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Abstract We detail the verification of the WALE large eddy simulation turbulence
model for application in cell-based lattice Boltzmann methods, as implemented in
our generic Cartesian structured adaptive mesh refinement framework AMROC.
We demonstrate how to effectively apply the test case of decaying homogeneous
isotropic turbulence to verify the core WALE implementation against higher resolved
direct numerical simulations and the constant-coefficient Smagorinsky turbulence
model. Both standard and regularised single relaxation collision models are analysed
systematically. While our results confirm the established observation that the standard
collision model yields less dissipative energy spectra, novel quantitative evidence is
given that this positive behaviour comes at the cost of unphysical perturbations in
high wavenumbers. In order to allow unaltered application of the finite-difference
stencils intrinsic to the WALE approach in real-world flow situations, a new method
is presented for ensuring consistent boundary conditions in microscopic distribution
functions as well as in macroscopic variables. The benefit of the proposed technique
is shown for dynamically adaptive simulations of flow around a sphere at Reynolds
number 1000 and compared to a large eddy simulation using the constant-coefficient
Smagorinsky model.

1 Introduction

In recent years the lattice Boltzmann method (LBM) [20, 32] has achieved stupendous
success in a variety of scientific fields. Application examples can be found for
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instance in [1, 2, 16, 23, 30, 34, 35]. Its computationally inexpensive numerical
scheme, straightforward parallelisation and close to linear parallel scalability make
it a powerful alternative for subsonic flow simulations compared to the mainstream
computational fluid dynamics solvers that discretise the Navier-Stokes equations and
usually employ finite volume schemes. Thanks to a time-explicit numerical update
and intrinsically low numerical dissipation, the LBM lends itself particularly to
large eddy simulations (LES) of engineering applications involving high Reynolds
number flows. The employment of Cartesian meshes, characteristic for the LBM, in
addition allows easy and automatic mesh generation and hence has the potential of
reducing the time for setting up a simulation considerably, particularly with complex
geometries. However, the drawback of the Cartesian approach is that a significant
number of cells usually needs to be deployed in the vicinity of the body in order
to accurately approximate its shape. In the case of uniform grids, this can lead to
prohibitively large meshes. A possibility to mitigate this issue is the extension of
the LBM to body-fitted structured [29] or hybrid meshes [10]. The other – more
common – approach is the use of levels of Cartesian refinement. This approach can
be further optimised by the implementation of solution adaptive mesh refinement
(AMR).

The AMROC (Adaptive Mesh Refinement in Object-oriented C ++) framework
[7] implements patch-based, structured adaptive mesh refinement (SAMR) gener-
ically for time-explicit finite volume methods. The LBM has been incorporated
into AMROC by formulating it on cell-based data structures; treatment of em-
bedded boundaries with a level-set-based ghost-fluid-type approach allows for an
effective handling of moving solid bodies. Examples of successful AMROC-LBM
simulations, primarily in the laminar flow regime, can be found for instance in
[8, 19, 12, 9, 11, 21]. The present paper reports on verification and validation
of a variety of new developments in the AMROC-LBM solver, in particular the
wall-adapting local eddy-viscosity (WALE) turbulence model [26] and the newly
implemented regularised single relaxation time (SRT) collision operator [22]. In the
procedure of applying LES models, that are based on finite difference stencils, a new
algorithm for imposing macroscopic variables in ghost cells, after the application of
"bounce-back" boundary conditions, is presented and tested here for the very first
time. Two validation tests are discussed in detail, namely the decaying homogeneous
isotropic turbulence in a periodic box benchmark and turbulent flow around a sphere
at Reynolds number 1000. Comparing the spectra from the STAndard (STA) and
REGularised (REG) SRT operators in the former case, useful information will be
extracted. The efficiency and performance of the WALE model will also be cross-
verified against the Constant SMAgorinsky (CSMA) model.

The paper is organised as follows: In Sec. 2 we present the LBM equations both
for the STA and REG SRT operators, the formulas for the CSMA and WALE models,
and the SAMR strategy as implemented in AMROC. Section 3 details the improved
boundary condition implementation in AMROC-LBM, both for the domain and the
embedded non-Cartesian surface boundaries, and the new algorithm for imposing
microscopic as well as macroscopic variables in ghost cells will be reported. The
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results of the two validation test cases and their discussion can be found in Sec. 4.
Finally, the conclusions are drawn in Sec. 5.

2 Methodology

In this section, we review the lattice Boltzmann method and the newly implemented
REG SRT collision model. Moreover, the formulas describing the two LES models,
employed in this paper, are introduced. Finally, we summarise the SAMR strategy
that is applied in the AMROC-LBM solver.

