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Abstract: 

The haze pollution caused by high PM2.5 concentrations has adverse health effects 

worldwide, especially in rapidly developing China. The influencing mechanism of 

PM2.5 pollution is a complex process affected by both natural and anthropogenic factors. 

As meteorological conditions are uncontrollable, this study aims to investigate how 

anthropogenic factors affect the PM2.5 concentration under high, medium and low 

emission levels. The distribution of socioeconomic variables is often non-normal, with 

important information hidden in the tail. By using balanced panel data of 273 Chinese 

cities from 2010 to 2016, two-step panel quantile regression is adopted to examine the 

cross-quantile heterogeneity of seven socioeconomic variables: economic growth, 

industrial structure, urbanization, foreign direct investment (FDI), population density, 

public transportation and energy consumption. The empirical results show that the 

relationships of PM2.5 concentration with economic growth, urbanization, 

industrialization and FDI are heterogeneous. Compared with other variables, population 

density exerts the greatest positive effect on PM2.5 pollution across all quantile cities. 

Moreover, the impact of GDP per capita on PM2.5 concentration in the lower 25th 

quantile cities is stronger than those in the 25th-50th, 50th-75th and upper 75th quantile 

cities. The effects of FDI in the upper 75th and lower 25th quantile cities are higher 

than those in the 25th-50th and 50th-75th quantile cities, which supports the “pollution 

haven” hypothesis. The impact of industrial structure on PM2.5 concentration in the 

upper 75th quantile cities is larger than those in the 0-25th, 25th-50th, and 50th-75th 

quantile cities. The heterogeneous effects of these socioeconomic determinants could 

assist policymakers in implementing differentiated policies that fit cities with different 

levels of air pollution. 
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Prefecture-level cities  



1. Introduction 

Globally, outdoor air pollution characterized by atmospheric aerosols causes 

millions of premature deaths each year, predominantly in Asia. Fine particulate matter 

and carbonaceous particle emissions from residential energy use (such as heating or 

cooking) in China and India contribute significantly to this health hazard [1], while in 

the United States, emissions from electricity production and transportation are more 

important. Cities are centres of human economic and production activities. With the 

spread of urban spaces, air pollution has become one of the most important public health 

challenges worldwide.  

As China is experiencing rapid urbanization and industrialization, its high energy 

consumption has been accompanied by a severe deterioration of air quality, and haze 

pollution has appeared frequently since 2013 [2, 3]. The highest daily mean 

concentration of fine particulate matter with a diameter less than 2.5 μm (PM2.5) in 

Beijing, the capital of China, exceeds 500 µg/m3 at times, while the 24-hour air quality 

guideline (AQG) for PM2.5 concentration set by the World Health Organization (WHO) 

is 25 µg/m3 [4]. In 2016, the population-weighted mean PM2.5 concentration in Chinese 

cities was 61 µg/m3, three times the global mean [5]. Overall, approximately 75.1% of 

Chinese cities fail to meet the annual AQGs suggested by the WHO. PM2.5 and PM10 

are the primary pollutants [6]. Fine particulate matter can be deposited in the airway or 

trachea, bronchus and alveoli by inhalation, which may lead to cardiopulmonary disease 

and reduce individual immunity [7]. Therefore, air pollution control is a major priority 

of the current Chinese government, and research on the spatiotemporal distributions 

and socioeconomic drivers of PM2.5 pollution is particularly important. The Chinese 

government has made tremendous efforts to control and eliminate haze pollution. For 

instance, the State Council released the Air Pollution Prevention and Control Action 

Plan in 2013, which aimed to reduce the PM2.5 concentration in cities at the prefecture 

level and above by more than 10% by 2017 relative to the 2012 level [8]. This plan set 

PM2.5 targets for key regions and has been regarded as China's most influential 

environmental policy. In 2018, the State Council continued to promulgate the Three-

Year Action Plan for tackling air pollution, following the expiration of the previous 

plan issued in 2013. The Three-Year Action Plan proposes to decrease the urban PM2.5 

concentration by at least 18% below the standard compared with 2015. Another notable 

change is that the Pearl River Delta, which was one of the three key regions in the 



previous action plan, is not included. Furthermore, the new Ministry of Ecology and 

Environment (MEE) was formally established for pollution-related functions, 

highlighting the importance of environmental affairs in China's policy management. 

Identifying and quantifying the socioeconomic determinants of urban PM2.5 

concentration changes could allow a better understanding of air quality problems and 

thus assist policymakers in implementing pollution mitigation strategies and health 

impact control. This study endeavours to assess how socioeconomic status affects urban 

PM2.5 pollution, and the major influencing variables selected represent the current status 

of Chinese cities from various perspectives. Specifically, GDP per capita is regarded as 

the most important factor in almost all relevant articles, and regional economic gaps 

can be directly reflected by this common indicator. The "pollution haven" hypothesis 

holds that inward FDI leads to the deterioration of local environments [9]. However, 

bidirectional causality between these two phenomena has been investigated in some 

studies [10]. FDI is regarded to exert an uncertain impact on environmental pollution. 

Population density will stimulate living and production activities by continuously 

increasing rigid demand. Previous studies have found that air pollution is greater in 

more populated cities [11]. Energy activities in the industry sector are considered to 

play a key role in pollution discharge. Here, we assume that industrial structure 

increases PM2.5 pollution. Total electricity consumption is used to specify energy 

consumption. The expected direction here is positive because the greater the electricity 

consumption, the greater the power supply and the more PM2.5 emissions will be 

emitted by coal-fired power plants. The built-up area refers to the area that has been 

developed and constructed with basic municipal public facilities. Cities with larger 

built-up areas are often first-tier cities with a larger population base, and these cities are 

more likely to be polluted. The number of buses per ten thousand people represents the 

level of public transport in a city. The number of buses will have a certain substitution 

effect on private cars, and we expect that this factor will exert an inhibitory effect on 

PM2.5 pollution. In summary, there are two main reasons why these socioeconomic 

factors are chosen as explanatory variables. The first is theoretical relevance; economy, 

industrialization and urbanization are closely related to urban air pollution to varying 

degrees and are often regarded as the explanatory variables of environmental pollution 

in the existing literature [12]. Second, only the availability and consistency of data can 

ensure the smooth progress of empirical research. Based on the available statistical data 

of 273 prefecture-level cities in China from 2010 to 2016, we quantitatively investigate 



how the impacts of these variables change across cities in the lower 10th, 25th-50th, 

50th-75th, 75th-90th, and upper 90th quantiles. Table 1 summarizes the variables used 

in this study and the expected relationship with PM2.5 pollution in accordance with 

existing studies. 

