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In arXiv:1603.02943 a holographic D3/D7 system was used to describe a deconfined yet massive
quark phase of QCD at finite density, concluding that the equation of state of such a phase was
not stiff enough to support exotic dense stars. That analysis used a hard quark mass to represent
the dynamical mass and assumed a conformal gauge background. Here we phenomenologically
adjust the D3/D7 system to include a running anomalous dimension for the quark condensate. This
introduces a dynamical mechanism for chiral symmetry breaking yet the model still has a deconfined
massive phase at intermediate densities. We show that these systems, dependent on the running
profile in the deep IR, generate much stiffer equations of state and non-montonic behaviour in the
speed of sound. They may support hybrid stars with quark cores.

I. INTRODUCTION

Neutron stars are unique systems in which we can find
matter at low temperatures and very high densities. Den-
sities there are high enough to consider the existence of
a deconfined quark phase, but not enough to be able to
apply perturbative QCD. In such compact stars it is be-
lieved that matter ranges from nuclei embedded in a sea
of electrons at low densities in the crust, to the extremely
neutron-rich uniform matter in the outer core, and pos-
sibly exotic states such as deconfined matter in the inner
core [IJ.

The equation of state (EoS) of the dense matter, which
relates state variables of the system, is a key ingredient to
fully model a neutron star. A complete EoS would also be
very important in the light of the recent measurement of
gravitational wave signals from mergers of binary neutron
stars [2], since the model of the wave signal is sensitive
to the specific form of the EoS. Nevertheless, there has
been a struggle to find a complete EoS; the difficulty of
the task resides in the need to solve QCD in the non-
perturbative regime at finite baryon chemical potential.
At the moment the EoS of strongly interacting matter at
low temperatures is relatively well described at baryon
densities below the nuclear saturation limit ng < ng =~
0.16 fm~3, where Chiral Effective Theory (CET) works
[3L 4], as well as at baryon chemical potential above ~ 2.5
GeV where the perturbative tecniques can be applied [5l-
7). However this excludes the values of density where a
phase transition to quark matter would be expected to
occur [8].

In the last two decades, the AdS/CFT correspondence
has emerged as a new tool to study strongly coupled
gauge theories [9]. It provides the ability to rigorously
compute in theories close to large N. N = 4 super Yang-
Mills theory including flavour degrees of freedom [0} [11],
using a weakly coupled gravitational dual and has pro-
vided a rich new framework for modelling other gauge

systems including theories close to QCD [12]. It is natu-
ral then to ask if a holographic model of the high density
phase of QCD can be constructed and the corresponding
EoS obtained. Holographic EoS at finite density have
also been studied in [I3HI7].

Our goal in the present paper is to investigate whether a
deconfined phase in the core of neutron stars could be sta-
ble. In [13] the authors made a first attempt at such a de-
scription using the D3/D7 system that describes quarks
with a hard mass of order 330 MeV in N = 4 super-Yang
Mills (SYM) background at finite density. Exact analytic
results for the free energy are known in this case [I8]. The
glue fields are deconfined, and conformal so the theory de-
scribes a putative massive, deconfined quark phase. They
concluded that the equation of state was too soft to sup-
port exotic stars. However, one can critique the model
since there is no chiral symmetry breaking mechanism
and the hard mass is only an approximation to chiral
symmetry breaking which should switch off at yet higher
densities. Also since they match the conformal theory’s
free energy at large density to the UV of QCD they, in a
sense, match the dynamics to perturbative gluons whilst
one might expect a running coupling from weak to strong
to have significant impact.

Here we will take a phenomenological approach to im-
proving the D3/D7 systems predictions. We will include
an effective dilaton (although it is not backreacted on
the geometry) that controls by hand the running of the
anomalous dimension, 7, of the quark bilinear [I9]. We
pick a simple ansatz that has v = 0 in the UV but then
runs to a dial-able fixed point value in the IR. At zero
density such theories have a BKT transition as vy in the IR
moves above 1 (here the Breitenlohner Freedman bound
[20] is first violated in the model) from a chiral symmet-
ric phase (y < 1) to a chiral symmetry broken phase
(v > 1). When density is included we show that there
are two transitions - first density switches on then at a
coninuous transition chiral symmetry breaking switches
off (there does not seem to be a jump in the speed of


http://arxiv.org/abs/1603.02943

sound at the transition so it may be higher than second
order). This phase structure has been seen previously in
the D3/DT system with a magnetic field [21] [22] and phe-
nomenologically related models [23]. Similar structures
have also been seen recently [24] in the Witten Sakai Sug-
imoto model [25]. The intermediate phase is an example
of a massive yet deconfined quark phase. Our model
though contains a description of a dynamical quark mass
and a running anomalous dimension. We show how the
EoS in these systems depends on the UV fixed point value
for v and show that runnings that might plausibly de-
scribe QCD have considerable stiffer EoS than the pure
D3/D7 system. The speed of sound in units of the speed
of light can reach as high as ¢? = 0.55.

