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SUMMARY

The theoretical basis for a lifting surface model using Morino’s formulation is given in
this report. -The various choices made previously for modelling rudder and propeller
interactions are described z2nd the reasons for using, in this investigation, a lifting surface
perturbation potential-method:” An explicit trailing edge pressure Kutta-Joukowsky
condition is used to ensure that-there is'no pressure loading.at the trailing edge. A
frozen wake or an adaptive.wake model can‘be chosen for both-the rudder and propeller

simulations.

A flexible scheme for geometry definition was developed to allow flow over a wide
variety of geometries and multiple body lifting-surface problems. This surface definition
scheme uses parametric cabic splines which require a minimal amount of data to

accurately define quadrilateral panels on a three-dimensional surface.

The proposed Interaction Velocity Field method separately models the lifting surfaces.
In this case, a rudder and propeller. The flow interaction between them is accounted for
by modifying their respective inflow velocity fields. Expressions were derived to allow
the velocity at any point within the flow domain to be calculated using the solution to
- the perturbation potential method. This process is used to generate the respective inflow
velocity field. It can also be used to produce flow visualisation information important

for design purposes.

Verification of the lifting-s:irface method was carried out to compare the results obtained

with previously published 1:uumerical and experimental results.
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1 INTRODUCTION

Only a limited amount of theoretical work has been carried out with regard to the
modelling of ship’s rudder and propeller in Naval Architecture. However, the similar
problem on aircraft, of wing mounted propellers and the resulting interaction between

the wing and propeller has-received-considerable attention.

In a recent paper by-Cho &:-Williams[1] the propeller-wing interaction was-investigated
using a frequency domain panel method. A linearised compressible potential theory was
used to determine the unsteédy aerodynamic coupling between the wing and propeller:
An iterative approach was used whereby the propeller and wing are solved in isolation
and the effect of the interaction is obtained using a fourier transform of their respective
induced velocity fields. The lifting-surface method used gave good agreement with
measured mean loads on a wing/propeller system. A principal conclusion was that useful
performance predictions could.be made where circumferentially averaged (isolated)
- propwash is imposed on the wing and where a circumferentially averaged (isolated)

wingwash is imposed on th: propeller to get the modified steady blade/rudder loading.

Previously Kleinstein [2] L.ad looked at the effect of a propeller on the aerodynamic
characteristics. of a high aspect-ratio wing. Using a lifting-line approach with the
propeller stream represented by an equivalent circular jet of uniform velocity, it was
found that a better approximation to propeller-wing interaction was obtained than that
by Koening {3]. Koening’s classical theory represents the propeller as a constant velocity
but of infinite height and therefore a uniform velocity field. A drawback to the work was

the lack of experimental siudies to verify the results.

Kroo [4] looked at the pronlem of minimising induced loss for the integrated system of
propeller and wings. In a simplified model -using a.fourier series wing lift distribution
the stagger theorem of Munk [5] was used. In its generalised form this states that "the
net force in the stream-w.se direction is independent of the stream-wise position of
surfaces with a given circulation distribution”. This implies that the wing optimum

circulation distribution (minimum drag) can be computed with the propeller far upstream




and therefore removing the need to calculate the effect of the rudder on the propeller
and that of the propeller’s bound vorticity of the wing. This simple analysis showed that
the wing’s optimal lift distribution significantly differed from that of the elliptic load
distribution of an isolated wing. The wing acts to restore the swirl-energy otherwise lost

from the propellers wake. Again, no experimental comparison with theory was made.

An experimental investigation .and computational analysis was.carried.out by Witkowski-
et al [6] at Purdue University: These tests.were carried out with a configuration for:a
tractor mounted 12" diameter propeller upstream of a rectangular wing with geometric:
aspect ratio of (33/4). In the computer analysis two methods were used. A semi-
empirical method involved the superposition of experimentally correlated propeller wake
velocity onto a uniform flow across a wing modelled using a vortex lattice method. This
gave a fast means of achieving results which preldicted A C;, to between 10% and 30%.
The other method used a vortex-lattice to simultaneously model the wing and propeller.
- In this, the propeller is assumed to have a wake on a rigid helix of constant diameter and
the wing wake is assumed flat and in the stream-wise direction. The calculation was
repeated for a range of propeller blade phase angles and the quasi-steady forces obtained
by averaging over a compleie revolution. This method gave a better comparison forA Cp,
of between 6-12%.

Although the work of Witkowski [6] and also that of Lorber [7] in looking at helicopter
rotor-fuselage interaction have been moderately successful in modelling the complete
interaction geometry, a fundamental problem remains in the specification of the
propeller wake geometry. . At best, only an educated guess is possible in stating the wake
geometry, and vortex-lattice methods can be sensitive to the location of collocation
points. As most experimental results are of time-averaged quantities it is difficult to
- justify the use of combined geometry models where a non-physical description of the
wake structure has to be used to obtain results. The approach used by Cho and Williams
[1] is the most promising with the separation of the problem into the modelling of a
propeller with imposed velocity field and a rudder with imposed velocity field. This
.allows the considerable expertise of modelling isolated rudders and propellers to be fully

used and the modelling of the interaction can be concentrated on developing adapted




velocity inflow fields.

No mention has been made of more sophisticated modelling of the flow using a Euler
- or.Navier-Stokes formulation. . This is-due-to the large computational requirements of
such methods combined with the difficulties of modelling a propeller helical wake. At
the present time the author has not come across any practical methods for .isolated
propellers and therefore the available methods for modelling the propeller are restricted -
-to some form.of lifting.surface, lifting-line, or blade-element momentum approach...The
balancing of the need for physical realism with the complexity of numerical formulation
and hence computational requirement is dependent on the final use of the computed

solution,

In modelling the interaction of a ship rudder and propeller to develop a parametric

.. relationship for manoeuvring studies and design purposes, only quasi-steady total forces

.. and. surface .pressure information is required for both rudder and propeller. This

information can be obtained from an inviscid, incompressible and irrotational potential

model such as the panel method first used'by Hess and Smith [8].

The separation of the modelling of the rudder and propeller allows the most appropriate
- method for modelling each to be chosen. Molland [9] obtained a good comparison for..
a lifting-line model of free-stream semi-balanced skeg rudders. However, a propeller
inflow will result in considerable span-wise cross-flow which cannot be adequately
modelled using a lifting-line except thorough considerable empiricism. It is also not
possible to determine- the local chordwise position of centre of pressure for a given span
position which is required for an understanding of the rudder stock torque. Some form
of lifting-surface model of the rudder should provide adequate information for the

manoeuvring characteristics.

A lifting-surface approach to modelling a propeller has been developed at M.LT. by
Kerwin et al [10,11,12]. A variety of formulations and wake models have been used over
the years. Blade-element momentum theory and Goldstein corrections can be used to

calculate the propeller race information necessary for an inflow field to the rudder.




-However, this approach uses considerable empiricism and it is difficult to take account
of the upstream influence of the rudder on the propellers performance. In this work it
- is proposed to use the lifting surface formulation for modelling both the rudder and the
propeller. This approach will give the necessary information at a reasonable
. computational cost for calculating the manoeuvring characteristics of a ship rudder and

propeller.

An implicit method for thesolution of .the inviscid, incompressible, irrotational steady-
state scheme such as. a lifiing-surface: panel method provides'a rigorous test for the

performance of transpute: networks in solving general fluid dynamic problems.
2 THEORY

Based on the review of literature, a reasonable compromise between computation'alk
- effort and,physical-accuracy-in modelling the flow interaction was concluded to be .the
use of a lifting surféce pancl method. The same panel method would model in isolation
--the individual rudder and propeller. The interaction between the two lifting surfaces is

accounted for by the modification of their respective inflow velocity fields.

- In a lifting surface formulation the approximation of the full Navier-Stokes equation
assumes that the flow is inviscid, incompressible and irrotational and satisfies Laplace’s

potential equation;

Vp = 0 [1]

A detailed description of the method and a review of its historical development is given
by Hess[13]. Lamb[14] showed that for a quantity satisfying Laplace’s equation may be
written as an integral over the bounding surface S as a source distribution per unit area
and a normal dipole distribution per unit area distributed over the surface. If v

represents the disturbance velocity field due to the bounding surface {(or body) and is

10



.-.defined as-the difference between the local velocity at a point and the free-stream

velocity then:

vV (2]

where ¢ is defined as the disturbance potential. This can be expressed in terms of a

surface integral as:
b= [[ o v ZOpMs+ [ Z(Omas 3]
S8 Sw

Where Sy is the surface of the body and Sy a trailing wake sheet, as illustrated in figure
1 for a two-dimensional flow. In the expression r is the distance from the point for which
the potential is being determined to the integration point on the surface andd ©n is a
partial derivative in the direction normal to the local surface. A dipole distribution is
used to represent the wake sheet. Hess [15] showed-this can be directly related to the

vorticity distribution used in vortex lattice methods (VLM).
The conditions imposed on the disturbance potential are that the (from Hess[13]):

1) velocity potential satisfies Laplaces equation everywhere outside of the body and

wake;
2) the disturbance potentizl due to the body vanishes at infinity;
3) normal component of velocity is zero on the body surface;

4) kutta-joukowsky condition of a finite velocity at the body trailing edge is satisfied.

11
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Figure 1 Two-dimensional lifting surface schematic o

5) the trailing wake sheet is a stream surface with equal pressure either side.

For a steady-state solution the wake dipole strength distribution is uniquely determined
by the application of the Kutta condition at the body trailing edge. As conditions (1) and
(2) are satisfied as functions of p and o, conditions (3) and (4) are used to determine
" ando on the body. The Kutta condition only applies at the trailing edge and some other
relationship has to be used to uniquely determine the distribution of u and ¢ over the
body. The numerical resolution of this non-uniqueness is referred to as the singularity

mix of the lifting-surface method.

The choice of numerical representation of the body integral singularity mix and boundary

conditions are described in the following sections.

12



3 MORINO’S METHOD

Lee[16] carried out a two-dimensional investigation into four possible schemes for the

solution of Lamb’s equation. In this the body source strength per unit area o was
defined as:

% _ W 4]

where d /dn is the normal derivative of the velocity potential on the outer surface of the
body and dp’/dn is the normal derivative on the interior of the body surface. Similarly

the body dipole distribution per unit area p was defined as:
be=o- ¢ 5]

where ¢ and ¢’ are respectively the disturbance velocity potential on the exterior and

interior of the body surface. Equation [3] can then be written as:

- B o1 ap o’
4 (p) j!ﬂ[@(q) Yagz- Gr™ 50F

9 ! yas
on R on R ‘

[6]
of é[ VA¢ %(_é)ds

As the flow within the body surface S is non-physical the choice of different internal

velocity potential ¢’ will result in different singularity mixes. These were classified, by

Lee, as follows.

1) Total velocity: If the normal derivative with respect to the field point is taken of

equation [6] a velocity formulation results. An internal potential such that:

13
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ztg_'%.”u a2 _l—d&r'[%[w“}i%ds 8]

which is an integral equation of the first kind for the unknown dipole strengthp. The
dipole strength is:

=0+, [9]

where ¢, is the inflow or free-stream potential

U, - v, [10]

Hess and Smith’s original velocity method was based on a vortical formulation rather

than a dipole distribution.

2) Perturbation velocity: For the velocity formulation, where the equation [6] is
differentiated normal to the field point, if the internal potential ¢’ is set to zero it can
be shown that db’/dn=0 on S;. Therefore [6] becomes:

of Jd -1
4’.‘5“@3"%‘?”‘ ” '

” Ad Tlds [11]

_1_
n R

where o =dp /dn and p =p. Given the source strength from the normal boundary
condition this again is an integral equation of the first kind for the unknown dipole

strength . .

14



3) Total Potential: In equation[6), if the inflow velocity potential can be expressed as:

Vo, = U [12]

and then the internal velocity potential is set constant to:

¢ = -¢, [13]
it becomes:
2B - b, + J‘J’¢>(q) dS _[J’A«r__ds [14]
Sg A

-Where @ is the total potential. This represents the body as a normal dipole distribution
and is a Fredholm integral equation of the second kind for the total potential &.
(4) Perturbation Potential: If the internal potentialé’ is set to zero and from that dp’/dn
is zero equation [6] becomes: |

”@aanzlz 34; 1)ds ”A¢__ds [15]

As dp /dn is known as it has to satisfy the normal surface boundary condition, this
. expression is also a Fredholm integral equation of the second kind for the dipole strength
p. This dipole strength-is equal to the external value of the potential on the body

surface,

The conclusion of Lee’s study was, that for lifting surfaces which have both thin and thick
sections (e.g. propeller blades), the perturbation potential method(4) taken from the
work by Morino and Kuo|17] was the most suitable. The principal advantages of this

method are that because panel potential (scalar) rather than velocity (vector) influence

15



- coefficients .are .calculated only.a third of.the memory requirement for the method is
needed. Also, the perturbation potential influence coefficient is an order less singular.
Kerwin and Lee [11] used this method and found it robust in their investigation of

ducted propellers.

Maskew[18] used Morino’s method- which is a low-order panel method as opposed to
higher-order formulations where the source/dipole strengths are not assumed piece-wise .-
‘constant over  a-panel:- The simplicity” of low-order panel- methods~and- their~low :

computing cost allows great flexibility in their applications." In conclusion Maskew stated.

that a low-order method usiag Morino’s formulation gave comparable accuracy to higher--- -

order formulations while avoiding many problems associated with other low-order

methods.

Margesson et al.[19] compared five production surface panel methods, three of which
used low-order singularities. All but one used as a basis the formulation due to Morino
and the other a higher-order formulation due to Hess. The two higher-order Morino
formulation .provided the same accuracy with lower panel numbers but at greater

computational cost.