Table 1 Definition of socioeconomic variables 

Variable Definition Unit of measurement Expected 

direction 

GDP GDP per capita yuan + 

SI The proportion of added value of 

secondary industry in GDP 

percent + 

PUC The proportion of urban 

construction land in urban areas 

percent + 

FDI Proportion of FDI in GDP percent - 
PD Population density people/km2 + 

BUS The number of buses per ten 

thousand people 

number/10000 person - 

EL Total electricity consumption 10000 kwh + 

The main novelties and contributions of this research are as follows. This study 

investigates cross-quantile heterogeneous effects of anthropogenic factors on urban 

PM2.5 concentrations under different emission levels, further enriching the research 

perspective on the variation rule of factor coefficients. Compared with most of the 

literature, which solely emphasizes the average effect, a more comprehensive 

assessment of the relationship between socioeconomic factors and PM2.5 pollution is 

carried out by taking into account the specific disparities between cities. Specifically, a 

two-step quantile regression approach is applied to reveal the extent to which the 

relationship between socioeconomic factors and PM2.5 pollution changes across 

different levels. Compared with the traditional OLS method, this approach can capture 

the heterogeneous effects exerted by socioeconomic factors on different emission 

quantiles by presenting the full picture of the conditional distribution. The remainder 

of the paper is arranged as follows. Section 2 succinctly reviews the existing related 

literature on the relationship between socioeconomic and PM2.5 pollution. Section 3 

describes the applied method as well as the corresponding data. Section 4 presents the 

empirical results and discussion. Conclusions and countermeasures are discussed in 

Section 5. Table A1 shows the abbreviation summary. 

2. Literature review 



Different meteorological conditions lead to different distributions of fine particles 

in the air and thus affect haze pollution [13, 14]. Temperature, precipitation, wind speed 

and other meteorological conditions have a combined effect on fine particulate matter. 

For example, wind transports suspended particulate matter in the atmosphere parallel 

to surrounding cities and dilutes air pollutants. The higher the wind speed, the better 

the air quality of a city. When precipitation reaches a certain level, haze particles in the 

air will be washed away. The heat island effect makes the temperature of a city higher 

than that of the suburbs, and various suspended particulate matter will absorb a large 

amount of longwave heat radiation and accumulate over the city, thus increasing the 

possibility of haze pollution.  

Research on emission–growth–renewables has focused attention on the potential 

impact of various socioeconomic activities on pollutant emissions from an energy-

related perspective [15, 16]. A large body of scholarly literature has explored the 

complex relationship between PM2.5 concentrations and economic and social 

development, but the different effects of different variables are still unclear. The most 

commonly used methods in previous studies include econometric analysis [17, 18], 

spatial econometrics modelling [19-22], remote sensing techniques [23], autoregressive 

distributed lag approach (ARDL) [24], input-output models [25-27], and 

geographically weighted regression (GWR) [28, 29]. Table 2 lists representative studies 

of socioeconomic factors affecting PM2.5 pollution using different methods in the past 

five years. The expected relationships between different socioeconomic factors and 

pollution are indicated by the symbol “+,” representing positive, and “-”, representing 

negative. 

Table 2 Representative literature on socioeconomic factors of PM2.5 pollution 

Sources Socioeconomic factors Methods Data 

Liu et al. (2019) [17] 

economic development (U-shaped), 

industrial structure (+), road density 

(+), built-up area (mixed); FDI (+), 

population density (no effect) 

panel regression 

model 

panel data of 287 

cities 

Wang et al. (2017) [18] 

urban area (+), urban population (+), 

share of secondary industry (+), 

population density (+) 

linear regression 
cross-sectional 

data of 190 cities 

Zhou et al. (2018) [19] 

population density (+), industrial 

structure (+), industrial dust (+), road 

density (+), trade openness (no 

effect), electricity consumption (no 

effect) 

spatial regression 

model 

cross-sectional 

data of 190 cities 



Hao and Liu (2016) [20] 

GDP per capita (U-shaped), vehicle 

population (+), secondary industry 

(+) 

spatial lag model 

spatial error 

model 

cross-sectional 

data of 73 cities 

Jiang et al. (2018) [32] 
industrial activities (+), city sizes (+), 

residents’ activities (+) 

structural 

equation model 

panel data of 135 

cities 

Cheng et al. (2017) [33] 

economic development (U-shaped), 
secondary industry, population 

density (+), energy intensity (+), 

industrial structure (+), traffic 

intensity (+), central heating (+), FDI 

(no effect) 

dynamic spatial 

panel model 

panel data of 285 

cities 

Zhang et al. (2019) [34] 

emission intensity (-), energy 

intensity (-), economic output (+), 

population (+) 

Logarithmic 

Mean Divisia 

Index 

panel data of 152 

cities 

Specifically, through an analysis of PM2.5 concentration datasets of 945 

monitoring stations in 190 cities, Wang et al. (2017) found marked seasonal variation 

of PM2.5 concentrations at the city level, with the highest concentration in winter. 

Population density in part is responsible for the differences in PM2.5 concentrations 

among Chinese cities. Energy-intensive industries promote the economic development 

of most cities and have a positive impact on PM2.5 concentrations. Furthermore, the 

hypothesis of an inverted U-shaped relationship between PM2.5 concentrations and the 

level of economic development has been strongly supported [18]. Similarly, using data 

from China's urban monitoring stations, Zhou et al. (2018) investigated the effects of 

population density, industrial structure, industrial dust, road density and economic 

growth on PM2.5 concentrations [19]. Based on panel data of Chinese cities from 2001 

to 2012, Cheng et al. (2017) used dynamic spatial panel models to find the sources of 

air pollution. The results indicated that secondary industry, energy structure, population 

growth and traffic intensity have driving effects on haze pollution [22]. Given the 

possible heterogeneous distribution of PM2.5 concentrations in space and time, Dong et 

al. (2019) developed a geographically and temporally weighted regression (GTWR) 

model to identify and investigate the influence of eleven variables on PM2.5 

concentrations. The results showed that the effects of various factors are volatile. 