2.1 Lattice Boltzmann method

The discrete lattice Boltzmann equation, describing the evolution of the distribution
functions fα with the SRT collision model and without an external force, reads

∂t fα + eα · ∇ fα = τ−1( f eq
α − fα), (1)

where τ is the discrete relaxation time. We chose the standard discretisation in space
and time based on a finite difference scheme and a two-step procedure. The first
operation, that is applied during the time step update, is the streaming

f̌α (x + eα∆t, t) = fα (x, t), (2)

where f̌α is the intermediate value of the distribution function between the two steps.
The second operation is the collision. For the STA SRT model, it is defined as

fα (x, t + ∆t) = f̌α (x, t) +
∆t
τ

( f eq
α (x, t) − f̌α (x, t)). (3)

The discrete relaxation time τ in LBM is given as

τ =
ν + ∆tc2s /2

c2s
, (4)

where ν is the kinematic viscosity and cs is the physical speed of sound of the fluid.
The number of the lattice velocities eα depends on the employed LBM model. In
the current research work, the D3Q19 model was used, with the 19 lattice directions
defined as

eα =


0, wα =

12
36, α = 0,

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c, wα =
2
36, α = 1, . . . , 6,

(±1,±1, 0)c, (±1, 0,±1)c, (0,±1,±1)c, wα =
1
36, α = 7, . . . , 18.

(5)
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The notation c is the ratio ∆x/∆t. The Maxwellian equilibrium distribution function
is truncated to second order, yielding

f eq
α (x, t) = wα ρ

[
1 +

eα · u
c2s
+

(eα · u)2

2c4s
− u · u

2c2s

]
, (6)

with the user option in AMROC-LBM to increase the latter approximation to third
order for slightly improved accuracy and stability. The macroscopic variables density
ρ, velocity vector u and pressure p can be evaluated through the first two moments
of the distribution functions fα as

ρ(x, t) =
∑

α

fα (x, t), (7a)

ρ(x, t)ui (x, t) =
∑

α

eαi fα (x, t), (7b)

p(x, t) = ρ(x, t) c2s . (7c)

At this point, it is helpful to introduce the non-equilibrium part of the distribution
functions, f neq

α (x, t) = fα (x, t)− f eq
α (x, t), and, by utilisation of the second moment,

to obtain the momentum flux tensor Πneq
i j as

Π
neq
i j =

∑

α

eαieα j f neq
α (x, t). (8)

This tensor is analogous to the strain rate in the Navier-Stokes equations and will be
useful for the subsequent discussion.

2.1.1 Regularised single relaxation time collision model

To further improve the stability of the AMROC-LBM solver for high Reynolds
number flows, a second collision model, namely REG SRT, proposed by Latt and
Chopard [22], has been recently implemented. The idea is to regularise the non-
equilibrium part of the distribution functions before one applies the collision step.
This procedure reads

f (1)
α (x, t) =

wα

2c4s
Qαi jΠ

neq
i j , (9)

where Qαi j = eαieα j − c2s δi j and Πneq
i j is estimated from Eq. (8). In this way, the

non-equilibrium part retains the symmetry that is imposed by its relation with the
viscous stress tensor and the strain rate. This extra step transforms the computation
of the collision operation, Eq. (3), to

f reg
α (x, t + ∆t) = f eq

α (x, t) + (1 − ∆t
τ

) f̌ (1)
α (x, t). (10)
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2.2 Large eddy simulation

In AMROC-LBM the integration of the LES models in the solver is based on the
eddy viscosity approach [17]. In the case of a direct numerical simulation (DNS)
with the LBM, the discrete relaxation time Eq. (4) is a global variable depending
only on the physical speed of sound, the viscosity of the gas and the time step. The
idea is that altering the relaxation time is analogous to changing the mean free path
of the particles. Invoking the mixing length theory of Prandtl, one can argue that
altering the mean free path is equivalent to changing the viscosity, leading to the idea
of a turbulent eddy viscosity νt . The general formula to calculate the eddy viscosity
is

νt = (C∆x)2OPLES, (11)

where C is a constant and OPLES is a time scale estimated differently by each LES
model. Therefore, in the case of an LBM LES, the physical viscosity is replaced by
an effective viscosity ν⋆ = ν + νt . This alteration also affects the calculation of the
discrete relaxation time τ which is replaced by an effective value τ⋆.

2.2.1 Constant Smagorinsky model

For the case of the CSMA model [31] the eddy viscosity is computed as

νt = (CS∆x)2 |S |, (12)

where |S | =
√
2Si jSi j is the intensity of the filtered strain rate. The constant CS is

a user parameter, with a usual value between 0.1 and 0.2. As already mentioned in
Section 2.1.1, the non-equilibrium part of the distribution function f neq

α can be used
to estimate the strain rate locally per cell as

Si j = − 1

2ρc2s τ⋆
Π

neq
i j . (13)

One can substitute Eq. (13) in Eq. (12) and after some algebra an explicit equation
for the effective discrete relaxation time τ⋆ in each cell is retrieved:

τ⋆ =
τ

2
+

√√
τ2

4
+

C2
S
∆x2 |Πneq

i j |
2ρc4s

, (14)

with τ computed by Eq. (4).
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2.2.2 Wall-adapting local eddy-viscosity model

