = 1/K is the weight on the k-th
quantile, which controls the proportion of different quantile levels in this estimation
[42].

3.2. Data source and description

For the purpose of this study, a balanced dataset covering a total of 273 Chinese
cities, including 269 prefecture-level cities and four municipalities, for the period of
2010 to 2016 was used. Specificallyy, PM>s concentrations were obtained by
decomposing the global average concentration grid data detected by satellite into the
annual average specific values of Chinese cities, which are released by the
Socioeconomic Data and Application Center at Columbia University [43]. The other
socioeconomic variables, including GDP per capita (GDP), proportion of added value
of secondary industry in GDP (SI), proportion of urban construction land in urban areas
(PUC), proportion of FDI in GDP (FDI), population density (FD), number of buses
(BUS) and total electricity consumption (EL) were collected from the China City
Statistical Yearbook and China Regional Economic Statistical Yearbook. For the
convenience of estimation and expressing large numbers, all variables were converted
to logarithmic form in this study. Tables 1 and 3 present the definitions of the
socioeconomic variables in this model and the summary statistics of all variables,
respectively. As shown in Table 3, the skewness of the seven variables is not equal to
0, which indicates that the variables are asymmetric. The positive kurtosis values
indicate that the distributions of seven variables have fatter tails, while the negative
kurtosis value indicates that the distribution of GDP has thinner tails. Furthermore, the

Jarque-Bera tests clearly show that all series depart from normality.

Table 3 The summary statistics of all variables (in logarithmic form)

Variables PM2s GDP Sl PUC FDI PD BUS EL




Minimum 15433 8.6179 2.7014 -3.9120 -8.9176 1.6194 -1.1394 9.1854
Maximum 44599 12.4861 4.4970 4.5766 3.0131 8.6932 4.7052 16.5142
Q1(.25) 3.1808 10.1770 3.7795 0.9802 -0.6636 5.2522 1.4294 12.2823
Q3(.75) 3.8949 10.9673 4.0183 2.4911 0.9381 6.4526 2.3442 13.7826
Mean 3.4941 10.5779 3.8763 1.6836 0.0356 5.7947 1.8449 13.0686
Stdev 0.4984 05721 0.2310 1.0922 1.2628 0.9371 0.7200 1.1417
Skewness -0.6824 0.1086 -1.3492 -0.3322 -1.1123 -0.7325 -0.3830 0.1191
Kurtosis 0.6083 -0.1226 3.5430 0.1854 2.4306 1.7512 0.8668 0.2726
Jarque-Bera  0.0000 0.0863 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Note: the definition of GDP, SI, PUC, FDI, FD, BUS and EL is shown in Table 1.

3.3. Spatial distribution of annual PM2 s concentrations

In this study, PM2s concentrations were divided into six intervals: 0-10 pg/m?®, 10-
25 pg/m®, 25-40 pg/m?, 40-55 pg/m?, 55-70 pg/mé, and above 70 pg/m?. Fig. 1 shows
the PM2s levels in 273 Chinese cities in 2010, 2013 and 2016. The red part represents
the city with the worst PM_ s level, dark green represents the city with the lowest PM. 5
level, and the other colours correspond to different concentration ranges (see Fig. 1). In
2010, the average annual PM_s concentration ranged from 5.02 pg/m? to 74.81 pg/m®.
The cities with the best air quality were located in Gansu, Xinjiang, Inner Mongolia,
Yunnan and other central or western provinces. The cities with orange colour on the
map showed a significant trend of change. In 2010, the number of cities within the 40-
55 pg/m® level was 53, which became 46 in 2013 and decreased to 38 in 2016.
Similarly, the number of cities within the 55-70 pg/m?® level gradually decreased in the
past six years. Moreover, in 2010, there were 13 cities with an average annual
concentration of PM2 s concentration exceeding 70 pg/m?, and the number of such cities
increased to 16 in 2013, including Cangzhou, Xingtai, Langfang, Hengshui, Jinan,
Jining, Tai'an, Dezhou, Binzhou, Heze, Kaifeng, Hebi, Puyang, Xuchang and Tianjin.
In 2016, PM2; pollution was alleviated, and more green cities appeared on the map.
This finding indicates that cities in China suffered serious PM2s pollution in 2013,
particularly cities in northern China, including Hebei Province and Shandong Province.
This reduction may be the preliminary effect of various measures related to pollution
control introduced by the government. In summary, the PM2s concentration shows
aggregation and diffusion effects to a certain extent, and the unknown coupling
relationship between PM2 s pollution and urban development characteristics remains to

be investigated.
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4. Empirical findings and analysis