Transportation and construction are the main sources of haze pollution and should be 

the major targets for pollution mitigation [30]. In addition to major pollutants such as 

PM2.5 and PM10, the spatial pattern and spatial agglomeration of air quality have 

received increased attention. Ye et al. (2018) utilized the Comprehensive Air Quality 

Index (CAQI) to explore the spatial distribution patterns of six pollutants (PM, PM, SO, 

NO, CO, O) in 338 Chinese cities and adopted the spatial autocorrelation method to 



detect the spatial agglomeration type [31]. Similarly, Xu et al. (2019) used the Air 

Pollution Index (API) and Air Quality Index (AQI) to examine the socioeconomic 

factors driving the observed spatiotemporal variations in air quality. API is calculated 

based on SO2, NO2 and PM10, while AQI is calculated using six atmospheric pollutants, 

i.e., SO2, NO2, PM10, PM2.5, CO and O3. Car ownership, energy consumption and 

secondary industry have been empirically confirmed to be important factors affecting 

air quality [21]. 

Unlike most scholars, Liu et al. (2019) considered that the versatility of cities 

affects the degree of environmental pollution. Hence, to compare the varied effects of 

natural and anthropogenic factors on PM2.5 concentrations at different income levels, 

287 Chinese cities were categorized into three groups according to income levels [17]. 

The results showed that in terms of meteorological factors, climate conditions such as 

precipitation, wind speed, relative humidity and temperature must be taken into account 

in urban construction and planning practices. In terms of anthropogenic factors, road 

density is the decisive factor. GDP per capita, industrial structure and FDI will increase 

PM2.5 concentrations. Among these factors, FDI contributes more to PM2.5 

concentrations in low-income cities. The present study is similar to the above research 

to some extent, but it differs from that of Liu et al. (2019), who divided cities into 

groups for general regression analysis. Our study considers that the impact of variables 

on cities at different levels of PM2.5 concentrations is heterogeneous; thus, quantile 

panel regression can more precisely compare this stratified heterogeneity. Overall, the 

primary contributions of this study are twofold. First, several studies have used the 

traditional OLS method to investigate the average effect of socioeconomic factors on 

PM2.5 concentrations, despite the tremendous heterogeneity in different cities, which 

may undermine the explanatory power of the model for disparate factors. Second, 

research at the provincial level or higher has been thorough, but cities or urban 

agglomerations are the basic units where environmental policies are implemented. 

Consequently, studies of the mechanism of air pollution at the city level remain 

desperately needed. 

3. Methodology and model specification 

3.1. Panel quantile regression 



Due to the tremendous heterogeneity of urban modalities in China [14], the 

relationships between multiple socioeconomic factors and PM2.5 levels are likely to 

vary across quantiles. In this regard, it is inadequate to model the mean value. We are 

interested in predicting not the average PM2.5 level of a particular group of cities but 

rather what kinds of cities are likely to experience the highest PM2.5 levels. Ordinary 

least squares (OLS) is a statistical tool used to describe the relationship between a set 

of independent variables and a dependent variable. OLS estimates the mean value of 

dependent variables for independent variables at a given level. However, this approach 

is parametric and usually relies on assumptions that are often not satisfied [35]. 

Previous studies traditionally use OLS to identify predictor variables for PM2.5 

concentration, but this approach can address only the question of how, on average, the 

predictor variables affect the level of PM2.5 concentration and cannot answer whether a 

predictor variable has a different weight in cities with low PM2.5 levels than in cities 

with average PM2.5 levels. A more comprehensive picture of the different effects of the 

independent variables on dependent variables can be obtained by panel quantile 

regression. This method makes no assumptions about the distribution of residuals, and 

it has a distinct advantage for detecting variation effects [36].  

In the context of the above debate, this study aims to empirically examine how the 

economic and social development of cities affect PM2.5 pollution. Economic and social 

factors, such as energy structure, urban area, population density, and economic level, 

can adequately represent the development status and differences among cities, but not 

every factor has a significant impact on PM2.5 pollution in a statistical sense. The 

“socioeconomic determinants” used here include the effective factors that may slow 

PM2.5 pollution as determined by modelling. Based on previous research and data 

availability, we select the possible influencing factors of PM2.5 concentrations — the 

effect of GDP per capita (GDP), proportion of added value of secondary industry in 

GDP (SI), proportion of urban construction land in urban areas (PUC), proportion of 

FDI in GDP (FDI), population density (FD), number of buses (BUS) and total 

electricity consumption (EL) — and analyse these factors across 273 Chinese cities 

using panel quantile regression (see Table 2). 

To this end, we follow the theoretical Stochastic Impacts by Regression on 

Population, Affluence, and Technology (STIRPAT) model proposed by Dietz and Rosa 

(1997) [37], which considers environmental impact and neo-classical growth. The 

STIRPAT model is derived from the following basic environmental impact:  



                                       𝐼 = 𝑎𝑃𝑏𝐴𝑐𝑇𝑑𝑒                                                         (1) 

where I, P, A and T (IPAT) represent environmental impact, population size, per capita 

economic activity and technology, respectively. For the convenience of estimation and 

hypothesis testing, Eq. (1) can be converted to linear logarithmic form as follows: 

 ln 𝐼 = 𝑎 + 𝑏(ln 𝑃) + 𝑐(ln 𝐴) + 𝑑(ln 𝑇) + 𝑒 (2) 

Therefore, the multivariate framework in the study is as follows: 

𝑃𝑀2.5𝑖,𝑡 = 𝑓( 𝐺𝐷𝑃𝑖,𝑡 , 𝑆𝐼𝑖,𝑡 , 𝑃𝑈𝐶𝑖,𝑡 , 𝐹𝐷𝐼𝑖,𝑡, 𝑃𝐷𝑖,𝑡, 𝐵𝑈𝑆𝑖,𝑡 , 𝐸𝐿𝑖,𝑡), 

where t = 1, 2,…, T and i = 1, 2,…, N stand for time period and cross-section (cities), 

respectively. In the energy and environment areas, the data often have a distinct peak 

or fat tails [35, 38]. In this situation, quantile regression can provide more robust 

estimation results [39, 40]. To account for impact effects and unobserved individual 

heterogeneity, we consider the following model: 