~Morino’s numerical procedure. is ‘based.on representing the body surface by a series of.
N quadrilateral panels each with an unknown but constant dipole strength per unit area:
The vertices of these panels are located on the actual surface of the body. The wake
sheet is represented by M panels placed on the stream-surface from the trailing edge of
. the body surface... Its dipole strength per unit area is related to the difference in dipole
potential at the trailing edge. In Morino’s work the wake strength p , was equated to the

difference in potential between the upper and lower surface at the trailing edge.

That is:

b= b, - b, [16]

16



On the body surface the source strength per unit area is prescribed by satisfying the

condition for zero normal velocity at the panel centroid:

o = Un [17]

where n is the unit normal outward from the panel surface and U the specified inflow

velocity at the panel centroid.. .

The numerical discretisation of equation[15] gives for the potential at the centroid of

panel i as:

N M
b= 3 (W#)S;- 6D;) + T A6, (18]
Fl =1

where for panel j: S; is the source influence coefficient of a unit strength panel; D, the

dipole influence coefficient; and W, the influence of the constant strength wake strip

- -extending to infinity. As there are N independent equations corresponding to the N body

surface panel centroids, equation[18] can be evaluated. Expressed in matrix form it

becomes:
[Dy b+ [WylAb = [S,](Ua) [19]

For Morino’s original trailing edge Kutta condition, which directly relates Ad to the
difference in trailing edge panel potential, the matrix expression [19] can then be directly
solved to give the vector of dipole potentials . Numerical differentiation of dipole
potential along the body surface allows the surface velocity and hence pressures on the

surface to be evaluated.

The method used for the evaluation of the individual influence coefficient elements of

the matrices S;, D;; and W, are described in the next section.

ij? i

-
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4 NEWMAN PANEL

At the heart of a lifting surface panel method is the efficient calculation of the potential
(or velocity) influence coefficients at a field point due to a particular panel’s source or
dipole distribution. Newman[20] derived expressions for calculating the exact influence
coefficients of a constant strength distribution of sources and normal dipoles over a
quadrilateral panel. The method of calculation of the dipole.influence coefficient avoids
- the use of numerical:integration:~ The-approach-of the paper was-different from that
used originally by Hess and Smith[8] although the form of the exact source influence
coefficient is algebraically similar. Following Hess & Smith arbitrary order multi-pole
expansions are derived so that at greater distancesl from the panel the accuracy of the
source and dipole influence coefficient is maintained while at the same time the

computational time is reduced.

The scheme used in this work, to reduce computational effort, was to choose the scheme
to calculate the influence coefficients based on L. Parameter L is the ratio of the
distance between the point of interest and panel centroid divided by the length of the
panels main diagonal. Newman’s exact formulation is used when L is between 0 and 2,
a 4™ order multi-pole approximation between 2L and 2.45L, a 2™ order muiti-pole
. .approximation .between. 2.45L. .and-4L, :and.a point:source /normal :dipole .for.distances
greater than 4L. Figure 2 shows the influence coefficients for this composite scheme
compared to that for the exact, 4™, 2", and point expressions for a field point at different
heights above the centroid of the panel. Appendix 1 provides the mathematical
derivation of the exact; multipole and point expressions and their OCCAM2

interpretation.

The modelling of the interaction requires.the evaluation of.total velocity in the field
domain away from the lifting surface. The expressions given by Newman are for the
potential influence only. For potential flow, the velocity is the local gradient of the
potential. Therefore, the velocity influence due to a panel has been derived by applying
the Grad operatorV to the source and dipole influence expressions. These relationships

are also given in Appendix 1. Figure 3 shows, for two planes through a square panel, an

18
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Figure 2 Comparison of scheme for calculating the dipole influence coefficient
against distance above the centre of a square panel

isometric contour plot showing lines of constant total velocity for a uniform dipole
distribution, The correspondence between a uniform dipole distribution and an element

of four vortex lines can be directly seen.

The multipole expressions require the calculation of 13 coefficients based on the
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Figlire 3 Isometric contour plot showing total velocity lines for two planes through
a square dipole panel.

geometrical properties of the panel. To minimise computational time it would be
sensible to only ever calculate these values once for each panel. However, the memory
requirement to do this severely limits the maximum number of panels for a problem and
it was decided to recalculate the coefficients for the four panel vertices every time a
panel was used. Table 1 provides timings for calculating these geometrical coefficients
for a single panel and also for the four different methods for calculating the source and
normal dipole influence coefficients.

Table 1 . Comparison of time taken to calculate dipole influence coefficents using

different schemes between single T800 transputer and VAX 11/750.

Clock Ticks Time Vax 11/750
T800 (low) (mSec) (mSec)
Geometry 119 7.62 -
Exact 27 1.73 1.5
4th Order 17 1.09 0.4
2nd Order 12 0.77 0.2
Point 9 0.58 -

20



These timings were obtaired using a single T800 transputer running at low priority and
are averaged over a large number identical calculations. The figures are given in both
units of the T800 internal clock and milliseconds. Also shown .are the approximate .
values given in Newman{20] for calculating the source and normal dipole influence

coefficients in single precision on a VAX 11/750.
It can be seen that:

1) Calculation time of the geometrical coefficients is only 4.4 times that of calculating -
the exact influence coefficient. Therefore, if at any one time a number of field point
influence coefficients can be calculated using information for a single panel there will

not be that large a computational penalty for recalculation.

2) As expected an individual T800 micro-processor is slower than the VAX 11/750 but

not by much!
5 KUTTA CONDITION

For a steady-state solution, the dipole strength of the trailing wake sheet has a constant
- ~-strength in the stream-wise direction. . This strength is directly-related to the circulation.
around the lifting surface. The original Kutta condition, implemented by Morino,
involved setting the trailing wake sheet dipole strength equal to that of the difference in
perturbation potential at the trailing edge. This implies that the pressure difference at
the trailing edge would be close to zero. Lee showed that a source term should also be
included to ensure that there was zero difference in total potential caused by the
difference in source strength of the two trailing edge panels and gave the expression for

this as

@ =T, r [20]

5 o
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For three-dimensional flow, r is the vector between the centroids of the two trailing edge
panels. With this additional term, when significant cross-flow occurs at.the trailing edge,
. the upper and lower panels will not necessarily be at the same pressure and a non-
physical trailing edge pressure loading occurs. This was seen by Lee as the need to
explicitly equate the upper and lower panel pressure using an iterative scheme to correct
the dipole wakestrength-kased-on-a factor K multiplying the pressure loading at the-
- trailing edge from the.previous iteration. Only sketchy.details are given by Lee into the
actual evaluation of K. Howvever, the scheme is described as a Newtori-Raphson method

and from this hint an expr:ssion for K has been derived.

The method developed in this work uses the description given in [11,16] as a basis. An
explicit condition of no pressure loading is enforced across the upper and lower trailing

L

edge panels. That is, the pressures are equal:

AP,= P, - R=10 [21]

If it is assumed that A Cp is primarily a function of the local trailing edge wake sheet

strengthA¢ an iterative N::wton-Raphson approach is suggested to determine the wake

~strength for-the point of zero pressure difference at-the trailing.edge. .That is: ...

APQAGFY)

T AP [22]
Ad

Abk“ A¢k_1—

where the trailing edge pressure loading A P is the difference in pressure between the

upper and lower panels at the trailing edge.

AP= P,- P, [23]

Substituting for pressure in terms of surface velocity V gives

AP= (V. . V) -(Vy. V) [24]

22



Differentiating with respect to a change in wake strength

AP _ Ly o, W [25]
dAd L™ dag U aag

By deriving an expression for surface velocity in terms of the velocity influence sum of
all the source and dipole panels,.and.wake strips (see next section 6, equation[30]) and. -
then differentiating with vespect:to the wake. sheet strength-and assuming that-the
principal influence on a puir-of trailing edge .panel’s.is due .to the attached-wake strip-
then dV  /dA¢ can be exp:essed as:

av;,

- 26
Y Voo and [26]

“where Vy,; and Vy, are ths velocity influence coefficients of the wake strip attached to
the panels at their respective centroids. All the. components can then be numerically

. evaluated and hence the wake strength updated.

The zero’th order (k=0) approximation for.the wake strength is taken to be.the original

Morino kutta condition;
Ap =&, - ¢, [27]

as$ , and$, are unknown then the numerical equation[19] is arranged with the unknowns

on the left hand side:

(D + Wyl = [,

U 28]

- Once the solution vector ¢ is obtained this is used to calculate A-Cp at the trailing edge.
Using equation[22] the correction to the wake strength is found. This correction vector
of known strength is multiplied by the wake strip influence coefficient matrix W, and
applied to the right hand side of the equation. This modifies Morino’s original matrix

expression to:

23



dAd k
[Dy+ Wy]®=[ S]U - m- Wik][ KPAP] 29]
The process-is repeated until the pressure loading has been removed to any significant

degree.
6 ADAPTIVE WAKE MODEL._ ... .. .

The accurate modelling of a wake sheet convected downstream from a lifting surface is
‘difficult and the subject of ‘miuch research. The zero thickness wake sheet should.be
-aligned tangential to the local flow to ensure that there is no pressure jump across the
sheet. The specification of the wake geometry cannot be known a priori as its location
will depend on the eventual flow solution which is dependent on the actual wake
geometry. There are schemes which iteratively adapt the wake shape until a converged
shape is obtained with the wake everywhere aligned with the local flow. These schemes
greatly increase -the computational cost of solution and are prone to problems of
sensitivity to the initial geometry especially where considerable wake roll-up occurs.
Many of these problems originate from the non-physical representation of the wake as
a zero thickness constant strength sheet extending to infinity. However, a correct
geometrical representation of the wake sheet is necessary if good numerical results are

to be obtained.

In the Morino formulation the wake sheet is represented as a series of trailing dipole
panels. The influence coefficient of a wake strip W, extending from the body trailing
edge to infinity is the sum of the influence coefficients of all the panels making up the
strip. For practical calculations the panelled wake strip will only extend a finite distance
downstream. This distance can be determined by carrying out sensitivity studies where
the length of wake strip is increased until no appreciable change in body dipole strengths
occurs. Another, more physical approach, is to use a far-field approximation for a wake
sheet extending to infinity from a given distance downstream of the body. This method

was used by Lee.
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- For non-rotating lifting surfaces where the principal aim is to obtain surface pressure and
hence body forces the wake sheet evolution downstream is not critical to the final
solution. For these cases a fixed (or frozen) geometry wake can be prescribed. Usually

- downstream of the body the wake is aligned in the free-stream direction and close to the

body the wake is aligned with the direction of the lifting surface chord.

The accurate representation.of the wake sheet.generated by a rotating lifting surface,:
~such as a propeller blade, presents-major difficulties. Considerable work has been done
" in developing propeller wai’e models. These usually involve some amount of empiricism
and wake-adaption technigues. - In Lee’s work the prescribed propeller wake geometry
was generated using a previously developéd liffing-surface code[12] and experimental
data. In a recent paper by Maitre and Rowe[21] a numerical method for iterativély
relaxing an initial wake following the propeller geometric pitch was found to converge.
It gave good results, although was not completely free to adapt near the hitb where the

wake radius was held constant.

- In this work, to allow for possible variation in propeller design, it was decided to develop
a wake adaption method based on that by Maitre and Rowe. The wake is divided into
a near and far region. In the far region the movement of each wake panel is based on
- that of the.last panel.in the.near region. For.the near.region the velocity.at.each panel-
centroid is calculated by summing the velocity influence coefficients of the body source
and dipole panels and the wake dipole panels. The total velocity at the panel centroid

is the sum of the body rotational velocity, inflow velocity and the disturbance velocity:

N M )
Vi= Vorrxa+ 3 (o0, + (V. mVg) + > AbV,) “[30]
1 k1

The total velocity V, is translated into cylindrical coordinates where a is a unit vector in
the direction of rotatior. r a unit vector in the direction of the panel centroid

perpendicular to a, and t forms the orthonormal set t = a x r. This gives
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[31]
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where R is the radial position of the panel centroid. As the velocity of the.panel.nodes
is required this is taken-to be-the sum of the cylindrical components. of velocity of the

surrounding panels divided by .the number of panels surrounding the-node. That is
1ot |
IInode = ""“E V;:entmid [32]
A

The positions of the nodes of a wake strip are altered recursively starting from just aft
of the trailing edge using the following relationships which give, in cylindrical coordinates
(r,ap), for node k+ 1(Maitre).

Far= T+ VAL

| 8% -0+ @RAL C B3

i i
a,,= a+ vAg

The time step in this work is taken to be I

| x| T

At =

where L is the straight-line distance between two successive nodes. Using this method

ensures that the stream-wise length of the panel sides remains constant.

This method was also used for non-rotating bodies by working in cartesian coordinates

for the recursive relationships.
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. 7T GEOMETRICAL DEFINITION

7.1 Introduction

Morino’s method locates quadrilateral panels on the actual body surface. For lower-
order formulations these. panels consist of a number. of connected.-straight lines which - -
form a closed surface.- Generally, only quadrilateral panels are used-and where possible
one of the principal directions of the panels is aligned in the flow dierction.

An accurate geometrical definition of a three-dimensional body as a closed surface
constructed from quadrilateral elements is a crucial component of a lifting-surface
analysis. How easily arbitrary bodies can be defined will determine the usefulness of a
numerical analysis code. Lee [16] tailored the flow solver for a particular geometry e.g.
semi-span wing or propeller blade. This approach is of limited use and a better
approach is that used in the commercial code Quadpan[18] where an input file is used .
which contains the four veitices for each panel. The preparation of this pre-processing
file is especially time consuming as a new file has to be created for every change in
panelling density. However, such a input file format allows arbitrary bodies to be tested

without recourse. to creating individual executable code for.every geometry.. ..