4.1. Panel unit root test
The stationarity test is a key step in the process of economic data analysis. Certain

nonstationary economic time series often show a common trend of variation, but they
are not necessarily related to each other. In such cases, the regression results are likely
to become a pseudo-regression [43]. The unit root test is the method most commonly
used to detect whether a series of data is stationary. If a sequence has no unit roots, it is
characterized as stationary and mean reversion; moreover, the absence of a unit root
implies that the sequence has a finite variance independent of time. Conversely, if a
sequence features a unit root, it is characterized as nonstationary. In addition, the
variance of the sequence is time dependent and is permanently affected by random
shocks. In this regard, before rigorous empirical investigation with panel quantile
regression models, we first investigate the order of integration of the considered
variables of the study by using the Levin-Lin-Chu (LLC), Fisher-ADF and Fisher-PP
tests. Table 4 shows the results of the panel unit root tests for all variables, which
indicate that the null hypothesis of the existence of a unit root can be strongly rejected
for all variables at the 1% significance level, meaning that the variables are stationary

and can be used in the subsequent empirical analysis.

Table 4 Results of panel unit root tests

Variable PM2s GDP Sl PUC FDI PD BUS

EL

LLC -1300

ek

0 -130.007  -13.627"  -190.0 -510

275577 -11.997°  -98.43
Fisher-ADF  64.49™ 78437 44927 85907 923777 98.26" 93.607"  106.79™
Fisher-PP 25.18"" 1434277  34.99"" 4749 76437 40117 35877 40.14™

Kkk

Note: * indicates the parameter is significant at the 10% level, ** indicates the
parameter is significant at the 5% level, *** indicates the parameter is significant at the
1% level.

4.2. Normal distribution test

A normal distribution is the most common continuous probability distribution in
real life. Thus, it is often regarded in natural and social sciences as the basic assumption
for distributing unknown random variables. The normality assessment of sample data
is a prerequisite for regression analysis. If the sample data are not normally distributed,
then the quantile regression will make the estimated results more robust than the results

of the OLS method. There are two main methods used to assess normality: graphical



and numerical methods. For the graphical method, the frequency distribution
(histogram), stem-and-leaf plot, box plot, probability-probability plot (P-P plot), and
quantile-quantile plot (Q-Q plot) are used to visually check normality. First, we
implement the most common Q-Q plot to determine whether the distribution is normal.
As shown in Fig. 2, the results of the Q-Q plot are similar to those of the P-P plot,
except that the normality is examined by plotting the quantiles of the probability
distribution. Moreover, the sample size involved in this study is large, and the Q-Q plot
is easier to interpret. If the scatter point corresponding to the sample data basically falls
near the 45° line from the origin, i.e., a straight diagonal line, then the data follow a
normal distribution. In Fig. 2, the scatter points of LPM2s, LGDP, LSI, LPUC, LFDI,

LPD, LBUS and LEL do not exactly match the straight diagonal line. This pattern
indicates that none of the variables obey the normal distribution assumption.
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Second, the numerical method is supplementary to the graphical assessment. The
main tests are the Anderson-Darling test, Kolmogorov-Smirnov (K-S) test, Shapiro-
Wilk test, and Jarque-Bera test [44]. The Jarque-Bera test can assess whether the sample
data have goodness of fit of skewness and kurtosis in accordance with the normal
distribution. If the result is far greater than zero, the data are not normally distributed.
Table 3 shows that the probability values of the Jarque-Bera test for all variables except
GDP are less than 5%, which indicates that these variables are not normally distributed.
Furthermore, skewness and kurtosis represent the degree of asymmetry and the degree
of dispersion in the data distribution, respectively. The skewness coefficient of the
normal distribution is 0, and the kurtosis coefficient is 3. These two characteristics can
be used to test whether the sample data follow a normal distribution. As shown in Table
3, the skewness coefficients of all variables in this study are nonzero, which indicates
that all variables are not normally distributed. Among them, the skewness coefficients
of GDP and EL are greater than 0, which indicates that these two variables are right
skewed, whereas the other variables are left skewed. Furthermore, the kurtosis
coefficients of all variables in this study are not equal to 3, which indicates that these
variables are not normally distributed. Among them, the kurtosis coefficient of SI is
greater than 3, indicating that the data distribution of Sl is more discrete, with fat tails,
while the other variables are more dense.