𝑄𝑃𝑀2.5𝑖,𝑡
(𝜏| ∙) = 𝛼1,𝜏𝐺𝐷𝑃𝑖,𝑡 + 𝛼2,𝜏𝑆𝐼𝑖,𝑡 + 𝛼3,𝜏𝑃𝑈𝐶𝑖,𝑡 + 𝛼4,𝜏𝐹𝐷𝐼𝑖,𝑡 + 𝛼5,𝜏𝑃𝐷𝑖,𝑡

+ 𝛼6,𝜏𝐵𝑈𝑆𝑖,𝑡 + 𝛼7,𝜏𝐸𝐿𝑖,𝑡 + 𝛽𝑖 ,  

𝑖 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇                                                       (3) 

The main problem in the estimation of Model (3) is unobserved individual 

heterogeneity. To control for unobserved heterogeneity, we consider a two-step panel 

quantile method proposed by Canay (2011) [41]. This approach considers the fixed 

effect as a pure location shifter. The first step is to apply the standard panel model with 

a fixed effect: 

𝑦𝑖,𝑡 = 𝒙𝑖,𝑡
𝑇 ∙ 𝛽 + 𝑢𝑖 + 𝜖𝑖,𝑡                                                         (4) 

where 𝑢𝑖 is the unobserved fixed effect. Then, we can subtract the fixed effect obtained 

in (4) from the response variable: 

�̂�𝑖,𝑡 = 𝑦𝑖,𝑡 − �̂�𝑖                                                                     (5) 

From Eq. (5), we can obtain the 𝑃𝑀2.5̂
𝑖,𝑡 free of the influence of unobserved 

heterogeneity. Then, the quantile regression estimator introduced by Koenker and 

Bassett Jr (1978) can be applied to estimate our model [40] as follows: 



argmin
𝛼

∑ ∑ ∑ 𝑤𝑘𝜌𝜏𝑘
{𝑃𝑀2.5̂

𝑖,𝑡 − 𝛼1,𝜏𝐺𝐷𝑃𝑖,𝑡 − 𝛼2,𝜏𝑆𝐼𝑖,𝑡 − 𝛼3,𝜏𝑃𝑈𝐶𝑖,𝑡 − 𝛼4,𝜏𝐹𝐷𝐼𝑖,𝑡

𝑇

𝑡=1

𝑁

𝑖=1

𝐾

𝑘=1

− 𝛼5,𝜏𝑃𝐷𝑖,𝑡 − 𝛼6,𝜏𝐵𝑈𝑆𝑖,𝑡 − 𝛼7,𝜏𝐸𝐿𝑖,𝑡} 

         𝑖 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇  (6) 

where 𝜌𝜏(𝑦) = y(𝜏 − 𝟏𝑦<0)  is the traditional check function, 𝟏𝐴  is the indicator 

function of set A, K is the index for quantiles, and 𝑤𝑘 = 1 𝐾⁄  is the weight on the k-th 

quantile, which controls the proportion of different quantile levels in this estimation 

[42].  

3.2. Data source and description 

For the purpose of this study, a balanced dataset covering a total of 273 Chinese 

cities, including 269 prefecture-level cities and four municipalities, for the period of 

2010 to 2016 was used. Specifically, PM2.5 concentrations were obtained by 

decomposing the global average concentration grid data detected by satellite into the 

annual average specific values of Chinese cities, which are released by the 

Socioeconomic Data and Application Center at Columbia University [43]. The other 

socioeconomic variables, including GDP per capita (GDP), proportion of added value 

of secondary industry in GDP (SI), proportion of urban construction land in urban areas 

(PUC), proportion of FDI in GDP (FDI), population density (FD), number of buses 

(BUS) and total electricity consumption (EL) were collected from the China City 

Statistical Yearbook and China Regional Economic Statistical Yearbook. For the 

convenience of estimation and expressing large numbers, all variables were converted 

to logarithmic form in this study. Tables 1 and 3 present the definitions of the 

socioeconomic variables in this model and the summary statistics of all variables, 

respectively. As shown in Table 3, the skewness of the seven variables is not equal to 

0, which indicates that the variables are asymmetric. The positive kurtosis values 

indicate that the distributions of seven variables have fatter tails, while the negative 

kurtosis value indicates that the distribution of GDP has thinner tails. Furthermore, the 

Jarque-Bera tests clearly show that all series depart from normality.  

Table 3 The summary statistics of all variables (in logarithmic form) 

Variables PM2.5 GDP SI PUC FDI PD BUS EL 



Minimum 1.5433  8.6179  2.7014  -3.9120  -8.9176  1.6194  -1.1394  9.1854  

Maximum 4.4599  12.4861  4.4970  4.5766  3.0131  8.6932  4.7052  16.5142  

Q1(.25) 3.1808  10.1770  3.7795  0.9802  -0.6636  5.2522  1.4294  12.2823  

Q3(.75) 3.8949  10.9673  4.0183  2.4911  0.9381  6.4526  2.3442  13.7826  

Mean 3.4941  10.5779  3.8763  1.6836  0.0356  5.7947  1.8449  13.0686  

Stdev 0.4984  0.5721  0.2310  1.0922  1.2628  0.9371  0.7200  1.1417  

Skewness -0.6824  0.1086  -1.3492  -0.3322  -1.1123  -0.7325  -0.3830  0.1191  

Kurtosis 0.6083  -0.1226  3.5430  0.1854  2.4306  1.7512  0.8668  0.2726  

Jarque-Bera 0.0000  0.0863  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

Note: the definition of GDP, SI, PUC, FDI, FD, BUS and EL is shown in Table 1. 

3.3. Spatial distribution of annual PM2.5 concentrations 

In this study, PM2.5 concentrations were divided into six intervals: 0-10 µg/m3, 10-

25 µg/m3, 25-40 µg/m3, 40-55 µg/m3, 55-70 µg/m3, and above 70 µg/m3. Fig. 1 shows 

the PM2.5 levels in 273 Chinese cities in 2010, 2013 and 2016. The red part represents 

the city with the worst PM2.5 level, dark green represents the city with the lowest PM2.5 

level, and the other colours correspond to different concentration ranges (see Fig. 1). In 

2010, the average annual PM2.5 concentration ranged from 5.02 µg/m3 to 74.81 µg/m3. 

