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ABSTRACT 

 

Quantifying traffic contribution to air pollution in urban settings is required to inform traffic 

management strategies and environmental policies that aim at improving air quality. Assessments 

and comparative analyses across multiple urban areas are challenged by the lack of datasets and 

methods available for global applications. In this study, we quantify the traffic contribution to 

particulate matter concentration in multiple cities worldwide by synthesising 155 previous studies 

reported in the World Health Organization (WHO)’s air pollution source apportionment data for 

PM10 and PM2.5. We employed a Bayesian multilevel meta-regression that accounts for 

uncertainties and captures both within- and between-study variations (in estimation methods, study 

protocols, etc.) through study-specific and location-specific explanatory variables. The final 

sample analysed in this paper covers 169 cities worldwide. Based on our analysis, traffic 

contribution to air pollution (particulate matter) varies from 5% to 61% in cities worldwide, with 

an average of 27%. We found that variability in the traffic contribution estimates reported 

worldwide can be explained by the region of study, publication year, PM size fraction, and 

population. Specifically, traffic contribution to air pollution in cities located in Europe, North 

America, and Oceania is on average 36% lower relative to the rest of the world. Traffic 

contribution is 28% lower among studies published after 2005 than those published on or before 

2005. Traffic contribution is on average 24% lower among cities with less than 500,000 inhabitants 

and 19% higher when estimated based on PM10 relative to PM2.5. This quantitative summary 

overcomes challenges in the data and provides useful information for health impact modellers and 

decision-makers to assess impacts of traffic reduction policies. 
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1. Introduction 

Traffic is a significant source of air pollution in cities around the world (Pant and Harrison, 2013), 

and is also a major contributor to adverse health globally (Bhala et al., 2014; Anenberg et al., 

2019).  Due to adverse effect of traffic related air pollution, policies aimed at reducing vehicular 

sources are the most commonly evaluated interventions in air pollution accountability studies, and 

include, for example, requirements on vehicle emissions standards, traffic reductions strategies, 

diesel vehicle bans, fuel requirements, low emission zones, congestion charging, public transport 

restructuring, and even-odd number plate restrictions (Burns et al., 2019). However, the 

contribution from transport-related air pollution emissions to health burden, and the impacts and 

effectiveness of local transport-focused policies will vary from city to city depending on how much 

of the local air pollution is due to traffic itself. Both from a global perspective of comparison across 

cities, and from a local perspective of evaluating potential benefits of air pollution strategies, better 

understanding of how much traffic contributes to air pollution concentrations is needed.  

 

Comparisons of effectiveness of urban strategies across multiple cities, and assessments of 

transferability of policies in different urban settings, are hindered by the lack of international 

emissions or source apportioned air quality datasets focused on urban areas. Air pollution policy 

scenario analysis would typically use dispersion modelling techniques making use of urban 

emissions inventory data as inputs. Such methods, however, are costly and complex to run (Jerrett 

et al 2005), in addition to lacking city-scale relevance for the existing and available global 

frameworks. For example, the global emissions inventory Emissions Database for Global 

Atmospheric Research (EDGAR) focusses on national air pollution emissions, thus limiting its 

usability in city level analyses (Crippa et al., 2018; Lelieveld et al., 2019). While proxies could be 

used to disaggregate such large scale databases to more spatially resolved local emissions 

inventories, this wouldn’t remove the challenge of running air pollution models (accounting for 

dispersion and chemical and physical transformation) to estimate concentrations. Finally, while 

global air pollution mapping methods relying on satellite observations have seen improvements in 

spatial resolution (~ 11km x 11km at the equator), they do not provide source apportioned 

information needed for policy scenario analyses (Brauer et al., 2016).  

 

Similarly, the WHO Global Ambient Air Quality Database provides comparable annual average 

air pollution concentration data from 4,300 cities in 108 countries. However, alone this is of limited 

use for predicting or assessing impacts of source-specific contributions and policies, such as 

transport policies. Source apportionment studies provide a break-down of source-specific 

contributions to air pollution concentrations (Belis et al., 2013; Thunis et al., 2019). Such data can 

be directly used to assess source-specific health burden, or used in a policy scenario context with 

simplifying assumptions on impacts of source-specific emission changes on concentrations. 

