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Abstract

Colour vision has long fascinated scientists, who have sought to understand both
the physiology of the mechanics of colour vision and the psychophysics of colour
perception. We consider representations of colour in anatomically constrained con-
volutional deep neural networks. Following ideas from neuroscience, we classify
cells in early layers into groups relating to their spectral and spatial functionality.
We show the emergence of single and double opponent cells in our networks and
characterise how the distribution of these cells changes under the constraint of a
retinal bottleneck. Our experiments not only open up a new understanding of how
deep networks process spatial and colour information, but also provide new tools
to help understand the black box of deep learning. The code for all experiments is
available athttps://github. com/ecs-vlc/opponency.

1 Introduction

Opponent colour theory, which considers how combinations of chromatic stimuli are encoded in the
visual system, proposed by Hering [[11], initiated nearly a century earlier by Goethe [7], was observed
and formulated at a cellular level only in the 1950s by De Valois et al. [4] and others [30} 31} 23} 13]].
Combined, the theories of colour opponency, trichromacy [32} 10} 22]] and feature extraction in the
visual cortex [[17, 12} (13| 29]] constitute a deep understanding of early visual processing in nature.
Furthermore, the notional elegance of these theories has served to motivate much of the progress
made in computer vision, most notably including the development of Convolutional Neural Networks
(CNNs) [118} 2 [19] that are now so focal in our collective interests. Despite the sheer volume of
these experimental discoveries, they still represent only a sparse view of the broad spectra of the
natural world. This limits our ability to consider precisely which physiological differences lead to the
subtle variations in visual processing between species. For this reason, deep learning offers a unique
platform through which one can study the emergence of distinct visual phenomena, across the full
gamut of constraints and conditions of interest.

Lindsey et al. [20] use a multi-layer CNN to explore how the emergence of centre-surround and
oriented edge receptive fields changes under biologically motivated constraints. Primarily, the authors
find that the introduction of a bottleneck on the number of neurons in the second layer (the ‘retina’
output) of a CNN (trained to classify greyscale images) induces centre-surround receptive fields in
the early layers and oriented edges in the later layers. Furthermore, the authors demonstrate that as
this bottleneck is decreased, the complexity of early filters increases and they tend towards orientation
selectivity. The nature of colour in CNNs has also been explored [6l 8]]. Specifically, Engilberge
et al. [6] find that spectral sensitivity is highest in the early layers and traded for class sensitivity
in deeper layers. Gomez-Villa et al. [8] demonstrate that CNNs are susceptible to the same visual
illusions as those that fool human observers. This lends weight to the notion that the specifics of
colour processing result from our experience of visual stimuli in the natural world [27].
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In this paper we find evidence for spectral and spatial opponency in a deep CNN with a retinal
bottleneck (following Lindsey et al. [20]]) and characterise the distribution of these cells as a function
of bottleneck width. In doing so, we introduce a series of experimental tools, inspired by experiments
performed in neurophysiology, that can be used to shed light on the functional nature of units
within deep CNNs. Furthermore, we show similarities between the specific excitatory and inhibitory
responses learned by our network and those observable in nature. Across all experiments our key
finding is that structure (the separation of functional properties into different layers) emerges naturally
in models that feature a bottleneck. Code, implemented using PyTorch [24] and Torchbearer [9] is
available athttps://github. com/ecs-vlc/opponency.

2 Spatial and Colour Opponency in the Brain

Experiments using micro-electrode recording have been used to explore how single cells respond to
different stimuli. Consequently, a number of different observations and subsequent classifications of
cells regarding behavioural characteristics have been made. The first key observation is the existence
of two types of cell that respond to colour; spectrally opponent and spectrally non-opponent. Cells
with opponent spectral sensitivity [3] are excited by particular coloursﬂ and inhibited by others. For
a cell to be inhibited its response must fall below its response to an empty stimulus (the ‘background
rate’). For excitation to occur, the response must be at some point above the background rate.
Additionally, De Valois et al. S]] discovered that broadly speaking the cells could be grouped into
those that were excited by red and inhibited by green (and vice-versa), and cells that were excited by
blue and inhibited by yellow (and vice-versa). Cells that are spectrally non-opponent are not sensitive
to specific wavelengths (or colours of equal intensity) and respond to all wavelengths in the same
way . A second key observation is the existence of cells with spatial receptive fields that are opponent
to each other; that is, in some spatial area, they are excited above the background rate by certain
stimuli, and in other areas they are inhibited by certain stimuli [4]. Cells responsive to colour can be
further grouped into ‘single opponent’ and ‘double opponent’ cells. These cells respond strongly to
colour patterns but are only weakly responsive to full-field colour stimuli (e.g. solid colour across the
receptive field, slow gradients or low frequency changes in colour) [28]].