The idea of the WALE model is to employ a more advanced operator for the char-
acteristic time scale OPLES that can effectively reduce the eddy viscosity to zero at
the wall, thereby reproducing the proper scaling νt ∼ y+

3 without the need for a
damping function or any other location-dependent strategy [26]. The new operator
is a function both of the strain rate Si j and the rotation rate Ωi j . It reads

OPWALE =
(Ji jJi j ) 3

2

(Si jSi j )
5
2 + (Ji jJi j ) 5

4

, (15)

where Ji j is

Ji j = SikSk j +ΩikΩk j − 1

3
δi j (SmnSmn −ΩmnΩmn). (16)

Therefore, in this case the eddy viscosity is calculated as

νt = (Cw∆x)2OPWALE, (17)

where Cw is the constant of the model and is equal to 0.5.
Compared to the CSMA model, which retains the locality of the collision step,

the WALE model is based on central finite differences for estimating the rotation
and strain rates. This stencil operation destroys the locality of the WALE collision
operation, adds extra computational burden and, as we will present below, requires
special attention in the application of some boundary conditions.

2.3 Structured dynamic mesh adaptation

The AMROC framework provides the capability of dynamic mesh adaptation, utilis-
ing user-defined refinement indicators on fully parallelised meshes. Its AMR strategy
is based on the block-structured and recursive adaptive mesh refinement method for
hyperbolic conservation laws after Berger and Collela [3]. By formulating the LBM
on cell-based data structures, the method can be made to fit smoothly into the SAMR
execution procedure. A positive side effect of the cell-based formulation is that the
scheme becomes conservative in ρ and ρu.

In the SAMR approach, finite volume cells are clustered with a special algorithm
into non-overlapping rectangular grids. The grids have a suitable layer of halo cells
for synchronization and applying inter-level and physical boundary conditions. Re-
finement levels are integrated recursively and by updating the sequence of grids on
each level in a for-loop using the same numerical update routine. The spatial mesh
width ∆xl and the time step ∆tl on level l are refined by the same factor rl , where
we assume rl ≥ 2 for l > 0 and r0 = 1. In order to ensure that the same gas, with
identical speed of sound and kinematic viscosity is approximated on all levels of
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(a)

fCα, in

(b)

f
f
α, in

f̌
f
α,out

(c)

S−1( f̌Cα,out)

Fig. 1: Visualization of distributions involved in necessary data exchange at a coarse-
fine boundary. The thick black lines indicate a physical boundary. (a) Coarse dis-
tributions going into fine grid; (b) ingoing interpolated fine distributions in halos
(top), outgoing distributions in halos after two fine-level transport steps (bottom);
(c) averaged distributions replacing coarse values before update is repeated in cells
next to boundary.

the SAMR hierarchy, with the alteration of ∆xl and thus ∆tl , the discrete relaxation
time τ cannot be a constant but needs to be adjusted according to Eq. (4) for the
update on each level. In addition to this, the interface region requires a specialized
treatment. Distinguishing between the streaming S, Eq. (2), and collision C, Eq. (3),
the crucial steps of our method are:

1. Use coarse grid distributions f Cα,in that propagate into the fine grid, cf. Fig. 1a, to
construct initial fine grid halo values f f

α,in by interpolation (Fig. 1b, top).
2. Stream f̌ f

α := S( f f
α ) on entire fine mesh. Collision f f

α := C( f̌ f
α ) is applied only

in the interior cells (yellow in Fig. 1b, top). Repeat rl − 1 times.
3. Average outgoing distributions from fine grid halos (Fig. 1b, bottom) to obtain

f̌ Cα,out.
4. Reverse streaming for averaged outgoing distributions, f̄ Cα,out := S−1( f̌ Cα,out), and

overwrite those in the previous coarse grid time step, cf. Fig. 1c.
5. Repeat LBM update on coarse grid cells next to coarse-fine boundary only.

This algorithm is computationally equivalent to the method by Chen et al. [5] but
tailored to the SAMR recursion that updates coarse grids in their entirety before
fine grids are computed. Because of the nonlinearity of the collision operator C it
becomes necessary under this paradigm to repeat the LBM update for those coarse
grid cells that share a face or corner with a fine grid. A comprehensive verification
of the adaptive method in AMROC-LBM can be found in [12].
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3 Boundary conditions in AMROC-LBM

The utilisation of halo or ghost cells is intrinsic to the SAMR approach. In order to
achieve an efficient and parallel update of the subgrids on each level of the hierarchy,
it is of crucial importance to synchronise and apply boundary conditions in ghost
cells before the execution of the numerical update routine. Similarly, the modification
of internal cells in order to realise geometrically complex embedded wall boundary
conditions is in AMROC-LBM equally carried out immediately before the LBM
update. While the routines for synchronisation and first-order-accurate inter-level
boundary conditions in AMROC are generic, cf. [7], special attention is necessary
to implement high-quality physical boundary conditions for the LBM.

3.1 Domain boundaries

Two types of domain boundaries are used in the current paper. Both are based on the
idea of [36] and are similar to the strategy applied in [33] for domain boundaries.
The basic idea is the reconstruction of the distribution functions in the ghost cells
through the extrapolation of the macroscopic variables and the non-equilibrium part
from the neighbouring interior cell in the normal direction.

3.1.1 Inlet

In the case of an inlet boundary, the vector of velocities is imposed and the density
ρ(xBC) in the boundary ghost cell is unknown. Assuming a zero gradient, the density
of the first neighbouring normal interior fluid cell ρ(xF) is extrapolated as

ρ(xBC) = ρ(xF). (18)

Having obtained the density, one can proceed with estimating the equilibrium part
f eq
α (xBC) of the distribution function by applying Eq. (6). The same extrapolation

can be used to estimate a value for the non-equilibrium part as

f neq
α (xBC) = fα (xF) − f eq

α (xF). (19)

With these two values one can now reconstruct the distribution function in the
boundary ghost cell as

fα (xBC) = f eq
α (xBC) + f neq

α (xBC). (20)
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3.1.2 Outlet

In the case of the outlet boundary, the density ρ(xBC) is imposed and the velocity field
needs to be extrapolated from the normal neighbouring interior fluid cell. Following
the same methodology as in case of the inlet boundary, the extrapolation formula is

u(xBC) = u(xF). (21)

Having obtained both density and velocity in the ghost cell location, the equilibrium
functions, Eq. (6), can be calculated. The non-equilibrium part is also extrapolated
following Eq. (19). Finally, the reconstruction of fα (xBC) is according to Eq. (20).

3.2 Embedded wall boundaries

In the AMROC software, non-Cartesian boundaries are represented implicitly on the
adaptive Cartesian grid by utilising a scalar level set function ϕ that stores the distance
to the boundary surface. The boundary surface is located exactly at ϕ = 0 and the
boundary outer normal in every mesh point can be evaluated as n = −∇ϕ/|∇ϕ| [6].
A fluid cell is treated as an embedded ghost cell if its midpoint satisfies ϕ < 0.

Real-world geometries are considered in AMROC as triangular surface meshes,
cf. [7]. The computation of the level set distance information in every Cartesian
cell midpoint could principally be accomplished by simply iterating over the entire
surface mesh; yet, this would lead to detrimental performance for increasing problem
size. Instead, we employ a specially developed algorithm based on characteristic
reconstruction and scan conversion by Mauch [24] that is used to compute the
distance exactly only in a small band around the embedded structure.

For imposing no-slip wall boundaries on the LBM, we choose in this paper
the bounce-back algorithm of [4]. The idea of this methodology is to enhance
the standard half-way bounce-back scheme with a spatial interpolation of first- or
second-order accuracy to handle curved boundaries. The interpolation weight q is
the ratio between the distance to the wall from the first fluid cell to the grid spacing.
Based on the value of q and in case of the first-order-accurate interpolation, there
are two possibilities:

fopp(α) (xBC) = 2q fα (xF1) + (1 − 2q) fα (xF2), q < 0.5, (22a)

fopp(α) (xBC) =
1

2q
fα (xF1) +

(2q − 1)
2q

fopp(α) (xF1), q ≥ 0.5. (22b)

In the above equations, opp(α) is the lattice direction opposite to α, fα (xF1) is the
distribution function located in the first neighbour cell in the lattice direction α,
while fα (xF2) is located in the second neighbour fluid cell in the same direction.

The difference between our implementation and the original approach is that
the estimated distribution function is originally imposed at fopp(α) (xF1, t + ∆t), in
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contrast to our case, which applies it to fopp(α) (xBC, t). The subsequent streaming
operation of the time step will transport it to the right fluid cell before the collision.

3.3 Imposing macroscopic variables in ghost cells

For the WALE model, central finite differences of the velocity field are needed to
estimate the strain and rotation rates. In the case of the described in- and outlet
boundary conditions, applying Eq. (7) yields suitable macroscopic variables in the
ghost cells. However, a bounce-back boundary condition, such as in Sec. 3.2, imposes
only some of the distribution functions. Directly applying Eq. (7) would create
questionable moment values that could dramatically affect the estimation of the
eddy viscosity in the vicinity of the wall, resulting in inaccurate results.

To deal with this issue, we propose a new algorithm that is employed after the
boundary condition and allows imposing the macroscopic variables without affecting
the distribution functions that will be streamed to fluid cells and have been imposed
by the boundary conditions in microscopic distribution functions. The idea is to alter
the rest, i.e., the outward streaming distribution functions such that the evaluation of
Eq. (7) will yield reasonable values. During this procedure, the algorithm checks the
lattice directions in order to decide which of them point to interior fluid cells and are
needed to impose the microscopic boundary conditions. These directions, denoted
as i, are marked as non-free. Simultaneously, one can estimate partial density and
velocity field as

δρ =
∑

i

f i, i ∈ non-free directions, (23a)

δρu =
∑

i

ei f i, i ∈ non-free directions. (23b)

We index the group of the free directions with j. Assuming the groups of non-free
and free directions have I and J elements, respectively, we have n = I + J, with
n = 19 for instance for the D3Q19 model. The idea is to use the free directions to
impose the four macroscopic variables, namely density ρ0 and the three velocity
components u0. In order for this algorithm to be functional, one needs to ensure that
J ≥ 4 for the ghost cell in question. Moreover, in order for the three components
of the velocity to be specified, it must be ensured that for

∑
j ej = (α1, α2, α3)

the relations α1, α2, α3 > 0 hold true. In most scenarios, these two restrictions are
satisfied and we also have J > 4, which results in the over-determined system

ρ0 − δρ =
∑

j

f j, j ∈ free directions, (24a)

ρ0u0 − δρu =
∑

j

ej f j, j ∈ free directions. (24b)
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An efficient way to resolve this issue is the use of the equilibrium function Eq. (6)
estimated by the imposed macroscopic quantities, ρ0 and u0. In this way, we can
reduce the number of unknowns to four. At this point, we ignore the distribution
function of the zero lattice direction f0, which will be used to satisfy the density
ρ0. The next step is to loop over the rest of the free directions, starting from the
direction with the smaller α, and impose the equilibrium values until we have only
three unknown distributions. We index the group of K equilibrium distributions by
k, and obviously n = I+K +4. In this way we end up with a system of four equations
with four unknowns.

Initially, we have to solve the linear system of the three equations, indexed m,
originating from the first moment:

ρ0u0 − δρu −
∑

k

ek f eq
k
=
∑

m

em fm =⇒ b = Af . (25)

In the current implementation, an LU-decomposition is employed to solve the above
linear system. The last step is the evaluation of f0 as

ρ0 − δρ −
∑

k

f eq
k
−
∑

m

fm = f0. (26)

It is important to mention that the ascending order during the step of the equilibrium
functions is vital for the stability of the algorithm. In case that at least one of the
members of the m group belongs to α ∈ [1, 6], the matrix A will be singular resulting
in no available solution for the system of Eq. (25).

The proposed algorithm can also be applied straightforwardly to the D3Q27
stencil and can also be used in 2D with the D2Q9 stencil. As for the imposed
velocity u0, as a first attempt and following a ghost-fluid approach, we use in this
paper the interpolated velocity at the point xBC + 2ϕn. However, one could increase
the accuracy, particularly in a turbulent boundary layer, by assuming the law of the
wall in the normal direction and thus estimating the velocity components.

4 Results

To illustrate the capabilities of the new implementations in the AMROC-LBM solver,
we present two benchmark cases, namely decaying homogeneous isotropic turbu-
lence in a periodic box and the flow around a sphere at Reynolds number Re = 1000.
The first test case serves the purpose of verifying the core LES models and investi-
gating their interplay with the two available collision operators. The second test, on
the other hand, verifies their integration with various boundary conditions, partic-
ularly embedded complex walls, and the AMR algorithm. Moreover, the proposed
algorithm for imposing macroscopic variables in ghost cells will also be tested and
evaluated.
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4.1 Decaying homogeneous isotropic turbulence

The numerical domain for the decaying homogeneous isotropic turbulence test case
is a cube with side length L = 2π. Periodic boundary conditions are applied at all
sides. Assuming a uniform grid, this setup provides a unique and convenient way to
test LES models without disturbances arising from physical boundary conditions or
the resolution interfaces between levels of AMR.

Our initialisation of the flow field is based on the final saved iteration of a forced
homogeneous isotropic turbulence case presented previously in [13, 14]. In this
scenario, we restart the simulation in the AMROC-LBM solver but deactivate the
force. Suitable local volume averaging is applied when creating the initial solutions
for the lower resolutions. To ensure a fair comparison, all simulations in this chapter
have been initialised based on a DNS with a resolution of 5123 running with the REG
SRT collision model. The reason for this choice is that the force has created slightly
different Reynolds number flows for the case of STA and REG SRT and thus a direct
comparison of the curves would be difficult. The initial Reynolds number based on
the integral length scale λ is 80. Moreover, a field arising from the regularised model
can safely be assumed to be more accurate, and it can be expected that the effect of
the initial solution will fade away over time. We have also restarted the STA SRT
simulations from the non-regularised DNS of 5123, and the results were found to be
identical to the ones presented below.

In the plots in this chapter, we will compare two resolutions, namely 1283 and
323 cells, for two turbulence models currently available in the AMROC-LBM solver.
The first one is the WALE, which we want to verify and evaluate, and the second is
the CSMA with CS = 0.1. Simultaneously, we will compare the two aforementioned
collision models, STA and REG SRT. Additionally, a DNS with the REG SRT
collision model with 5123 cells will be shown as a reference solution. All simulations
have run for a final time of 1000 time units.

