Erodibility and erosion patterns of mudflat sediments investigated using an annular flume
Erodibility and erosion patterns of mudflat sediments investigated using an annular flume
Laboratory flume experiments were carried out, to measure the effect of biota on erodibility of mudflat sediments. The experiments sought to reproduce the environment of the lower mudflat at Hythe, Southampton Water, Southern England; this is characterised by fine grain-size and a surface layer of very fluid mud. Natural sediments were used to produce settled beds in the Lab Carousel, an annular flume of 2 m diameter. The following bed conditions were investigated diatom biofilms; the addition of cockles (Cerastoderma edule); and abiotic sediment, obtained by the addition of sodium hypochlorite. The erosion threshold (τcrit, calculated with the TKE method) was in the range 0.02–0.20 Pa. Bioconsolidation increased τcrit considerably: compared to the abiotic sediment experiment, τcrit was 5–10 times higher depending on the biofilm development. The relationship between τcrit and water content of sediment (the best proxy for sediment compaction) was as good, or better than between τcrit and chlorophyll a (proxy for biofilm development). When cockles were introduced, τcrit was significantly lower (reduction by 50–75% compared with the diatom biofilm experiments), reflecting the surface disturbance by the bivalves. The biofilm erosion was characterised by a patchy pattern: the bed surface stayed mainly uneroded and erosion was visible only on a few elongated patches commencing at some weakness points of the biofilm, then progressing downstream. The results illustrate the importance of the surface heterogeneity: the irregularities of a natural bed (weak points of the biofilm, bioturbations, microrelief, larger roughness elements like shells or algae, etc.) have a determinant effect on the erodibility of biofilms. Such characteristics may have more influence than biofilm strength, because the erosion starts from the weaker areas.
biofilm, cockles, erosion threshold
543-554
Neumeier, U.
a8a38fc0-0b51-47c2-853a-965ea01579dc
Lucas, C.H.
521743e3-b250-4c6b-b084-780af697d6bf
Collins, M.
3b70278b-0004-45e0-b3c9-0debdf0a9351
2006
Neumeier, U.
a8a38fc0-0b51-47c2-853a-965ea01579dc
Lucas, C.H.
521743e3-b250-4c6b-b084-780af697d6bf
Collins, M.
3b70278b-0004-45e0-b3c9-0debdf0a9351
Neumeier, U., Lucas, C.H. and Collins, M.
(2006)
Erodibility and erosion patterns of mudflat sediments investigated using an annular flume.
Aquatic Ecology, 40 (4), .
(doi:10.1007/s10452-004-0189-8).
Abstract
Laboratory flume experiments were carried out, to measure the effect of biota on erodibility of mudflat sediments. The experiments sought to reproduce the environment of the lower mudflat at Hythe, Southampton Water, Southern England; this is characterised by fine grain-size and a surface layer of very fluid mud. Natural sediments were used to produce settled beds in the Lab Carousel, an annular flume of 2 m diameter. The following bed conditions were investigated diatom biofilms; the addition of cockles (Cerastoderma edule); and abiotic sediment, obtained by the addition of sodium hypochlorite. The erosion threshold (τcrit, calculated with the TKE method) was in the range 0.02–0.20 Pa. Bioconsolidation increased τcrit considerably: compared to the abiotic sediment experiment, τcrit was 5–10 times higher depending on the biofilm development. The relationship between τcrit and water content of sediment (the best proxy for sediment compaction) was as good, or better than between τcrit and chlorophyll a (proxy for biofilm development). When cockles were introduced, τcrit was significantly lower (reduction by 50–75% compared with the diatom biofilm experiments), reflecting the surface disturbance by the bivalves. The biofilm erosion was characterised by a patchy pattern: the bed surface stayed mainly uneroded and erosion was visible only on a few elongated patches commencing at some weakness points of the biofilm, then progressing downstream. The results illustrate the importance of the surface heterogeneity: the irregularities of a natural bed (weak points of the biofilm, bioturbations, microrelief, larger roughness elements like shells or algae, etc.) have a determinant effect on the erodibility of biofilms. Such characteristics may have more influence than biofilm strength, because the erosion starts from the weaker areas.
This record has no associated files available for download.
More information
Published date: 2006
Keywords:
biofilm, cockles, erosion threshold
Identifiers
Local EPrints ID: 44117
URI: http://eprints.soton.ac.uk/id/eprint/44117
ISSN: 1386-2588
PURE UUID: 667f5cdc-0318-4751-b228-27947fb76f52
Catalogue record
Date deposited: 15 Feb 2007
Last modified: 16 Mar 2024 02:46
Export record
Altmetrics
Contributors
Author:
U. Neumeier
Author:
M. Collins
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics