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Abstract6

A major open question, affecting the decisions of policy makers, is the estimation of7

the true number of Covid-19 infections. Most of them are undetected, because of a large8

number of asymptomatic cases. We provide an efficient, easy to compute and robust lower9

bound estimator for the number of undetected cases. A modified version of the Chao10

estimator is proposed, based on the cumulative time-series distribution of cases and deaths.11

Heterogeneity has been accounted for by assuming a geometrical distribution underlying the12

data generation process. An (approximated) analytical variance of the estimator has been13

derived to compute reliable confidence intervals at 95% level. A motivating application14

to Austrian situation is provided and compared with an independent and representative15

study on prevalence of Covid-19 infection. Our estimates match well with the results from16

the independent prevalence study, but the capture-recapture estimate has less uncertainty17

involved as it is based on a larger sample size. Results from other European countries are18

mentioned in the discussion. The estimated ratio of the total estimated cases to the observed19

cases is around the value of 2.3 for all the analyzed countries.20

Keywords: Chao’s lower bound; population heterogeneity; Covid-19; undetected cases21

1 Introduction22

Currently, health systems across the globe are challenged by the ongoing Covid-19 pandemic.23

It is not a simple task to assess the efficiency of current health systems in detecting, treating,24

and preventing onward transmission of Covid-19, as the number of undetected infections is by25

definition unknown. Understanding the diffusion of the epidemic and assessing the number of real26

infections of Covid-19 is crucial for implementing effective public and health policies in tackling27

the virus. Unfortunately, official reporting and statistics significantly underestimate the true28

number since there exists a vast proportion of asymptomatic infected patients including those29

with mild symptoms among all infected individuals who are not detected. Indeed, the infected30

individuals with low-mild symptoms are likely not going to get in contact with the health care31

system and will also not be recorded in official statistics.32
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For example, reports estimate the number of infected in Italy to be around 3.5 times higher33

than reported (Tuite et al., 2020). Slightly lower estimates have been given for Germany (Ranjan,34

2020). Another study discusses that Italy mostly focuses on testing in hospitals with symptoms;35

hence, the roughly 50% asymptomatic are not covered by this approach (Onder et al., 2020). The36

same percentage of asymptomatic is also reported in Iceland (Shahan, 2020). The asymptomatic37

individuals in fact can be a direct transmitter of the virus and their unawareness can indirectly38

strengthen and increase the transmission of Covid-19. Indeed, it seems fair to say that the39

undetected cases are the major driver in spreading the disease as detected cases are and will be40

systematically contained.41

Most of the existing analyses performed a secondary data analysis from several sources of42

data already in the public domain (Menkir et al., 2020). Because published estimates of the43

distribution of Covid-19 vary widely, with estimates of the basic reproduction number, R0, alone44

ranging from subcritical (i.e., < 1) to > 3 (Giordano et al., 2020; Li et al., 2020a,b; Maugeri et45

al., 2020; Zhao et al., 2020; Zhou et al., 2020), mathematical models of infectious diseases, such46

as Susceptible-Infected-Recovered models, computing the theoretical number of people infected47

with a contagious illness in a closed population over time, needs to be evaluated on a range/grid of48

simulated values, each based on different assumptions and adjusted based on data from different49

geographic areas (Chen et al., 2020). Other much simpler (Nishiura et al., 2020) or sophisticated50

(Flaxman et al., 2020) approaches are also used to estimate the number of undetected cases, but51

with large, almost unacceptable, uncertainty on the obtained estimates.52

As mentioned above, several methods have been proposed to estimate the undetected number53

of infections but none has yet suggested to use capture-recapture methods, which is, in some54

sense, the most obvious method to estimate a dark number. For more details see Böhning (2016).55

Hence, the purpose of this contribution is to propose a lower bound estimator for the number of56

people affected by Covid-19 but not detected for various reasons, the major one being that they57

are asymptomatic. In other words, the aim is to estimate the size of an elusive, i.e. partially58

unobserved, population. Capture-Recapture (CR) methods are designed to achieve this goal. In59
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a nutshell, capture-recapture methods use the capture history of individuals to estimate those60

who have never been caught. The method suggested uses only the frequencies of those caught61

once and those caught twice. In the Covid-19 application, these are the ones newly identified at62

some day and the ones caught twice are those newly identified the day before (and surely still63

infected one day later, so that they are considered as twice identified) subtracted by the number64

of deaths at the given day. Hence, our proposal is developed using the cumulative distribution65

of the observed cases and deaths. The use of CR methods is not straightforward as we are66

dealing with an open population, subject to deaths, and heterogeneity in the probability of67

being detected. A modified version of Chao’s estimator under a geometric distribution, suitable68

for the setting here, is introduced. It accounts for heterogeneity in a simple way and can be easily69

computed starting from data collected by all government sources. In this way, the policy makers70

can have benchmark, statistically valid, estimates of the lower bound for the total number of71

cases and, accordingly, adjust their interventions.72

This short note is organized as follows. In Section 2, we introduce the basic notation and how73

we are going to work with the cumulative distribution of observed cases and deaths. Section74