In this work a principal feature is the investigation of the performance of a lifting-surface
code on a transputer network. Therefore, it is necessary to have a simple means of
scaling the overall problem size by altering the number of panels used to define a lifting-
surface. Therefore, the decision was made to combine the two approaches described and
generate the actual panel vartex coordinates within the program but use a pre-processing
file to define the number of bodies and their individual geometry. This allows a problem
to be scaled by using the internal panel generator to produce a different number of
panels for the same overall body geometry. In addition the pre-processing input file can

be used to define the interaction velocity field.
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- - 1.2 Parametric Cubic Spline

A variety of means are available for defining a three-dimensional surface (or body). In
Naval Architecture a ship hull form is conventionally defined using a series of lines which
lie in parallel planes. These lines, whether waterlines, buttocklines or transverse
sections, are themselves defined in. terms of an - ordered -set of coordinates. . A
mathematical relationship can then:be used to generate the curved lines between the.-

. coordinates and hence spezify a three-dimensional surface..

“An extremely useful and straightforward means of relating the line coordinates to the :
- curve passing through them is that of a parametric cubic spline procedure. A spline
approximation is defined (Kreyszig [32]) as a piece-wise polynomial approximation to a
curve, Each segment of a line is represented as a polynomial . For a cubic spline at the
end of each segment the gradient and curvature of the polynomial expression are

matched to the adjoining polynomial expressions. This results in a curve made up of a
[35]

series of cubic lines i.e.

yeok £+ kyt*+ kyt+ k, [36]

where the values of the constants k;,k,.k, and k, are solved using the end conditions of
gradient and curvature continuity. Defining a value of the parameter t will uniquely
define the value of the y coordinate. Similar relationships for the x and z coordinates
allow a three-dimensional curve to be unifluely‘.deternlined by the single parameter t.
This parameter is the distance along the original curve and this is usually approximated.

as the straight-line distance between points. That is:

At= (X, - X0+ (Y- V) + (Z,- Z) [37]

28



-For the purposes of this work a surface definition using parametric cubic spline provides
an accurate approximation to a three-dimensional surface. The end conditions used in

this work is that of zero curvature.
7.3 Body Definition

The facility to define a number of bodies or separate -parts of the same body
independently allows complex geometries and flows to be investigated.  If each body-is-
defined relative to its own body coordinate system there has to be a means of relating
the coordinate systems of all the bodies to the overall cartesian coordinate system in
which the panels are definad. A set of four vectors (S, P, O, A) were used to carry out
this transformation to be carried out. The definition of these vectors allows great

flexibility for parametric studies of complex geometries.

Analytically the flow solution for incompressible potential flow can be made non-
dimensional and independent of physical scale. However, to allow direct comparison
with experiment it was decided to use the actual physical dimensions for-the numerical
analysis. Often geometries, for example rudder sections, are given in terms of non-
dimensional percentage chord. To allow the checking of data and also alteration of such
parameters as rudder aspect.ratio it was decided to define body coordinates in terms of

a scale vector S:

sly [38]

where X, Y., Z,., are 2 scale factors for each of the body cartesian coordinates.

A body pivot vector P is defined which, in the body coordinate system, locates the
position about which the body can be rotated. An ordered rotation vector A defines

these angular rotations about the pivot in radians. These rotations are in order about
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the body XY and Z axis. For example, for a rudder with a pivot at 25% of its chord,
it-can be set at any angle of incidence by changing the value of Z-axis rotation angle
component of vector A. Effectively, this allows the individual body coordinate systems
to be rotated with respect to the overall coordinate system.An absolute offset-vector O
relates the origin of each body coordinate system to that of the overall -coordinate
system.; Changing the offset vector O allows the parametric study of lifting surface body

separation to be investigated. .

Each individual body (or part body) is defined in the same manner as that of a ship hull
form; as an ordered series of lines with each line containing an ordered set of three-
dimensional points. For a closed lifting body such as a rudder or wing, a wake sheet will
be connected to the trailing edge and it is therefore sensible to start and finish each body
definition line at the trailing edge. For non-lifting bodies this is not essential. Figure
4 illustrates the process of defining a rudder as a series of parametric cubic splines. The
order of the series of linesf and points is important in determining the direction of the
panel surface normal used in calculating panel influence coefficients. The lines are

ordered so that the normal vector to a panel always faces out into the exterior flow field.

The numerical discretisaticn of the body geometry into a number of quadrilateral panels
requires the number of panels in the section data direction (parameter t) Nt and in the
line direction (parameter s) Ns. The process of generating the Nt by Ns panels is carried

out by:

1) For each line of section data producing (Nt + 1) coordinates using a parametric cubic
spline through the section data. The distribution of points within a section can either be

spaced at intervals of A t, where

| Tl
At= — 39
N [39]

t
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and T is the total parametric length of the line or where At is some function of t. For

closed bodies the start and finish point of each line are made identical.

2) A parametric cubic spline is formed in parameter s by using the i™ point form each
of the section data splines.. Each of these new cubic splines is used to define (Ns+1)
points. Repeating this for.(Nt+1) points generates the coordinates vertices for all the

required panels.

A wake sheet can be panelled in a similar manner. To ensuré accurate matching of a
body trailing edge and its wake sheet the number of section lines must be the same for
body and wake. Also, the section lines should have identical start coordinates. This
ensures that an identical s parameter spline will be produced and sub-divided so that

wake strip coordinates correspond to those of the trailing edge panels.
7.4 Flow Definition

The disturbance velocity field generated by a body is superimposed on the velocity field
existing in the absence of the body. For many problems this inflow velocity. field is a
- constant velocity in the free-stream direction throughout the domain and can be directly
specified. In the case of a rotating body the velocity on its surface will be the vector sum

of the free-stream velocity and the body’s rotational speed. That is:

where r is the position vector of the panel centroid from a point at the origin of the axis
of rotation. The angular velocity & vector is the scalar speed of rotation in the direction

of the axis of rotation.

The modelling of the interaction between a ship rudder and propeller requires a spatially
varying flow definition in the absence of a lifting-surface. So in addition to the uniform
free-stream velocity and where necessary rotational velocity a spatially varying velocity

distribution is needed. To facilitate modelling, a velocity field definition is used whereby
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. directions are specified at a uniform spacing within a three-dimensional block. This is
illustrated in figure 5. A cylindrical and cubic block were respectively used for the

propeller and rudder inflow fields.

Theoretically, the interaction velocity field could be replaced by the location of suitably
placed source/dipole panels-of-known-strength and:used-directly.incthe calculation of
influence coefficients. . However, it is more convenient to specify a velocity field and if

the velocity field satisfies T.aplace’s equation identical. - That is if:.

Vi = 0 [41]
then as
u=-9 ,_. 3 aw.-% [42]
ox ay oz

to satisfy Laplace’s equation the interaction velocity filed Ui must satisfy:

v.U=10 [43]

or expressed as the sum of velocity differentials should everywhere equal zero:

u, v, w_y [44]
ox ody 8z

It-is probably acceptable (and more practical) to allow a certain amount of deviation
from this condition. Possible difficulties will arise from the use of circumferentially

averaged quantities in deriving interaction velocity fields.
8 Calculation of Aerodynamic Coefficients
The numerical solution of Morino’s method gives a result vector which specifies a dipole

strength at the centre of each panel. As explained previously, this corresponds to the

potential$ on the surface of the body. To obtain practical engineering information from
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this surface potential distribution a numerical differentiation has to be carried out. The
differentiation gives the disturbance velocity tangential to the panel surface. The total
velocity at the panel centroid is the vector sum of the tangential disturbance velocity U,
and the normal component of the body surface r x® and interaction field velocity U,

o, - Ud+(l_fi—(tfi-n)n)+(rm_((m.,).n) n) 1

where n is a unit vector normal to the panel surface.

There are two methods of obtaining the disturbance tangential surface velocity[16]. That
is either by fitting a parametric cubic spline through the panel centroids and using the
cubic polynomial constants to obtain the gradient and hence velocity or by a finite
difference approach. The spline approach requires the assemblage of information from
all the panels in a particular parametric direction. On the other hand, the finite

difference method only requires information about from its four neighbouring

Figure 6 Detail of surface panel vectors for calculating surface velocity
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panels. This is shown in figure 6, with the two unit vectors s and t in the local
parametric directions. The velocity in the t and s directions are then obtained using a

central difference:

4 - (= G0) (Qieai®y) (Bey— ) (40 4’: 1) [46]
(fong = fiogd( By &) (e foyg) (8- fioyy)

and

- (5= Sig-0) (Pigei®y) _ (Sjen- u)(‘bu bij-1) [47]
(i

f (S‘i,ju" Si,j-.1~)(‘si\j+1_ Si,j).— (Si,j+1 Sij ) S~ Sij- 1)

As the finite difference is easier to implement and for panels which closely follow the

curved surface of comparable accuracy it was chosen.

Having determined the surface velocity in the parametric coordinate system a
transformation has to be carried out to give the surface velocity components in the

overall coordinate system. Unit vector s and t are not necessarily orthogonal and

- . therefore the velocities are first transformed into an orthogonal system with one direction

normal to the panel. . The u,v and w components can .then be found. the combined

expression as given by Lee[16] becomes:

@ db |
] E(t - (s0) s_) + '_E(s - (s t) [48]
—d Mol ?

Knowing the disturbance velocity U, and hence total velocity U, allows the local non-

dimensional pressure coefticient Cp to be found.

' 2
U [49]
73

Cp=1-
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The integration of the pressure distribution over the N panels defining the body surface

allows the total body force F to be evaluated as a vector sum.
N
Fe pUX% CuAn [50]
F1

where Ai is the area of the ith panel and ni the direction of its unit surface normal. .

The calculation of the pr:ssure. components of the non-dimensional body force and
" moment coefficients requires a further transformation into the correct body.coordinate
system. For exafnple, as shown in figure 7 for a ship rudder at incidence with the x
direction in the free-stream direction and z vertical the lift is the j component of F. That

is:

[51]

where s and ¢ are respectively the rudder span and meanchord. The pressure component

of Drag is correspondingly:

[52]

. An estimate of the viscous skin friction force acting on a lifting-surface can be found by
using the panel surface velocity and distance from the leading edge to estimate the skin
friction coefficient C;. This gives a viscous. force contribution equal to:

N
Foe= % GA( Ve . Vo)v [53]

visc
k1
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where v is a unit vector in the local flow direction. The skin friction coefficient is

calculated in terms of local Reynolds number:

Uls [54]
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where s is the distance tc the leading edge. The expressions used for C; are from
Schlicting[25]:

Rn < 3x10° C = 0.664Rn™ 03

55
3x10°< Rn < 10" C,= 0.074Rn %% - 1050Rn 1 B3]

Combining the viscous and:pressure contributions gives the total force F acting on the
body as:
Fo= F+ F,_ [56]

Similar expressions are derived to give the total moment acting about the body pivot P,

- where L; is-the position of the panel relative to the origin of the body axes.

N
1
M= 3°U"2§.’-': CpA(L, - Ban [57]
N
My, = pY, GA( V. Vi)YLi- B xv (58]
1
M= M+ M, [59]

9 VERIFICATION

9.1 Introduction

To verify the numerical implementation of Morino’s method a number of trial
geometries were tested. The geometries used are the same as those by Lee and allowed
comparison both with Lee’s work and the original source. The test cases presented are
to verify the numerical analysis procedures and not the wake adaption method which will

be considered in imore detail in a later report.

It was not possible to carry out extensive sensitivity studies on these test cases, for
instance on panelling density, due to a maximum limit of 400 on the number of panels

during development of the code. However, it was considered that if the results
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-replicated those by Lee then such tests were unnecessary.. . . .. .
9.2 Ellipsoid

Lamb[14] gives an analytical solution for the surface potential of an ellipsoid geometry.
for a non-lifting configuration (symmetrical flow) a direct comparison of the potential

found using the numerical method and the analytical solution can be made.

The ellipsoid used for this test has a surface defined by:
x2+ yr+ c%r=1 [60]

where the value of ¢ was taken as 0.1. The perturbation potential on ellipsoid surface
given by Lamb is:

$lxyd = UK [61]
where
[
K- 2_aoD [62]
D- | - [63]
1]

(1+ 2)2(1+ 2)F(c2s 2)

a_=cD [64]

[+]

Figure 8 shows the geometric representation of the ellipsoid which had 32 chordwise
and 12 spanwise panels with a cosine and sine panel distribution respectively. The
sinusoidal panel distributions concentrates the panels in the areas of large variation of
surface curvature and potential. In figure 9 the numerical potential for four spanwise

strips is compared with the corresponding theoretical value. They are plotted to a base
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Figure 8 Panelling arrangement fo an ellipsoid

of normalised parametric length of each strip. The potential is normalised with respect
to the free-stream velocity and ellipsoid radius. It can be seen that the comparison is
very good although in the region of the tip there are small discrepancies. This was found
be Lee who noted that the discrepancies were inagniﬁed when the surface velocity is

calculated but the effect was localised at the tip.

9.3 Circular wing

Jordan [24] gives an analytic solution to the flow over a circular planform wing of zero
thickness. By comparing numerical solutions at 1% and 5% thickness/chord ratio
scetions for a NACA 4 digit series section with that of the analytic solution an
assessment can be made on the prediction of lift for an aerofoil at incidence. As noted
by Lee, this geometry represents the flow in the region of a propeller tip. The panelling
arrangement used was similar to that for the ellipsoid. The limit on panel numbers

restricted the accuracy obtainable ( a higher number of spanwise strips is required to
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Figure 9 Comparison of theoretical and numerical potential for an ellipsoid with

a=1, b=1, and ¢=0.1

achieve the converged panel density of Lee). However, as shown in figure 10, there is
a good comparison of chordwise pressure distribution for spanwise strip 9 for the 1%
aerofoil between the analytic solution and the numerical result rur with and without the
iterative Kutta condition. The importance of the application of the explicit Kutta

condition can be seen in removing the spurious trailingedge pressure loading.