However, source apportionment studies are expensive to conduct, and performing such studies at 

a global scale would be beyond resources of typical research project.  
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The WHO and a group of researchers compiled a dataset of systematically reviewed source 

apportionment studies conducted between 1987 and 2014 (see Karagulian et al., 2015). The 

variation in quality and quantity of data, year of data collection and publication, the location of 

studies, and methods used to derive the source apportionment make the direct comparison of the 

studies presented in the WHO database challenging. To begin, ignoring heterogeneity between 

studies, caused by the variation in study level characteristics (e.g., the location of studies), can 

provide misleading results. In addition, the WHO database has a hierarchical (multilevel) structure 

since the reported estimates are sometimes nested within studies conducted by the same authors. 

This multilevel structure of the data may introduce dependencies between measurements reported 

by the same authors; for example, due to similarities in adopted estimation methods or 

investigation techniques. Such dependencies should be accounted for to ensure the reliability of 

the estimates. 

 

Despite challenges and difficulties explained above, by setting proper eligibility criteria to select 

relevant studies and by employing a sound statistical method, we aim to provide a reliable 

quantitative synthesis of studies that have estimated traffic contribution to particulate matter (PM2.5 

and PM10) in urban settings worldwide. To this end, we carry out a meta-analysis. As discussed by 

Thacker (1990), generalizability and statistical power increase when using meta-analysis. In fact, 

it is possible to generalize the results of a meta-analysis to a broader population. Also, the accuracy 

and precision of the estimates improve because more data is used to make statistical inferences. 

Specifically, we employ a Bayesian multilevel meta-regression model with the aim of synthesising 

previous studies available in the WHO database while capturing heterogeneity in the data. We 

account for within-study dependencies and uncertainty in all parameters and estimates. For a 

discussion on the advantages of the Bayesian approach in evidence synthesis, see, for example, 

Sutton and Abrams (2001). The proposed model allows us to predict uncertainties around the mean 

estimates, and these uncertainties can later be used, for example, in policy analysis, considering 

the most pessimistic or optimistic scenarios. 

2. Materials and methods 

2.1.  Review framework 

We centred our research on the World Health Organization (WHO) database on source 

apportionment studies for particulate matter in the air (PM10 and PM2.5) (WHO, 2015). The 

database reports shares of various air pollution source categories, including industry, traffic, 

domestic fuel burning, natural sources (sea salt and dust), and unspecified sources of human 

origins. Note that as indicated by WHO (2015), “Traffic is a source category that includes primary 

PM emissions from exhaust, organic and inorganic gaseous PM precursors from the combustion 

of fuels and lubricants, particles through the wear of brake linings, clutch, and tires, including 

depositions onto the road which are re-suspended together with crustal/mineral dust particles and 
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road wear material.” Traffic contribution measurements were based on either PM2.5 or PM10, which 

are considered sensible indicators of air quality (Burnett et al., 2014; Karagulian et al., 2015). The 

WHO database provides information relating to the receptor model source apportionment methods 

(e.g., principal component analysis, positive matrix factorization, and absolute principal 

component analysis) used by the different studies, population at the location of study, reference 

year, study year, site typology (urban, rural, etc.), the geographic coordinates of measurement 

locations, and pollutant concentrations for PM2.5 or PM10. For a detailed discussion of the WHO 

source apportionment database, see Karagulian et al. (2015). 

2.2.  Research questions 

Our research questions were (i) “what is the magnitude of traffic contribution to air quality and its 

associated uncertainty in different cities worldwide on the basis of studies collected in the WHO 

database?”; (ii) “how can we explain the variation in traffic contribution estimates reported in 

previous studies?”, and (iii) does PM size fraction affect traffic contribution estimates reported in 

previous studies? 

2.3.  Selection of studies, eligibility criteria, and data extraction 

In this paper, the focus was on traffic contribution to air pollution; therefore, studies with missing 

information relating to the traffic source were removed from the data. In addition, the source 

apportionment estimates were obtained from different site typologies such as urban and rural sites, 

thereby differing largely. This makes studies from dissimilar site typologies non-comparable. We 

therefore identified studies that were conducted in urban areas, creating a more homogeneous data, 

which allows for a more reliable quantitative summary. We then extracted data relating to the 

following items being available in the WHO database: authors, the year of publication, the year of 

study, the location of study (city, country, region, and continent), population, geographic 

coordinates, PM10 and PM2.5 concentrations, site type (remote, urban, rural, etc.), and method of 

estimation. In this research, we grouped countries into 13 regions mostly according to geographic 

proximity and the study conducted by Karagulian et al. (2015): North America, Central Europe, 

East Asia, East/West Africa, India, Middle East, Northwestern Europe, Oceania, South/Central 

America, Southeastern Asia, Southern Asia, Southwestern Europe, and Western Europe. The list 

of countries in each region is provided in Table A of the supplementary material.  