Figure 2 presents the evolution of the turbulent kinetic energy k and dissipation
rate ε for the resolution of 1283 cells normalised by the initial data of the DNS of
5123. The collapse of the LES curves with the reference DNS for the whole time
in the case of the kinetic energy and for most of the time for the dissipation rate is
imminent. The discrepancies appearing in the initial part for the dissipation rate are
the effect of the local volume averaging resulting in fewer small eddies and thus a
smaller initial value for ε. Therefore, examining these two plots, we cannot identify
any differences between the two LES and the two collision models.

From the theory of decaying homogeneous isotropic turbulence, we expect that
power-laws of the type k ∼ (t + t0)−n and ε ∼ (t + t0)−n−1 can describe the slopes
in the current plots. In Fig. 2, we have also estimated the exponent n = 1.4, a value
in the expected range in agreement with literature [18].

Instantaneous 3D energy spectra and pressure fluctuation spectra at t = 98.17
time units are given in Fig. 3. Examining the energy spectra, their collapse in the
energy-containing range is a strong proof that the LES models do not affect the
large eddies, which is anticipated. Moreover, CSMA with CS = 0.1 and WALE
have produced identical results in the case of the same collision model, providing
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Fig. 2: Evolution of the turbulent kinetic energy k (left) and dissipation rate ε (right)
for CSMA with CS = 0.1 and WALE at a resolution of 1283 cells for both STA
and REG SRT. The DNS of 5123 resolution with REG SRT has been added as a
reference.
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Fig. 3: Instantaneous energy spectra (left) and pressure fluctuation spectra (right)
of the CSMA with CS = 0.1 and the WALE for both STA and REG SRT for the
resolution of 1283 cells at t = 98.17 time units. The curves of the REG DNS on
5123 cells are shown as a reference.

first evidence for the correctness of the WALE implementation. However, STA SRT
seems to produce less dissipative results in the high wavenumber region, as it returns
values closer to the DNS reference solution. This observation has also been recently
reported by Nathen et al. [25].

Inspecting the pressure fluctuation spectra, one can notice that using the STA
collision model the amount of small eddies has been considerably increased. It turns
out that the departure of the energy spectra in the dissipation range for the two
collision models coincides with this increase. Hence, we can speculate that the less
dissipative behaviour of the STA SRT model is not because the small eddies carry
more energy but because of an artificial rise in their numbers. Contrarily, the REG
SRT model has estimated a solution much closer to the reference. We explain this
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Fig. 4: Evolution of the turbulent kinetic energy k (left) and dissipation rate ε (right)
for CSMA with CS = 0.1 and WALE at a resolution of 323 cells for both STA and
REG SRT. The DNS of 5123 with REG SRT has been added as a reference.

observation with the fact that the regularisation procedure is constructed to impose
the symmetries of the strain rate Si j in the non-equilibrium part of the distribution
function, Eq. (13), while reliably maintaining

∑
e f neq =

∑
f neq = 0. The latter is

not always guaranteed in the case of the STA SRT model [22], which can result in
conservation errors in density and momentum, i.e., non-physical behaviour in the
collision step. Such errors occur in particular for high Reynolds numbers or Mach
numbers close to the LBM stability threshold.

To challenge the models more, Fig. 4 shows the evolution of k and ε for the case of
the resolution of 323 cells. No combination of models is able to capture the reference
curve of the kinetic energy in the initial phase exactly, although there are no evident
discrepancies among them. The deviation from the DNS result is even larger for the
dissipation rate, where only in the last time units there is a convergence of all the
curves. The most interesting feature of this plot is the deviation of the curves of the
STA and REG counterparts in the initial part of the simulation, with the former to
show an observably less dissipative behaviour.

Following the same procedure, Fig. 5 presents the instantaneous 3D energy and
pressure fluctuation spectra at t = 98.17. Due to the extreme coarsening of the
grid, the energy of the big eddies has been slightly overestimated by both LES
and collision models. Again, the STA SRT operator has returned a less dissipative
spectra in high wavenumbers. On the other hand, examining the pressure fluctuation
spectra, the STA SRT model overestimates the small scales compared to the REG
SRT model and the DNS. However, it is capable of following the DNS trend for more
wavenumbers in contrast to the REG SRT that underpredicts the reference solution
in the small scales.