The effect of wing thickness in comparing the spanwise circulation distribution between
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the analytic (0% t/c) with the numeric solution (1% t/c, and 5% t/c) is shown in figure
11. The result for the 5% and 1% distributions are close to the analytic solution with.
the 5% distribution slightly further away. Overall, the results for the circular wing show
good correspondence with the analytic solution even with the limited number of panels.

The necessity of applying the explicit kutta condition is demonstrated for geometries with
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significant cross-flow components.

9.4 NACA 0012 unswept wing

To demonstrate the behaviour of the method for high aspect-ratio lifting surfaces a case
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Figure 12  Isometric wire-frame plot of half span of NACAQ0012 unswept wing with
' AR =595

was run for a NAC0012 wing with an effective aspect ratio of 5.9 at an incidence of 8°.
Two panel arrangements of 50 by 8 and 33 by 12 chordwise by spanwise panels were
tried. The panelling geometry of the later scheme is shown as an isometric wireframe

plot in figure 12. Again sinusoidal clustering of panels was used.

In figure 13 a comparison is made of the spanwise circulation distribution obtained by

Lee and the two panelling arrangements tested. There is good agreement over the whole
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span. This agreement is also illustrated in figure 14 which gives the chordwise presure

distribution at x% semi-span. The area under the three sets of data is almost identical

and close correspondence in both the leading and trailing edge regions.

A final comparison, figure 15, demonstrates how the method predicts the
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incidence at 64% semi-span.

experimentally measured spanwise local lift distribution of the wing. The lifting surface
fails to pick up the slight drop in lift coefficient towards the wing centre-line (probably
due to boundary layer effects) and the holding up of lift right at the tip (tip vortex effects
see Molland[9]) but overall there is a very good correlation which indicates the suitability
of the method for modelling both ship rudders and propellers.
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10 CONCLUSION

A robust lifting surface scheme has been developed based on Lee’s implementation of
Morino’s perturbation potential method. The procedure has been verified with a wide
range of representative non-rotational lifting surfaces. The method is suitable for both

rotational and non-rotating bodies.

The verification confirmed that the method is suitable for modelling both ship rudder

geometries and ship propeller geometries. .

An explicit trailing edge pressure kutta condition was found essential to remove spurious
trailing edge pressure loading. . T ‘ s

A method of surface definition using parametric cubic splines provides a flexible and

rapid means of defining complex multi-body geometries.

Surface pressure/velocity distribution information can be obtained from the numerical

solution and this allows total body force and moment coefficients to be evaluated.

The formulation implemented allows three-dimensional velocity field information to be
obtained. This can be used in defining the inflow velocity field necessary to implement

the interaction velocity field necessary for modelling rudder-propeller interaction. - — - ———-.
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APPENDIX  Calculation of panel potential/velocity influence coefficients
(i) Introduction

Newman[20] gave the potential due to a distribution of sources or normal dipoles on a flat quadrilateral
panel. -The derivation given for the normal dipole potential is considered to be superior. to that of Hess and

Smith[8]and is'valid for panel’s "vhose -panel density is-of .an :arbitrary-polynomial. form. : However; in this .:--

work only-the constant strength panel case is used.

An efficient.scheme for the-calculation-of the-influence coefficient.of a panel for an. arbitrary-field point. . .

uses a graded series of far-fiel:' approximations. to reduce. computational time..-Newman-also gave an .
arbitrary order multipole expressions for source and normal dipole potential. ' The scheme used in this work
for choosing the relevant express’on is that of Newman and is based on the ratio L of the distance between
the panel centre R to the size of the largest diagonal of the panel. The value of L for the various
approximations is:

(1) L <20 Exact expression.

(2) 200< L <245 4™ Order Multipole.
(3 2455 L<40 279 Order Multipole.
4 400s< L Point

In this work expressions are atio needed for the source and normal dipole velocity influence of
of a flat quadrilateral panels. These are used in the wake adaption scheme and the calculation of the
interaction velocity field. The velocity influence were obtained by differentiation of the expressions for the
source and dipole potential given by Newman.

(ii) Panel Geometry

Figure A-1 illustrates an arbitvary quadrilateral panel located in an overall cartesian coordinate system

(x.y',Z).

» Following the method of Hess an Smith{8], the coordinate centre C of the arbitrary panel is defined as the
average position of the panel no jes P;:

c- LY p [A1]

A panel centroid coordinate syst-:m is defined using the panel diagonals a = P, - P; andd = P, - P,. The
unit normal n is then:

axd [A2]
{ axdl
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r ﬁ. Q(X’,Y”Z’)

Figure A-1 Panel Geometry Schematic

and the panel area A = %2 | ax d |. Once n is defined the third vector of the panel orthonormal system
is found using the unit vector in the direction of a.

b- nxa [A3]

To obtain a flat panel, which is necessary for the analysis, the position of each node is adjusted so that they
are all coplanar with the panel ceatre C using;

Fori- 1t 4, #i_pi+((c, pi),,,),, [A4]

The orthonormal system matrix |B} = (a,b,n) is then used to transform the panel nodes to transform the
panel nodes into the panel centred coordinates on the plane z=0.

f”-- [B]( Pi_ C) [A.5]
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A further translation is applied to locate the centre of the panel coordinate system at the centroid of the
panel,

Figure A-2 illustrates the planar representation after the transformation to the panel coordinate system,
with€,n define the position of the panel nodes and s the length between nodes.

N O |
\
o,
E4$ﬂ4
S !
£1sf|1
ee—_—
T _-—‘—'—‘——_

Figl-u'e A-2Z Schematic of panel in panel coordinate system with origin at cen roid./

To find the influence of the at a particular field point Q(xy,z) the first step is to translate the point into.
the individual pane! coordinate cystem:

d-181(Q- P [A6]

where P, is the panel centroid in the overall coordinate system. The radial distance from the centroid to
Q is then simply the magnitude of Q.

As the expression for velocity influence coefficient V is calculated within the panel coordinate system a
final transformation using the transpose of [B] has to be applied to find the velocity influence in the overall
systern:

VO- [B]T VP [A7]

(iif) Exact

Dipole potential

The potential at Q for a normal dipole distribution of constant strength -4z is an integral over the panel
surface:

Newman’s derived expression is simply the sum of four arctangents for a quadrilateral panel, with coefficients
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D - ZII [@_E)Z_'_ (y_n)2+ 22 ]?‘t dh [A-8]

based on the geometric propertics of the sides and does not require any numerical integration and is:

A _1| Saa [A9]
® - E tan Yo -
r1 3n

where C; = §,C,-8,C; and C;=CC, + 5,8,

The four geometric coefficients :re:

Si-8n, [ €)%+ 22 ]- 88, (=E,) On,) [A.10]
Sy=8na [ (g )+ 28]~ 88, -En1) -n4d) [A11]
Ci= R, 28k, [A.12)

[A13]

CZ- lezsen

where R, is the radial distance between Q and node n, 8%, =0, -0, andd§ =& ., - .

Dipole velocity

The velocity influence cocfficient of a constant normal dipole distribution of strength -4x at field point Q
is:

Ve-Vo [A.14]

Differentiating the expression for dipole potential influence gives:

4
Vi- - Y ((CCE+ SV S,
1 53"+ G5+ 1
v (5328,+ S,C2)V G [A.15]
- (C%C,+ S3C)V S,
- 5167+ $SHV C)
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where

B, T8, b0y
Vs, -| -8, (€, [A.16]
B,z

mi] w1 (I-E n 1)'6£ n (.V"ﬂ i 8 1)
VS,-| 88, () (A17]
B,z

6

[A.18]

288, [A.19]

0
4 0
Vi - : [A.20]
! gl 8% { SiRy1- SR, )
8§15,

Source potential

The potential at ficld point Q of a constant source distribution of strength -4z is a surface integral:

¥ - J'J’ 8¢ 81 [A.21]

r
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as® = -d¥ /dz and since® and'¥ vanish at infinity partial integration gives that:

‘F-j:'bdz--j:za@—z@ fA.22]
z z

Newman evaluated the integral terms to find the expression for ¥ as:

4
T-Y v, Q- 29 [A.23]
™1
where
Vo — (x_' En)Sin(en)— (y—ﬂn)COS(Bn) [A24]
O, - log ._..._—R" tRuir % [A.25]
Rn + Rm— 1- %
and for the angle ® |
&
sif | - kL .
%n [A.26]
8k,
cod -
Sﬂ
Source velocity
The velocity influence of a conslant source distribution of strength -4¢ at field point Q is:
V,--V?¥ (A.27]
but
4
VY - V[ Y vo,- 2
™1 [A.28]
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The terms of ® n and zVy are already known, after manipulation vv,Q, can be expressed as:

Si'[ﬂn
VO = O cody
0 [A29]
2s, .
- V( Ry+ Ry 1) TR Sz[(x—fn)sxrefo»n Jeos ]
but
En Eml
—+
x Rn le
V(Rn+ ml) [%"’ R1 ] Y- ﬂn+ L] [A30]
i z ﬁn— le
0 ]

(iv) Multipole

An appropriate far-field expression for the source'¥ can be found by expanding the integral expression for
¥ as a Taylor series:

r
z":i ()mm amn-n 1 [A-?’l]
mono minl Tgymyyn

“—A

x+y+z2)

where I is the moment of the panel about the origin:

_ J'J‘E My M dy [A.32]

Similarly for a normal dipole distribution:

g 1 1 [A'33]
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The recursive relationships defined in Newman were used to calculate up to the 4 order moments and
these 13 values were calculated during the process of setting up a panel.

The various order partial differentials of the radius vector r were obtained as were the expressions for
calculating the multipole.expressions.for V, and Vy: - ’

v :%{ }1'] [A34]
X

and
1
vad™™ (1 ] [A35]
aAL™y\ T
These expressions are not given here as their evaluation is straightforward if tedious.
(v) Point

The zero order multipole expression gives the influence coefficient of the panel as a point with the panel
area ( Iy, ). That is:

v-2
r
A.
oz [A36]
r3
and
Vi--vE - 2 [A37]
r
0
Vy--W - 3z, A1y [A38)
r r
(vi) Implementation
Two procedures were written in occam?2 which;
() SetUpSourcePanel, calculates all the geometric parameters and moments for a quadrilateral panel;
(2) NewmanPanel, evaluates the dipole potential and source potential, or the dipole velocity and source
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velocity influence coefficients.

These procedures were written using 3-component vector processes so that their function is transparent.

(vii) Code Listing

SetUpSourcePanel

PROC SctUpSourcePancl(VAL [3]REAL32 P1LP2.P3,P4,
BIBIREAL32 A At
[4]REAL32 EN,
[3]REAL32 Pcr,n,
[4IREAL32 s, dE,dN,
[SI5]REAL32 Imn,
REAIL32 Bighiag,Scale Up)
[3]REAL32 a,b,Po,El1,Pc,E2 E3,FA,C1,02,C3,C4,Cr:
#USE snglmath
REAL32 sze,dk diff,sz2,area;
SEQ

VectorSub(P3,P1,a)
VectorSub(P4,P2,b)

CrossProduct(a,b,n)
Magnitude(n,area)
ScalarDiv(area,n)

Magnitude(a,sze)
Magnitude(b,sz2)

IF
sz2>sz¢
BigDiag: =522 - *ScaleUp
TRURE
BigDiag: =sze — *ScaleUp

ScalarDiv(sze,a)
CrossProduct(n,a,b)

FindAverage(P1,P2,P3,P4,Po)
MoveToSamePlane(P1,P2,P3,P4,Po,n,E1,E2,E3,E4)
DefineAMatrix(a,b,n,A At)
ChangeCoordinates(E1,E2,E3,E4,Po,A,C1,C2,C3,C4)
FindCentroid(C1,C2,C3,C4,Cr)
MoveToCentroid(Cr,C1,C2,C3,C4, EN)
FindDifferences(E,N,s,dEdN)
FindMoments(E,N,s,dE,dN,Imn)

Translate Coord(Cr,At,Pc)

VectorAdd(Pc,Po,Per)

NewmanPanel
-{{{ Newman panel

PROC NewmanPancl(VAL BOOL Both,IsVel,
VAL []REAL32 ENs dEdN,
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VAL [3][3]RBAL32 A AL,
VAL [3]REAL32 Per,
VAL [S][S]REAL32 Imn,
VAL REAL32 BigDiag,ScaleUp,
VAL [3]REAL32 P,
[BIREAL32 Qs,Qd)
[3JREALS32 Pen,Pt,Qsen,Qden:
REAL32 choiceparameter,radius,areais; -
SEQ
VectorSub{P,Pcr,Pt)
TranslateCoord(Pt,A,Pen)
Magnitude(Pen,radius)
choiceparameter: = radius/BigDiag
IF
choiceparameter>4.0(REAL32)
—{{{ point source
IF
IsVel=TRUE
SEQ
~{{{ peint source
REAL32 mags,magsS:
SEQ
mags$S: = (-Imn[0][0])/((radius*radius)*radius)
IF

Both=TRUE
SEQ
ScalarMultiply(magsS,Pen,Qsen)
ScalarMul((0.0(REAL32)-0.07957747T1(REAL32)),Qsen)
TRUE
SEQ w=0FOR 3
Qs[w]: =0.0(REAL32)
— dipole potential
mags: = ((3.0(REAL32)*Imn{0][0])*Pen[2])/
((radius)*((radius*radius)*(radius* radius)))
ScalarMultiply(mags,Pen,Qden)
Qden[2]: =Qden[2] + (magsS)
ScalarMul((0.0{REAL32)-0.079577471{ REAL32)),Qden)
il '
TRUE
SEQ
—{{{ point source
SEQ
IF
Both=TRUE
SEQ
- source potential
Qs[0]: = (0.0{REAL32)-0.679577471(REAL32))*(Imn[0][0]/radius)
— dipole potential
Qd[0]): = (Pen[2]*Qs{0]}/(radius* radius)
TRUE
SEQ .
Qs[0]: =0.0(REAL32)
-- dipole potential
QA[0]: =((Pen2]*Imh[0})[0])/(radius*(radius*radius)))*
(0.0(REAL32)-0.07957T1471{ REAL32))
-1

