The Prospective Studies of Atherosclerosis (Proof-ATHERO) consortium: Design and rationale

§Denotes equal contribution.
‡The members of the collaborators committee are listed at end of the paper.

1Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria; 2Department of Advanced Biochemical Sciences, Federico II University, Naples, Italy; 3Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy; 4Centro Cardiologico Monzino IRCCS, Milan, Italy; 5Department of Geriatric Medicine, Gemeinnützige Salzburger Landeskliniken Betriebsgesellschaft GmbH Christian-Doppler-Klinik, Salzburg, Austria; 6Department of Geriatric Medicine, Paracelsus Medical University, Salzburg, Austria; 7Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; 8Department of Epidemiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; 9Usher Institute, University of Edinburgh, Edinburgh, UK; 10Heart Center, Konyang University Hospital, Daejeon, Korea; 11Department of Cardiology, Konyang University College of Medicine, Daejeon, Korea; 12Department of Cardiology, Haga Teaching Hospital, the Hague, the Netherlands; 13Imagelabonline & Cardiovascular, Eindhoven and Lunteren, the Netherlands; 14Wallenberg Laboratory for Cardiovascular Research, University of Gothenburg, Gothenburg, Sweden; 15Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 16Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden; 17Nephrology Department, Ege University School of Medicine, Bornova-Izmir, Turkey; 18Division of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Perugia, Italy; 19Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan; 20Australian Research Centre for Population Oral Health, University of Adelaide, Adelaide, SA, Australia; 21Department of Internal Medicine, University Clinic of Navarra, Navarra, Spain; 22BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK; 23Oslo University Hospital Ullevål and Institute of Clinical Sciences, University of Oslo, Oslo, Norway; 24Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China; 25Human Development and Health Academic Unit, Faculty of Medicine, The Institute of Developmental Sciences, University of Southampton - Southampton General Hospital, Southampton, UK; 26Department of Clinical Neurophysiology, Amsterdam UMC, Amsterdam, the Netherlands; 27University Department of Nephrology, Hippokration General Hospital,
Thessaloniki, Greece; 28AGE Research Group, NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle-upon-Tyne Hospitals Trust, Newcastle, UK; 29Infectious Diseases Unit, Reina Sofia Hospital, Murcia, Spain; 30Department of Dialysis, University Medical Centre Maribor, Maribor, Slovenia; 31Department of Internal Medicine Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands; 32Department of Clinical Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil; 33Division of Nephrology, Shin matsudo Central General Hospital, Chiba, Japan; 34Laboratory of Lipid Disorders, National Medical Research Center of Cardiology, Moscow, Russia; 35School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK; 36Department of Internal Medicine, Holbaek Hospital, University of Southern Denmark, Odense, Denmark; 37Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; 38Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Poznan, Poland; 39Center for Clinical Studies, Technical University Dresden, Dresden, Germany; 40Department of Angiology, University Hospital Basel, Basel, Switzerland; 41Department of Internal Medicine, General Medicine and Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan; 42Department of Medical Psychology, Amsterdam UMC- Location AMC, Amsterdam, the Netherlands; 43Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands; 44Blood Purification Unit, Hamamatsu University Hospital, Hamamatsu, Japan; 45Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan; 46Department of Medical Biophysics, Western University, London, Canada; 47Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Australia; 48National School of Public Health, Instituto de Salud Carlos III, Madrid, Spain; 49Department of Neurology, University of Miami Miller School of Medicine, Miami, USA; 50Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA; 51VASCage GmbH, Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria; 52Department of Medicine, Uppsala University, Uppsala, Sweden; 53Paris Cardiovascular Research Centre (PARCC), University Paris Descartes, Paris, France; 54Department of Medicine and Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada; 55Hamilton General Hospital, Hamilton, Ontario, Canada; 56Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Kuopio, Finland; 57IRCCS Multimedica, Milan, Italy; 58Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan; 59Department of Neurology, Benedictus Hospital Tutzing & Feldafing, Feldafing, Germany; 60Department of Neurology, Technische Universität München, Munich, Germany; 61Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; 62Department of Epidemiology & Biostatistics, Amsterdam UMC- Location Vumc, Amsterdam, the Netherlands; 63Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; 64Department of Health Sciences, University of Leicester, Leicester, UK; 65Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; 66Department of Neurology, Goethe University, Frankfurt am Main, Germany