Once the EoS is obtained, solutions of the Tolman-
Oppenheimer-Volkoff (TOV) equations which correspond
to spherically symmetric stellar configurations that are
in hydrostatic equilibrium can be found. Nevertheless,
the equilibrium of the solution does not assure that it is
stable. It can be proved [26] that, along the sequence of
equilibrium configurations of the TOV equations, perfect
fluid stars can pass from stability to instability with re-
spect to any radial mode of oscillation only at a value of
the central energy density, €., at which the equilibrium
mass, M, is stationary, i.e. ajgig’“) = 0. Therefore a
necessary condition for stability is that

OM(E.)
e, > 0. (1)

Furthermore in [27] the authors discuss methods for de-
termining the stability of a star in terms of the Bardeen,
Thorne and Meltzer (BTM) criteria [28]. We explore the
effect of the holographic EoS we find in the TOV equa-
tion solutions. Even the stiffer possible descriptions of
the deconfined quark phase we generate are not quite
sufficient to construct a convincing description of both
the heaviest neutron stars and new stable hybridc stars
with quark matter cores. However, the situation is close
in some cases with hints that lighter hybrid stars may ex-
ist supported by the deconfined quark matter. We report
on this picture since it strongly suggests that the changes
we have made are steps towards a description with inter-
esting phenomenology and it will hopefully trigger fur-
ther refinement of the holographic set up. We briefly
and rather crudely discuss an example of such a refine-
ment, adding the confinement transition as an additional
shift in the pressure between the high and low density
phases which may further stabilize hybrid stars although
obtaining both hybrids and very heavy neutron stars re-
mains an issue. In future we will look to include colour
superconducting phases (in the holographic spirit of [29])
which may further stiffen the EoS.

The paper is organized in the following way: In Section
IT we will review the different possible phases relevant to
neutron stars - a confined phase of neutron starts which

is modeled with an EoS that comes from considering a
chiral effective field theory and a piecewise polytropic
extension towards higher values of density; the previous
work [13] implementing a deconfined phase in the neutron
stars using a top-down approach to AdS/CFT and a hard
mass to the quarks; and a bottom-up D3/D7 brane in-
tersection model with a chiral symmetry breaking mech-
anism. In Section IIT we solve the TOV equations and
analyse the mass-radius relations of neutron stars using
the models of the previous section. We summarize in
Section IV.

II. THE FINITE DENSITY PHASE
STRUCTURE OF QCD

In this section we will review our model of the low tem-
perature QCD phase structure and the models that we
use to study each phase. In Figure [l| we sketch the phase
structures that we will see below as a function of quark
chemical potential at low T. In fact in this paper we will
only compute at strictly T=0 although holography would
straightforwardly allow computation at finite T also.
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FIG. 1: A sketch of the low temperature phase structures we

observe in the holographic models we explore. At low chemical po-
tential the theory has chiral symmetry breaking and zero density; in
an intermediate regime there is a deconfined massive quark phase
with non-zero density; at high p there is chiral symmetry restora-
tion. The D7 embedding function (field L) is also sketched in each
phase. These transitions are all second or higher order in the
holographic models. Note we have also sketched the position of the
baryon phase with non-zero neutron density which is not present
in the holographic models (we include it phenomenologically from
low energy analysis) - we expect the transition to the high density
phases from the baryon phase to be first order.

A. Nuclear phase

At small chemical potentials QCD is well understood.
The confined, chirally broken vacuum is empty until a
chemical potential of y = 308.55 MeV when there is
a first order phase transition to nuclear matter. This



transition is already well studied and the nuclear mat-
ter equation of state has been explored in [30] in which
the authors combined observations of a 1.97 solar mass
neutron star with effective field theory (EFT), thereafter
extrapolating it with a constrained piecewise polytropic
form. Here holography is probably least able to help -
given its origin at infinite N, baryons are naturally very
heavy and far from the QCD limit so, following several
other authors [I3, [T6l [3T], we will simply use the results
of [30] to model the nuclear phase. Note there have been
attempts to study the QCD nuclear phase holographi-
cally, for example in [17, 32} [33], but this will not be our
focus in this paper.
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FIG. 2: Data for the nuclear phase taken from [30]: we show both
the pressure versus chemical potential and energy density. The
Green line represents a soft EoS, the orange a medium FEoS and
the red line a stiff EoS
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FIG. 3:  Speed of Sound squared as a function of the energy den-
sity for nuclear matter [30]. The different coloured lines represent
nuclear matter from EFT EoS; (Green) soft EoS, (orange) medium
EoS and (red) stiff EoS.