3 Experiments

In this section we detail our experimental procedures and results, characterising the emergence of
spectrally, spatially and double opponent cells in deep CNNs. We focus here on the whole population
of cells, for a depiction of the characterisation of a single cell see Appendix |Cl To preserve similarity
with Lindsey et al. [20], we adopt the same deep convolutional model of the visual system. This
model consists of two parts: a model of the retina, built from a pair of convolutional network layers
with ReLU nonlinearities, and termed ‘retina-net’; and, a ventral stream network (VVS-net) built
from a stack of convolutional layers (again with ReLU) followed by a two layer MLP (with 1024
ReLU neurons in the hidden layer, and a 10-way softmax on the output layer). All convolutions are
9x9 with same padding, and each has 32 channels, with the exception of the second retinal layer
whose number of channels is the retinal bottleneck. The number of convolutional layers in the ventral
stream is also a parameter of the model. Our visual system model is trained with the same range
of parameters (varying retinal bottlenecks and ventral system depths), with the same optimisation
hyperparameters as Lindsey et al. [20]], differing only in that it takes 3-channel colour inputs. As with
Lindsey et al.'s work, the networks are trained to perform classification on the CIFAR-10 dataset [[16].
Error bars throughout our experiments denote the standard deviation in result across all 10 models
trained for each set of hyper-parameters. For further details see Appendix [A]

Spectral opponency To classify cells according to their spectral opponency, we can simulate the
experimental procedure of De Valois et al. [[5]. Specifically, we first present the network with uniform
coloured images and measure the response of the target cell. By sampling colour patches according to
hue we can show the network a range of stimuli and construct a response curve. We then classify each
cell as either ‘spectrally opponent’ or ‘spectrally non-opponent’ by considering this curve relative to
a background rate, defined as the response of the cell to a zero image. A spectrally non-opponent

3Technically, the original experiments by De Valois et al. [3]] used energy-normalised single-wavelength
stimuli rather than a more general notion of colour created from a mixture of wavelengths.


https://github.com/ecs-vlc/opponency

g
=}

1.0 1.0
--{-- Retina2
0.8 A Ventrall
—|-= Ventral2

o
©
|

0.8

T 0.6 0.6

0.4 NPT e

o
'S
=
v
F

Percentage
Spectrally Opponent
o
o
1
e

o
N
‘
1
b
!
[
[
|
[

0.2

Percentage
Spectrally Non-opponent
o
sy
L
A
i
1
L
| :
E
E
H
H
Percentage
Spectrally Unresponsive

T T T T 0.0 4 T T T
10 20 30 10 20 30 10 20 30
Bottleneck Size Bottleneck Size Bottleneck Size

o
o

(a) Spectrally Opponent (b) Non-opponent (c) Unresponsive

Figure 1: Distribution of spectrally opponent, non-opponent and unresponsive cells in different layers
of our model as a function of bottleneck size.
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Figure 2: Distribution of spatially opponent, non-opponent and double opponent cells in different
layers of our model as a function of bottleneck size.

cell is one for which all responses are either above or below the baseline. A spectrally opponent
cell is one for which the response is above the baseline for some colours and below the baseline for
others. We further define an additional class, spectrally unresponsive, for cells which respond the
same regardless of the hue of the input. Curves showing how the distributions of the spectral classes
change for the second retinal and first two ventral layers as the bottleneck is increased are given in
Figure[I] As the bottleneck decreases, the second retina layer exhibits a strong increase in spectral
opponency, nearing 100% for a bottleneck of one. Conversely, cells in the first ventral layer show a
decrease in spectral opponency over the same region. Interestingly, for all but the tightest bottlenecks,
up to half of the cells are spectrally non-opponent. Spectrally unresponsive cells show almost the
exact opposite pattern to spectrally opponent cells.