The above tests prove that these variables (LPM2s, LGDP, LSI, LPUC, LFDI,
LPD, LBUS and LEL) are not normally distributed. Compared with OLS, quantile
regression can obtain more robust results in that it does not require an assumption about
the distribution of error terms. Therefore, we employ panel quantile regression to

investigate the source of the influence of the PM2s concentration level.

4.3. Panel quantile regression results

In this section, we investigate the impacts of driving factors of PM2 s concentration
across 273 cities in China by applying two-step panel quantile regression. Table 4
shows the estimation results at the different quantile levels and indicate that the impacts
of seven determinants on PM.s are heterogeneous. Fig. 3 intuitively presents the
corresponding estimation results, which show the various change patterns of the
coefficients of the seven driving factors at different quantile levels.

First, GDP per capita has a negative impact on PMzs concentration, and this

impact is significantly heterogeneous and asymmetric. More specifically, the impact of



GDP per capita on PM2 s concentration in the lower 25th quantile cities is stronger than
those in the 25th-50th, 50th-75th and upper 75th quantile cities (Table 5 and Fig. 3).
The coefficient increases from -0.128 at the 5th quantile to -0.021 at the 95th quantile.
The lower 25th quantile cities are located mostly in economically underdeveloped
regions such as Xinjiang, Inner Mongolia, Yunnan and Sichuan provinces. The
environmental quality in these provinces is more sensitive to the economic level; that
is, increasing the GDP per capita will improve air quality more in these cities than in
other cities. Moreover, Table 5 indicates a weak and negligible relationship between
GDP per capita and PM25s concentration in the upper 90th quantile cities, which are
mainly located in North China, especially in Henan, Hebei and Shandong provinces.
These regions experienced serious air pollution during these years, and decoupling
between environmental pollution and the economic level is beginning to emerge. These
findings suggest that economic development can significantly decrease the PMas
concentration in lower quantile cities. China's economic growth in recent decades has
mainly depended on fixed asset investment and export trade. From 2013 to 2018, fixed
asset investment grew by 10.7% annually, achieving a capital formation rate of 44.9%
and contributing 32.4% to economic growth. However, a large amount of investment
in fixed assets also has negative impacts on environmental performance. Because large-
scale investment in construction and fixed assets is a form of physical investment,
which includes roads, bridges, pipelines, large-scale machinery and buildings, these
construction activities will inevitably generate a great quantity of energy-intensive
processing activities, such as in the steel, cement and other industries, which produce
high emissions of atmospheric pollutants. In contrast to our findings, the empirical
results obtained by Xu and Lin (2018) showed that the impact of GDP on PM2s
pollution was positive in most quantile provinces [45]. The upper 90th quantile
provinces gather the most fixed-asset investment and foreign manufacturing enterprises,
resulting in more PM2.s emissions from both direct and indirect perspectives.

Second, the effects of FDI in the upper 75th and lower 25th quantile cities are
higher than those in the 25th-50th and 50th-75th quantile cities (Table 5 and Fig. 3).
The low quantile cities are mainly distributed in Yunnan, Gansu, Shaanxi, Liaoning,
Shanxi, Inner Mongolia, Sichuan and other western provinces. Since 2003, a rising
trend was detected in FDI utilized by western regions (including 12 provinces or
municipalities directly under the central government). In 2015, the total investment in

western regions reached 30.8 billion dollars and represented approximately 24.4% of



the national investment. The serious resource depletion, increased labour costs and the
deepening of “Great Western Development Strategy” have jointly led to the transfer of
FDI from the eastern regions to the western regions. On the one hand, foreign investors
will prioritize the transfer of labour-intensive and pollution-intensive industries. On the
other hand, western cities will take the initiative to reduce local environmental
regulation standards in order to attract more FDI. To a great extent, the level of
environmental regulation determines the amount of environmental pollutants directly
discharged from production activities. Similar situations of relatively loose
environmental standards in developing countries provide opportunities for the transfer
of pollution-intensive FDI in the context of globalization, in alignment with the
"pollution haven™ hypothesis [46]. The relationship between FDI and environmental
pollution in developing countries has long been controversial. Pollution-intensive
enterprises in advanced countries seek low environmental standards in other countries
in order to avoid paying for expensive pollution control domestically. In less-developed
countries, domestic enterprises can use foreign advanced technology to improve their
environmental efficiency and performance. The empirical findings obtained by Liu et
al. (2019) [17] shows that the impact of FDI on PM2.5 are significantly positive in the
total cities and lower-middle-income cities, which support the Pollution Haven
Hypothesis. Shahbaz et al. (2015) analyzed the nonlinear relationship between FDI and
environmental performance in high-, middle- and low-income countries using carbon
emissions as environmental cost [47]. The results showed that FDI improves the
environmental performance of high-income countries, while low-income countries
need to make more efforts to control pollution. In middle-income countries, an inverted
U-shaped relationship between FDI and environmental pollution was observed,
indicating that both capital infusion and pollution reduction should be achieved.