Three ansatz (soft, meduium and stiff) EoS for the energy
density and pressure for different densities are presented

in Table 5 of [30]. A stiff equation of state is one where
the pressure increases quickly for a given increase in den-
sity. Such a material would be harder to compress and
offers more support against gravity. Conversely, a soft
equation of state produces a smaller increase of pressure
for a change in density and is easy to compress. We have
encoded their data as a Mathematica fitting polynomial
for the analysis below and we plot these in Figure

For each EoS there is a maximum central pressure/energy
density possible as sign posted in [30] - above this pres-
sure the speed of sound (which is simply g—g), according
to the EoS, grows greater than the speed of light and
the nuclear theory is unphysical (indicating that before
this pressure is reached a change of state must occur).
In figure [3| we plot the speed of sound against € to show
this behaviour (note the discontinuities reflect moves be-
tween different polytropes in the piecewise construction
of the equation of state in [30]) - the equivalent maxi-
mum pressures for the three possible EoS are 312.6 MeV
fm =3 (stiff) 637.2 MeV fm~2 (medium) 666.5 MeV fm =3
(soft).

B. Holography of a Deconfined Massive Quark
Phase

The next expected transition beyond the nuclear phase
as the chemical potential is raised is normally presented
as a transition to a deconfined, chirally symmetric quark
phase. The transition is normally assumed to be first
order from the nuclear matter phase although since this
regime lies outside controlled computation this is funda-
mentally a guess.

Holography can potentially inform us about the transi-
tion from the empty low p vacuum to the higher p vac-
uum with non-zero quark density. The first paper study-
ing neutron stars using holographic equations of state was
[13]. There the authors used the equation of state of the
massive D3/D7 system at finite density [I8] to describe
the quark matter phase. The D3/D7 model at finite den-
sity is always deconfined in the large N, limit and further
has no chiral symmetry breaking mechanism. This phase
naively therefore has deconfined massless quarks. The
authors then included a bare (hard) quark mass of order
Agcp as an approximation to a chirally broken state.
This is a simplistic approximation to a phase of decon-
fined yet massive quarks. Inherently there is an assump-
tion here that confinement and chiral symmetry breaking
transitions are separated in the high density phase struc-
ture and we will further consider such a possibility in this

paper.

There is evidence for such a phase in more refined D3/D7
systems with explicit chiral symmetry breaking dynamics
(see [I1] for examples of adding chiral symmetry break-



ing to the D3/D7 system). The most controlled case is
where a magnetic field is introduced [2I] - the phase di-
agram was generated in [22]. It has the structure shown
in Figure [1] - there is a low p phase with chiral sym-
metry breaking and no density. A continuous transition
then takes the model to a phase with non-zero density
but chiral symmetry breaking which is precisely such a
massive deconfined phase. Then another coninuous tran-
sition moves the system to a dense but chirally symmetric
phase. Other examples of these transitions have been ex-
plored in [23]. The phenomenological model we use below
is motivated by this example but allows one to control
the running of the quark bilinear anomalous dimension ~y
by hand. The key role of this running for chiral symme-
try breaking was highlighted in [34] and adapted to the
D3/D7 system in [I9]. Our model has the advantages of
an explicit chiral symmetry breaking mechanism, a run-
ning v and a very high u phase with chirally symmetric
quarks. Note though none of these models naively in-
clude confinement of the gluon degrees of freedom - we
will discuss this issue more in section ITIC.

In this subsection we will review the original D3/D7
model and then provide a more sophisticated D3/D7 in-
spired phenomenological model that has a chiral symme-
try breaking mechanism built in and naturally generates
this massive deconfined phase.

1. The Basic D8/D7 Model

Let us quickly review the model of [I3]. Their base model
is N =2 SYM with the matter content of N = 4 SU(N,)
SYM in the adjoint sector and Ny matter hypermulti-
plet in the fundamental representation. When a chemi-
cal potential is introduced an analytic form of the flavour
contribution to the free energy as a function of chemical
potential can be found [18]

NNy
£

Here p is the chemical potential, m is the quark mass, N,
is the number of colours and Ny the number of flavours. &
is a constant that can be chosen to match the asymptotic
UV form known from QCD

5= W2 —m? 0T, T (2)

NcNf 4

3’ =
1272

3)

At any non-zero T this theory is deconfined. The phase
therefore describes a vacuum with a density of quarks of
mass m.

The EoS, which relate the pressure P with the energy

density € are found from

Ezua—P—P (4)

P=-5
) 8#

[13] match this quark matter description with the nuclear
EoS from the previous section to model a transition be-
tween confined and deconfined matter inside a neutron
star. They equated the zero p phases in QCD (or the
nuclear models there of) and the D3/D7 system. This
allows comparison of the nuclear phase free energy, with
the free energy of the holographic model at finite p and
then determines what the dominant phase at each quark
chemical potential is. The hard mass of the quarks is
a free parameter and as can be seen from the phase
transition occurs at g = m when the free energy rises
from zero (the phase with density does not exist for
w<m).

In [13] the authors set somewhat arbitrarily m =
308.556MeV which places the transition to the nuclear
and the deconfined massive quark phases from the empty
vacuum at low p at the same critical yu. We reproduce
the plots for this case in Figure [} The transition be-
tween the nuclear and deconfined massive phases occurs
at the value of u where the pressure of the deconfined
quarks is greater than the chosen nuclear phase. The nu-
clear phase is preferred at p just above 308.55 MeV but
then there is a transition to the deconfined massive phase
(note in each case before the nuclear phase reaches the
pressure at which the speed of sounds becomes too large).
We also display the pressure versus energy density plot
which shows a jump at the first order transition.