2.4.  Meta-regression 

An important challenge in carrying out any quantitative summary is often related to the fact that 

factors such as study protocols, measurement conditions, and site characteristics may vary from 

one study to another. One should thus account for such variations; otherwise, the results will be 

only a rough representation of the reality (Joseph, 2000). In this paper, we deal with this issue 

using a rigorous statistical approach: a Bayesian multilevel meta-regression, as described below. 

We employed a multilevel model since some studies are a collection of more than one study 
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campaigns, reporting two or multiple estimates of traffic contribution obtained from different 

locations. The multilevel model ensures that within-study dependencies are accounted for. 

 

Traffic contribution (the outcome of interest) to particulate matter concentration is in the form of 

a rate being in the interval [0, 1]. Therefore, we first logit transformed the outcome and assumed 

a normal density for the logit transformed estimates. Let yi denote the logit transformed traffic 

contribution reported in study campaigns (i = 1, 2,…, N). Let Z = (Z1, Z2,…, Zs) be the vector of 

study-level explanatory variables (e.g., year of publication) with the corresponding coefficients β 

= (β1, β2,…, βs), where s = (1,2,.., S) denote studies. Let ηs denote the random intercepts (here, 

study effects), which follows a normal density with parameters µη (mean) and vη (variance). Let X 

= (X1, X2,…, Xl) be the vector of observation-level explanatory variables (e.g., city population) 

with the corresponding coefficients γ = (γ1, γ 2,…, γ l). We can then write 

 

𝑦𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝑖, 𝑣) 

(1) 𝜇𝑖 =  𝜂𝑠 + 𝜷𝒁𝑠 +  𝜸𝑿𝒊 

𝜂𝑠|𝜇𝜂 , 𝑣𝜂 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝜂 , 𝜈𝜂) 

 

where v is the observation-level variance, and µη and vη are, respectively, the mean and  the variance 

of the study-specific random effects. Non-informative priors normal(0,1000) and inverse-

gamma(0.001,0.001) were, respectively, placed on the mean µη and the variances v and vη. A 

sensitivity analysis was conducted for the variances using uniform priors for the standard 

deviations associated with the above variances and did not result in any significant variation in the 

results. Note that in the above model, we do not allow the variance v to vary across observations. 

This is because the study-specific random intercepts ηs vary from one study to another and most 

studies include only one reported measurement, which would not allow a varying variance v to be 

estimated properly.   

 

In this paper, the varying intercepts recognise the fact that between-study differences, which 

cannot be captured entirely through study-specific characteristics, may exist. The variance of the 

study-specific random effects (vη) indicates the between-study variation. Our model explains part 

of the variations of the reported traffic contribution estimates using study characteristics as 

indicated above. However, the remaining variation, which is unexplained, is captured through the 

between-study variance. The observation-level variance corresponds to within-study variations, 

and together with the between-study variation constitute the overall variation in the data that is 

random and that cannot be explained by the explanatory variables used in our study. Based on the 

abovementioned variances, intra-study correlation can be obtained from Equation (2).  

 

γ =  
𝜈𝜂

𝜈𝜂 + 𝑣
 (2) 
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The value of γ varies from 0 to 1; a value close to 1 indicates a high within-study correlation. This 

estimated value indicates the level of similarity among measurements reported in the same study 

(or by the same set of authors). To draw posterior inferences, we used WinBUGS (Lunn et al., 

2000) for our Markov chain Monte Carlo simulations running two chains each containing 20,000 

iterations. The posterior inferences are based on the final 15,000 total iterations since the first 

5,000 iterations were discarded for convergence requirements. This number of iterations was 

sufficient based on the Gelman-Rubin statistic (Gelman and Rubin, 1992), history plots, and Monte 

Carlo errors.  