The cities with the best air quality were located in Gansu, Xinjiang, Inner Mongolia, 

Yunnan and other central or western provinces. The cities with orange colour on the 

map showed a significant trend of change. In 2010, the number of cities within the 40-

55 µg/m3 level was 53, which became 46 in 2013 and decreased to 38 in 2016. 

Similarly, the number of cities within the 55-70 µg/m3 level gradually decreased in the 

past six years. Moreover, in 2010, there were 13 cities with an average annual 

concentration of PM2.5 concentration exceeding 70 µg/m3, and the number of such cities 

increased to 16 in 2013, including Cangzhou, Xingtai, Langfang, Hengshui, Jinan, 

Jining, Tai'an, Dezhou, Binzhou, Heze, Kaifeng, Hebi, Puyang, Xuchang and Tianjin. 

In 2016, PM2.5 pollution was alleviated, and more green cities appeared on the map. 

This finding indicates that cities in China suffered serious PM2.5 pollution in 2013, 

particularly cities in northern China, including Hebei Province and Shandong Province. 

This reduction may be the preliminary effect of various measures related to pollution 

control introduced by the government. In summary, the PM2.5 concentration shows 

aggregation and diffusion effects to a certain extent, and the unknown coupling 

relationship between PM2.5 pollution and urban development characteristics remains to 

be investigated. 



 

Fig. 1. The spatial distribution of the PM2.5 concentration in Chinese cities (2010, 2013, 2016)

（a）2010 （b）2013 （c）2016

Not investigated

0 ~10 ug/m3

10 ~ 25 ug/m3

25 ~ 40 ug/m3

40 ~ 55 ug/m3

55 ~ 70 ug/m3

＞70 ug/m3

±± ±



4. Empirical findings and analysis 

4.1. Panel unit root test 

The stationarity test is a key step in the process of economic data analysis. Certain 

nonstationary economic time series often show a common trend of variation, but they 

are not necessarily related to each other. In such cases, the regression results are likely 

to become a pseudo-regression [43]. The unit root test is the method most commonly 

used to detect whether a series of data is stationary. If a sequence has no unit roots, it is 

characterized as stationary and mean reversion; moreover, the absence of a unit root 

implies that the sequence has a finite variance independent of time. Conversely, if a 

sequence features a unit root, it is characterized as nonstationary. In addition, the 

variance of the sequence is time dependent and is permanently affected by random 

shocks. In this regard, before rigorous empirical investigation with panel quantile 

regression models, we first investigate the order of integration of the considered 

variables of the study by using the Levin-Lin-Chu (LLC), Fisher-ADF and Fisher-PP 

tests. Table 4 shows the results of the panel unit root tests for all variables, which 

indicate that the null hypothesis of the existence of a unit root can be strongly rejected 

for all variables at the 1% significance level, meaning that the variables are stationary 

and can be used in the subsequent empirical analysis. 

Table 4 Results of panel unit root tests 

Variable PM2.5 GDP SI PUC FDI PD BUS EL 

LLC -1300***  -130.00***  -13.62***  -190.0***  -510***  -27.55***  -11.99***  -98.43***  

Fisher-ADF 64.49***  78.43***  44.92***  85.90***  92.37***  98.26***  93.60***  106.79***  

Fisher-PP 25.18***  143.42***  34.99***  47.49*** 76.43***  40.11***  35.87***  40.14***  

Note: * indicates the parameter is significant at the 10% level, ** indicates the 

parameter is significant at the 5% level, *** indicates the parameter is significant at the 

1% level. 

4.2. Normal distribution test 

A normal distribution is the most common continuous probability distribution in 

real life. Thus, it is often regarded in natural and social sciences as the basic assumption 

for distributing unknown random variables. The normality assessment of sample data 

is a prerequisite for regression analysis. If the sample data are not normally distributed, 

then the quantile regression will make the estimated results more robust than the results 

of the OLS method. There are two main methods used to assess normality: graphical 



and numerical methods. For the graphical method, the frequency distribution 

(histogram), stem-and-leaf plot, box plot, probability-probability plot (P-P plot), and 

quantile-quantile plot (Q-Q plot) are used to visually check normality. First, we 

implement the most common Q-Q plot to determine whether the distribution is normal. 

As shown in Fig. 2, the results of the Q-Q plot are similar to those of the P-P plot, 

except that the normality is examined by plotting the quantiles of the probability 

distribution. Moreover, the sample size involved in this study is large, and the Q-Q plot 

is easier to interpret. If the scatter point corresponding to the sample data basically falls 

near the 45° line from the origin, i.e., a straight diagonal line, then the data follow a 

normal distribution. In Fig. 2, the scatter points of LPM2.5, LGDP, LSI, LPUC, LFDI, 

LPD, LBUS and LEL do not exactly match the straight diagonal line. This pattern 

indicates that none of the variables obey the normal distribution assumption. 



 
Fig. 2. The normal Q-Q plot 
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Second, the numerical method is supplementary to the graphical assessment. The 

main tests are the Anderson-Darling test, Kolmogorov-Smirnov (K-S) test, Shapiro-

Wilk test, and Jarque-Bera test [44]. The Jarque-Bera test can assess whether the sample 

data have goodness of fit of skewness and kurtosis in accordance with the normal 

distribution. If the result is far greater than zero, the data are not normally distributed. 

Table 3 shows that the probability values of the Jarque-Bera test for all variables except 

GDP are less than 5%, which indicates that these variables are not normally distributed. 

Furthermore, skewness and kurtosis represent the degree of asymmetry and the degree 

of dispersion in the data distribution, respectively. The skewness coefficient of the 

normal distribution is 0, and the kurtosis coefficient is 3. These two characteristics can 

be used to test whether the sample data follow a normal distribution. As shown in Table 

3, the skewness coefficients of all variables in this study are nonzero, which indicates 

that all variables are not normally distributed. Among them, the skewness coefficients 

of GDP and EL are greater than 0, which indicates that these two variables are right 

skewed, whereas the other variables are left skewed. Furthermore, the kurtosis 

coefficients of all variables in this study are not equal to 3, which indicates that these 

variables are not normally distributed. Among them, the kurtosis coefficient of SI is 

greater than 3, indicating that the data distribution of SI is more discrete, with fat tails, 

while the other variables are more dense. 