Another important observation from the pressure fluctuation plot is the deviation
of the WALE STA and CSMA STA models from the DNS in high wavenumbers. This
deviation does not appear for the case of the REG collision model where the curves
are identical. As mentioned previously, the CSMA estimates the strain rate locally
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Fig. 5: Instantaneous energy spectra (left) and pressure fluctuation spectra (right)
of the CSMA with CS = 0.1 and the WALE for both STA and REG SRT for the
resolution of 323 cells at t = 98.17. The curves of the REG DNS on 5123 cells are
shown as a reference.

based on the non-equilibrium part of the distribution function while WALE applies
finite differences. By reducing the resolution and thus increasing ∆x and ∆t, we have
reduced the value of τ. This reduction leads to a higher value for the factor ∆t/τ in
the collision step, amplifying any inaccuracies arising from the imprecise evaluation
of the non-equilibrium part in the case of the STA SRT operator. The estimation of
the first-order moments, and thus the velocity components, is expected to be more
accurate than the second-order moments, leading to an improved prediction of the
strain rate based on a finite-difference stencil.

Finally, Fig. 6 shows the instantaneous vorticity contours at t = 98.17 time units of
the aforementioned models for the case of 1283 cells. All combinations of models are
able to capture the majority of the large eddies appearing in the reference solution of
the DNS. Comparing the LES models, there are no apparent discrepancies, although
the CSMA has produced slightly more small eddies. On the other hand, it is evident
that the STA SRT model has predicted more small scales compared to the REG SRT,
confirming our previous expectation from the pressure fluctuation plots.

4.2 Sphere at Reynolds number 1000

To verify the coupling of the LES models with domain and embedded solid bound-
aries, and also with the AMR algorithm, the benchmark of flow around a sphere of
diameter D at Reynolds number 1000 is selected. A computational domain of dimen-
sions [−2D, 6D]× [−2D, 2D]× [−2D, 2D] is used. The domain boundary conditions
from Sec. 3.1 are applied, where an inlet boundary condition is imposed on the left
side and outlet boundary conditions are applied at all other sides. The no-slip wall
boundary condition on the body is modelled with the Bouzidi bounce-back condi-
tion, as sketched in Sec. 3.2. The mesh adaptation was set up to run with five levels
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Fig. 6: Contours of vorticity magnitude (|ω | = 0.25) at t = 98.17 time units, for the
CSMA with CS = 0.1 (left) STA (blue dotted) and REG (brown dashed) and for
the WALE (right) STA (green dotted) and REG (red dashed) at a resolution of 1283
cells. The black solid line is the DNS with a resolution of 5123 given as a reference.

in total with a refinement factor rl = 2 for all levels. The mesh width of the coarsest
grid is ∆x = D/20. The scaled gradient [7] of the vorticity magnitude was chosen as
refinement indicator with a threshold value of 100. For the WALE model, we have
also employed and tested the new algorithm for imposing macroscopic variables in
ghost cells discussed in Sec. 3.3. The flow field has been initialised with the inlet
velocity and an initial value for density.

Two simulations are discussed; one using the CSMA model with CS = 0.12 and
the other using the WALE model. Both computations use the REG SRT collision
model. This decision was based on the superior behaviour of the REG SRT operator
in the previous test case. The left plot of Fig. 7 visualises by colour the velocity
magnitude for the case of CSMA in two planes and on an isosurface of vorticity
magnitude for the value 100 at a time when the wake has been established. The
shading in the right plot presents the distribution of the numerical domain to the
employed processors and in addition the automatically refined mesh at the same time.
It is evident that the refinement follows the isosurface closely. Figure 8 displays the
two corresponding plots for the case of the WALE model. Comparing the results
of the two turbulence models, there are no significant discrepancies, and both com-
putations exhibit a very similar 3D wake structure and according mesh refinement.
Minor differences in both figures are due to the different nature of the two turbulence
models. The CSMA tends to predict a more diffusive eddy viscosity field with higher
values in the whole domain. This behaviour will invariably reduce the accuracy of
the solution, but simultaneously has the positive effect of stabilising numerical fluc-
tuations, e.g., from boundary conditions. On the other hand, WALE tends to estimate
lower eddy viscosity values in the majority of the domain but predicts larger values
in and around fluid features. This distinction is the reason for any difference in the
wakes and hence the dynamically adapted meshes.
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Fig. 7: Flow around a sphere at Re = 1000 simulated with CSMA with CS = 0.12.
Left: Isosurface of vorticity and planes coloured by velocity magnitude. Right:
Computational mesh and distribution to processors, indicated by shading.

Fig. 8: Flow around a sphere at Re = 1000 simulated with WALE. Left: Isosurface
of vorticity and planes coloured by velocity magnitude. Right: Computational mesh
and distribution to processors, indicated by shading.

To further enhance the comparison, Fig. 9 shows the vorticity magnitude for the
two LES models in the xz-plane in logarithmic scale. Again, there are no significant
differences between the shape and the shading for the two models. Examining the
wake, particularly far away from the body, one can see some minor perturbations
being emanated from the outlet boundary. The situation is slightly better for the
CSMA model. Finally, Fig. 10 shows the evolution of the drag coefficients obtained
during the last phase of the simulation for the two models. Both computations
predict an average value of 0.461, which perfectly matches the theoretical value
of 0.46 calculated from the standard drag curve for a sphere, and the value 0.464
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Fig. 9: Comparison of the vorticity magnitude between CSMA (top) and WALE
model (bottom).
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Fig. 10: Evolution of the drag coefficient CD for the CSMA model with CS = 0.12
(left) and the WALE model (right). The dashed lines show the averaged values.

estimated with a recently proposed formula [15]. The predicted value also matches
the one reported in [28] and is very close to the value of 0.48 reported in [27].