3 provides all the necessary details to obtain the estimates. An example to Austrian data is75

provided in Section 4. A discussion showing other interesting insights on several European76

countries concludes.77

2 Basic notation and data78

We will denote with N(t) the cumulative count of infections at day t where t = t0, · · · , tm. Hence79

∆N(t) = N(t) − N(t − 1) are the number of new infections at day t where t = t0 + 1, · · · , tm.80

Also, let D(t) denote the cumulative count of deaths at day t where t = t0, · · · , tm. t0 defines the81

beginning of the observational period and tm defines the end. We assume the trivial assumption82

tm > t0, so that the observational window is not empty. Again, we denote with ∆D(t) =83

D(t) − D(t − 1) the count of new deaths at day t where t = t0 + 1, · · · , tm. To illustrate, we84
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look at these data (taken from https://www.worldometers.info/coronavirus/country/austria/)85

for the country of Austria as provided in Table 1 for the infections and in Table 2 for the deaths.86

Table 1: Cumulative counts of infections with Covid-19 for Austria starting at t0 = 15 March

2020 to tm = 6 April 2020

t 15/03 16/03 17/03 18/03 19/03 20/03 21/03 22/03

N(t) 860 1018 1332 1646 2179 2649 2922 3582

t 23/03 24/03 25/03 26/03 27/03 28/03 29/03 30/03

N(t) 4474 5283 5588 6909 7697 8271 8788 9618

t 31/03 01/04 02/04 03/04 04/04 05/04 06/04

N(t) 10180 10711 11129 11524 11781 12051 12297

Table 2: Cumulative counts of deaths from Covid-19 for Austria starting at t0 = 15 March 2020

to tm = 7 April 2020

t 15/03 16/03 17/03 18/03 19/03 20/03 21/03 22/03 23/03 24/03 25/03 26/03

D(t) 1 2 4 4 6 6 8 16 21 28 31 49

t 27/03 28/03 29/03 30/03 31/03 01/04 02/04 03/04 04/04 05/04 06/04

D(t) 58 68 86 108 128 146 158 168 186 204 220

3 Statistical methods87

The question arises how this can be linked to a capture-recapture approach. For this purpose we88

briefly review the capture-recapture model we like to harness here. Suppose a target population89

is sampled for units of interest repeatedly. Let X denote the number of times a unit is identified90

in this sampling process. Also, let px denote the probability of identifying a unit x times where91
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x = 0, 1, · · · . In the capture-recapture world the following mixture model is quite common:92

px = θ(1− θ)x. (1)

In (1) occurs the geometric distribution as a suitable count distribution. Now we can find p0,93

the probability for missing a unit of interest (infection) as p0 = p2
1/p2, the ratio of the square94

of the probability of identifying a unit twice divided by the probability of detecting a unit once.95

Replacing p1 and p2 with the observed frequencies f1 of those identified exactly once and f296

of those identified exactly twice leads to an estimate of the hidden units f̂0 = f2
1 /f2. The97

validity of the estimate depends on the validity of the geometric distribution (1). To weaken98

this assumption we allow the parameter θ to vary in the population with arbitrary unknown99

distribution f(θ) to reflect varying identification probabilities across the target population:100

px =
∫

θ(1− θ)xf(θ)dθ. (2)

Often the Poisson distribution is used in (2) instead of the geometric distribution. However, we101

prefer to use the latter as we think of the geometric distribution as a Poisson distribution mixed102

with an exponential density, hence the geometric is able to incorporate already some of the likely103

present heterogeneity in the population.104

We assume that model (2) is valid which we consider as a weak assumption. Then, using105

the Cauchy-Schwarz inequality for moments, it is possible to show that for the probability p0 of106

missing a unit of interest the following inequality holds:107

p0 ≥ p2
1/p2. (3)

Replacing p1 and p2 on the right-hand side of (3) with the observed frequencies f1 of those108

identified exactly once and f2 of those identified exactly twice leads to the lower bound estimate109

of Chao (Chao, 1987, 1989; Chao and Colwell, 2017):110

f̂0 = f2
1 /f2. (4)