Short Title: Design and rationale of the Proof-ATHERO consortium

*Corresponding author:
Peter Willeit, MD MPhil PhD, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria, Tel: +43 512 504-83493, Fax: +43 50 504-23852, E-mail: peter.willeit@i-med.ac.at

2 tables, 3 figures, 3884 words
Abstract

Atherosclerosis – the pathophysiological mechanism shared by most cardiovascular diseases – can be directly or indirectly assessed by a variety of clinical tests including measurement of carotid intima-media thickness, carotid plaque, ankle-brachial index, pulse wave velocity, and coronary artery calcium. The Prospective Studies of Atherosclerosis (Proof-ATHERO) Consortium (https://clinical.epi.i-med.ac.at/research/proof-athero/) collates de-identified individual-participant data of studies with information on atherosclerosis measures, risk factors for cardiovascular disease, and incidence of cardiovascular diseases. It currently comprises 74 studies that involve 106,846 participants from 25 countries and over 40 cities. 21 studies recruited participants from the general population (n=67,784), 16 from high-risk populations (n=22,677), and 37 as part of clinical trials (n=16,385). Baseline years of contributing studies range from April 1980 to July 2014; the latest follow-up was until June 2019. Mean age at baseline was 59 (standard deviation: 10) years and 50% were female. Over a total of 830,619 person-years of follow-up, 17,270 incident cardiovascular events (including coronary heart disease and stroke) and 13,270 deaths were recorded, corresponding to cumulative incidences of 2.1% and 1.6% per annum. The consortium is coordinated by the Clinical Epidemiology Team at the Medical University of Innsbruck, Austria. Contributing studies undergo a detailed data cleaning and harmonisation procedure before being incorporated in the Proof-ATHERO central database. Statistical analyses are being conducted according to pre-defined analysis plans and use established methods for individual-participant data meta-analysis. Capitalising on its large sample size, the multi-institutional collaborative Proof-ATHERO consortium aims to better characterise, understand, and predict the development of atherosclerosis and its clinical consequences.

Keywords: Prospective studies · Consortium · Individual-participant data · Atherosclerosis · Repeat measurements · Cardiovascular disease
Cardiovascular diseases (CVD) are the most common cause of death and disability worldwide. According to recent estimates from the Global Burden of Disease Study, about 18 million people die of CVD in a year, which account for over 30% of all global deaths [1]. The pathophysiological mechanism shared by many CVD is atherosclerosis, a gradual and progressive hardening and narrowing of the arteries over the course of life. Initial atherosclerotic alterations can be found as early as in young adulthood [2, 3] and involve endothelial dysfunction, inflammation, and deposition of fat [4]. Advanced atherosclerotic lesions are characterised by formation of atherosclerotic plaque that can destabilise, rupture or fissure, and can ultimately lead to acute vessel occlusion or formation of a local thrombus with dislocation into distal arteries and thereby clinical sequelae [4].

Clinical and subclinical atherosclerosis can be directly or indirectly assessed using a range of different clinical tests which are simple, safe, and non-invasive, and therefore amenable for use in large-scale studies (Fig. 1). One of the imaging techniques for atherosclerosis most frequently used is the assessment of carotid intima-media thickness (cIMT). Using B-mode high-resolution ultrasound, the distance between the adventitia-media interface and the intima-lumen interface of the carotid arterial wall is quantified. Spatial resolution of this imaging technique is approximately 50 µm axially and 200 µm laterally. Ultrasound-based cIMT is considered as a marker of the early stage of atherosclerosis. It is related to unfavourable levels of traditional cardiovascular risk factors [5, 6] and has been shown to be in good accordance with “true” cIMT determined in histological studies [7]. Furthermore, increased cIMT has been associated with increased risk of cardiovascular events [8, 9].

Other scalable and commonly available measures to ascertain vessel wall pathology and dysfunction include carotid plaque [10, 11], ankle-brachial index [12], pulse wave velocity [13], and the coronary artery calcium score [14–16] (Fig. 1). As reviewed recently [17], these measures have several strengths and weaknesses. cIMT, carotid plaque, ankle-brachial index, and pulse wave velocity are non-invasive and cost-effective markers, which are therefore relatively easy to implement in large clinical studies. However, disadvantages include measurement error and lack of standardisation in measurement protocols for cIMT, specificity of ankle-brachial index [12], and the error associated with the measurement of travelled distance for pulse wave velocity [18]. The coronary artery calcium score directly quantifies presence of calcification in coronary arteries [19]. In contrast to the other mentioned markers, coronary
artery calcification is assessed with computed tomography, which is more costly and exposes the study participant to radiation, thereby limiting large-scale assessments.

According to the 2019 European Society of Cardiology Guidelines for the diagnosis and management of chronic coronary syndromes, atherosclerotic plaque detection by carotid artery ultrasound, assessment of coronary artery calcium score with computed tomography, and measurement of the ankle-brachial index may be considered as risk modifiers in cardiovascular risk assessment in asymptomatic subjects [19]. Because atherosclerosis typically develops over a long period of time and only causes symptoms at an advanced stage, these measures are important tools in clinical practice to quantify atherosclerosis burden and might help inform treatment decisions.

The Prospective Studies of Atherosclerosis (Proof-ATHERO) consortium is an international consortium that brings together individual-participant data from prospective cohorts with detailed information on atherosclerosis, covariates, and incidence of CVD outcomes. The present report provides a description of broad aims of the Proof-ATHERO consortium and the principal methodology involved in collating, harmonising, and analysing study data.

Design

Objectives

Capitalising on its large sample size and the comprehensive information available, the overarching aims of the Proof-ATHERO consortium are to: (i) better characterise the natural history, communalities, and differences of different atherosclerosis measures; (ii) to provide novel insight into the determinants of atherosclerosis development and progression; and (iii) to investigate clinical consequences of atherosclerosis. In contrast to prior reports in individual studies, the large-scale data of Proof-ATHERO enables the study team to conduct power-demanding analyses, including (i) characterisation of atherosclerosis trajectories over time; (ii) determination of the shapes of associations (e.g. linear vs. curvilinear vs. threshold effects); (iii) study of potential effect modifiers (e.g. age, sex, medication, or different lifestyle factors such as smoking habit); (iv) direct comparisons of the added predictive value of different atherosclerosis measures over and beyond assessment of conventional risk factors; and (v) reliable evaluation of atherosclerosis measures as surrogate markers for clinically manifest
CVD endpoints. Overall, Proof-ATHERO aims to analyse world-wide available data to deliver results based on the highest scientific evidence.

Inclusion criteria

Prospective cohorts are eligible for inclusion in the Proof-ATHERO consortium if they were observational studies or clinical trials that: (i) have assessed one or more atherosclerosis measures (i.e. cIMT, carotid plaque, ankle-brachial index, pulse wave velocity, and coronary artery calcium) repeatedly (i.e. at two or more time points); (ii) have ascertained comprehensive information on CVD risk factors (e.g. lifestyle, blood-based markers, history of disease, and medication intake); and (iii) have recorded incident CVD outcomes using well-defined criteria.

A crucial foundation for the Proof-ATHERO consortium was provided by the PROG-IMT project [20]. This initiative led by Matthias Lorenz at the Goethe University at Frankfurt am Main had collated and analysed individual-participant data on the progression of cIMT and, for instance, yielded milestone publications on the association of cIMT progression with future CVD risk in the general population [8], in people with type-2 diabetes [21], and in people at high cardiovascular risk [22]. When the PROG-IMT project was completed in 2017, a majority of contributing studies (83%) decided to continue the fruitful collaboration as part of the Proof-ATHERO consortium and to jointly investigate scientific questions which go beyond the initial aims of the PROG-IMT project. The commitment by these studies gave a unique head-start to the Proof-ATHERO consortium and enabled efficient data accrual at the beginning of the initiative.

Identification and incorporation of new eligible studies is ongoing and we invite researchers to contact the coordinating centre if they wish to contribute to the Proof-ATHERO consortium.

Atherosclerosis measures

Data have been sought from investigators on carotid ultrasound parameters, ankle-brachial index, pulse wave velocity, and coronary artery calcium at baseline and any subsequent re-examinations during follow-up. Atherosclerosis measures assessed by the individual studies are summarised in Table 1. Parameters based on carotid ultrasound are being collected systematically on up to twelve sites (common carotid artery, carotid bifurcation, and internal carotid artery; left and right side; near and far wall) and include cIMT, vessel diameter, presence of plaques (yes vs. no), number of plaques, plaque thickness (height in mm), plaque area in a
longitudinal view (in mm²), and plaque morphology according to the Gray-Weale classification [23]. The methodologies which studies used to cIMT and carotid plaque are summarised in Table S2 and Table S3, respectively.

Participant characteristics at the baseline and follow-up surveys

Data on participant characteristics at baseline and follow-up surveys have been sought from investigators on age, sex, ethnicity, socio-economic status, smoking, systolic and diastolic blood pressure, body-mass index, lipid markers (e.g. total cholesterol, high- and low-density lipoprotein cholesterol, triglycerides), markers of inflammation (e.g. C-reactive protein, fibrinogen, leukocyte count), markers of dysglycaemia (e.g. fasting glucose, glycated haemoglobin), use of medication (e.g. antihypertensive, antidiabetic, lipid-lowering medication), and pre-existing diseases (e.g. coronary heart disease, stroke, diabetes, or hypertension). Furthermore, in clinical trials, information on the type of interventions (and dosages, if appropriate) and on adherence to allocated regimens have been collated.

Incident disease outcomes

Data on incident disease outcomes have been collated predominantly on fatal and non-fatal CVD events, including myocardial infarction, angina pectoris, and subtypes of stroke. Details on the ascertainment of prevalent and incident CVD are provided in Table S4. Studies assessed prevalent CVD at study baseline using self-report only or supplemented by objective criteria. The vast majority of the studies used objective criteria rather than self-report only for assessing incident coronary heart disease (93%) and incident stroke (90%). Outcomes were classified according to International Classification of Diseases-10 coding (e.g. I20-I25 for coronary heart disease and I61-I69 for stroke) or to study-specific coding systems. In addition, information on cause-specific death has been sought. In 15 studies, cause of death was ascertained based on the death certificate; 44 studies supplemented the death certificate with information from additional sources (e.g. medical records, autopsy findings).

Coordination of the consortium

The Proof-ATHERO consortium is coordinated by the Clinical Epidemiology Team at the Medical University of Innsbruck, Austria. An outline of the processes involved in Proof-ATHERO coordination is provided in Fig. 2. Standardised data request forms are sent to eligible studies, inviting them to participate in the initiative. Upon receipt of study data, data cleaning
and harmonisation are performed by a dedicated data management team using a range of tools for detecting inconsistencies and ambiguities in the data. Any queries arising during this process are clarified through direct correspondence with study investigators. Upon completion of the data management process, study data are stored in a central database at the coordinating centre. The data management system of the coordinating centre has been implemented in SAS 9.4. Proposals for analyses can be submitted by all members of the Proof-ATHERO study group (i.e. all named investigators of studies contributing data to Proof-ATHERO) via the consortium’s webpage. Upon receipt, proposals are reviewed by a dedicated Proof-ATHERO steering committee, which then allocates resources at the coordinating centre according to resource availability and scientific priority of the project. For contractual reasons, data are stored and analysed exclusively at the Proof-ATHERO Coordinating and Statistics Centres (Medical University of Innsbruck and University of Cambridge). At each step from development of a statistical analysis plan, to the conduct of statistical analyses, and the creation of a manuscript draft, investigators of contributing studies and expert panels are contacted for feedback and comments, therefore making use of the broad and diverse community of experts in the field involved in the initiative.

General approach to statistical analyses

For each scientific project, statistical analyses will be performed according to a pre-specified analysis plan. Statistical analyses will follow established methods in the analysis of individual-participant data [24–29]. Generally, the multi-level structure of data (e.g. multiple cohorts) will be taken into account by combining study-specific estimates using meta-analytical methods or by using mixed regression models with appropriate specification of random effects. Analyses will also involve assessments of between-studies heterogeneity. More details on specific analytical methods will be provided in publications resulting from each scientific project.

Data protection and ethics considerations

All studies contributing data to Proof-ATHERO have previously reported results and have obtained relevant local ethics approval and participants’ consent. The data provided by each study remain entirely the property of the principal investigators of that study and are held in confidence by the Proof-ATHERO coordinating centre. To safeguard the identity of individuals at all stages of the analysis and to ensure compliance with data protection legislation and confidentiality guidelines, study data are transferred to the coordinating centre using encrypted
connections. De-identified data are being stored securely in a central database at the coordinating centre, protected by firewalls and accessible only to authorised staff. Participants and collaborating studies have the right to withdraw from the Proof-ATHERO consortium at any time and without giving reasons.

Characteristics of contributing studies

As of 24 January 2020, a total of 74 studies involving 106,846 participants are part of the Proof-ATHERO consortium. The designs of contributing studies and key study-level characteristics are shown in Table 2. In summary, 21 studies recruited participants from the general population, 16 studies were conducted in patient populations with specific pre-existing diseases (e.g. with diabetes), and 37 studies were randomised controlled trials covering a range of different patient populations. The numbers of people enrolled in these three types of studies were 67,784, 22,677, and 16,385, respectively. Baseline years ranged from April 1980 to July 2014; the last follow-up was in June 2019. Mean age at baseline was 59 years (standard deviation: 10); 50% of participants were female. Fig. 3 demonstrates the geographical location of contributing studies. Study locations were spread across four continents and are based in 25 countries and over 40 cities. The median duration of follow-up (i.e. the time from baseline to first event or end of follow-up) was 6.1 years (interquartile range: 2.7-10.4). Over a total of 830,619 person-years of follow-up, 17,270 incident CVD events and 13,270 deaths were recorded, corresponding to cumulative incidences of 2.1% and 1.6% per annum, respectively. As Proof-ATHERO evolves further, up-to-date information on contributing studies are being made available on the consortium’s webpage at https://clinicalepi.i-med.ac.at/research/proof-athero/.

Initial set of hypotheses to be tested

The large sample size and variety of data in Proof-ATHERO will enable us to test several hypotheses that are particularly power-hungry and could therefore not be addressed by previous studies. For instance, it is unclear whether cIMT progression could serve as a surrogate marker for hard cardiovascular outcomes in clinical trials [30–32]. Second, given conflicting results of prior individual studies [33–39], the comparative predictive value of cIMT measurements at different locations of the carotid artery remains to be determined in detail. Third, building on the initial insights of our recent literature-based meta-analysis [40], Proof-ATHERO will characterise in detail the association of cIMT with long-term risk of developing carotid plaque.
In general, as a large-scale consortium of patient-level data, the high statistical power and consistent approach to statistical analysis and outcome definitions of Proof-ATHERO will help to address the aforementioned and other questions more reliably than previously possible.

Strengths and limitations

Proof-ATHERO is a large consortium with a huge amount of data on atherosclerosis applying consistent approaches to data harmonisation and analysis. By inclusion of data from 25 countries and different clinical settings, the generalisability of findings will be of particular value. Our study also has several limitations. First, there were some differences between studies in how they assessed atherosclerosis measures and clinical outcomes. To address this issue, we collect meticulously a variety of study-specific characteristics, enabling us to quantify and better understand the impact of these differences in future analyses. Second, comprehensive data cleaning and harmonisation is a serious, often underestimated challenge. However, we managed to develop a sophisticated data management system that enables to transparently and effectively handle various datasets with different structures provided by the individual studies. Third, the current focus of available data lies on cIMT due to participation of multiple studies previously involved the PROG-IMT consortium [20]. Fourth, there exist several other markers for atherosclerosis, such as the assessment of endothelial function [41] with flow-mediated dilation or peripheral arterial tone, which have not been collected within Proof-ATHERO yet. Since the consortium is designed to continuously collect new data as they become available, coverage of other atherosclerosis markers will be expanded over time.

Conclusion

The Proof-ATHERO consortium is a multi-institutional collaborative project that is coordinated at the Medical University of Innsbruck, Austria. The consortium brings together large-scale data from prospective studies in the field of atherosclerosis. Proof-ATHERO combines data on CVD risk factors, repeat assessments of atherosclerosis, and clinical outcomes with cutting-edge data management and analytical tools. Building on these strengths, Proof-ATHERO will help to better characterise, understand, and predict the development of atherosclerosis and its clinical consequences.
Acknowledgement

This manuscript was prepared using data of the Atherosclerosis Risk in Communities Study (ARIC), the Cardiovascular Health Study (CHS), the Jackson Heart Study (JHS), and the Multi-Ethnic Study of Atherosclerosis (MESA) obtained from the NHLBI Biologic Specimen and Data Repository Information Coordinating Center (BioLINCC) and does not necessarily reflect the opinions or views of ARIC, CHS, JHS, MESA, or NHLBI. An anonymised individual-participant data dataset from CREED was kindly provided by Prof. Zoccali, Prof. Tripepi, and Prof. Mallamaci from the Institute of Biomedicine (CNR), Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy on the basis on their 'public use' policy. We thank the CREED group for sharing their valuable data. We are grateful to the team members of the VASCage project (FFG COMET K-Project 843536) for their support.

Disclosure Statement

L. Tschiderer reports grants from the Dr.-Johannes-and-Hertha-Tuba Foundation during the conduct of the study and non-financial support from Sanofi outside the submitted work. L. Seekircher reports non-financial support from Sanofi outside the submitted work. G. Klingenschmid reports non-financial support from Sanofi and Pfizer outside the submitted work. N. Sattar reports personal fees from Amgen, AstraZeneca, Boehringer Ingelheim, Eli-Lilly, Novo Nordisk, Sanofi, and Pfizer and grants from Boehringer Ingelheim outside the submitted work. S.E. Kjeldsen reports personal fees from Merck Darmstadt, MSD Whitehouse Station, Sanofi Paris, and Takeda Chicago outside the submitted work. S. Kiechl reports grants from Austrian Promotion Agency FFG outside the submitted work. G.D. Norata reports grants from Pfizer and Amgen and personal fees from Sanofi, Amgen, Alnylam, and Novartis outside the submitted work. P. Willeit reports grants from the Dr.-Johannes-and-Hertha-Tuba Foundation and the Austrian Science Fund FWF during the conduct of the study. Other authors have no conflicts of interest.
Funding Sources

This work has been funded by the Austrian Science Fund (FWF) [P 32488] and the Dr.-Johannes-and-Hertha-Tuba Foundation. Funders of individual studies contributing to the present analysis are listed on the Proof-ATHERO webpage (https://clinicalepi.imed.ac.at/research/proof-athero/studies/).

Author Contributions

L. Tschiderer, L. Seekircher, G. Klingenschmid, and P. Willeit are part of the coordinating centre and are responsible for data management and data analysis of the Proof-ATHERO consortium. L. Tschiderer and L. Seekircher drafted the manuscript, conducted the analyses, and interpreted the data. G. Klingenschmid interpreted the data. M. J. Sweeting provided supervision for statistical analyses. P. Willeit is responsible for the conception and design of the work, drafted the manuscript, conducted the analyses, and interpreted the data. All other authors were responsible for data acquisition. All authors revised the manuscript critically for important intellectual content approved the final version of the manuscript.