2.4.1.  Selection of explanatory variables 

Different subsets of available variables were considered to capture the variability in the traffic 

contribution estimates reported by previous studies. We considered geographic coordinates 

(latitude and longitude), population, region where a study was conducted, year of publication, 

method of analysis, and PM size fraction, which were provided for each study. Based on an 

exploratory data analysis phase, we identified the most important variables. We tested different 

sets of variables to identify the most relevant ones. For example, we used publication year (a 

common variable often used in any meta-analyses); however, it was not found to be statistically 

important in the model. We then created different categorical variables based on the year of 

publication and tested these in our model. A categorical variable based on 2005, created indicating 

whether the publication date was after 2005, was found to be relevant in explaining traffic 

contribution estimates reported in the previous research; and therefore, this was included in the 

final model. Similarly, population was dichotomised: less or more than 500,000 inhabitants. A 

categorical variable was created indicating whether traffic contribution estimates were obtained 

based on source contribution analyses of PM10 or PM2.5. Also, we created a categorical variable to 

examine whether the source apportionment method of each study affected reported estimates. 

Lastly, we created two groups of regions: predominantly developed countries (Europe, North 

America, and Oceania) and predominantly low/middle income countries (Africa, Latin America, 

and Asia). The latter variable was also selected based on testing different regions in the model. 

3. Results 

3.1. Study selection 

After identifying relevant studies according to the criteria explained in Section 2.3, our final 

dataset contains 293 reported estimates obtained from 155 studies (Table B of the supplementary 

material). These studies were conducted in 6 continents, covering 169 cities located in 48 

countries, from 1987 to 2014. Note that some studies report two or more estimates depending on 

the number of locations considered in their study design.  
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3.2. Study characteristics 

Sample characteristics are summarised in Table 1. Close to three quarters of the observations 

obtained for the analysis stemmed from studies in Europe, North America and Oceania. Africa 

was highly under-represented, contributing only 7 of the 293 data points (Table 1) due to the fact 

that only few studies were available in the extant literature. Most of the data points stemmed from 

studies conducted after 2005 (75%), in cities with more than 500,000 inhabitants (64%), and based 

on PM2.5 (62%) rather than PM10 measurements (Table 1). In our final data, the reported traffic 

contribution to particulate matter concentrations varied across cities from around 2% to 77.1%, 

with a mean (and standard deviation) of 26.62% (15.79%) at a global level. 

3.3. Meta-regression: traffic contribution and explanatory variables 

The results of our meta-regression are reported in Table 2 from which the magnitudes of 

association between a series of explanatory variables and traffic contribution estimates can be 

inferred. We found that the region of study, publication year, PM size fraction (whether PM10 or 

PM2.5), and population can explain traffic contribution estimates reported in the previous literature 

collected in the WHO database. However, the variable representing the source apportionment 

method was not found to have an effect in our study. Note that in Bayesian statistics, instead of 

point estimates obtained in classical statistics, posterior densities of parameters of interest are 

obtained. The posterior mean densities and their 95% Bayesian intervals are reported in Table 2. 

Since the logit transformed traffic contribution was modelled, as explained in Section 2.4, odds 

ratios (the exponentiated values of the regression coefficients) needed to be calculated in order to 

interpret the regression coefficients. The average effect of explanatory variables (over the entire 

sample) on the outcome of interest can be inferred from odds ratios reported in Table 2 (see Section 

4.1 for further details). 

 

The mean (µη) and the variance (vη) of the study-specific random effects and their respective 

uncertainties (Bayesian intervals) are reported in Table 2, as well as the estimated observation-

level variance (v). Based on the abovementioned variances, an intra-study correlation of 0.67 is 

obtained from Equation (2) (see Section 2.4), suggesting that 67% of the total variance in the 

outcome of interest is accounted for by the apparent grouping (observations nested within studies) 

in the data. Note that the need for standardization has been highlighted and efforts made to develop 

common source apportionment protocols to reduce between-study variabilities due to the use of 

different methods (Solomon et al., 2014; Xin e al., 2015; Zhang et al., 2017). Our results imply 

that between-study differences in the reported traffic contribution measurements are relatively 

large. This indicates that study protocols, measurement conditions, and site characteristics varied 

between most studies, highlighting the importance of accounting for such variations in order to 

draw reliable statistical inferences.   
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3.4. Estimated traffic contribution and its associated uncertainty at city and 

region levels 

Our approach allows us to estimate expected traffic contribution for different cities and regions 

within our model estimation procedure. Doing so, we can obtain uncertainties for city and region 

level estimates. Specifically, we calculated expected traffic contribution for 169 cities in the data 

and for 13 regions (North America, Central Europe, East Asia, East/West Africa, India, Middle 

East, Northwestern Europe, Oceania, South/Central America, Southeastern Asia, Southern Asia, 

Southwestern Europe, and Western Europe). Figure 1 displays the posterior expected traffic 

contribution (and associated uncertainty in terms of 95% Bayesian intervals) for these cities while 

being grouped into different regions shown in different colours. Based on our estimates, Pullman 

(USA) with a mean (standard deviation) of 5% (3%) has the lowest traffic contribution to 

particulate matter, while Colombo (Sri Lanka) with a mean (standard deviation) of 61% (14.7%) 

has the highest traffic contribution to particulate matter. Expected traffic contribution estimates 

and their respective uncertainties are displayed in Figure 2 for 13 regions. 