Third, compared with other variables, PD (population density) exerted the greatest
positive effect on PM2s pollution across all quantile cities. As indicated in Fig. 3, the
marginal environmental damage caused by the increasing population density in low-
level quantile cities (lower than 25th quantile), middle-level quantile cities (25th-50th
and 50th-75th quantiles) and high-level quantile cities (upper 75th quantile) were
significant. The impact coefficients remained above 3 in all quantile cities. Therefore,
we can effectively control urban pollution in all cities by limiting excessive population
inflow. This result is basically consistent with Cheng et al. (2017) [33] and Wang et al.

(2017) [18], who estimated a significant positive role of population density in driving



haze pollution through the scale effect and aggregation effect, but different with Liu et
al. (2019) [17], who found a non-significant influence of population density on PM2.5
based on conditional mean regression. The negative externalities from the scale effect
on environmental pollution are greater than the positive externalities from the
aggregation effect. China's rapid urbanization has attracted a large influx of people from
rural areas. The larger the population, the greater the increase in the material demand
for commodities such as housing and automobiles. The resulting emissions of building
dust, automobile exhaust and other pollutants will also increase. Beijing is one of the
most polluted cities in China in terms of PM2s concentration. Less than 8% of the
central urban area accumulates nearly 80% of the permanent population, with a density
of 234,000 people per square kilometre. Beijing and the nearby Jing-Jin-Ji urban
agglomeration are also the places with the most serious haze pollution in China.

Fourth, the impact of SI on the PM.s concentration is always positive across
different quantiles, which is consistent with Wang et al. (2017) [18] and Hao and Liu
(2016) [20] by conditional mean regression. But beyond that, our study also finds that
the impact of SI on the PM2s concentration in the upper 75th quantile cities is larger
than those in the 0-25th, 25th-50th, and 50th-75th quantile cities (Table 5 and Fig. 3).
The impact coefficients are stable in the low- and middle-level quantiles and show a
significant increasing trend in the high-level quantiles, increasing from 0.085 in the
70th quantile to 0.353 in the 90th quantile. The high proportion of enterprises with high
pollution and high energy consumption in the economic structure contributes to large
emissions of polluting gas that exceed the self-purification ability of the local
environment. In the same way, the empirical results from Xu and Lin (2018) confirmed
that the sensitivity of haze pollution to industrialization is greater in highly polluted
provinces than in less-polluted provinces [45]. The strategy prioritizing the
development of heavy industry implemented by the central government stabilized the
national economic system, but large-scale industrial production also consumes a large
amount of fossil fuels, which will inevitably increase PM2s emissions. Although
transformation of industrial structure is unlikely to occur in the short term, it is an
indispensable step to reduce PM2s pollution. For highly polluted cities, more social
investment in green industry should be encouraged to reduce the sensitivity of air
pollution to industrial activities.

Finally, the impact of the variable BUS (number of public buses) on the PMas

concentration is higher in the upper 90th quantile cities than in the other quantile cities



(Table 5 and Fig. 3). In most quantiles, an increase in the number of buses can improve
urban air quality, but in highly polluted cities, such improvement effects are not obvious.
Overall, the number of public buses has a statistically significant and negative impact
on PM2s concentrations at lower quantile levels. In addition, the PUC (proportion of
urban construction land) has a weak stimulating effect on PM2 s concentrations in most
quantile and shows a decreasing trend (Fig. 3). The impact of EL (total electricity
consumption) on PM2s concentration first increases and then decreases from the lower
to upper quantiles (Fig. 3). Compared with other variables, these two variables were
less important in highly polluted cities. This suggests that the environmental regulation
policies of cities with different pollution levels should deal with different influencing
variables. To the best of our knowledge, this study is the first to investigate the
heterogeneous effects of socioeconomic variables on PM.s pollution at the city scale
using the quantile panel method. Compared to the studies with province-level data (e.g.,
Xu and Lin, 2018 [45]) or the literature using conditional mean regression to investigate
the city-level data (e.g., Cheng et al., 2017 [33] and Liu et al. ,2019 [17]), this study
considers the city-level data and two-step panel quantile regression, which could not
only provide more in-depth and specific analysis about the impacts of driving forces of
PMa2s concentration in these 273 cities in China but also more robust and accurate

estimation results.