In the later paper [I5] the authors allowed the critical p of
the massive deconfined phase to vary by simply dialling
the quark mass m. If it is pushed higher than 308.55MeV
the transitions occur at higher p. The authors also pro-
posed moving the critical p less than 308.55MeV. Now
the masive deconfined phase is favoured at p less than
308.55MeV but they showed that in intermediate regions
the nuclear phase could be favoured leading to compact
stars with a variety of quark and neutron layers. This is
quite a radical view of the phase structure although not
obviously impossible. We will not consider such cases fur-
ther here though. Here we will always assume any quark
phase lies at © above where the nuclear phase exists.

2. Bottom-Up D3/D7 model with chiral symmetry breaking
mechanism

The first new question we wish to ask is how robust the
simple D3/D7 model’s predictions are? In particular it is
a very rough and ready description of an massive decon-
fined quark phase with chiral symmetry breaking since
the quark mass is put in by hand as a hard mass. In par-



P [MeV/fm?]
700

600
500
400
300
200

100

s50 M [MeV]

350 400 450 500 550 600
P [MeV/fm?]

1000}

1001

= € [MeV/fm®]

50 100 500 1000 5000

FIG. 4: Pressure versus pu and energy density for the basic
D3/D7 model of [13] in solid black. Coloured lines are the nuclear
matter from the EFT EoS. The horizonetal black dotted lines show
the change of phase.

ticular since the gauge coupling of N =4 SYM is confor-
mal one would expect the IR action to not be reflecting
the growth of the gauge coupling. It is quite simple to
construct a D3/D7 inspired bottom-up model with an ex-
plicit chiral symmetry breaking mechanism that realizes
the deconfined yet massive quark phase. Here we will
follow this path to cross check the results with those of
the simpler model.

Our simple model consists of the DBI action for a probe
D7 brane in AdSs (the quark and chemical potential con-
tribution to the action)

L= —NyTorh(s + L)p*\/1 + (8,1)? — (2ma/d, 4,)?

()
Here Tp7 is the D7 brane tension, p the radial direction
in AdSs;, L the brane embedding function that is holo-
graphically dual to the quark mass and condensate and
A; is a gauge field dual to the quark number chemical
potential and density. h(p) is the key extra ingredient -
an effective dilaton term. In top down models the dilaton
will be constant for N =4 SYM or for more complicated
cases backreact on the metric. Here in a bottom-up ap-
proach we will allow i to be non-trivial yet neglect any
backreaction in the metric. h will trigger chiral symme-
try breaking. Note an explicit top-down example of pre-
cisely this action and a non-trivial, yet not backreacted,
h(r) that causes breaking of the symmetry is obtained for
the example of magnetic field B induced chiral symmetry

breaking in [21].

Naively one might think to use the running coupling in
QCD as the ansatz for the dilaton h. However, in [19] [34]
it was shown that the mapping of the dilaton to the run-
ning anomalous dimension of the gq operator that de-
termines the chiral symmetry breaking dynamics is more
subtle. In particular chiral symmetry breaking is trig-
gered when the chirally symmetric embedding L = 0 be-
comes unstable. One can expand the action for small L
[19] to give

1 2 Oh
S ~ /dp |:2h|L_0 p3(8pL)2 +p‘3 ﬁ

IRC
L=0

The first term can be made the kinetic term of a canonical
scale in AdSs by writing L = p¢ with the coordinate
change

- 1 1
pP= 5 oo d (7)
2],
leaving
1
s [ dpg (7°(050)° - m*?) 5)

with

2 p® dh

As expected the field L maps to a field ¢ with m? = —3 in
the case where h = constant - it holographically decribes
the mass and quark condensate of dimensions 1 and 3
(satisfying the required m? = A(A —4)). When h is p
dependent in the IR though there is an additional contri-
bution to m?, a running of A. If m? passes through —4
then the Breitenlohner Freedman (BF) bound in AdSs
is violated, there is an instability and the D7 embedding
function moves away from L = 0 - chiral symmetry is
then broken.

Thus h = constant describes a theory with no anomalous
dimension. In [I9] it was shown that h = 1/r9 describes
a phase with

4
(2-q)?
m? = —4 is achieved when ¢ = 0.536 and it becomes

infinite at ¢ = 2. In terms of the anomalous dimension
of the IR phase we have

m? = -3 —ém?, om? = (10)

4q

y=1— |l —2
(2 —q)?

(11)

It’s worth stressing that this analysis in a sense legit-



imises not backreacting the dilaton factor in our model.
If one did have a fully backreacted geometry then the
expansion to @ would be more complicated but the ad-
ditional pieces from expanding metric terms and so forth
would simply be an additional contribution to the run-
ning mass in @ At the level of studying the instability
to chiral symmetry breaking putting in a hand chosen
dilaton is as good as including a more elaborate bottom
up geometry (of course if one had an honest full descrip-
tion of the particular chiral symmetry breaking system
then the subtleties would be important!).