Affiliations of members of the collaborators committee: 1Department of Advanced Biochemical Sciences, Federico II University, Naples, Italy; 2Department of Neurology, Goethe University, Frankfurt am Main, Germany; 3Department of Neurology, Klinikum Herford, Herford, Germany; 4Centro Cardiologico Monzino IRCCS, Milan, Italy; 5Centro Dislipidemie, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; 6Department of Epidemiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; 7Usher Institute, University of Edinburgh, Edinburgh, UK; 8Department of Preventive Medicine, Konyang University, Daejeon, Korea; 9College of Medicine, Konyang University Hospital, Daejeon, Korea; 10Department of Medicine and Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada; 11Hamilton General Hospital, Hamilton, Ontario, Canada; 12Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; 13Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; 14Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands; 15Department of Experimental Cardiology, University Medical Center Groningen, Groningen, the Netherlands; 16Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; 17Department of Nephrology, Amsterdam UMC, Amsterdam, the Netherlands; 18Department of Nephrology, University Medical Center Utrecht, Utrecht, the Netherlands; 19Nephrology Department, Ege University School of Medicine, Bornova-Izmir, Turkey; 20Division of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Perugia, Italy; 21Division of Internal Medicine, Cortona Hospital, Cortona, Italy; 22Wallenberg Laboratory for Cardiovascular Research, University of Gothenburg, Gothenburg, Sweden; 23Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan; 24Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, University of Sydney, Sydney, NSW 2006, Australia; 25Australian Research Centre for Population Oral Health, University of Adelaide, Adelaide, SA, Australia; 26Department of Internal Medicine, University Clinic of Navarra, Navarra, Spain; 27MRC Population Health Research Unit, Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; 28Faculty of Medicine, University of Southampton - Southampton General Hospital, Southampton, UK; 29Southampton NIHR Biomedical Research Centre, University Hospital Southampton - Southampton General
Hospital, Southampton, UK; 30University Department of Nephrology, Hippokration General Hospital, Thessaloniki, Greece; 31Department of Nephrology, University Medical Centre Maribor, Maribor, Slovenia; 32Faculty of Medicine, University of Maribor, Maribor, Slovenia; 33Department of Global Health, Amsterdam UMC- Location AMC, Amsterdam, the Netherlands; 34Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam, the Netherlands; 35Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, the Netherlands; 36Department of Clinical Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil; 37Division of Nephrology, Shinmatsudo Central General Hospital, Chiba, Japan; 38Ultrasound Vascular Laboratory, National Medical Research Center of Cardiology, Moscow, Russia; 39Atherosclerosis Department, National Medical Research Center of Cardiology, Moscow, Russia; 40Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK; 41Department of Cardiology, Oslo University Hospital, Oslo, Norway; 42Faculty of Medicine, University of Prishtina, Prishtina/Kosovska Mitrovica, Serbia; 43Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia; 44Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Poznan, Poland; 45Department of Internal Medicine, Kantonsspital Frauenfeld, Frauenfeld, Switzerland; 46Department of Angiology, University Hospital Basel, Basel, Switzerland; 47Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan; 48Department of Internal Medicine, HMC+ (Bronovo), the Hague, the Netherlands; 49Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan; 50Stroke Prevention & Atherosclerosis Research Centre, Western University, London, Canada; 51Department of Internal Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; 52School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; 53Radiology Department, Universidad Autónoma de Madrid, Madrid, Spain; 54Internal Medicine Department, Universidad Autónoma de Madrid, Madrid, Spain; 55Department of Epidemiology & Biostatistics, Amsterdam UMC-Location Vumc, Amsterdam, the Netherlands; 56Department of General Practice, Amsterdam UMC- Location Vumc, Amsterdam, the Netherlands; 57Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands; 58Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA; 59METHODS Core, Centre de Recherche Epidémiologie et Statistique Paris Sorbonne Cité (CRESS), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1153, Paris, France; 60Faculty of Medicine, University Paris Descartes, Paris, France; 61Paris Cardiovascular Research Centre (PARCC), University
Paris Descartes, Paris, France; 62 Assistance Publique, Hôpitaux de Paris, Hôpital Broca, Paris, France; 63 Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Kuopio, Finland; 64 SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy; 65 Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; 66 Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; 67 Clinical Informatics & Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan; 68 Department of Neurology, Technische Universität München, Munich, Germany; 69 Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany; 70 Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
References

33 O'Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK: Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older

Figure Legends

Fig. 1. Measures for quantifying atherosclerosis.

Fig. 2. Data management and analysis workflow in the Proof-ATHERO consortium.

Fig. 3. Location of studies contributing data to the Proof-ATHERO consortium as of 24 January 2020. Full study names and references are provided in Table S1.