Here f0 is the frequency of units that remains unobserved or hidden for which (4) is a lower111

bound estimate. In the case of no heterogeneity, (4) is a direct estimate of f0. Chao’s lower112
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bound has been also generalized to include covariate information such as regional information113

(Böhning et al., 2016) but we do not follow up on this aspect at this stage.114

The idea is to apply this estimator (4) day-wise. We take an arbitrary day t. At this day we115

have ∆N(t) new infections. This will be viewed as f1, the infected people identified just once.116

If we look at ∆N(t− 1), then this is the count of new infections the day before. But these will117

still be infected at day t unless they decease. So, f2 corresponds to ∆N(t− 1)−∆D(t). We can118

ignore the number of recoveries as we are looking at infections which are very recent (notified at119

day t or t − 1). Hence we are able to give the estimate for the number of hidden infections at120

day t as121

H(t) =
[∆N(t)]2

∆N(t− 1)−∆D(t)
(5)

and global estimate of hidden infections is achieved by summing up over all days in the obser-122

vational period:123

Ht0 =
tm∑

t=t0+1

[∆N(t)]2

∆N(t− 1)−∆D(t)
. (6)

We will use a bias-corrected form of (5) suggested by Chao (1989) and given as124

Ht0 =
tm∑

t=t0+1

∆N(t)[∆N(t)− 1]
1 + ∆N(t− 1)−∆D(t)

. (7)

We define the understanding that ∆N(t− 1)−∆D(t) is set to 0 if it becomes negative, in other125

words we use max{0,∆N(t−1)−∆D(t)}. The final estimate of the total size of infection is then126

given as what has been observed at the end of the observational window tm and the estimate of127

the hidden numbers:128

total size of infections = N(tm) + Ht0 . (8)

We need to address the uncertainty involved in the estimator (7). A variance estimate of (5)129

has been provided in Niwitpong et al. (2013) and is given here as130

V̂ar H(t) =
[∆N(t)]4

[1 + ∆N(t− 1)−∆D(t)]3
+

4[∆N(t)]3

[1 + ∆N(t− 1)−∆D(t)]2

131

+
[∆N(t)]2

[1 + ∆N(t− 1)−∆D(t)]
, (9)
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so that the final variance estimate of Ht0 is given as132

tm∑
t=t0+1

V̂ar H(t) (10)

assuming stochastically independence of the H(t) terms over observation time t. A 95% confi-133

dence interval can then be constructed by means of134

Ht0 ± 1.96

√√√√ tm∑
t=t0+1

V̂ar H(t).

4 Application to the Austrian situation135

The results are provided in Table 3 for the country of Austria which includes estimates of the136

hidden and total (observed + hidden) cases with 95% confidence intervals. At the 6th of April137

the number of infections was 12297 which is the observed number. We have chosen the 15th138

of March as beginning of the observational period. However other dates are possible as well so139

that we looked at estimates in dependence of the beginning of the observation period. It can be140

seen that results change slightly. Of course, if the window is made too small estimates of hidden141

numbers will only refer to observations made in this window. The major question arises if the142

estimates of Table 3 are realistic and do they represent a reasonable estimate of the true size of143

the undetected infections. The best comparison would give a representative sample of the target144

population where sampling is done to find infection with a valid diagnostic test. For Austria we145

have an independent study on the size of the Covid-19 outbreak (https://www.sora.at/nc/news-146

presse/news/news-einzelansicht/news/covid-19-praevalenz-1006.html). The study was led by147

Günther Ogris and Christoph Hofinger (SORA Institute for Social Research and Consulting)148

and is known as the dark number study. The study was rolled out during the 1 April and 6 April149

2020 and sampled 1544 persons across Austria covering all ages up to 94 years. The study used150

a PCR-test for diagnosing infection which is assumed to be accurate. According to the study,151

the proportion of infected people was 0.0033. If this proportion is applied to the population of152

Austria, as study in media release points out, during the study period there were 28500 infected153

persons in Austria. The study estimates that we have provided match very well with the results154

8



Table 3: Estimated hidden and total cases of Covid-19 for Austria and various sizes of the

observational window ranging from t0 = 15 March 2020 to t0 = 18 March 2020; the second part

of the table contains the associated proportions of total population in Austria (8.859 million)

t0 hidden cases total cases 95% CI

15 17264 29560 28412 – 30709

16 16638 28935 27800 – 30069

17 16326 28623 27491 – 29754

18 15420 27716 26602 – 28831

15 0.0019 0.0033 0.0032 – 0.0035

16 0.0019 0.0033 0.0031 – 0.0034

17 0.0018 0.0032 0.0031 – 0.0034

18 0.0017 0.0031 0.0030 – 0.0033

of the study, independent where we start the observational window. The dark number study155

also reports a 95% confidence interval for the proportion of infected persons which ranges from156