A natural choice to describe the running in a QCD like
theory is

1
h=1+-— (12)

which has zero anomalous dimension in the UV whilst
moving to an IR regime below r = 1 (this loosely sets
units where Agcp=1) with a fixed point for the anoma-
lous dimension. By varying ¢ one can pick very walking
theories [35] where the anomalous dimension asymptotes
to the BF bound at ¢ = 0.536 or theories that run quickly
to large IR fixed points g ~ 2 or theories that have a di-
vergent anomalous dimension at some finite r by picking
q > 2. It is interesting in this latter case that the anoma-
lous dimension diverges at some finite energy scale (as it
would at one or two loop level in QCD) yet the gravity
dual provides a smooth description below that scale. It
is a matter of speculation as to the IR behaviour of the
QCD running and we will explore a range of possible IR
divergent and fixed point behaviours below. The theory
is known not to be very walking though so values of ¢ to-
wards 2 are most likely appropriate. In [I9] it was shown
that the zero density chiral transition shows BKT or Mi-
ransky scaling [36], B7] because the IR mass is smoothly
tuned through the BF bound.

Our theory then is with . Note that in the large p
limit these theories return to the description of [I3] since
h — 1 so we fix the coeflicient of the Lagrangian as in
[13] to match to the asymptotic perturbative prediction
of the free energy from QCD - that is we enforce in
the UV.

Since the Lagrangian does not depend on the field A;
we have a conserved constant d = f—j}f’,&, from here we can
find an equation for A;. Then we can perform a Legendre
transformation £’ = £ — A} ffﬁ to get rid of A; in the

Lagrangian and find an equation for L. The equations of
motion are

(1 + (9,1)%)

2 _
oA = [, T 2 a6 + (27

(13)
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FIG. 5:  Solutions for L(p) for q = 1.8 in (@ ford =0 (Red),d =
0.005,0.015,0.075,0.15,0.29 (Blue) and d = 0.501 (Green)
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(14)
which we then numerically solve.

First consider the case where d = 0, the low chemical
potential phase, we fix the initial condition L'(0) = 0
and tune L(0) = L (these are the standard IR boundary
conditions in such models) in order that the UV mass
obtained from the large p behaviour of L(p) is zero. We
display the solution in red in Figure[]for the case ¢ = 1.8:
the function L(p) can be viewed as the dynamical mass
function of the quarks - in the UV (large p) limit the
bare mass is zero, but as one runs to the IR (low p) a
dynamical mass switches on.

In the large chemical potential phase we vary the value
of d which is in correspondence to the chemical poten-
tial through (13). We set A;(0) = L(0) = 0 and vary
L’(0) (again standard D3/D7 boundary conditions with
density [38]) for each value of d in order to obtain solu-
tions that have a UV mass equal to zero - see the blue
curves in Fig[o|in the case of ¢ = 1.8. We also obtain the
value of the chemical potential as the UV value of A, i.e
1 = Ay(A) from integrating (I3). We find that there is
a critical value d. above which there is not a symmetry
breaking process and then the only solutions with a zero
UV mass are the solutions that have L = 0 for every
value of p (green in Fig . There are two continuous
transitions here, from the red d = 0 solution to the blue
chiral symmetry breaking solutions, which is the massive
deconfined phase we discuss, to the green very large d
chirally symmetric phase.

We obtain the free energy of the vacuum for each value
of d by integrating the action using the solutions of .
The integrals all share the same divergence which can
be removed by subtracting the counter term | dpp®. We
further subtract the d = 0 free energy from the d # 0
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FIG. 6: Lpaz vs p for different q. The different coloured lines
represent different values of q; (Red) q=1, (orange) g=1.1, (green)
q=1.8, (blue) q=1.45, (purple) ¢=1.8

solutions free energies so that the vacuum at low p has
F = 0 as assumed in the previous nuclear equation of
state analysis. Since d is related to pu we can obtain
results as a function of the chemical potential.

Now we can study the behaviour of the model as a func-
tion of ¢. To make this comparison fair we write all
dimensionful parameters in units of Lo = L(0) at p =0
- this can be thought of as the constituent quark mass
(naively ~ 330 MeV, a third the proton mass) which we
are then using to fix the comparison. First of all we can
look at the phase structure with chemical potential - in
Fig [6| we display the peak value of the embedding L(p)
against p for different q. The larger ¢ values represent
high IR fixed point theories with strong running as the
BF bound is violated and they more strongly support the
embedding L as p rises but then rather rapidly switch to
the L = 0 phase. Lower ¢ theories that have smaller IR
fixed point values support the peak of L(p) less well but
the chirally broken phase persists to higher y - this sup-
ports the idea that the L(p) functions have support in
the more walking theories to higher energy scales.

Next in Figmwe plot the pressure (minus the free energy)
against u for these theories. For each ¢ we mark the lines
to show where the novel deconfined yet massive phase
and the massless phase are present. We include the basic
conformal D3/D7 model prediction also (here the phase is
massive for all ;). We see that the inclusion of a running
anomalous dimension raises the free energy in all cases
relative to the basic D3/D7 model - this is to be expected
since the dilaton profiles we use increase the action in the
IR. We also show the energy density against pressure to
show the theories are all converging in their predictions
in the UV whilst distinct in the IR.