The above tests prove that these variables (LPM2.5, LGDP, LSI, LPUC, LFDI, 

LPD, LBUS and LEL) are not normally distributed. Compared with OLS, quantile 

regression can obtain more robust results in that it does not require an assumption about 

the distribution of error terms. Therefore, we employ panel quantile regression to 

investigate the source of the influence of the PM2.5 concentration level. 

4.3. Panel quantile regression results 

In this section, we investigate the impacts of driving factors of PM2.5 concentration 

across 273 cities in China by applying two-step panel quantile regression. Table 4 

shows the estimation results at the different quantile levels and indicate that the impacts 

of seven determinants on PM2.5 are heterogeneous. Fig. 3 intuitively presents the 

corresponding estimation results, which show the various change patterns of the 

coefficients of the seven driving factors at different quantile levels. 

First, GDP per capita has a negative impact on PM2.5 concentration, and this 

impact is significantly heterogeneous and asymmetric. More specifically, the impact of 



GDP per capita on PM2.5 concentration in the lower 25th quantile cities is stronger than 

those in the 25th-50th, 50th-75th and upper 75th quantile cities (Table 5 and Fig. 3). 

The coefficient increases from -0.128 at the 5th quantile to -0.021 at the 95th quantile. 

The lower 25th quantile cities are located mostly in economically underdeveloped 

regions such as Xinjiang, Inner Mongolia, Yunnan and Sichuan provinces. The 

environmental quality in these provinces is more sensitive to the economic level; that 

is, increasing the GDP per capita will improve air quality more in these cities than in 

other cities. Moreover, Table 5 indicates a weak and negligible relationship between 

GDP per capita and PM2.5 concentration in the upper 90th quantile cities, which are 

mainly located in North China, especially in Henan, Hebei and Shandong provinces. 

These regions experienced serious air pollution during these years, and decoupling 

between environmental pollution and the economic level is beginning to emerge. These 

findings suggest that economic development can significantly decrease the PM2.5 

concentration in lower quantile cities. China's economic growth in recent decades has 

mainly depended on fixed asset investment and export trade. From 2013 to 2018, fixed 

asset investment grew by 10.7% annually, achieving a capital formation rate of 44.9% 

and contributing 32.4% to economic growth. However, a large amount of investment 

in fixed assets also has negative impacts on environmental performance. Because large-

scale investment in construction and fixed assets is a form of physical investment, 

which includes roads, bridges, pipelines, large-scale machinery and buildings, these 

construction activities will inevitably generate a great quantity of energy-intensive 

processing activities, such as in the steel, cement and other industries, which produce 

high emissions of atmospheric pollutants. In contrast to our findings, the empirical 

results obtained by Xu and Lin (2018) showed that the impact of GDP on PM2.5 

pollution was positive in most quantile provinces [45]. The upper 90th quantile 

provinces gather the most fixed-asset investment and foreign manufacturing enterprises, 

resulting in more PM2.5 emissions from both direct and indirect perspectives.  

Second, the effects of FDI in the upper 75th and lower 25th quantile cities are 

higher than those in the 25th-50th and 50th-75th quantile cities (Table 5 and Fig. 3). 

The low quantile cities are mainly distributed in Yunnan, Gansu, Shaanxi, Liaoning, 

Shanxi, Inner Mongolia, Sichuan and other western provinces. Since 2003, a rising 

trend was detected in FDI utilized by western regions (including 12 provinces or 

municipalities directly under the central government). In 2015, the total investment in 

western regions reached 30.8 billion dollars and represented approximately 24.4% of 



the national investment. The serious resource depletion, increased labour costs and the 

deepening of “Great Western Development Strategy” have jointly led to the transfer of 

FDI from the eastern regions to the western regions. On the one hand, foreign investors 

will prioritize the transfer of labour-intensive and pollution-intensive industries. On the 

other hand, western cities will take the initiative to reduce local environmental 

regulation standards in order to attract more FDI. To a great extent, the level of 

environmental regulation determines the amount of environmental pollutants directly 

discharged from production activities. Similar situations of relatively loose 

environmental standards in developing countries provide opportunities for the transfer 

of pollution-intensive FDI in the context of globalization, in alignment with the 

"pollution haven" hypothesis [46]. The relationship between FDI and environmental 

pollution in developing countries has long been controversial. Pollution-intensive 

enterprises in advanced countries seek low environmental standards in other countries 

in order to avoid paying for expensive pollution control domestically. In less-developed 

countries, domestic enterprises can use foreign advanced technology to improve their 

environmental efficiency and performance. The empirical findings obtained by Liu et 

al. (2019) [17] shows that the impact of FDI on PM2.5 are significantly positive in the 

total cities and lower-middle-income cities, which support the Pollution Haven 

Hypothesis. Shahbaz et al. (2015) analyzed the nonlinear relationship between FDI and 

environmental performance in high-, middle- and low-income countries using carbon 

emissions as environmental cost [47]. The results showed that FDI improves the 

environmental performance of high-income countries, while low-income countries 

need to make more efforts to control pollution. In middle-income countries, an inverted 

U-shaped relationship between FDI and environmental pollution was observed, 

indicating that both capital infusion and pollution reduction should be achieved. 

Third, compared with other variables, PD (population density) exerted the greatest 

positive effect on PM2.5 pollution across all quantile cities. As indicated in Fig. 3, the 

marginal environmental damage caused by the increasing population density in low-

level quantile cities (lower than 25th quantile), middle-level quantile cities (25th-50th 

and 50th-75th quantiles) and high-level quantile cities (upper 75th quantile) were 

significant. The impact coefficients remained above 3 in all quantile cities. Therefore, 

we can effectively control urban pollution in all cities by limiting excessive population 

inflow. This result is basically consistent with Cheng et al. (2017) [33] and Wang et al. 