4. Discussion 

4.1. Explaining sources of heterogeneity in the WHO database 

For convenience, we interpret the effects of the explanatory variables (sources of heterogeneity) 

on traffic contribution estimates reported in the previous studies in terms of percentage change. 

Specifically, traffic contribution to air pollution in European, North American, and Oceanian cities 

is on average 36% (i.e., 100*(0.642-1)) lower relative to the rest of the world. It is 28% lower 

among studies published after 2005 than those published on or before 2005. Traffic contribution 

is on average 24% lower among cities with less than 500,000 inhabitants and is 19% higher when 

estimated based on PM10 compared to PM2.5.  

 

A lower traffic contribution to air quality in Europe, North America, and Oceania could be partly 

explained by more stringent environmental and exhaust regulations/policies (e.g., EURO-emission 

standards) and a newer vehicle fleet in these regions, when compared to other emissions sources. 

Also, more effective traffic operations and traffic management strategies such as low emission 

zones and road pricing (for a discussion in this regard see Bigazzi and Rouleau (2017)), which are 

more common in Europe, North America and Oceania compared to the rest of the world, provide 

further support for this finding. A higher penetration rate of low emission vehicles in 

predominantly high-income regions can be another explanation for a lower traffic contribution to 

air quality in these regions.  

 

Similar factors discussed above may explain a lower traffic contribution observed at a global level 

after 2005 as well as an outgrowth of increased awareness among transportation agencies, local 

authorities, and general public with respect to the impact of traffic on air pollution and its harmful 
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health effects. Lower traffic congestion could explain our finding related to relatively low-

populated cities (i.e., those with less than 500,000 inhabitants). For example, a more stabilized 

operating speed leads to less acceleration and breaking resulting in fuel savings; and consequently, 

a reduction in traffic related air pollution. Also, in general, people travel longer distances in larger 

cities compared to small cities. Finally, one possible explanation for a higher traffic contribution 

estimates based on PM10 compared to PM2.5 could be that part of re-suspended dust due to natural 

sources is attributed to traffic (see Karagulian et al., 2015 for a similar discussion). Finally, high 

levels of competing sources (e.g., crop burning, cooking and heating, coal-fired power stations, 

and desert dust) in some developing countries, such as those in Middle East, diminish the relative 

contribution of traffic in these countries (Kumar et al., 2015, Karagulian et al., 2015; Gautam et 

al., 2019).  

 

4.1.1. Investigating variations in absolute concentrations attributable to traffic  

With respect to the above discussions, caution should be taken in interpreting relative (percentage) 

contributions since changes in the competing sources of particulate matter may have had an impact 

on the relative contributions from traffic. This said, a more conclusive inference would be possible 

by taking into account absolute concentrations attributable to traffic (in μg/m3). Based on the WHO 

database, we therefore conducted further investigation in this regard, using statistical software 

Stata (StataCorp, 2015); the results are described below.  

 

Average absolute PM2.5 and PM10 concentrations due to traffic were lower in Europe, North 

America, and Oceania compared to the rest of the world (respectively, 5.43 μg/m3 and 12.61 μg/m3 

vs. 17.689μg/m3 and 38.63 μg/m3). Similarly, PM2.5 and PM10 concentrations were lower in cities 

with less than 500,000 inhabitants (respectively, 5.49 μg/m3 and 12.35 μg/m3 vs. 10.75 μg/m3 and 

24.54 μg/m3). However, while percentage traffic contribution estimates reported in studies 

published after 2005 are smaller, in general, than those published on or before 2005, average 

absolute traffic-related concentrations increase globally: PM2.5 increases from 5.82 μg/m3 to 10.29 

μg/m3 and PM10 increases from 14.13 μg/m3 to 20.41 μg/m3. This could be partly explained by 

rapid motorisation of transport world-wide, particularly in low- and middle-income countries 

(Kitamura and Mohamad, 2009; Chalya et al., 2012).  