The theories with the running anomalous dimension
clearly have stiffer equations of state than the basic
D3/D7 model and a useful check of how much stiffer is to
compute the speed of sound - we show the speed of sound
against energy density in Fig[§] The non-monotinicity of
the speed of sound is a notable feature. Here the peak is
caused around the scale at which the coupling runs from
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FIG. 7:  Plots of pressure versus pu and energy density for the holo-
graphic model with running anomalous dimension. The coloured
lines represent different values of q; (Red) q=1, (orange) g=1.3,
(yellow) g=1.45, (green) q=1.6, (blue) q=1.8, (purple) q=1.99,
(pink) q=2.8. Solid lines are the massive quark phase, dotted lines
the chirally symmetric phase. The black lines are the case of a
constant dilaton.

the UV ~ = 0 regime to the IR fixed point regime. This
point is also close to the scale where the massive decon-
fined phase transitions to the chirally symmetric phase
occur. The highest peak seems to occur where in the
running of v both the gradient to leave the UV regime
and to enter the IR regime are largest. The higher IR
fixed point theories with ¢ just below 2, which naively
one would have chosen to represent QCD, have the high-
est speed of sound and it rises briefly above 0.5 which is
a rough guide to where interesting neutron star physics
may occur [39]- we will investigate this below. Note all
the theories asymptote to the speed of sound being a
third at high p.

III. NEUTRON STAR PHENOMENOLOGY

We have developed holographic models of the high den-
sity regime of QCD including a variety of running anoma-
lous dimension profiles. The models include a deconfined
yet chirally broken phase and suggest quite stiff EoS can
exist. It’s now interesting to see what these models pre-
dict for neutron star phenomenology. We first review how
to convert our equations of state to a relation between
the mass and radius of a neutron stars.
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FIG. 8: The speed of sound plotted against energy density in units
of Lo for theories with different q. The coloured lines represent dif-
ferent values of q; (Red) q=1, (orange) q=1.3, (yellow) g=1.45,
(green) q=1.6, (blue) q=1.8, (purple) q=1.99, (pink) q=2.8. Solid
lines are the massive quark phase, dotted lines the chirally sym-
metric phase. The black line is the case of a constant dilaton.

A. Equations of State and TOV Equations

The EoS of strongly interacting matter determines the
mass-radius relation of neutron stars. This is realized
via the Tolman-Oppenheimer-Volkov (TOV) equations

dpP m + 4rr3 P
dr GE+P) r(r—2Gm)’ (15)
dm 9

which are the relativistic equations that model hydro-
static equilibrium inside the stars. G is Newton’s con-
stant. Here m and P are the mass and pressure in the
star as a function of radius r. To integrate the equations
we need to input the EoS E(P), as well as the central
pressure P, = P(r = 0) as initial condition, and the
output are the mass m(r) and Pressure P(r) of the cor-
responding star at a radial distance r. The radius R of
the star will be the value of r in which the pressure van-
ishes as we expect outside of the star. Then varying the
initial condition P. as a parameter we can construct a
curve for the mass of the star M = m(r = R) against R.

It is useful to place the TOV equations in their dimen-
sionless form:

w o ve(1rne) P ap

& = Tan -y (HA5C]) 00
dy _ 2

dif = Af e(f) (18)

Where r = 70§, M = moy(§), P = pop(§), € = €oe(§),

Anrie
A= 4o gnq B = Gmeco,
mo PoTo

We will fixed the scale with the value of pg = ¢ =

(308.55 M eV )*
2

as is sensible in the context of the nuclear

equation of state discussed above; this choice then fixes
the rest of our scale parameters.

If MgT(i’“) > 0 and one makes a radial perturbation, which
means from the mass vs radius curve (equilibrium so-
lution) we increase the value of the central density &,
keeping the same mass, then the correspondent equi-
librium solution for this new configuration has a higher
mass, therefore there is a deficit of mass, and the grav-
itational force needs to be balanced by increasing the
central pressure. The forces acting on the matter in the
star will therefore act to return the new configuration
toward its original unperturbed place. However for the
case in which 8](\9/[87(3“) < 0 we arrive at the conclusion
that, if the star is perturbed the forces acting on the per-
turbed star will act to drive it further from its original
point in the mass vs radius curve. Therefore a necessary
condition for stability is given by . As mentioned in
[27] we can also determining the stability of a star from
the mass vs radius curve using the Bardeen, Thorne and
Meltzer (BTM) criteria [28] which established a simple

formulation to know if all its radial modes are stable:

i. At each extremum where the M(R) curve
rotates counter-clockwise with increasing

central pressure, one radial stable mode becomes unstable.

ii. At each extremum where the M(R) curve
rotates clockwise with increasing central
pressure, one unstable radial mode becomes stable.