Spatial opponency To explore spatial opponency, we can use a similar set-up to our experiments
with spectral opponency, measuring cell response to a series of high contrast greyscale gratings
produced from a sinusoidal function for a range of rotations, frequencies and phases following
Johnson et al. [14] (see Appendix[A.2]|for an example). We can subsequently classify a cell as spatially
opponent, non-opponent or unresponsive by comparing the maximum and minimum responses against
the baseline in the same way as before. Further, we can characterise whether a cell is orientation
tuned by isolating the grating frequency which gives the largest response for all orientations and
phases, then computing the average response per orientation for that frequency across all phases.
Automating the classification of cells, we can measure how spatial opponency manifests itself across
the network, obtaining the results depicted in Figures 2a]and [2b] We omit spatially unresponsive
cells as the percentages found in each layer was always on or very near zero. For a small bottleneck,
the vast majority of cells in the second retinal layer are spatially opponent. Conversely, cells in the
first ventral layer are predominantly spatially non-opponent. For less constrained bottlenecks these
distributions converge to be approximately equal in each of the layers. Surprisingly, and contrasting
with spectral opponency, almost all cells respond to some configuration of the grating stimulus, with
only a small fraction of the population being spatially unresponsive. What is again clear in these
experiments is the emergent structure that arises from the introduction of a bottleneck into the model.
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Figure 3: @) Distribution of double opponent cells in different layers of our model trained on CIELAB
images as a function of bottleneck size and the effect of shuffling the colour channels has on spatial

opponency (b)) and spectral opponency (c).
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Figure 4: Distribution of excitatory and inhibitory hues for spectrally opponent cells.

Double opponency Following Shapley and Hawken [28]], we can automatically classify a cell as
being double opponent if it is both spectrally and spatially opponent. Figure [2c|shows the distribution
of double opponent cells as a function of bottleneck size, giving a similar picture to the spectral and
spatial opponency plots. This finding is in alignment with biological observations that most spectrally
opponent cells are orientation selective for both achromatic and chromatic stimuli [15].

Generalisation to CIELAB space We performed additional experiments to validate whether
double opponency is still a feature in networks trained on images in CIELAB space. Figure [33]
shows the distribution of double opponent cells in this setting. As a strong validation of our findings,
the distribution is nearly identical to that of networks trained on images in RGB space. This again
supports the suggestion that double opponent characteristics arise from the statistics of natural images.

Ablation: ventral depth In order to build a greater understanding of the conditions required for
opponency, we plot the distribution of spectrally and spatially opponent cells as a function of ventral
depth in Figures [I0]and [T1|from the Appendix. With each added layer, the same pattern is found,
shifted one layer to the right. This suggests that the functional organisation depends more on the
distance from the output layer than from the input.

Ablation: spectral consistency For a final controlled demonstration of the conditions required
for double opponency, we remove colour information by randomly shuffling the colour channels of
inputs to the network. The resultant distribution plots show that this alteration completely removes
spectral opponency (Figure[3c), whilst spatial opponency remains (Figure [3b). This again strengthens
the observation that opponent characteristics arise as a result of the statistics of natural images.

4 Connection to Neurophysiology and Psychophysics

In this section we discuss how the learned representations from our experiments relate to the phys-
iology and psychophysics of vision. To make comparisons between spectral processing in nature
and in the trained models, we first consider the distributions of excitatory and inhibitory colours.
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Figure 5: @) Similarity between successive wavelength inputs in the feature space of a retina-net with
ventral depth 2 (shaded region indicates the standard error across the trained models). (b) Wavelength
change needed to elicit a just-noticeable difference in hue for a Human observer from Bedford and
Wyszecki [1]]. (c) Predicted similarity derived from images of natural scenes from Long et al. [21].

The plots in Figure ] show the distribution over the hue wheel of the most excitatory and most
inhibitory colours in spectrally opponent cells for our models. Strikingly, the most common form of
spectral opponency in the second retinal layer is predominantly red-green. The presence of cyan and
magenta corresponds well with the observable colour opponents in biological vision [26]], potentially
in support of so-called complementary colour theory [25]].

For a next point of comparison we consider the work of Bedford and Wyszecki [1] and Long et al.
[21]. In Bedford and Wyszecki [[1] the authors show that the change needed to elicit a just-noticeable
difference in hue is a complex function of wavelength. In Long et al. [21] the authors further suggest
that the reason for this non-uniform spectral sensitivity derives from the statistics of natural scenes,
showing that the curve predicted from a dataset of natural images bares a strong resemblance to that
obtained for a human observer. We can reproduce this experiment for our models by considering the
amount of change in response to successive stimuli across the spectrum, in this case using the mean
squared difference. The results for all three experiments are given in Figure[5] Perhaps surprisingly,
our results show a strong degree of similarity with Human colour sensitivity and the predicted function
derived from natural scenes. This in turn suggests a strong correlation between the learned spectral
representation of our networks and that found in nature. Furthermore, this experiment validates the
notion that classification on natural images (such as those in CIFAR-10) is a biologically valid way to
model the early layers of the visual system.