 

A more detailed investigation indicates that average PM2.5 concentrations slightly decreases from 

5.59 μg/m3 in the before 2005 period to 5.34 μg/m3 in the after 2005 period in prevalently high-

income countries. In developing countries, however, we observed almost two folds increase in 

PM2.5, from 9.07 μg/m3 to 18.18 μg/m3 during the same period. For PM10, in Europe, North 

America, and Oceania, average traffic-related PM10 concentrations remain largely stable (slight 

decrease from 12.58 μg/m3 to 12.63 μg/m3 between the two periods), however, in contrast to PM2.5,  

a relatively significant decrease from 52.99 μg/m3 to 38.07 μg/m3 in the rest of the world during 

this period is observed. The latter would partly explain why percent traffic contributions to PM 

show a decreasing trend in estimates provided by studies published after 2005.   
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4.2. City- and region-level estimates 

With respect to traffic contribution estimates at city level, our results imply that, in general, there 

is a relatively large variability even within each region (see Figure 1). Less variability in traffic 

contribution estimates can be seen in Northwestern Europe, where all mean estimates of traffic 

contribution to particulate matter are smaller than the global average value. However, in a few 

cities the upper bound of the uncertainties exceeds the global average considerably. For cities 

situated in Middle East, North America, and Oceania regions, most mean estimates of traffic 

contribution are less than the global average while in many occasions the upper bounds are bigger 

than the global average. Southwestern Europe have mixed results with most cities exceeding the 

global average when considering uncertainties. The mean traffic contribution estimates in Western 

and Central Europe are mostly lower than the global average; however, the upper bounds of the 

95% Bayesian interval is above the global average. Traffic contribution in most cities in Latin 

America, Africa, Eastern, Southern, and Southeastern Asia, and India (prevalently low- and 

middle-income continents) is larger than the global average.  

 

The East/Western Africa regions is highly underrepresented by only three cities; in fact, there are 

large uncertainties around East/West Africa estimates, which has the largest traffic contribution to 

particulate matter, followed by India and then Southeastern Asia. Traffic contribution in 

Northwestern Europe is the lowest, followed by Central Europe, North America and Middles East. 

In terms of uncertainty estimates, regions with multiple records such as Southwestern Europe and 

North American regions have the narrowest 95% Bayesian intervals. In order to better understand 

the extent of traffic contribution to particulate matter, more monitoring stations and source 

apportionment studies are thus needed in cities or regions where the levels of uncertainty are 

relatively high. In this regard, our study provides valuable insights for 169 cities worldwide, 

allowing researchers and local authorities to target cities where further research is most warranted 

to reduce the amount of uncertainty in traffic contribution estimates. Note also that a low traffic 

contribution estimate in a city does not mean that traffic is of a minor concern since pollutant 

concentrations produced by traffic in that city might be relatively high. This an important concern 

especially when it comes to investigating the effect of traffic-related air pollution on human health. 

4.3. Comparison to previous research 

Our work built up on the review work reported by Karagulian et al. (2015). Karagulian et al.’s 

population-weighted estimates are obtained for PM2.5 and PM10 separately. However, our 

estimations are obtained while combining data from both types of PM by using a categorical 

explanatory variable in our meta-regression. This is because one aim of the study was to understand 

whether reported estimates of traffic contribution by previous studies are affected by PM size 

fraction considered in those studies. That is answering our third research question (see Section 

2.2). The only way, not only to answer this question but also to quantify the magnitude of 

difference was to include both types of PM in the model, considering the entire data. Also, when 

using more data in the analysis almost always more reliable statistical inferences are obtained. We 
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only focus on traffic contribution while Karagulian et al. (2015) considers the five sources 

mentioned in Section 2.1. Finally, we considered only urban sites while Karagulian et al.’s study 

has considered urban areas and a limited number industrial sites.  

 

Therefore, caution must be taken in comparing the results of the two studies. Also, while 

Karagulian et al. (2015) do not provide estimation uncertainties, we estimated uncertainties. 

Karagulian et al. (2015) estimated that 25% of the measured PM2.5 and PM10 was due to traffic. In 

our study, the estimated average global traffic contribution was 25.7% (with a 95% Bayesian 

interval of [24% - 27%]). With respect to region-level estimates, for example, Karagulian et al. 