B. Mass Radius Relations

1. Nuclear phase

In section ITA we included three equations of state from
[30] for the nuclear phase above 308.55 MeV.

To obtain the mass vs radius curve we solve the TOV
equations starting from the highest density region (centre
of the star), using the numerical equation of state. The
maximum density the equations of state are consistent
for (see section ITA) set a maximum neutron star mass
in each case. The result of the computations, confirming
previous analysis is shown in Figure [} The observation
of neutron stars in the 2-2.5 solar mass range suggest that
the stiffer EoS are more physical.

2. Basic D3/D7

As a further cross check of our methods we reproduce
the mass radius plot for neutron stars with the equation
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FIG. 9: Mass of the Neutron Star as a function of its radius for
nuclear matter from EFT FEoS. The Green line represents a soft
EoS, the orange a medium FEoS and the red line a stiff FoS
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FIG. 10: Mass of the Neutron Star as a function of its radius.
Colour lines represent Nuclear matter star from EFT FEoS, the
black lines represent the change of phase towards a hybrid star
with a quark core using the constant dilaton D3/D7 model.

of state from section IIB1. That is the basic, constant
dilaton D3/D7 model of [I8] with the mass scale set so
that the transition for the on-set of density occurs at u =
308.55 MeV. The transitions to the high density phase
are those shown in Figure As in [13] we find only
unstable stars with a core of this material.
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FIG. 11:
of q=1.8

Transition from nuclear to quark matter for the case

3. Bottom-Up D8/D7 with Running

We have seen that our bottom up models have a stiffer
equation of state when the running anomalous dimen-
sion of the quarks is included. In fact, as we will see,
only the stiffest models with ¢2 > 0.5 are of any interest
phenomenologically for neutron stars. Let us therefore
begin by studying the case ¢ = 1.8 which has the stiffest
equation of state.

For ¢ = 1.8 we must also pick the scale Ly. Naively
this is roughly 330 MeV (a third the proton mass) but
if we make such a low choice the nuclear phase barely
exists before the quark phase takes over. The naive re-
lation to the proton mass though is only an estimate so
we will allow ourselves to consider a range of test cases:
Lo = 360,395 and 420 MeV. In Fig [11] we show the pres-
sure against chemical potential plots for these cases - the
nuclear curves are also displayed so the position of the
phase transitions can be read off. Note the transition to
the quark phase are typically at lower scales than in the
basic D3/D7 model since the pressure is larger.

It is instructive to see how stiff the quark matter is at the
transition. In Fig[12| we plot ¢ against u separately for
each of the nuclear equations of states. The black dotted
lines show where the phase transitions occur. Clearly
there is a distinct drop as one moves to the quark phase in
all these cases but the stiffness does then grow at higher
. One might expect that the neutron star stability will
decay when the core moves above the transition but that
there might be a new class of stars with the denser cores
reflecting the stiffness at higher p.

We solve the TOV equations for these cases and display
the mass vs radius curves in Fig The results indeed
fit our intuition. The stable neutron star branch ends in
all cases when the transition to the quark matter occurs.
The stiff area of the equation of state does kick in again
though hinting at a new branch of smaller, lighter, hybrid
stars with quark matter cores - the stable solutions are
marked in red. Only for the softest nuclear equation
of state are there, briefly, truly stable hybrid stars with
quark matter cores but clearly in all cases the EoS is close
to stiff enough to make such solutions. Note in no case
are there both quark core hybrid stars and neutron stars
as massive as 2 solar masses. Nevertheless the solutions
suggest that with only a slight increase in stiffness of the
EoS both could be realized.

It is interesting to understand the difference in composi-
tion of the traditional neutron stars and the new class of
stable stars we are predicting here. In Figure [14] we plot
the pressure against radius in representative stars with
the different phases distinguished. Note the neutron stars
have very different central pressures for very similar radii
reflecting the sharp rise in speed of sound/stiffness of
the neutron equations of state needed to support 2 solar
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FIG. 12:  Speed of sound squared as a function of the chemical
potential for the case of gq=1.8. Green, orange and red curves are
agin those for the three nuclear EoS and the three quark matter
curves those with Ly = 360,395 and 420MeV. The transition from
nuclear to quark matter is indicated with a black dashed line

mass neutron stars. The novel hybrid stars are very much
quark matter dominated and rely on a broader softer core
for stability.

These results have been for the case ¢ = 1.8 which has
the stiffest EoS and highest peak speed of sound. Lower
or higher ¢ values have softer EoS and produce no new
conclusions beyond the instability of the hybrid stars.
We do not therefore present any analysis of those cases.

The EoS in the improved holographic models are still not
stiff enough to play a role in compact object phenomenol-
ogy although the equations hint that they may be close
to a role. This suggests further refinements may lead to
interesting predictions.
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FIG. 13:  Mass vs radius curves for the case of g=1.8. The three
curves leaving the green/red/orange nuclear EoS prediction are the
three tranitions to a quark phase from Figure[I8 The small stable
branch is indicated in red

C. Restoring Confinement

Our equations of state so far either don’t support hy-
brid stars or are at odds with the 2 solar mass neutron
star observations. This need not be the final conclusion
though. We have modified the D3/D7 model (which in
base form has neither confinement nor chiral symmetry
breaking) to include chiral symmetry breaking. We have
not though included confinement.