-11}
TRUE

IF
choiceparameter > 2.45(REAL32)
~{{{ evaluate 2nd order mltipole
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SEQ
IF
IsVel=TRUE
IF
Both=TRURE
VectMultipole(2,radius,Pen,Imn,Qsen,Qden)
TRUE
VectDipoleMultipole(2,cadius,Pen,Imn,Qden) -
TRUE
iF
Both=TRUE
BvaluateMultipole(2,radius,Pen,Imn,Qs[0],Q4[0])
TRURB
DipoleMultipole(2,radius,Pen,Imn,Qd[0})
-1}
TRUE
IF
choiceparameter>2.0(REAL3?)
~{{{ evaluate 4th order multipole
SEQ
IF
IsVel=TRUE
IF
Both=TRUE
VectMultipole(4,radius,Pen,Jmn,Qsen,Qden)
TRUE
VectDipoleMultipol:(4,radivs,Pen,Imn,Qden)
TRUE
IF
Both=TRUE
EvaluateMultipole(4,radius,Pen,Imn,Qs[0],Q4[0]}
TRUE
DipoleMultipole(4,radius,Pen,Imn,Qd[0])
mil
TRUE
—{{{ exact
IF
IsVel=TRUE
~{{{_velocity
VectExactPanel(Both,Imn[0][0],radius,choiceparameter,Pen, B,N,s,dE,dN,Qsen,Qden)
=1}
TRUE
—{{{ exact
ExactPanel(Both,Imn[0]{0],radius,choiceparameter,Pen,B,N,s,dE,dN,Qs[0],Qd[0])
il
-4
—{{{ translate
IF
IsVel=TRUR
SEQ
IF
Both=TRUE
TranslateCoord(Qsen,At,Qs)
TRUE
SKIP
TranslateCoord(Qden,At,Qd)
TRUE
SKIP

-1
-1
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~{{{ Dipole
-={{{ vectdipole
~{{{ Vectdimultipole
PROC VectDipoleMuttipole{VAL INT ordur,VAL REAL32 radius,
VAL {3]REAL32 Pen,
- VAL [5][S]REAL32 Imn,
[3]REAL32 Qden)
~{{{ calculatedipole
PROC VCalculateDipole{VAL REAL32 R2xy,z,
RM1,RM3,RMS5,
2,RM7,yz,
RM9 2,32z xy,xyz, y2 y2z,
RM11,x3,x37,x2y,x2yz,y2x,y2x2,y3,y3z,
x4 x4z,x3y x3yz x2y2z,y4,y4z,y3x,y3xzx2y2, RM13,
VAL INT m,n,VAL [3]REAL32 Pen,
{3]REAL32 Qden)
[3]REAL32 VaddD,temp:
REAL32 ScaleitD:
SEQ
VectorEqual(Pen,temp)
~{{{ setup
SecaleitD: =0.0(REAL32)
SEQ i=0FOR 3
VaddD[i]: =0.0(REAL32)
-1}
IF

m=0

={{{
IF

n=0
—{{{ 00
SEQ

~ dipole
VaddD{2]:= RM3

ScaleitD: = ((-3.0(REAL32))*z)*RM5

=-h}

n=1

-{{{ 01
SEQ

— dipole
VaddD{1]: = (3.0(REAL32)*z)*(-RMS5)
VaddD[2}): = (3.0{ REAL32)*y)*(-RM5)

ScaleitD: = (15.0(REAL32)*y)* (z* RM7)
-1h

n=2
—{{{ 02
SEQ

— dipole

VaddD[1]: = (30.0(REAL32)*y)* (z*RM7) _
VaddD[2}: = ((15.0(REAL32)*y2)*RM7)-(3.0(REAL32)* RMS5)

ScaleitD: = ((15.0(REAL32)*2)* RM7)-({105.0(REAL32)*y22)*RM9)
-1

n=3




~{{{ 03
SEQ

- dipole
VaddD[1]: = ((45.0(REAL32)*z)* RMT)-{{210.0(REAL32)"y22) *RM9)
VaddD[2}: = ((45.0(REAL32)*y)*RMT)-((105.0(REAL32)*y3)*RMY)

ScaleitD: = ((945.0(REAL32)*y3z)* RM11)-((315.0( REAL32) *yz)*RM9)
-1}

n=4
—{{{ 04
SEQ
— dipole

VaddD[1}): = ((3780.0(REAL32)*y3z)* RM11)-((1260.0(REAL32)*yz)* RMY)
VaddD[2): = 0.0(REAL32)-({ ((630.0(REAL32)*y2)* RM9)-

((945.0(REAL32)*y4)*RM11))-
(45.0(REAL32)*RMT7))
ScaleitD: = (((5670.0(REAL32)*y2z)* RM11)-((10395.0{ REAL32)*y4z)*RM13))-
((315.0( REAL32)*z)*RM9)
-1
TRUE
SKIP
-h
m=1
-{{{
IF
n=0
—{{{ 10
SEQ
- dipole

VaddD{0]: = (3.0(REAL32)*z)*(-RMS5)
VaddD[2]: = (3.0(REAL32)*x)*(-RMS5)
ScaleitD: = ((15.0( REAL32)*xz)* RM7)
-1
n=1
-{{{ 11
SEQ

— dipole

VaddD[0]: = ((15.0(REAL32)*yz)* RM7)
VaddD{1]: = ((15.0(REAL32)*xz)* RMT7)
VaddDj2]: =0.0(REAL32)-(((15.0( REAL32)*xy)*(-RM7)))
ScaleitD: = ((105.0(REAL32)*xyz)*(-RM9))
-
n=2

—{{{ 12
SEQ

- dipole

VaddD[0}: = ((15.0(REAL32)*2)* RM7)-((105.0(REAL32)*y2zy* RM9)
VaddD{1]: = ((210.0(REAL32)*y2x)*(-RM9))
VaddD[2]: =0.0(REAL32)-( ((105.0(REAL32)*y2x)* RM9)-((15.0(REAL32)*x)*RMY) )

ScaleitD: = ((945.0(REAL32) *y2xz)*RM11)-((105.0(REAL32)*xz)* RM9)
-1}

n=3

~{{{ 13
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SEQ

— dipole
VaddD({0}: =((945.0(REAL32)*y3z)* RM11)~((315.0( REAL32)*yz)* RM9)
- VaddD{1]: =((2835.0( REAL32)*y3xz) *RM11)-((315.0( REAL32)*xz)* RMY)
VaddID{2]: = 0.0(REAL32)-( ((315.0(REAL32)"xy)* RM9)-((945.0(REAL32)*y3x)*RM11) )

ScaleitD: = ((2835.0(REAL32)*xyz)* RM11)-((10395.0(REAL32)*y3x)* RM13) *

=1}
TRUE

SKIP
-h
m=2

—{{{
IF

n=0

~{{{ 20
SEQ

~ dipole

VaddD{0]: =((30.0{ REAL32)*xz)*RM7)
VaddD[2}: = 0.0(REAL32)-( (3.0(REAL32)*RMS)-((15.0(REAL32)*x2)*RM?7) )
ScaleitD: = ((15.0(REAL32)*2)* RM7)~((105.0( REAL32)*x2z)*RM9)
-1}
n=1
—{{ 21
SEQ

— dipole

VaddD{0]: = (210.0(REAL32)*xyz)* (-RMS)
VaddD(1]: = ((15.0(REAL32)*z)*RMT)-((105.0(REAL32)*x22)* RM9)
VaddD{2];: =0.0(REAL32)-( ((105.0(REAL32)*xy)* RM9)-((15.0(REAL32)*y)*RM7) )

ScaleitD: = ((945.0(REAL32)*x2yz)*RM11)-((105.0(REAL32)*yz)* RM9)
-1}
n=2
~{{{ 22
SEQ

— dipole

VaddD[C]: = ((1890.0(REAL32)*y2,z)*RM11)-((210.0{REAL32)*xz)*RM9)

VaddD[1]: = ((1890.0(REAL32)*x2yz)* RM11)-({210.0(REAL32)*yz)* RM9)

VaddD[2]: = 0.0{REAL32)-( (((105.0{REAL32)*RM9)*(x2+y2})-
((945.0(REAL32)*x2y2)* RM11))-(15.0(REAL32)*RMT) )

ScaleitD: = (((945.0(REAL32)*z)*(RM11*(x2 + y2)))-((210.0(REAL32)*z)* RM9))-
((345.0(REAL32)*x2y22)* RM13)

=11
TRUE

SKIP
-1}

m=3

—{{{
IF

n=0

~{{{ 30
SEQ




-~ dipole

VaddD[0]: = ((45.0(REAL32)*z)* RM7)-((210.0{ REAL32)*x2z)*RM9)
VaddD|[2]: = 0.0(REAL32)-( ((105.0(REAL32)*x3)*RM9)-((45.0{REAL32)*x)*RM7) )
ScaleitD: = ((945.0(REAL32)*x3z)* RM11)-((315.0(REAL32)"xz)*RM9)
-1}
n=1

~{{{ 31
SEQ

== dipole

VaddD|0]: = ((2835.0(REAL32)" x2yz) "RM11)-((315.0( REAL32) *yz) *RM9)
VaddD][1]: = ((945.0(REAL32)*x3z)* RM11)~{(315.0(REAL32)*xz)*RM9)
VaddD{2}: =0.0(REAL32)-( ((315.0(REAL32)*xy)* RM9)-((945.0(REAL32)*x3y)* RM11) )

ScaleitD: = ((2835.0(REAL32)*xyz)*RM11)-((10395.0( REAL32)*x3yz)* RM13)

-11}
TRUE

SKIP
-1
m=4

~{{{
iF

n=0

~{{{ 40
SEQ

— dipole

VaddD{0]: = ((3780.0(REAL32)*x3z)* RM11)}-((1260.0{ REAL32)*xz)*RM9)

“VaddD(2]: = 0.0(REAL32)-( (((630.0( REAL32)*x2)*RM%)-((945.0(REAL32)*x4)*
RM11))-(45.0(REAL32)*RMT) )

ScaleitD: = (((5670.0(REAL32)*x2z)* RM11)-((10395. 0(RBAL32)*x4z)* RM13))-
((315.0(REAL32)*z)*RM9)

il
TRUE

SKIP
~-1
TRUE
SKIP
ScalarMul(ScaleitD,temp)
VectorAdd(temp, VaddD,Qden)

-
--{{{ wvariables
REAL32 R2xyz:
REAL32 RM1,RM3,RMS5:
REAL32 xz, RM7,yz:
REAL32 RM9,32,327,xy,%yz,y2,y2z:
REAL32 RM11,x3,x3z,x2y,x2yz,y2x,y2x7,y3,y3z:
REAL32 RM13,x4,x42,x3y,x3yz,x2y2z,54,y4z,y3x,y3x2,x2y,y2x.X2y2:
-1}
SEQ
~{{{ calculate parameters
R2: =radius*radius
x:=Pen{0]
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y:=Pen|[1]
z:=Pen|[2)
-{{{ ordur=0
IF
ordur> =0
SEQ
RM1:=1.0(REAL32)/radius
RM3:=RM1/R2
RMS: =RM3/R2
TRUE
SKIP
-
—{{{ ordur=1
IF
ordur>=1
SEQ
Xz =x*z
RM7:=RMS5/R2
yz=y*z
TRUE
SKIP
-1
—{{{ ordur=2
IF
ordur> =2
SEQ
RM%:=RM7/R2
X2:=x*x
x2z:=x2*z
xy.=x*y
Kyz:=Xy'z
y2i=y'y
y2z:=y2*z
TRUE
SKIP
-3}
—{{{ ordur=3
IF
ordur> =3
SEQ
RM11:=RM9/R2
3 =x2*x
X3z =x3*z
Xy =x2*y
x2yz: =x2y*z
¥ =y2*x
y2xz: =y2x*z
y3:=y2'y
y3z: =y3*z
TRUE
SKIP
-1}
-{{{ ordur=4
IF
ordur> =4
SEQ
RM13:=RM11/R2
x4:=x3%x
x4z =x4*z
X3y =x3%y
Byz=x3y*z




—{{{ initialise Dipole
SEQ i=0 FOR 3
Qdenfi]: = 0.0{REAL32)
=1}
SEQ m=0 FOR (ordur+1)
SEQ n=0 FOR (ordur+1)
SEQ
IF
(m +n)< =ordur
SEQ
1F
Imn[m]{n] < >0.0(REAL32)
—{{{ calculate coefficients
[3]REAL32 Qd:
SEQ
VCalculateDipole(R2,x,y,2,
RM1,RM3,RMS,
xz,RM7,yz,
RMOx2,x22,xy,xyz,y2,y22,
RM11,x3,x3z,12y,x2yz,y2x,y2xz,y3,y32,
x4,x4z %3y, X3yz,x2y2z,yd,y4z,y3x,y3xz x2y2, RM13,
m,n,Pen,Qd)
ScalarMul(Imn[m][n],Qd)}
VectorAdd{Qd,Qden,Qden)
il
TRUE
SKIP
TRUE
SKIP
ScalarMul((0.0(REAL32)-0.079577471(REAL32)),Qden)

S
m

~{{{ multipole
PROC BvaluattMultipole{VAL INT ordur,VAL REAL32 madius,

VAL [3]JREAL32 Pen,
VAL [5]|S]REAL32 Imn,
REAL32 Source,Dipole)
-{{{ calculatesourcedipole
PROC CalculateSourceDipole(VAL REAL32 R2x,y,z,
RM1,RM3,RMS,
xz, RM7,yz,
RM9,x2,x27 xy, Jf}zaﬂv)’zl,
RM11,x3,x37 X2y, x2yz,y2x,y2xz,¥3,y3z,
x4, x4z, x3y,x3y2,X2y22 y4,ydz,y 3%, y3xz 0 2y2,
VAL INT m,n,VAL [3]REAL32 Pen,
REAL32 Qs,Qd)
SEQ
~{{{ setup
Qs: =0.0(REAL32)
Qd:=0.0(REAL32)
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-1
IF

m=0

-l
IF

n=0
—{{{ 00
SEQ
- source
Qs:=RM1

~ dipole
Qd:=z"RM3

-1

n=]