(2015) estimated that traffic contribution to particulate matter was 21% and 12% based on PM2.5 

and PM10, respectively, in Northwestern Europe. We found that the mean value of traffic 

contribution to particulate matter in Northwestern Europe was 15.8% with a 95% Bayesian interval 

ranging from 12.2% to 20.2%. Recall that in estimating these values we used both PM2.5 and PM10 

at the same time. This is while the average value for this region, as reported by previous research 

(Karagulian et al., 2015), was 14.4% (see Figure 2).  

 

Note that uncertainties provided in our research are based on Bayesian (credible) intervals that 

have an intuitive interpretation in contrast to classical confidence intervals (Gelman et al., 2004). 

A 95% Bayesian interval indicates that traffic contribution to particulate matter is in that interval 

with 95% probability. However, this cannot be inferred from confidence intervals; the probability 

of an estimate being in a confidence interval is either zero or one (Sim and Reid, 1999). An 

important implication of the region-level uncertainty estimates obtained in our study is that they 

allow for estimating a range of traffic contribution to particulate matter in cities where monitoring 

stations do not exist or where no previous source apportionment study has been conducted. The 

certainty regarding this probable range dependents on the number of studies available in a specific 

region. For example, as displayed in Figure 2, any conclusions regarding the range of traffic 

contribution is more certain for cities located in regions such as Europe and North America 

compared to those in India or Africa.  

 

Another practical implication of the uncertainty estimates at both city- and region-levels is that 

decision makers would be able to consider the most optimistic and pessimistic scenarios, 

respectively, based on the lower and upper bounds of the uncertainty intervals estimated here. This 

could be useful, for example, in prioritising policies that aim at improving air quality in urban 

areas. That is, to determine whether traffic contribution is significant enough compared to other 

sources to warrant action targeting traffic management strategies. The uncertainty estimates also 

enable local authorities to estimate the range of benefits, in terms of air quality, expected from 

implemented or planned traffic management strategies. Lastly, the estimated uncertainties would 

allow researchers to investigate the reliability of health impact assessment ‒ with respect to the 

adverse effect of traffic-related air pollution on human health ‒ conducted in the past or to be 

conducted in the future. A similar discussion in this regard is provided by Burnett et al. (2018). 
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4.4. Limitations 

In our meta-analysis, we considered studies available in the WHO database from 1987 to 2014 as 

the aim was to summarise this database. However, several other relevant studies that estimated 

traffic contribution to air quality after 2014 do exist.  In particular, in areas with very few estimates, 

especially Africa, recent literature could possibly have provided more results to analyse. While we 

recognise this important limitation, we stress that our meta-analytical approach was to make use 

of an existing homogenised database. As our analysis is based on a large sample of studies (155 

studies containing 293 records), including results for most areas of the world, the pool and 

coverage are large enough to provide valuable insights, especially thanks to our proposed meta-

analytical framework. This paper suggests a valuable and novel method for synthesizing existing 

knowledge and deriving uncertainty estimates of traffic contributions to particulate matter. Once 

further studies are made available and homogenised in a common dataset, these can be readily 

included in the analysis.  

 

There are further limitations related to the data available within the WHO database. We could have 

improved our estimations of uncertainties, for example, had the variances for traffic contribution 

estimates been available in the WHO database. Finally, most of the source apportionment methods 

used in the original studies included in the database are only able to account for contributions from 

the primary particles emitted from traffic (Karagulian et al. 2015). Secondary particles, which are 

formed in the air from chemical reactions between gasses, can be formed from local sources and 

are also generated from traffic or other sources beyond the local city boundaries impacting regional 

air quality. While source apportionment methods can be used to account for non-linear sources of 

particulate matter (Clappier e al., 2017), for traffic sources specifically, this study could only 

estimate source contribution from primary emissions, thus we are likely to under-estimate traffic 

contributions to city-wide particulate matter. Although contributions from traffic to secondary 

aerosols found in cities will typically be relatively small (Querol et al., 2004), it will vary by region, 

thus how much is under-estimated will vary by region as well.  

5. Summary 

To obtain reliable estimates of traffic contribution and their associated uncertainties at a global 

level, we conducted a quantitative synthesis of previous studies collected in the WHO database 

(WHO, 2015). Due to significant differences between studies carried out in sites of different types 

(urban, rural, remote, industrial, etc.) and in line with our research question, we only considered 

studies conducted in urban areas. This was necessary to make sure studies were similar enough in 

order to be included in our meta-analysis. Consequently, 155 studies, conducted in 169 cities 

worldwide, met our inclusion criteria. We employed a Bayesian random effects multilevel meta-

regression model that allowed us to account for both between- and within-study variations and 

uncertainties while accommodating the hierarchical structure of the data. Note that accounting for 

the hierarchical structure of the WHO database is needed as measurements reported by the same 
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study are often more alike than those reported by different studies. To our knowledge, this is the 

first study attempting to draw conclusive inferences regarding the contribution of traffic to PM2.5 

and PM10 using such an approach.  