A justification for this is that chiral symmetry breaking
may well set in before confinement. The QCD coupling
might run to a critical value for chiral symmetry break-
ing at which scale the quarks will become massive and
decouple from the pure Yang Mills theory running. That
running is very fast and starting at rather strong coupling
and will very quickly reach any critical value for confine-
ment in the pure glue theory so that confinement and
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FIG. 14: Pressure as a function of the radial variable r. The
radius of the Neutron star is the value of r at whizh P(r) vanishes.
(a) Pressure for the case of stiff nuclear matter taken from refer-
ence [30] (b) Pressure for a hybrid star where the quark phase (the
pink line corresponds to the massive chirally broken phase and the
green line corresponds to the massless chirally symmetric phase)
correspond to a value of g=1.8 and Lo = 360MeV . Note the sta-
ble cases from Fig lie where the chirally symmetric phase just
enters at the centre and the speed of sound is highest (see Fig E)

chiral symmetry breaking are intimately linked and lie
very close in scale. The D3/D7 system we have does not
include this change in phase to confined though and so
only describes the phases above the deconfinement tran-
sition fully.

The main impact of this omission is that we may be
wrongly computing the vacuum energy of the p# = 0 phase
of QCD by a constant factor. Then we are placing the
phase transitions in the wrong place. We have explored
adding such a “bag constant” factor.

The subtraction of such a constant from the high energy
phase free energy allows us to set Ly smaller than pre-
viously whilst maintaining a low density nuclear phase.
We can then move the region of p where the high density
phase has a large speed of sound closer to the transi-
tion point. Generically though we have not been able
to maintain the neutron star branch of stable stars with
ones with quark cores - the quark matter transition al-

11

ways leads to the neutron star branch being unstable
(before a 2 solar mass neutron star is achieved). We can
though make the novel hybrid stars we have seen more
stable in this way. In Figure [I5| we show an example of
the most sympathetic case with a substantial hybrid star
region.
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FIG. 15:  (a) Pressure vs chemical potential for different phases.

The nuclear phase (green) correspond to soft nuclear matter; the
quark phases: (pink) correspond to a value of ¢ = 1.8 and Lo =
190MeV and (blue) correspond to a value of q=1.8 and Lo =
360MeV. (b) Comparison of the speed of sound squared in units of
¢ as a function of the chemical potential. We show with black lines
the point of transition between the muclear phase and the quark
phase. (c) Mass vs radius curve showing the quark phases (pink)
correspond to a value of ¢ = 1.8 and Lo = 190MeV and (blue)
correspond to a value of g=1.8 and Lo = 360MeV



IV. CONCLUSIONS

The existence of neutron stars up to and over 2 solar
masses provides a challenge in our understanding of the
QCD equation of state (EoS) even within nuclear matter
models. At the cores of these stars it seems the mat-
ter must be very stiff with speeds of sound close to the
speed of light. Gravtiational wave signals from colliding
neutron star pairs will also begin to constrain the EoS
through measurements of the tidal deformability. It is
therefore interesting to study the deconfined quark mat-
ter equations of state to see if they might play a role in
the cores of neutron stars or generate other hybrid stars.
This requires knowledge of and the ability to calculate in
the strongly coupled yet deconfined section of the QCD
phase diagram. There are no first principles tools that
can be brought to bare since the lattice can not compute
at sizable chemical potential. This motivates trying to
use holography to explore possible descriptions of this
regime in QCD.

The first holography paper addressing neutron star struc-
ture [I3] used the exact results at finite p for the D3/D7
dual system. That system though has conformal gauge
dynamics and no chiral symmetry breaking unless intro-
duced by a hard mass. It predicted a very soft equation
of state that could not play a role in neutron star phe-
nomenology. Our goal here has been to adjust that model
to include a running anomalous dimension for the quark
condensate which introduces a dynamical chiral symme-
try breaking mechanism. Such theories suggest a massive
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deconfined phase with deconfined quarks yet chiral sym-
metry breaking before moving to the chirally restored
high density phase. We have shown that this leads to
a stiffer equation of state in the relevant intermediate p
phase and that the speed of sound has the required rise
and fall (see the non-monotinictiy in Figure [8) in this
regime.

We have used the TOV equations to model compact stars
using our EoS varying the IR quark mass. The instability
of the neutron star branch remains but in some case we
do see novel hybrid stars with quark matter cores form.
The models hint therefore at twin stars - two classes of 0.5
solar mass object with very different radii. This analysis
does not produce a sufficiently high speed of sound in the
material to allow both 2 solar mass neutron stars and hy-
brids to exist together although the EoS are clearly close
to realizing this. Nevertheless, we view this work as the
next step beyond [13] towards a full model. In the future
models that do a better job of including confinement and
colour superconducting phases may be possible and yet
stiffer EoS may emerge.
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