Table 5 Panel quantile regression results

Variables OLS Quantile regressions
0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
Intercept 5.367 2.285" 2.338" 2.081" 1540 1.812° 1.869° 2.1227 26427 1.920° 1.887" 1.826"
(0.304) (0.019) (0.011) (0.022) (0.123) (0.077) (0.077) (0.033) (0.005) (0.070) (0.049) (0.023)
GDP -0.136™" -0.128" -0.158" -0.095 -0.051 -0.092 -0.076 -0.087 -0.112 -0.078 -0.088  -0.021
(0.000) (0.049) (0.021) (0.175) (0.312) (0.212) (0.272) (0.243) (0.177) (0.274) (0.186) (0.378)
Sl -0.189™ 0.090 0.212 0.141 0.188 0.242 0.185 0.097 0.085 0.187 0.353"" 0.262"
(0.000) (0.350) (0.193) (0.282) (0.259) (0.199) (0.262) (0.342) (0.337) (0.149) (0.001) (0.001)
PUC 0.006 0.041 0.054 0.063 0.030 0.033 0.034 0.017 0.040 0.029  -0.007 0.002
(0.559) (0.192) (0.121) (0.105) (0.314) (0.304) (0.309) (0.375) (0.281) (0.324) (0.390) (0.397)
FDI -0.001 0.096™ 0.116™" 0.103™ 0.074™ 0.070™ 0.068™ 0.067 0.088™" 0.072™" 0.098™ 0.118™
(0.836) (0.001) (0.001) (0.003) (0.031) (0.018) (0.021) (0.020) (0.001) (0.002) (0.000) (0.000)
PD 0.005 0.310™ 0.317"" 0.336"" 0.354™" 0.352"" 0.3377" 0.348™" 0.315™ 0.354™ 0.326"" 0.361""
(0.900) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000)
BUS -0.003 -0.083° -0.032 -0.107° -0.081 -0.067 -0.074 -0.075 -0.079  -0.057 0.048 0.028
(0.781) (0.065) (0.323) (0.073) (0.152) (0.213) (0.204) (0.214) (0.213) (0.278) (0.248) (0.331)
EL 0.020° -0.036 -0.050 -0.039 -0.039 -0.032 -0.013 0.011 0.020 0.013  -0.001 -0.0227
(0.080) (0.255) (0.179) (0.261) (0.254) (0.292) (0.378) (0.383) (0.346) (0.376) (0.399) (0.311)

Note: Numbers in the parentheses represent P-value. * indicates the parameter at the 10% significant level, ** indicates the parameter at the 5%
significant level, *** indicates the parameter at the 1% significant level.
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5. Conclusions and implications

5.1 Conclusions

Urban PM_s pollution is influenced by natural and socioeconomic conditions.
Natural factors are uncontrollable, and socioeconomic development is a complex,
multifactor coupled dynamic system. To simplify the analysis, we assumed that GDP
per capita, industrial structure, urbanization, FDI, population density, number of buses
and electricity consumption in part represent the overall trend and situation of Chinese
cities from various perspectives. Based on panel data of 273 prefecture-level cities in
China, this study examined the heterogeneous effects of these seven determinants on
PM2 5 concentration using a two-step panel quantile regression. The empirical results
indicated the following: (1) The relationships of PM2s concentration with economic
growth, urbanization, industrialization and FDI are heterogeneous. Compared with
other variables, population density has the greatest positive effect on PM2s pollution
across all quantile cities, as population aggregation stimulates high energy-consuming
industries, such as automobiles. Therefore, we can effectively control urban pollution
by limiting excessive population inflow for all cities. (2) The impact of GDP per capita
on PM_;s concentration is stronger in the lower 25th quantile cities than in the 25th-
50th, 50th-75th and upper 75th quantile cities. This is mainly because the lower quantile
cities are economically underdeveloped, and haze pollution is more sensitive to
economic development. (3) The effects of FDI are higher in the upper 75th and lower
25th quantile cities than in the 25th-50th and 50th-75th quantile cities, which supports
the “pollution haven” hypothesis. The lower quantile cities are mainly distributed in the
western region, and the relatively loose environmental standards in western cities lead
to numerous environmental pollutant emissions. (4) The impact of SI on the PM2s
concentration is larger in the upper 75th quantile cities than in the 0-25th, 25th-50th,
and 50th-75th quantile cities. This finding suggests that PM2 s concentrations in highly
polluted cities are more susceptible to changes in industrial structure. In brief, the
heterogeneous effects of socioeconomic determinants should be taken into