0.0012 to 0.0076, corresponding to 10200 and 67400 infected persons, respectively. Clearly, the157

capture-recapture estimate is included in this large interval but as we are able to utilize much158

larger routinely collected data on infected persons, the uncertainty provided by the capture-159

recapture approach is considerably reduced which is reflected in the relative short confidence160

intervals. The ratio of the total estimated cases to the observed cases is interesting in itself. A161

ratio of 2.5 would mean that for every observed patient there are 1.5 infected persons unseen.162

The reason for this can be manifold as these unseen cases might be without symptoms or show163

very mild signs of infection. It is also interesting to investigate how this ratio changes over the164

duration of the pandemic. In Figure 4 we see a scatter-plot of this ratio against a varying end165

point of the observational period starting at day 5 (20th of March) and ending at day 23 (6th166

of April). As the ratio shows quite a bit of random variation, in particular for early days, we167
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Figure 1: Ratio of total to observed case as a function of the end of the observational period

starting at day 5 which is the 20th of March 2020; the solid line is a LOWESS smoother

have also included a LOWESS smoother. It becomes clear in Figure 4 that the ratio stabilizes168

around day 15 as the end of the observational period which can be also taken as guidance for169

choosing the size of the observational period.170

5 Discussion171

The proposed method answers to a fundamental open question: “How many undetected cases172

are going around?”. Of course, we provide a lower bound, but this information may be treated173

as a starting point whenever interventions and tools to dampen the spread of the epidemic174

are rolled out. CR methods are easy to apply in practice, and this is one of the merits of175

the method. Moreover, we simply use time series of cumulative data, readily available from176

official sources. Given that individual data are not publicly available, CR methods provide177

a straightforward solution to shed light on undetected cases, incorporating heterogeneity that178
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may arise in the probability of being detected simply considering the widely known and used179

geometric distribution.180

We have applied the capture-recapture approach using Chao’s estimator for large entities such181

as countries in Europe. However, the approach can be also utilized to indicate regional variation,182

in other words application to smaller geographical or administrative units. In addition, if age–183

specific numbers are provided Chao’s estimator can be applied in a age–stratified way.184

Another question relates to the size of the observational period. In the case, study we have185

used 3 weeks as this would cover a period where a person infectious at the first day might still186

be so at the end of the period. Hence we are trying to estimate the hidden population which is187

infectious and not a mix of persons being infectious and persons having passed the infection. An188

interesting thought which was contributed by an anonymous referee was to take a period starting189

from the very first case and ending with the very last one. Applying the estimator would give190

an estimate of the size of the population who has passed the infections (and potentially have191

reached immunity).192

The example provided here relies on Austrian data, but many other countries can be analyzed193

even if there are not benchmark survey studies to compare with. For example, taking data up194

to 17/04/2020 from https://github.com/open-covid-19/data on several European countries and195

considering data from the day which we record the first death, we obtain the estimates of196

undetected cases for Italy, Germany, Spain, UK and Greece (see Table 4). The last column in197

Table 4 shows the ratio of the total estimated cases to the observed cases. There is a remarkable198

stability around the value of 2.3.199

All the obtained estimates are surrounded by some uncertainty. Confidence intervals for200

the modified Chao’s lower bound have been provided and are seemingly reliable, in particular201

compared to those presented in other studies. We emphasize that the estimates provided are202

conservative, in the sense that they provide lower bounds on the size of undetected infections.203

However, we have provided some evidence such as in the situation of Austria that these lower204

bounds are not far away from the true size of infection in the target population. This needs to205
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Table 4: Estimated hidden and total cases of Covid-19 for several European countries, at

18/04/2020

Country hidden cases total cases 95% CI total/observed

Italy 211768 384201 381649 – 386762 2.23

Germany 178451 315890 312429 – 319350 2.30

Spain 232057 423783 421112 – 426454 2.21

UK 149150 257842 255482–260202 2.37

Greece 2901 5108 4718–5499 2.31

Austria 17264 29560 28412 – 30709 2.40

be followed up by further comparisons with representative sampling studies on target population206

infection.207

This is just a first evidence on the use of capture-recapture methods to study Covid-19 data.208

Another question is still open: “is there a way of estimating an upper bound for the number209

of undetected cases?”. Again capture-recapture methods could be implemented to provide an210

answer to this question and help policy makers to evaluate the Covid-19 epidemic situation211

locally and at the current phase of its development.212
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