At this point, we evaluate the algorithm for imposing macroscopic variables in
ghost cells from Sec. 3.3. To do so, we have also run the simulation of WALE
without invoking the new treatment. Figure 11 presents the enlarged normalised
eddy viscosity fields, at the same time step, for the WALE simulations with and
without the use of the new algorithm. The normalisation of the eddy viscosity is
based on the value of the physical viscosity. Examining the magnitude, it is clear that
the LES model was not triggered considerably in the vicinity of the wall. There are
two reasons for this: First, the WALE model is constructed to reduce the production
of eddy viscosity close to the wall to represent the law of the wall more accurately.
Secondly, in this specific case, the wall-near resolution is very high in order to
approximate the curved geometry well and thus obtaining a very accurate estimation
of the drag coefficient. The results confirm the consistency of the model in the case
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Fig. 11: Comparison of the enlarged normalised eddy viscosity at the back of the
sphere with imposed macroscopic variables in ghost cells (left) and without (right).

of a high-resolution mesh for a wall-resolved LES. Comparing the two graphics, one
can conclude that the use of the algorithm from Sec. 3.3 has reduced the formation
of a band of large eddy viscosity values close to the wall.

We close this section with a discussion of the performance of the AMROC-LBM
solver for the sphere test case. Both simulations ran for 120 h wall time using 64
cores of 2.6-GHz Intel Sandybridge processors. The initial size of the adaptive mesh
for both cases is ∼ 8.7M cells, while the final size is between 16 and 17M cells.
Application of the finest level with ∼ 5.3M cells is restricted to the vicinity of
the body. On average, the CSMA simulation required 27.65 s per iteration, while the
WALE simulation took 32.26 s, which corresponds to an added expense of only 17%.
However, the final size of the mesh for the WALE simulation is also slightly larger
than in the CSMA case, which altogether confirms that incorporating the more
sophisticated WALE model into AMROC-LBM has resulted only in a moderate
increase in computational time.

5 Conclusions

The main aim of this paper was to present the verification procedure of the WALE
turbulence model recently implemented in our dynamically adaptive in-house lattice
Boltzmann solver AMROC-LBM. The first step was simulating the test case of
decaying homogeneous isotropic turbulence and comparing the energy and pressure
fluctuation spectra with DNS of higher resolution and CSMA LES of the same
resolution. Identical behaviour with the CSMA was confirmed, which – given the
isotropy of this test case – verifies the algorithmic implementation of the core WALE
model. The second step was to simulate the flow around a sphere at Reynolds number
1000 for both WALE and CSMA. There were no significant discrepancies between
the two models in the case of the vorticity field, verifying the interplay of the new
WALE implementation with boundary conditions and the AMR algorithm. The

CFDMETHODS, 007, v3 (final): ’Verification of the WALE large eddy simulation model . . . 19



20 Christos Gkoudesnes and Ralf Deiterding

drag coefficients from both LES were confirmed to be in excellent agreement with
literature. In this specific case, the adaptive computation using the WALE model
was found to be only 17% more expensive than with CSMA, which demonstrates
that the increase in computational costs, when using the considerably more complex
WALE model, can be kept modest.

For the simulation of the decaying homogeneous isotropic turbulence case, both
the standard and regularised collision models have been used. In agreement with
recent research studies, we have found that the energy spectra of the STA model
are less dissipative. To further enhance the comparison, we have also presented
pressure fluctuation spectra, which highlight the fact that the STA collision model
produces a large amount of small-scale perturbations, not present in the REG results.
This behaviour of the STA collision model is unphysical and likely intrinsic to the
model’s handling of the non-equilibrium part of the distribution function. Moreover,
in the case of the lowest resolution and STA collision model, we have shown that the
CSMA model, which estimates the strain rate locally based on the non-equilibrium
part, tends to enhance these instabilities compared to the WALE model, which uses
finite-difference stencils of macroscopic variables.

Finally, a new LBM boundary condition construction algorithm for imposing
macroscopic variables in addition to inward-directed microscopic distributions has
been proposed. For instance, in the case of bounce-back wall boundary conditions,
the resulting macroscopic moments are not well defined. By imposing suitable
values, the finite difference stencils can still be applied unaltered, hence yielding a
plausible estimate for the eddy viscosity in the vicinity of the wall or other domain
boundaries. A detailed analysis of the eddy viscosity from the WALE model close to
the embedded wall, with and without the new algorithm, has confirmed the increased
accuracy of our approach.
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