consideration when discussing emissions reductions in cities in the developing world.

5.2 Policy implications



Quantifying the heterogeneous effects of the socioeconomic determinants of urban
PM, 5 concentrations could assist policymakers in implementing differentiated policies
for cities with different levels of air pollution. These results not only contribute
academically to illustrating the interactive relationship between PM.s concentration
and economic growth at the city level but also provide guidance for urban development
in developing countries at similar stages. On this basis, broader policies and
countermeasures are put forward to alleviate PM2 s pollution. There are 334 prefecture-
level cities in China, but these cities have different economic development levels, and
different factors play different roles. The results of this study show that different
socioeconomic factors exert heterogeneous effects on PMzs pollution. It is necessary
for cities in different quantiles to formulate targeted strategies that suit the local
conditions from a sustainable perspective. First, for less-polluted cities, PM2s
prevention is more important than PM2s mitigation. The government should properly
stimulate the economic development of less-polluted cities because the environmental
technological progress brought by economic development exceeds the negative
environmental externality. For a long time, the general view has been that extensive
economic growth reduces environmental carrying capacity, resulting in serious haze
pollution. However, based on the findings of this study, it can be inferred that high-
quality economic growth can improve air quality in less-polluted areas.

Second, spatial expansion in all quantiles should be controlled to prevent excessive
population inflow. The contribution of population density to haze pollution is greater
than those of other socioeconomic factors, and higher air quality can be achieved
through urban form planning and population management policies. According to the
Notice on the Adjustment of Urban Scale Classification Standards issued by the State
Council of China, an urban resident population of more than 10 million corresponds to
a super large-sized city. At present, there are six super large-sized cities in China:
Beijing, Shanghai, Guangzhou, Shenzhen, Tianjin and Chongging. Therefore, the
governments of these cities can take various measures to reduce the sensitivity of PM2 s
pollution to population change, such as controlling the blind expansion of urban land,
encouraging polycentric urban forms, and planning population-intensive institutions
such as schools and medical institutions in the suburbs.

Third, the governments of cities in western China should pay attention to

improving local environmental regulation standards. According to the results of this



study, environmental regulation plays an intermediary role in the impact of foreign
investment on PM2s emission-related pollution. Western cities are located mostly in
economically underdeveloped regions, and the impetus to promote economic
development is greater than that to prevent pollution, leading to loose environmental
regulations to attract investment. Western cities must actively stimulate enterprises to
carry out technological innovation through environmental regulation. In addition, we
should control existing FDI stock and optimize investment structure. For example,
foreign investors should be encouraged to invest in primary or tertiary industries with
relatively low emissions, along with preferential policies for technology-intensive
foreign investment.

Finally, the central and local governments should realize that the mode of
economic development that relies on heavy industry is not sustainable and needs to be
changed, especially in highly polluted areas. Social demand, technological innovation
and FDI have played strong roles in changes in industrial structure. The adjustment of
industrial structure is conducive to pollution reduction. Specific recommendations
include supporting the expansion of tertiary industries, restricting the establishment of
heavy polluting enterprises, and encouraging enterprises to change from being resource
consumption-driven to technological innovation-driven, thereby improving their
energy efficiency and standards of air pollution emissions. The adjustment of industrial
structure cannot be accomplished without the participation of the government, industry
and the public, but the primary needs of different stakeholders vary, which may lead to

conflict among different stakeholders.
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Appendix A

Table A1 Abbreviation summary

Category Variable name Abbreviation




Independent variable Fine particulate matter PM25

GDP per capita GDP
Foreign direct investment FDI
Population density PD
Explanatory Secondary industry SI
variables Number of public buses BUS
Electricity consumption EL
Proportion of urban construction PUC
land
Methods Ordinary least squares OLS
Geographically weighted regression GWR
Autoregressive distributed lag ARDL
approach
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