—{{{ 01
SEQ
—~ source

Qs:=0.0(REAL32)-(y* RM3)

—~ dipole

Qd: = 0.0(REAL32)-(3.0(REAL32)* (yz*RMS5))
~h

n=2

~{{{ 02
SEQ

- source
Qs: =((3.0(REAL32)*y2)* RMS)-RM3
~ dipole
Qd:= ((15.0(REAL32)*y2z)'RM7) - (3.0(REAL32)* (z*RMS))
it

n=3

~{{{ 03
SEQ

— source
Qs:= (9.0(REAL32)*(y"RMS)) - (15.0(REAL32)"y3)* RM7)
- dipole .
Qd:= ((45.0(REAL32)"yz)"RM7) - ((105-0(REAL32')'Y31)'RM9)
-

n=4

-{{{ 04
SEQ

== SOuUrce

Qs:= (9.0(REAL32)*RMS) +
((105.0(REAL32)*y4)*RM9)

— dipole
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Qd:= ((45.0(REAL32)*z)*RM7) +
((945.0(REAL32)*y4z)* RM11)

=11}
TRUE
SKIP

-1t

m=1
-{{{
IF
n=0
~{{{ 10
SEQ

- source
Qs:= 0.0(REAL32)-(x*"RM3)
~ dipole
Qd: = 0.0(REAL32)-((3.0(REAL32)"xz)*RMS5)
-

n=1

-{{{ 11

SEQ

- source

Qs: =(3.0(REAL32)*xy)* RMS

-~ dipole

Qd: =(15.0(REAL32)*xyz)* RM7
-1}

n=2

={{{ 12
SEQ
— source

Qs: =((3.0(REAL32)*x)*RMS) - ((15.0(REAL32)*y2x)*RMT)

- dipole

Qd: =((15.0(REAL32)*xz)* RM7) - ((105.0( REAL32)*y2xz)* RM9)
=i}

n=3

~{{{ 13
SEQ

— source
Qs:= ((1050(REAL32)"y3x)*RM9) - ((45.0(REAL32)*xy)*RMT)

— dipole

Qd:= ((945.0(REAL32)*y3xz)*RM11) - ((315.0(REAL32)*xyz)*RM9)

~11}
TRUE

SKIP
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-h

m=2

-{{{
IF

n=0

~-{{{ 20
SEQ

~ source
Qs: =((3.0(REAL32)*x2)*RMS5)-RM3

— dipole

Qd:= ((15.0(REAL32)*x2:)*RM7)-(3.0(REAL32)* (z* RMS))

-

n=1

={{{ 21
SEQ

~ source
Qs:= ((3.0(REAL32)"y)* RMS) - ((150(REAL32)*x2y)*RM7)

— dipole

Qa:= ((15.0(REAL32)yz)'RM7) - ((105.0(REAL32)*x252)*RM9)

-}

n=2

—{{{ 22
SEQ

-- source

Qs:= (((105.0(REAL32)"x2y2)* RM9)+ (3.0(REAL32)*RMS5))-
((15.0(REAL32)*(x2 + y2))*RM7)

- dipole

Qd:= (((945.0(REAL32)*x2y2z)*RM11) -
((105.0(REAL32)*(x2z + y22))* RM9)) +
((15.0(REAL32)*z)*RM7)

il
TRUE

SKIP
-4
m=3
-{{{
IR
n=0
-{{{ 30
SEQ

— source
Qs:= ((9.0(REAL32)*%)*RMS) - (( 15.0(REAL32)*x3)*RM7)

— dipole

Qd:= ((45.0(REAL32)*xz)* RM7) - ((105.0(REAL32)*x37)*RM9)

—ih
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n=1

~{{ 31

SEQ

- S0urce

Qs:= ((105.0(REAL32)*x3y)*RM9) - ((45.0(REAL32)"xy)*RM?7)

~ dipole

Qd: = ((945.0(REAL32)*x3yz)* RM11) - ((315.0(REAL32)"xyz)*RM9)

-1}
TRUE

SKIP
-
m=4
—{{
IF
n=0
-{{{ 40
SEQ

- source

Qs:= (90(REAL32)*RM5) +
((105.0(REAL32)"x4)*RM9)

- dipole

Qd: = ((45.0(REAL32)*2)*RM7) +
((545.0(REAL32)*x4z)* RM11)

=1}
TRUE

SKIP
=11}

TRUE
SKIP

B

~{{{ variables

REAL32 R2x,y,z:

REAL32 RM1,RM3,RM5:

REAL32 xz, RM7,yz:

REAL32 RM9,x2,x2z,xy,xyz,y2,y2z:

REAL32 RM11,x33z,x2y,x2yz,y2x,y2x7 y3,¥3Z:

REAL32 xd,x4z,x3y,x3yz, x2y2z,y4,y42,73%,y3xz,x2y,y2%,x2y2:
-1

S0

—{{{ calculate parameters
R2: =radius*radius
x: = Pen[0]
y-=Pen[1}
z:=Pen[2]
—{{{ ordur=0
IF
ordur> =0
SEQ
RM1:=1.0(REAL32)/radius
RM3:=RM1/R2
TRUE
SKIP




-
~{{{ ordur=1
IF
ordur>=1
SEQ
XZ:=x*2
RMS:=RM3/R2
yE=y'z
TRUE
SKIP

-1}
—{{{ ordur=2
IF

ordur> =2
SEQ
RM7:=RMS/R2
x2: =x"x
x2z:=x2%z
xy=x'y
Xyz:=xy*z
y2i=y*y
y2z:=y2%z
TRUE
SKIP
-1
—{{{ ordur=3
IF
ordur> =3
SEQ
RM9:=RM7/R2
x3:=x2*x
x3z:=x3*z
2y =x2*y
K2yr=x2y*z
Y2 =y2*x
Yz =y2x*z
y3:=y2*y
y3z:=y3%*z
TRUE
SKIP
-
-{{{ ordur=4
IF

ordur> =4
SEQ
RM11: = RM9/R2
x4:=x3%
iz =x4*z
¥y =x3%y
x3yz:=x3y*z
X2y =x2y2
x2y2e:=x2y2*z
yd=y3%y
ydz=y4*z
3k =y3*x
Vixz=y3x*z
TRUE
SKIP
-1
-H1}

~{{{ initialise Source,Dipole
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Source: =0.0{REAL32)
Dipole: =0.0(REAL32)
=11}
SEQ m=0FOR (ordur+1)
SEQ n=0 FOR (ordur+1)
SEQ
IF
{m+n)< =ordur
SEQ
IF
Imn{m][n} < >0.0(REAL32),
~{{{ calculate cocfficicats
REAL32 Qs,Qd:
SEQ
CalculateSourceDipole{ R2,x,y,z,
RM1,RM3,RMS,
=, RMTyz,
RM9,x2,x2z,xy,xyz.y2,y22,
RM11,x3,x32,52y,x2yz,y2x,y2x2,3,y3z,
XA,x4z %3y x3y22y22, y4,ydz,yIx.y3xz X2y2,
m,n,Pen,Qs,Qd)
Qs:=Imn[m]{n]*Qs
Qd: =Imn[m}[n]*Qd
Source: = Source + Qs
Dipole: = Dipole + Qd
-1}
TRUE
SKIP
TRUE
SKIP
Source: =(0.0(REAL32)-0.079577471( REAL32))*Source
Dipole: = (0.0(REAL32)-0.079577471(REAL32))*Dipole

-1}
—~{{{ dimultipole
PROC DipoleMultipole{VAL INT ordur, VAL RBAL32 radius,
VAL [3]JREAL32 Pen,
VAL [S][S]REAL32 Inmn,
REALS32 Dipole)
—{{{ calculatedipole
PROC CalculateDipole(VAL REAL32 R2xyz,
RM1LRM3,RM5,
xz,RM7,yz,
RMB,x2 x2z xy,xyz,y2,y2z,
RM11,x3,x3z,x2y,x2yz,y2x,y2xz,y3,y3z,
x4,x4z, )3y, X377, x2y2z,v4,¥42,y3%,y3xz,%2y2,
VAL INT m,n,VAL [3]REAL32 Pen,
REAIL32 Qd)
SEQ
~{{{ setup
Qd:=0.0(REAL32)
-1}
IF
m=0
—{{{
IF
n=0
—{{{ 00
SEQ

~ dipole
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Qd: =z*RM3

it

n=1

~-{{{ 01
SEQ

-- dipole
Qd: =0.0(REAL32)-(3.0(REAL32)*(yz*RMS5))

-1

n=2

—{{{ 02
SEQ

— dipole _
Qd: = ((15.0(REAL32)"*y22)*'RM7) - (3.0(REAL32)*(z* RMS))

-
n=3

-{{{ 03
SEQ

- dipole
Qd:= ((45.0(REAL32)"*yz)*RMT) - ((105.0{REAL32)*y3z)* RM9)

-1

n=4
~{{{ 04
SEQ

— dipole

Qd: = ((45.0(REAL32)*z)*RM7) +
{(945.0(REAL32)*y4z)* RM11)

mil
TRUE
SKIP

=1}

m=1
={{{
IF
n=0
-{{{ 10
SEQ
~ dipole
Qd:= 0.0{REAL32)-((3.0(REAL32)*xz)*RMS5)

-1

n=]1
—-{{{ 11
SEQ

- dipole
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Qd: =(15.0(REAL32)*xyz)*RM7

it

n=2

—{{{ 12
SEQ

— dipole

Q4: = ((15.0(REAL32)*xz)*RM7) - ((105.0(REAL32)*y2xz)*RM9)
il

n=3

—{{{ 13
SEQ

— dipole

Qd: = ((945.0(REAL32)*y3xz)*RM11) - ((315.0(REAL32)*xyz)* RM9)
-1
TRUE
SKIP
-

m=2
—{{{
IF
n=0

={{{ 20
SEQ

—~ dipole

Qd: = ((15.0(REAL32)*x2z)*RM7)-(3.0( REAL32)*(z* RM5))
-1}

n=1

~{{{ 21
SEQ

— dipole

Qdi= ((15.0(REAL32)*yr)*RM7) - ((105.0(REAL32)*x2yz}*RM9)
—11}

n=2

~{{{ 22
SEQ

— dipole

Qd: = (((945.0(REAL32)*x2y2z)*RM11) -
((105.0(REAL32)*(x2z + y22))*RM9)) +
((15.0(REAL32)*2)*RM7)

=31}
TRUE

SKIP
=1}

m=3




—{{{
IF

n=0

-{{{ 30
SEQ

— dipole
Qd:= ((45.0(REAL32)*xz)*RM7) - ((105.0( REAL32)*x3z)*RM9)

-1}

n=1
-{{{ 31
SEQ

— dipole
Qd:= ((945.0{REAL32)*x3yz)*RM11) - ((315.0(REAL32)*xyz)*RM9)

il
TRUE

SKIP
-1}
m=4
~{{{
IF
n=0

-{{{ 40
SEQ

— dipole

Qd:= ((45.0(REAL32)*z)*RMT) +
((945.0(REAL32)*xdz)* RM11)

—}}}
TRUE

SKIP
-1
TRUE
SKIP

-
~{{{ variables
REAL32 R2xyz:
REAL32 RM1,RM3 RMS5:
REAL32 xz, RM7,yz:
REAL32 RM9,x2,x22,xy,Xyz,y2,y22:
REAL32 RM11,)3,x32,x2y02y2.y2,y2x2,y3,y3z:
RfﬁlBZ x4,x42,x3y X3yz x2y2z 4,747,y 3%,y Iz, X2y, y2x,x2y2:
SEQ

—{{{ calculate parameters

R2:=radius*radius

x:=Pen[0]

y:=Pen[1]

z=Pen[2]

—{{{ ordur=0

IF

ordur> =0
SEQ
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RMI: = 1.0(REAL32)/radius
RM3:= RM1/R2
TRUE
SKIP

it
—{{{ ordur=1
IF

ordur> =1
SEQ
Xz =x*z
RMS:=RM3/R2
ye=y'z
TRUE
SKIP
-
—{{{ ordur=2
IF
ordur> =2
SEQ
RM7:=RM5/R2
x2:=x"x
X2z:=x2%2
Xy =x*y
Xyz: =xy'z
yh=y'y
ylz:=y2*z
TRUE
SKip
-}
~{{{ ordur=3
IF .
ordur> =3
SEQ
RM9: = RM7/R2
x3:=x2"x
x3z:=x3*z
Ky =x2%y
X2yz: =x2y*z
y2x: =y2*x
y2xzi=y2x*z
y3=y2'y
yiz=y3'z
TRUE
SKIP
-
—{{{ ordur=4
IF
ordur> =4
SEQ
RMI11:=RM%/R2
x4 =x3*x
xz:=xd*z
X3y =x3"y
x3yz: =x3y*z
2y =x2%y2

y3n=y3"x
yixz: =y3x*z
TRUE
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SKIP