(2017) [18], who estimated a significant positive role of population density in driving 



haze pollution through the scale effect and aggregation effect, but different with Liu et 

al. (2019) [17], who found a non-significant influence of population density on PM2.5 

based on conditional mean regression. The negative externalities from the scale effect 

on environmental pollution are greater than the positive externalities from the 

aggregation effect. China's rapid urbanization has attracted a large influx of people from 

rural areas. The larger the population, the greater the increase in the material demand 

for commodities such as housing and automobiles. The resulting emissions of building 

dust, automobile exhaust and other pollutants will also increase. Beijing is one of the 

most polluted cities in China in terms of PM2.5 concentration. Less than 8% of the 

central urban area accumulates nearly 80% of the permanent population, with a density 

of 234,000 people per square kilometre. Beijing and the nearby Jing-Jin-Ji urban 

agglomeration are also the places with the most serious haze pollution in China. 

Fourth, the impact of SI on the PM2.5 concentration is always positive across 

different quantiles, which is consistent with Wang et al. (2017) [18] and Hao and Liu 

(2016) [20] by conditional mean regression. But beyond that, our study also finds that 

the impact of SI on the PM2.5 concentration in the upper 75th quantile cities is larger 

than those in the 0-25th, 25th-50th, and 50th-75th quantile cities (Table 5 and Fig. 3). 

The impact coefficients are stable in the low- and middle-level quantiles and show a 

significant increasing trend in the high-level quantiles, increasing from 0.085 in the 

70th quantile to 0.353 in the 90th quantile. The high proportion of enterprises with high 

pollution and high energy consumption in the economic structure contributes to large 

emissions of polluting gas that exceed the self-purification ability of the local 

environment. In the same way, the empirical results from Xu and Lin (2018) confirmed 

that the sensitivity of haze pollution to industrialization is greater in highly polluted 

provinces than in less-polluted provinces [45]. The strategy prioritizing the 

development of heavy industry implemented by the central government stabilized the 

national economic system, but large-scale industrial production also consumes a large 

amount of fossil fuels, which will inevitably increase PM2.5 emissions. Although 

transformation of industrial structure is unlikely to occur in the short term, it is an 

indispensable step to reduce PM2.5 pollution. For highly polluted cities, more social 

investment in green industry should be encouraged to reduce the sensitivity of air 

pollution to industrial activities. 

Finally, the impact of the variable BUS (number of public buses) on the PM2.5 

concentration is higher in the upper 90th quantile cities than in the other quantile cities 



(Table 5 and Fig. 3). In most quantiles, an increase in the number of buses can improve 

urban air quality, but in highly polluted cities, such improvement effects are not obvious. 

Overall, the number of public buses has a statistically significant and negative impact 

on PM2.5 concentrations at lower quantile levels. In addition, the PUC (proportion of 

urban construction land) has a weak stimulating effect on PM2.5 concentrations in most 

quantile and shows a decreasing trend (Fig. 3).  The impact of EL (total electricity 

consumption) on PM2.5 concentration first increases and then decreases from the lower 

to upper quantiles (Fig. 3). Compared with other variables, these two variables were 

less important in highly polluted cities. This suggests that the environmental regulation 

policies of cities with different pollution levels should deal with different influencing 

variables. To the best of our knowledge, this study is the first to investigate the 

heterogeneous effects of socioeconomic variables on PM2.5 pollution at the city scale 

using the quantile panel method. Compared to the studies with province-level data (e.g., 

Xu and Lin, 2018 [45]) or the literature using conditional mean regression to investigate 

the city-level data (e.g., Cheng et al., 2017 [33] and Liu et al. ,2019 [17]), this study 

considers the city-level data and two-step panel quantile regression, which could not 

only provide more in-depth and specific analysis about the impacts of driving forces of 

PM2.5 concentration in these 273 cities in China but also more robust and accurate 

estimation results. 



Table 5 Panel quantile regression results 

Variables OLS Quantile regressions 

  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

Intercept 5.367  2.285**  2.338**  2.081**  1.540  1.812*  1.869*  2.122** 2.642***  1.920*  1.887**  1.826**  

 (0.304) (0.019) (0.011) (0.022) (0.123) (0.077) (0.077) (0.033) (0.005) (0.070) (0.049) (0.023) 

GDP -0.136***  -0.128**  -0.158**  -0.095  -0.051  -0.092  -0.076  -0.087  -0.112  -0.078  -0.088  -0.021  

 
(0.000) (0.049) (0.021) (0.175) (0.312) (0.212) (0.272) (0.243) (0.177) (0.274) (0.186) (0.378) 

SI -0.189***  0.090  0.212  0.141  0.188  0.242  0.185  0.097  0.085  0.187  0.353***  0.262***  

 
(0.000) (0.350) (0.193) (0.282) (0.259) (0.199) (0.262) (0.342) (0.337) (0.149) (0.001) (0.001) 

PUC 0.006  0.041  0.054  0.063  0.030  0.033  0.034  0.017  0.040  0.029  -0.007  0.002  

 
(0.559) (0.192) (0.121) (0.105) (0.314) (0.304) (0.309) (0.375) (0.281) (0.324) (0.390) (0.397) 

FDI -0.001  0.096***  0.116***  0.103***  0.074**  0.070**  0.068**  0.067**  0.088***  0.072***  0.098***  0.118***  

 
(0.836) (0.001) (0.001) (0.003) (0.031) (0.018) (0.021) (0.020) (0.001) (0.002) (0.000) (0.000) 

PD 0.005  0.310***  0.317***  0.336***  0.354***  0.352***  0.337***  0.348***  0.315***  0.354***  0.326***  0.361***  

 
(0.900) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) 

BUS -0.003  -0.083*  -0.032  -0.107*  -0.081  -0.067  -0.074  -0.075  -0.079  -0.057  0.048  0.028  

 
(0.781) (0.065) (0.323) (0.073) (0.152) (0.213) (0.204) (0.214) (0.213) (0.278) (0.248) (0.331) 

EL 0.020*  -0.036  -0.050  -0.039  -0.039  -0.032  -0.013  0.011  0.020  0.013  -0.001  -0.0227  

  (0.080) (0.255) (0.179) (0.261) (0.254) (0.292) (0.378) (0.383) (0.346) (0.376) (0.399) (0.311) 

Note: Numbers in the parentheses represent P-value. * indicates the parameter at the 10% significant level, ** indicates the parameter at the 5% 

significant level, *** indicates the parameter at the 1% significant level. 