Enumerating the connections regarding spatial processing is a harder task as it is more difficult
to draw direct analogues to our experimental procedure. Specifically, the experiments which have
inspired our approach (such as those from Johnson et al. [15] and Zhao et al. [33]]) predominantly use
dynamic stimuli which change with time, such as flashing on and off or sliding across the field of
view. Conversely, in our experiments we use only static stimuli since the model considered exhibits
no time dependence. That said, we have included some example orientation tuning curves from Zhao
et al. [33]] in Figure[§|from Appendix [B] demonstrating that the curves found through our procedure
have a similar form to those observed in the Mouse lateral geniculate nucleus.

5 Discussion

Our investigation has shown that a dimensionality bottleneck has the power to do more than just
induce centre-surround receptive fields in the retina and oriented receptive fields in V1. We have
shown that spectral, spatial and double opponent characteristics arise from this constriction and made
two key observations. First, we have shown that a retinal bottleneck induces structure in the network
where all cells in each layer follow a layer dependant functional archetype. Second, we have given
a strong demonstration that opponent cells emerge as a result of the statistics of the input space; in
this case, natural images. Our findings also have the potential to support the development of new
network architectures. Specifically, if one accepts that human superiority in visual problems (such
as adversarial robustness or constructing a notion of shape) can be approached through increasing
similarity between deep networks and the human visual system, then we have provided a strong
mandate for future research into the use of convolutional bottlenecks.
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Appendices

A Model Details
In this appendix we provide further exposition of the details of our model and experimentation

process. In[A.T|we detail our training process and results. In[A.2] we give example gratings images
used in our spatial experiments.

A.1 Model Training

o
S
G

0.70

o
o
&

o
@
3
'
+

= 1retina channels

, 2 retina channels
0.55 4 {4 retina channels
-+~ 8 retina channels
0.50 1 —|-= 16 retina channels
++{ 32 retina channels

CIFAR-10 Test Set Performance

CIFAR-10 Test Set Performance

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Ventral Depth Ventral Depth

(a) Greyscale (b) Colour

Figure 6: Test accuracy for the different combinations of retinal bottleneck and ventral stream depth
explored in the experiments. Data points are the average over 10 trials.

We exactly follow the model construction and training procedure defined by Lindsey et al. [20]. We
note in addition that to replicate the results of the original experiments (see below). We additionally
use a weight decay of le — 6 to provide mild regularisation of the networks weights, and data
augmentation (random translations of 10% of the image width/height, and random horizontal flipping)
to avoid over-fitting. Figure [f] gives the average terminal accuracy for models trained both on
greyscale and colour images. The greyscale accuracy curves match those given in Lindsey et al. [20].

A.2 Gratings

The grating patterns in Figure [7] illustrate the type of stimuli used to classify cells according to
their orientation and form sensitivity. These samples have been generated with different angles (),
frequency of % and 0° phase. For the experiments described in Section 4.2 of the paper, a wide
range of values has been used to generate this type of stimuli.
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Figure 7: Examples of grating patterns used as stimuli for the spatial opponency experiments.



B Mouse LGN Spatial Tuning

225° — 3150
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Figure 8: Spatial tuning curves for cells in the Mouse Lateral Geniculate Nucleus (LGN) from Zhao

et al. [33].

C Characterising a Single Cell
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Figure 9: Characterisation of the 4 cells in the second retinal layer of a network with bottleneck of 4
and ventral depth of 2, based on (a) orientation and form sensitivity to a range of grating patterns,
(b) colour sensitivity to the colour stimuli shown on the hue wheel, and (c), the receptive field

approximation via 1-step gradient ascent towards a blank image.



D Ventral Depth

In this appendix we include ablation studies for the ventral depth of the model. Specifically, ventral
depth corresponds to the number of layers of the convolutional network which follows the retinal
bottleneck in the model from Lindsey et al. [20]]. Networks were trained for a range of ventral depths
following Lindsey et al. [20]. Plots show the representation of each cell type for networks with

ventral depth from one to four.
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Figure 10: Distribution of spectrally opponent, non-opponent and unresponsive cells in different
layers of our model following the definitions given by De Valois et al. [4] as a function of ventral

depth.
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Figure 11: Distribution of spatially opponent, non-opponent and unresponsive cells in different layers
of our model following the definitions given by Johnson et al. [[14] as a function of ventral depth.
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