~1}
~h
-{{{ initialise Dipole
Dipole: =0.0(REAL32)
-}1}
SEQ m=0FOR (ordur+1)
SEQ n=0 FOR (ordur+1)
SEQ
IF
(m +n)< =ordur
SEQ
IF
Imn[m][n] < >0.0{REAL32)
—{{{ calculate coefficients
REAL32 Qs,Qd:
SEQ
CalculateDipole(R2,x,y,z,
RM1,RM3,RMS,
XZ;RM7,YZ,
RM9,x2,x22 xy,xyz,y2,y22,
RM11,x3,x3z,x2yx2yz,y2x,y2i2,y3,y3z,
x4, x4z)3y,x3yz X2y2z,y4,y42,y3x,y 31z 1252,
m,n,Pen,Qd)
Qd: =Imn[m][n]*Qd
Dipole:=Dipole +Qd
~11
TRUE
SKIP
TRUE
SKIP
Dipole: = (0.0(REAL32)-0.079577471( REAL32))* Dipole

-~
—{{{ Vectmultipole
PROC VectMultipole{ VAL INT ardur, VAL REAL32 radius,
VAL [3]REAL32 Peo,
VAL [S]{SJREAL32 Imn,
[3IREAL32 Qsen,Qden)
~{{{ calculatedipole
PROC VCalculateDipole(VAL REAL32 R2,x,y,2,
RM1, RM3,RMS5,
xz,RM7,yz,
RMO9,%2,%27,xy,xy2.v2,y22,
RM11,x3.x32.x2y,x3yz y2x yhar,y3,y3z,
x4 x4z, 3y x3yz x2y2z y4,yAz,y5x,y3xz x2y2, RM13,
VAL INT m,n,VAL [3]REAL32 Pen,
[3JREAL32 Qsen,Qden)
[3IREAL32 VaddD,VaddS,temp:
REAL32 ScaleitD,ScaleitS:
SEQ
VectorEqual(Pen,temp)
—{{{ setup
ScaleitD: =0.0(REAL32)
ScaleitS: = 0.0( REAL32)
SEQ i=0 FOR 3
SEQ
VaddD[i}: =0.0{ REAL32)
VaddS[i]: =0.0(REAL32}
-
IF




m=0

~{{{
IF

n=0
~{{{ 00
SEQ

ScaleitS: =-RM3
— dipole
VaddD[2]: =RM3

ScaleitD: = ((-3.0(REAL32))"z)* RMS

=

n=1
-{{{ 01
SEQ

VaddS[1}: =-RM3
ScaleitS: = (3.0(REAL32)*y)* RMS

-- dipole
VaddD{1]: = (3.0(REAL32)*z)*(-RMS5)
VaddD{2]: = (3.0(REAL32)*y)"(-RMS5)

ScaleitD: = (15.0(REAL32)*y)*(z* RMT)

-
n=2

—{{{ 02

SEQ

n

n

VaddS[1]: = (6.0(REAL32)*y)*RMS
ScaleitS: = (3.0(REAL32)* RM5)-((15.0(REAL32)*y2)*RM7)

— dipole

VaddD{1]: = (30.0(REAL32)*y)* (z*RM7)
VaddD{2]: = ((15.0(REAL32)*y2)*RM7)-(3.0(REAL32)* RMS)

ScaleitD: = ((15.0(REAL32)*z)*RM7)-((105.0{REAL32)*y22)*RM9)
-1}
=3
-{{{ 03
SEQ
VaddS[1]: =(9.0(REAL32)*RMS)-((30.0(REAL32)*y2)* RM7)
ScaleitS: = ((105.0(REAL32)"y3)* RM9)-((45.0(REAL32)*y)*RMT)
~ dipole
VaddD{1]: = ((45.0(REAL32)*2)* RM7)-((210.0( REAL32)*y2z)* RM9)
VaddD|2]: = ((45.0(REAL32)*y)* RMT)-((105.0(REAL32)*y3)*RM9)

ScaleitD: = ((945.0(REAL32)*y3z)*RM11)-((315.0(REAL32)*yz)*RM9)
-~}
=4
~={{{ 04
SEQ
VaddS[1}: = ((420.0{REAL32)*y3) *RM9)-((180.0{REAL32)*y)*RMT)
ScaleitS: = (((630.0( REAL32)*y2)* RM9)-({945.0{ REAL32)*y4)* RM11))-
(45.0(REAL32)*RM7) '
- dipole

VaddD{1]: = ((3780.0(REAL32)*y3z)* RM11)-((1260.0(REAL32)*yz)*RM9)
VaddD[2]: = 0.0(REAL32)-((((630.0(REAL32)*y2)* RM9)-
((345.0(REAL32)*y4)* RM11))-
(45.0(REAL32)*RMT7))
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ScaleitD: = (((5670.0(REAL32)"y2z)*RM11){((10395.0(REAL32) *y4z)* RM13))-
((315.0(REAL32)*z)}*RM9)
~1}

TRUE
SKIP
~h
m=1
~{{{
IF
n=0
~{{{ 10
SEQ
VaddS[0]: =-RM3
ScaleitS: = (3.0(REAL32)* RMS5)*x
- dipole
VaddD][0]: =(3.0{REAL32)*z)*(-RM5)
VaddD{2]: =(3.0(REAL32)*x)*(-RMS5)
ScaleitD: = ((15.0( REAL32)*xz)*RM7)
=~
n=1
~{{{ 11
SEQ
Vadd$§[0]: = (3.0(REAL32)*y)*RMS
VaddS[1]: = (3.0(REAL32)*x)*RMS5

— dipole

VaddD[0]: = ((15.0(REAL32)*yz)* RM7)
VaddD[1]:=((15.6{REAL32)*xz)*RMT)
VaddD[2]): =0.0(REAL32)-(({15.0(REAL32)*xy)* (-RM7)))
ScaleitS: =-VaddD|2]
ScaleitD: = ({105.0( REAL32)"xyz)*(-RM9})
n=2

={{{ 12

SEQ
VaddS[0]: = (3.0(REAL32)* RMS){(15.0( REAL32)*y2)*RMT)
Vadd8f1]: = ((30.0{REAL32)*xy)*RM7T)
— dipole

VaddD[0]: = ((15.0(REAL32)*2)*RM7)-((105.0(REAL32)"y22)*RM9}
VaddD[1}: = ((210.0{REAL32)*y2x)* (-RM9))
VaddD{2]: =0.0{REAL32)-{ ((105.0{ REAL32)*y2x)* RM9)-((15.0(REAL32)*x)*RM7) )
ScaleitS: = -VaddD|[2]
ScaleitD: = ((945.0( REAL32)*y2xz)* RM11)-((105.0( REAL32)*xz)*RM9)

-1

n=3

~{{{ 13

SEQ
VaddS[0]: =((105.0(REAL32)*y3)* RM9)-{(45.0(REAL32)*y)*RMT)
VaddS[1]: = ((315.0{REAL32)*y2x)*RM9)}-{(45.0( REAL32)*x)* RM7)

- dipole

VaddD[0]:= ((945.0(REAI..32)‘y3z)‘RMII}((315.0(RE&}32)‘yz)‘RM9)

VaddD[1]: =((2835.0(REAL32)*y3xz)* RM11)~({315.0( REAL32)*xz)}* RM9)

VaddD[2]: =9.0(REAL32)-( {(315.0(REAL32)*xy)* RM%)-((945.0(REAL32)*y3x)*RM11) )

ScaleitD: = ((2835.0(REAL32)* xyz)* RM11)-((10395.0(REAL32)*y3x)*"RM13)
ScaleitS: =-VaddD{2]

—}1
TRUE
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SKIP
-
m=2

—{{{
IF

n=0
—{{{ 20
SEQ
VaddS[0]: = (6.0(REAL32)*y)*RMS5

— dipole

VaddD[0]: = (30.0(REAL3Z *xz)* RM7)
VaddD[2]: =0.0(REAL32){ (3.0(REAL32)*RMS5)-((15.0(REAL32)*x2)*RM7T) )
ScaleitD: = ((15.0(REAL32)*z)* RM7)-((105.0( REAL32)*x2z)* RM9)
ScaleitS: =-VaddD|2]

-

n=1

—{{{ 21

SEQ
VaddS[0]: = (30.0(REAL32)* xy)*(-RMT)
Vadd$[1]: = (3.0(REAL32)* RMS)-((15.0(REAL32)*x2) *RMT)
~ dipole

VaddD[0]: =(210.0(REAL32)* xyz)*(-RM9)
VaddD[1]: = ((15. 0(REAL32)*2)*RM7)-((105.0( REAL32)*x22)*RM9)
VaddD{2): =0.0(REAL32)-( ((105.0(REAL32)*xy)*RM9)-((15.0(REAL32)*5)*RM7) )

ScaleitD: ={(945.0{ REAL32)*x2yz)* RM11)-((105.0{ REAL32)*yz)*RM9)
ScaleitS: =-VaddD[2]

-}

n=2

~{{{ 22

SEQ
VaddS[0]: = ((210.0(REAL32)"y2x)* RM9)-((30.0(REAL32)*x)*RM7)
VaddSf1}: = ((210.0(REAL32) *x2y)* RMS)-((30.0(REAL32)*y)*RM7)
— dipole
VaddD{[0]: = ((1890.0(REAL32) *y2xz)* RM11)-((210.0(REAL32)*xz)* RM9)
VaddD([1): =({1890.0(REAL32)*x2yz)* RM11)-({210.0( REAL32)*yz)*RM9)
VaddD[2]: =0.0(REAL32)-( (((105.0( REAL32)*RM9)*(x2+y2))-

((%45.0(REAL32)*x2y2)* RM11))-(15.0(REAL32)*RMT) )

ScaleitD: = (((945.0(REAL32)*2)*(RM11*(:2 + y2)))-((210.0(REAL32)*z)* RMS))-
{(945.0(REAL32)*x2y2z)* RM13)
ScaleitS: =-VaddD(2]

-1}
TRUE

SKIP
-1}

m=3

—{{{
iF

n=0
—{{{ 30
SEQ
VaddS[0}: =(9.0(REAL32)*RMS5)-((30.0( REAL32)*x2)*RMT)
—~ dipole

VaddD({0]: = ((45.0(REAL32)*z)* RM7)-((210.0(REAL32)*x27)"RM9)
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VaddD[2]: = 0.0(REAL32)-( ((105.0(REAL32)*x3)*RM9)-((45.0(REAL32)*x)*RM7) )
ScaleitD: =((945.0(REAL32)*x3z)* RM11)-((315.0( REAL32)"xz) * RM9)
ScaleitS: =-VaddD{2]

=11

n=1

-{{{ 31

SEQ
VaddS[0]: = ((315.0(REAL32)*x2y)* RM9)-{(45.0( REAL32)*y)*RM7)
VaddS[1]: = ((105.0( REAL32)"x3)*RM9)-((45.0{ REAL32)*x)*RM7)
= dipole

VaddD{0]: =((2835.0(REAL32)*x2yz)* RM11)-((315.0(REAL32)*yz)* RM9)
VaddD[1]: =((945.0(REAL32)*x3z)* RM11)-((315.0(REAL32)*xz)* RM9)
VaddD[2]: =0.0(REAL32)-( ((315.0(REAL32)*xy)* RM9)-((945.0(REAL32)*x3y)* RM11) )

ScaleitD: = ((2835.0(REAL32)*xyz)*RM11)-((10395. 0(REAL32)*x3yz)* RM13)
SealeitS: =-VaddD[2]

=}
TRUE

SKIP

-1}

m=4
—{{{
IF
n=0
—{{{ 49
SEQ
VaddS§[0]: = ((420.0(REAL32)*x3)*RM9)-((180.0(REAL32)*x)*RMT)

- dipole ’

VaddD[0]: = ((3780.0(REAL32)*x3z)*RM11)-((1260.0{ REAL32)*xz)* RM9)

VaddD][2]: =0.0(REAL32)-{ (({(630.0(REAL32)*x2)*RM9)-((945.0(REAL32)*x4)*
RM11})-(45.0(REAL32)*RM7) }

ScaleitD: =(((5670.0(REAL32)*x2z)* RM11)-((10395.0(REAL32)*x4z)* RM13))-
((315.0(REAL32)*z)*RM9)

ScaleitS: = -VaddD{f2]
-1
TRUE
SKIP
-1}
TRUE
SKIP
ScalarMul(ScaieitD,temp)
VectorAdd(temp,VaddD,Qden)
ScalarMultiply(ScaleitS,Pen,temp)
VectorAdd(temp,VaddS,Gsen)

~}1}

—{{{ variables

REAL32 R2xy,z:

REAL32 RM1,RM3,RMS5:

REAIL32 xz RM7,yz:

REAL32 RM9x2 x27 xy,xyz,y2,y22:

REAL32 RM11,x3,x32 x2y,x2yz,y2x,y2xz.y3,y3z: _
REAL32 RM13,xd4,x42,X3y,x3yz,x2y2z y4,y4z,y 30,y 3z, x2y,y 25,k 252:
~-11