 

Fig. 3. Changes in panel quantile regressions coefficients. Notes: The x-axis denotes the conditional quantiles of PM2.5, and the y-axis 

presents the coefficient values of the different variables. The shaded areas correspond to the 95% confidence intervals of the quantile 

estimation.



  

 

 

5. Conclusions and implications 

5.1 Conclusions 

Urban PM2.5 pollution is influenced by natural and socioeconomic conditions. 

Natural factors are uncontrollable, and socioeconomic development is a complex, 

multifactor coupled dynamic system. To simplify the analysis, we assumed that GDP 

per capita, industrial structure, urbanization, FDI, population density, number of buses 

and electricity consumption in part represent the overall trend and situation of Chinese 

cities from various perspectives. Based on panel data of 273 prefecture-level cities in 

China, this study examined the heterogeneous effects of these seven determinants on 

PM2.5 concentration using a two-step panel quantile regression. The empirical results 

indicated the following: (1) The relationships of PM2.5 concentration with economic 

growth, urbanization, industrialization and FDI are heterogeneous. Compared with 

other variables, population density has the greatest positive effect on PM2.5 pollution 

across all quantile cities, as population aggregation stimulates high energy-consuming 

industries, such as automobiles. Therefore, we can effectively control urban pollution 

by limiting excessive population inflow for all cities. (2) The impact of GDP per capita 

on PM2.5 concentration is stronger in the lower 25th quantile cities than in the 25th-

50th, 50th-75th and upper 75th quantile cities. This is mainly because the lower quantile 

cities are economically underdeveloped, and haze pollution is more sensitive to 

economic development. (3) The effects of FDI are higher in the upper 75th and lower 

25th quantile cities than in the 25th-50th and 50th-75th quantile cities, which supports 

the “pollution haven” hypothesis. The lower quantile cities are mainly distributed in the 

western region, and the relatively loose environmental standards in western cities lead 

to numerous environmental pollutant emissions. (4) The impact of SI on the PM2.5 

concentration is larger in the upper 75th quantile cities than in the 0-25th, 25th-50th, 

and 50th-75th quantile cities. This finding suggests that PM2.5 concentrations in highly 

polluted cities are more susceptible to changes in industrial structure. In brief, the 

heterogeneous effects of socioeconomic determinants should be taken into 

consideration when discussing emissions reductions in cities in the developing world.  

5.2 Policy implications 



  

 

 

Quantifying the heterogeneous effects of the socioeconomic determinants of urban 

PM2.5 concentrations could assist policymakers in implementing differentiated policies 

for cities with different levels of air pollution. These results not only contribute 

academically to illustrating the interactive relationship between PM2.5 concentration 

and economic growth at the city level but also provide guidance for urban development 

in developing countries at similar stages. On this basis, broader policies and 

countermeasures are put forward to alleviate PM2.5 pollution. There are 334 prefecture-

level cities in China, but these cities have different economic development levels, and 

different factors play different roles. The results of this study show that different 

socioeconomic factors exert heterogeneous effects on PM2.5 pollution. It is necessary 

for cities in different quantiles to formulate targeted strategies that suit the local 

conditions from a sustainable perspective. First, for less-polluted cities, PM2.5 

prevention is more important than PM2.5 mitigation. The government should properly 

stimulate the economic development of less-polluted cities because the environmental 

technological progress brought by economic development exceeds the negative 

environmental externality. For a long time, the general view has been that extensive 

economic growth reduces environmental carrying capacity, resulting in serious haze 

pollution. However, based on the findings of this study, it can be inferred that high-

quality economic growth can improve air quality in less-polluted areas. 

Second, spatial expansion in all quantiles should be controlled to prevent excessive 

population inflow. The contribution of population density to haze pollution is greater 

than those of other socioeconomic factors, and higher air quality can be achieved 

through urban form planning and population management policies. According to the 

Notice on the Adjustment of Urban Scale Classification Standards issued by the State 

Council of China, an urban resident population of more than 10 million corresponds to 

a super large-sized city. At present, there are six super large-sized cities in China: 

Beijing, Shanghai, Guangzhou, Shenzhen, Tianjin and Chongqing. Therefore, the 

governments of these cities can take various measures to reduce the sensitivity of PM2.5 

pollution to population change, such as controlling the blind expansion of urban land, 

encouraging polycentric urban forms, and planning population-intensive institutions 

such as schools and medical institutions in the suburbs. 

Third, the governments of cities in western China should pay attention to 

improving local environmental regulation standards. According to the results of this 



  

 

 

study, environmental regulation plays an intermediary role in the impact of foreign 

investment on PM2.5 emission-related pollution. Western cities are located mostly in 

economically underdeveloped regions, and the impetus to promote economic 

development is greater than that to prevent pollution, leading to loose environmental 

regulations to attract investment. Western cities must actively stimulate enterprises to 

carry out technological innovation through environmental regulation. In addition, we 

should control existing FDI stock and optimize investment structure. For example, 

foreign investors should be encouraged to invest in primary or tertiary industries with 

relatively low emissions, along with preferential policies for technology-intensive 

foreign investment.  

Finally, the central and local governments should realize that the mode of 

economic development that relies on heavy industry is not sustainable and needs to be 

changed, especially in highly polluted areas. Social demand, technological innovation 

and FDI have played strong roles in changes in industrial structure. The adjustment of 

industrial structure is conducive to pollution reduction. Specific recommendations 

include supporting the expansion of tertiary industries, restricting the establishment of 

heavy polluting enterprises, and encouraging enterprises to change from being resource 

consumption-driven to technological innovation-driven, thereby improving their 

energy efficiency and standards of air pollution emissions. The adjustment of industrial 

structure cannot be accomplished without the participation of the government, industry 

and the public, but the primary needs of different stakeholders vary, which may lead to 

conflict among different stakeholders.  
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Table A1 Abbreviation summary 

Category Variable name Abbreviation 



  

 

 

Independent variable Fine particulate matter PM2.5 

Explanatory 

variables 

GDP per capita GDP 

Foreign direct investment FDI 

Population density PD 

Secondary industry SI 

Number of public buses BUS 

Electricity consumption EL 

Proportion of urban construction 

land 
PUC 

Methods Ordinary least squares OLS 

 Geographically weighted regression GWR 

 Autoregressive distributed lag 

approach 

ARDL 
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