 

According to our results, the expected mean (standard deviation) of traffic contribution to air 

quality varies from 5% (3%) to 61% (14.7%) globally. We found that the region of study, 

publication year, PM size fraction (whether PM10 or PM2.5), and population can explain variation 

in traffic contribution estimates reported in previous literature, collected in the WHO database. 

Specifically, reported traffic contribution estimates in Europe, North America, and Oceania are 

lower than other continents. These estimates are lower among studies carried out after 2005 than 

those conducted on or before 2005. A lower traffic contribution estimates reported in Europe, 

North America, Oceania, and post-2005 could be related to more stringent policies and newer 

vehicle fleets. Traffic contribution is lower among cities with less than 500,000 inhabitants, 

perhaps because of lower traffic congestion, and is higher when estimated according to PM10 since 

re-suspended dust is partly attributed to traffic. Using a large number of previous studies conducted 

worldwide, our study identifies some of the most important sources of heterogeneity in the 

estimated traffic contribution by a relatively large sample of previous studies.  

 

The strength of our approach is that that our estimations of traffic contribution are statistically 

more reliable compared to observed values (measurements reported in previous research) since we 

are employing a meta-regression. This allows us to pool strength over multiple studies while 

adjusting for between- and within-study differences based on a set of explanatory variables. Also, 

we are employing a Bayesian hierarchical model that improves estimations statistically by 

borrowing strength from other similar estimates when the data are sparse (Richardson and Best, 

2003). A valuable insight provided by our research relates to the estimation of uncertainties 

associated with traffic contribution estimates at both city and region levels. This is in particular 

appealing when it comes to defining the range of traffic contribution to air quality in cities where 

source apportionment studies are missing. Our quantitative summary overcomes challenges in data 

gaps and provides useful information for health impact modellers and policy-makers to assess 

impacts of traffic reduction policies.  
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Figure 1. Expected traffic contribution to air quality (and associated uncertainty) for 169 cities worldwide.  

Dashed line indicates the overall (global) mean value of traffic contribution to particulate matter. 
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Table 1. Summary statistics of the compiled data 

 Frequency Percent 

Explanatory variables   

Study was conducted in Europe, North 

America or Oceania   

No (0) 82 28.0 

Yes (1) 211 72.0 

Study published after 2005   
No (0) 73 24.9 

Yes (1) 220 75.1 

City population is less than 500,000 

inhabitants   
No (0) 186 63.5 

Yes (1) 107 36.5 

Traffic contribution estimates were based 

on PM10   
No (0) 182 62.1 

Yes (1) 111 37.9 

Number of records in each region   

Africa 4 1.4 

Central and Eastern Europe 5 1.7 

East Asia 34 11.6 

India 6 2.0 

Middle East 7 2.4 

North America 62 21.2 

Northwestern Europe 24 8.2 

Oceania 8 2.7 

South and Central America 17 5.8 

Southeastern Asia 9 3.1 

Southern Asia 5 1.7 

Southwestern Europe 95 32.4 

Western Europe 17 5.8 

Note: Total number of observations is 293.  
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Table 2. Meta-regression estimation results explaining traffic contribution to particulate matter 

Variables Mean Std. Dev. 95% Bayesian interval Odds ratios Std. Dev. 95% Bayesian interval 

Europe, North America or Oceania -0.443 0.162 -0.768 -0.129 0.642 0.105 0.464 0.878 

Published after 2005 -0.326 0.179 -0.670 0.029 0.722 0.133 0.511 1.030 

Population < 500,000 people -0.269 0.097 -0.459 -0.079 0.764 0.074 0.631 0.924 

PM10 0.171 0.091 -.008 0.350 1.191 0.108 0.991 1.419 

Study-specific random effect mean  -0.577 0.212 -0.986 -0.154 - - - - 

Study-specific random effect variance 0.556 0.091 0.393 0.748 - - - - 

Observation-level variance 0.265 0.033 0.208 0.336 - - - - 

Note: For description of the explanatory variables, see Table 1.    
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Figure 2. Estimated average traffic contribution (and its 95% Bayesian interval) for different regions.  