SEQ

--{{{ calculate parameters




R2: = madius*radius
x:=Pen[0)
y:=Pen[1]
z:=Pen|2]
~{{{ ordur=0
IF
ordur> =0
SEQ
RM1:=1.0(REAL32)/radius
RM3:=RM1/R2
RMS: = RM3/R2
TRUE
SKIP
-1}
—{{{ ordur=1
IF
ordur> =1
SEQ
Xz =x*z
RM7:=RMS5/R2
yZ=y*z
TRUE
SKiP
-
~{{{ ordur=2
IF
ordur> =2
SEQ
RM9:=RM7/R2
X2 =x*x
Xz =x2%2
xy:=x*y
XyzZ: =xy'z
¥2:=y'y
y2z:=y2%z
TRUE
SKIP
-1}
—{{{ ordur=3
IF
ordur>=3
SEQ
RM11:=RM9/R2
x3:=x2%x
x3z:=x3%z
x2y: =x2%y
X2y =x2y*z
y2x: =y2*x
¥z =y2x*z
yI=y2ry
y3z:=y3*z
TRUE
SKIP
~}1}
—{{{ ordur=4
IF
ordur> =4
SEQ
RM13:= RM11/R2
x4:=x3%x
x4z:=x4%z
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X3y =x3%y
W3yz: =x3y*z
X2y2:=12%y2
x2y2z: = x2y2*z
yd:=y3%y
ydz:=yd*z
¥3x:=y3'x
y3xz:=ydx*z
TRUE
SKIP
S H
-hl
—{{{ initialise Dipole
SEQ i=0 FOR 3
SEQ
Qden[i]: =0.0(REAL32)
Qsenli]: =0.0(REAL32)
-1}
SEQ m=0FOR (ordur+1)
SEQ n=0 FOR (ordur+1)
SEQ
IF
(m+n)< =ordur
SEQ
IF
Imn[m][n] < >C0.0{REAL32)
~{{{ calcutate coefficients
{3]REAL32 Qs,0d:
SEQ
VCalculateDipote(R2 x,y.2,
RM1,RM3,RMS,
xz,RM7,yz,
RMY x2,x2z xy,xyz,y2,y2r,
RM11,:3,x37,x2y,x2yz,y2x,y2xz,y3,y3z,
x4,%4z2,33y X3y, X2y 2z, yd,yhz,y3x,y 3z 2y2, RM13,
m,n,Pen,Qs,Qd)
ScalarMul(Imn[m][n],Qs)
ScalarMul(Imn[m][n},Qd)
VectorAdd(Qs,Qsen,Qsen)
VectorAdd(Qd,Qden,Qden)
il
TRUE
SKIP
TRUE
SKIP
ScalarMul((0.0(REAL32)-0.079577471(REAL32)),Qden)
ScalarMul((0.0(REAL32)-0.079577471(REAL32)),Qsen)

R
i

—~{{{ BExact
~{{{ Vectexact
PROC VectPaactPancl(VAL BOOL Both,
VAL REAL32 area,radius,choice, VAL [3]REAL32 P,
VAL MJREAL32 EN s, dEdN,
[BIREAL2 Qscn,Qden)
#USE sngimath
-{{{ variables
INT n:
REAL32 Vi, thet,z2,x,y,zdipole,Scalelt:




[4]REAL32 L dL,U,R,51,c1,52,c2,53,¢3,Fact:
[3]REAL32 Q1,A1,A2,A3,A4,Q,GradCl1,Grad(C2,SD1,5D2,Grad51,GradS2:
BOOL corner,toosmall:
=1}
SEQ

z:=P[2]

x:=P[0}

y:=P{1]

z2:=z%2

SEQ m=0FOR 4

SEQ

~{{{
R[m[: =POWER(ABS( (((x-E[m])*(x-E[m])) + ((y-N[m])*(3-N[m]))) +22),
05(REAL32))
L{m]: = POWER{ABS((dE{m]*dE[m}) + (dN[m]"dN[m])),0.5(REAL32))
=11}
SEQ m=0FOR 4
SEQ
IF
m=3
n:=0
TRUE
n:=m+l
s1{m]: = (AN[m]*(((x-E[m})*(x-E[m])) +22))-
(4E[m]*((-E[m])*(y-N[m])))
s2[m]: = (dN[m]*(({x-E[n})* (x-En])) + 22))-
(AE[m]*((x-E[n])*(-N[n])))
dL[m]: =(dN{m]*(x-E[m])}-(dE[m]*(y-N[m]))
cl[m]: = R[m]*{z*dE[m])
c2[m]:=R[n]*(z*dE[m})
dipole: =0.0(REAL32)
={{{ dipole potential Qd
SEQ m=0 FOR 4
SEQ
€3[m}: ={c1[m]*c2[m]) +{s1[m]*s2[m]}
s3(m}:=(s1{m]*e2{m])-{s2{m]"elm]
(ABS(c3[m]) < = 1L.OE-0%(REAL32)) AND (ABS(s3[m]) < =1.0E-09(REAL32))
SKIP
TRUE
dipole: = dipole + ATAN2(c3[m],s3[m])}
SEQ i=0 FOR 3
Qden[i]: =0.0(REAL32)
—{{{ dipole potentia derivative Qden
= Calculate dipole potential derivative
SEQ m=0 FOR 4 )
REAL32 denoml,denom2,Scaleltl Scatelt?,Scalelt3,Scalelt4:
[3]REAL32 GC1,GC2,GS1,GS2:
SEQ
IF
m=3
n:=0
TRUE
n=m+l
—{{{ new scaleit 13/11/91
—{{{ (s1s) and (s25)
Q1{0]: =0.0(REAL32)
Q1{1]:=0.0(REAL32)
IF
(R[m] < (0.05(REAL32)*L[m])) OR (R[n]<(0.05(REAL32)*L{m}))
SEQ
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corner: =TRUE
Q1[2):=0.0(REAL32)
TRUE
SEQ
denoml: =((sl[m]*s1[m]) +(c1[m]*c1{m]))
denom2: = ((s2[m]*s2[m]) + (c2[m]*c2[m]))
~{{{ calculate GradCl mod
IF
ABS(z*JE[m]) < ABS(R[m]}
Scalelt: =(z*dE[m])/R{m}
TRUE
IF
ABS(R[m])<1.0B-06(REAL32)
Scalelt: =0.0{ REAL32)
TRUE
Scalelt: = (z*dE[m])/R{in]

ScalarMultiply(Scalelt,P,GradC1)
GradC1{0]: = GradC1[0]-(Scalelt*E[m])
GradC1{1):= GradC1{1]-(ScaleIt*N{m])
GradCl{2]: =GradC1{2] + (R{m]*dE[m])

ScalarMultiply(s1{m],GradC1,GC1)
-1
IF

{ABS(GCl{2])<denoml) OR (ABS(z) > 1.0E-04(REAL32))
SEQ
={{{
~{{{ calcutate GradC2 mod
IF
ABS(z*dE[m]) < ABS(R[n})
Scalelt: = (z*dE[m])/R{n]
TRUE
IF
ABS(R{n]} < 1.0E-06{REAT 32)
Scalelt: = 0.0(REAL32)
TRUE
Scalelt: = (z*dE[m])/Rin}

ScatarMultiply(Scalelt,P,GradC2)

GradC2[0]: = Grad C2[0]-(ScaleIt*Efn])

GradC2[1): = GradC2{1)« Scalelt*Nfn])

GradC2[2]): = GradC2[2]+(R[n]*dE[m])
ScalarMultiply(s2[m],GradC2,GC2)

-={{{ calculate GradS1 mod
GradS1[0]: = ((2.0(REAL32)" (x-E[m]}) *dN[m])-
((AE[m}*(y-N[m])))

GradS11]: = dE[m]*(E[m]-x)

GradS$1[2]: = dN[m}*(z*2.0(REAL32))
ScalarMultiply(c1[m],GradS1,GS1)




-

—{{{ calculate GradS2 mod

GradS$2[0]: = ((2.0(REAL32)*(x-Efn]))*dN[m])-
((dE{m}*(y-N[n])))

GradS2{1}: =dE[m]*(E[n]-x)

GradS2[2]: =dN[m]*(z*2.0(REAL32))
ScalarMultiply(c2[m]),GradS2,G52)
-

-1

~{{{ normal

Scaleltl: =1.0{REAL32)/denom1
ScalarMultiply(Scaleltl,GC1,AL)
Scalelt3: = 1.0(REAL32)/denoml
ScalarMultiply(Scalelt3,(i51,A3)
Scalelt2: =1.0(REAL32)/denom2
ScalarMultiply(Scalelt2,GC2,A2)
Scalelt4: = 1.O(RBAL32)/denom2
ScalarMultiply(Scaleltd,GS2,A4)
—{{{ adds
VectorSub(A2,41,5D1)
VectorSub{A3,A4,SD2)
VectorAdd(SD1,5D2,Q1)

-1}

-}
TRUE

SEQ
IF
ABS(dL{m]) < (0.0001(REAL32)*L{m])
QI[2}: =0.0(REAL32)
TRUE
IF
(s1[m]*s2[m]) =0.0(REAL32)
Q1[2}: =C.0(REAL32)
TRUE
} Q1[2]:=(dE[m]*((s1[m]*R{n])-(s2[m}*R{m]}))/(s1 [m}*s2{m])
-1
-1}
SEQ i=0 FOR 3
Qden(i}: =Qdenfi] + QLi)

-1}
ScalarMul((0.0{ REAL32)-0.079577471(REAL32)),Qden)
-1}
IF
Both=TRUE
~{{{ source potential Qs
IF
ABS(choice) < 0.00001(REAL32)
={{{
SEQ
SEQ i=0 FOR 2
Qsenl[i]: =0.0(REAL32)
IF
z>0.0(REAL32)
Osen[2): =-0.5(REAL32)
TRUE
Qsen[2]: =0.5(REAL32)

89



—{{{ source potential derivative Qsen
SEQ m=0 FOR 3
SEQ
Al[m]:=0.0(REAL32)

SEQ m=0FOR 4
REAL32 Logit,CON,SON,numeratot,denominator:
[3JREAL32 unitR1L,unitR2,RT:
SEQ
IF
m=3
n:=0
TRUE
n=m+1l

SON: =dN[m]/s[m]
CON: =dE[m]/s[m]
RT[0): =x-E[m]
RT[1]: =y-N{m]
RT[2]:=z
numerator: = (2.0(REAL32)*s[m])*((RT[1]* CON)-(RT[0]*SON))
denominator: = ((R[m] + R[a])*(R{m] + Rfn]))-(s[m]*s[m])
IF
(ABS(s[m})< 1.0E-09(REAL32)) OR (ABS(denominator) < =1.0E-09(REAL32))
Scalelt: =0.0(REAIL32)
TRUE
Scalelt: = numerator/denominator
1F
((R[m] + R[n])-s[m]) < 1.0E-10{ REAL32)
Logit: =0.0(REAL32)
TRUE
Logit: = ALOG(((R[m} + Rn]) +s[m])/((R[m] + R[n])-s[m]))

A1[0}: = A1f0] + (Logit*SON)
Al[1):=A1]1}-(Logit*CON)
IF
Scalelt=0.0(REAL32)
SKIP
TRUE
SEQ
ScalarDivide(R{m],P,unitR1)
ScalarDivide(R[n],P,unitR2)

VectorAdd(unitR1,unitR2,A2)
ScalarMul(Scalelt,A2)
A3[0): =Scalelt*((E[m}/R[m]) +(E[a]/R{n]))
A3[1j:=Scalelt*((N[m]/R[m]) + (N[n]/R[a]))
A3[2]:=0.0(REAL32)
SEQ i=0 FOR 3
Alfi]: =Al[i] + (A2[i}-A3([i])
AI[2]: =Al[2}-dipole
ScalarMultiply(z,Qden,Q)

VectorSub(A1,Q,Qsen)




IF
ABS(z) < 1.0B-09(REAL32)
Qsen[2): =0.0(REAL32)
TRUE
SKIP

-1
ScalarMul((0.0( REAL32)-0.079577471(REAL32)),Qsen)
=il
TRUE
SEQ 1=0 FOR 3
Qsen(l]:=0.0{REAL32)

-1

—{{{ exact
PROC EmactPancl(VAL BOOL Both, VAL REAL32 arca,radius,choice, VAL [3]REAL32 P,
VAL [4]REAIL32 ENs dEdN,
RFEAL32Z Qs,Qd)
#USE snglmath
—{{{ wvariables
INT n:
REAIL32 thet,z2xyz:
[4]REAL32 R,s1,c1,52,c2,53,¢3,Fact:
BOGL. toosmall:
-
SEQ
z=P[2]
x=Pj0]
y=P(1]
2. =z%2
SEQ m=0FOR 4
SEQ

~{{{

R[m]: =POWER(ABS( (((x-E[m])*(x-E[m]}) + ((y-N[m]}*(y-N[m}))} +22),
0.5(REAL32))

-

SEQ m=0FOR 4
SEQ
IF
m=3
n:=0
TRUE
n=m+l
s1[m]: =(dN[m]* (- E[m])* (- E[m]) +22))-
(dE[m]*((x-Efm})*(7-N[m])))
s2fm]: =(aN[m]* (((x-E[])* (-E[n])) +22))-
(dE[m]*((-E[n])*(s-N[a])))
cl[mj: = R[m]*(z*dE{m])
c2[m]: = R[n}*(z*dE[m])
IF
ABS(choice) <0.000001(REAL32)
SEQ
IF
choice <0.0000001(REAL32)
Qd: =-05(REAL32)
TRUE
Qd:=05(REAL32)
TRUE
SEQ
IF

N



z=0.0{REAL32) - in plane of dipole
Qd: =0.0{REAL32)
TRUE
SEQ
~{{{ dipole potential Qd
. Qd:=0.0(REAL32)
SEQ m=0 FOR 4
SEQ
c3[m]: = (c1[m]*c2[m]) + (s1[m]*s2[m])
s3[m]: =(s1[m]*c2[m])-(s2[m]*c1[m])
Qd:=Qd + ATAN2(¢c3[m],s3[m])
Qd: =(0.0(REAL32)-0.079577471( REAL32))*Qd
=il
Qs:=0.0(REAL32)
IF

Both=TRUE
SEQ
—{{{ source potential Qs
SEQ m=0 FOR 4
REAL32 Logit,CON,SON,numerator:
[3JREAL32 RT:
REAL32 fact:
SEQ
IF
m=3
n:=0
TRUR
n=m+l
SON: = (dN[m]/s{m])
CON: =(dE[m]/s[m})
RT[0}: =x-E[m]
RT[1} =y-N[m]
numerator: = ((RT[0]*SON)-(RT([1)*CONY))
fact: =(R[m] + R[n})/s[m] =
fact: = (ABS(fact-1.0(REAL32))) + 1L.OE-15(REAL32)
fact: = LO(REAL32) + (2.0(REAL32) ffact)
Logit: = ALOG(fact)
Qs: = Qs+ (numerator*Logit)
Qs: =(Qs*(0.0(REAL32)-0.07957471(REAL32))) - (z * Qd)
-1} ’
TRUE
SKIP

o
1






