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ABSTRACT

Amultimodel ensemble of general circulation models (GCM) is a popular approach to assess hydrological

impacts of climate change at local, regional, and global scales. The traditional multimodel ensemble approach

has not considered different uncertainties across GCMs, which can be evaluated from the comparisons of

simulations against observations. This study developed a comprehensive index to generate an optimal en-

semble for two main climate fields (precipitation and temperature) for the studies of hydrological impacts of

climate change over China. The index is established on the skill score of each bias-corrected model and

different multimodel combinations using the outputs from phase 5 of the Coupled Model Intercomparison

Project (CMIP5). Results show that the optimal ensemble of the nine selected models accurately captures the

characteristics of spatial–temporal variabilities of precipitation and temperature over China. We discussed

the uncertainty of subset ensembles of ranking models and optimal ensemble based on historical perfor-

mance. We found that the optimal subset ensemble of nine models has relative smaller uncertainties com-

pared with other subsets. Our proposed framework to postprocess the multimodel ensemble data has a wide

range of applications for climate change assessment and impact studies.

1. Introduction

TheFifthAssessmentReport of the Intergovernmental

Panel onClimateChange (IPCCAR5; IPCC 2014) shows

that, in recent decades, climate change has had a signifi-

cant impact on natural and human systems over all con-

tinents and oceans, with increases in frequency and

intensity of precipitation-related extremes (e.g., droughts

and floods) and/or extreme temperature events (e.g., heat

waves) in many regions (Wang and Zhou 2005; Sen Roy

and Balling 2004; Li et al. 2015). For example, the fre-

quency and the intensity of extreme climate events (e.g.,

heat waves and extreme precipitation) have increased

significantly in China (Zhou and Ren 2011; Zhai et al.

2005). Research on climate change is urgent to under-

stand how these changes may evolve in the future, which

leads to an increased demand to develop more reliable

and accurate climate change projection datasets (Fan

et al. 2013).

The World Climate Research Program (WCRP)

organized the development of the Coupled Model

Intercomparison Project (CMIP), now in its fifth phase,

whose outputs are widely used for climate change as-

sessments (Covey et al. 2003; Meehl et al. 2000, 2005;

Sheffield et al. 2013a,b; Taylor et al. 2012). The CMIP5

improves over the previous CMIPs with increased

number of models, enhanced spatial resolution, and a

larger set of experiments (Moss et al. 2010; Taylor et al.

2012). However, the spatial resolution of GCMs is far

from enough to assess climate change impact at local

and site-specific scales (Piani et al. 2010; Chen et al.

2018; Guo et al. 2019). Recently, many postprocessing

methods have been developed to improve the spatial

resolution of the GCM output (e.g., Mearns et al. 2003;
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Wilby et al. 2004; Maraun et al. 2010; Chen et al. 2013a,

2018, 2019; He et al. 2016; Cannon et al. 2015). Bias-

correction methods can effectively correct the climate

model output data (Teutschbein and Seibert 2012,

2013), such as monthly mean correction (Fowler et al.

2007), delta change (Hay et al. 2000), quantile mapping

(Wood et al. 2002), and two-dimensional bias correction

(Piani and Haerter 2012). Among these methods, the

quantile mapping technique (Wood et al. 2004; Cannon

2016) has shown good performance for postprocessing

climate model data to undertake climate change impact

assessments (e.g., Piani et al. 2010; Cavazos andArriaga-

Ramírez 2012; Chen et al. 2013b, 2019). The quantile

mapping method can correct the mean and the full mar-

ginal distribution and thereby the frequency and intensity

of the target variable (Crochemore et al. 2016; Rajczak

et al. 2016). This study uses the equal distance cumulative

distribution function (EDCDF) method developed by

Li et al. (2010) to bias correct the CMIP5 outputs.

To better improve the reliability of future projections

from GCMs’ outputs, multimodel ensemble (MME)

methods have been proposed that distill the uncertainty

across models in simulating the climate (Tebaldi and

Knutti 2007; Herger et al. 2018). Different methods for

developing MMEs exist, including simple model aver-

aging (SMA; Miao et al. 2013), Bayesian model aver-

aging (BMA; Miao et al. 2013; Katz and Ehrendorfer

2006), weighted ensemble averaging (WEA; Nohara

et al. 2006), and reliability ensemble averaging (REA;

Giorgi and Mearns 2002; Weiland et al. 2012). These in-

dicate that the MME is usually superior to any individual

model (Mote et al. 2011; Pierce et al. 2009; Reichler and

Kim 2008; Jiang et al. 2016) and can overcome the sys-

tematic bias of a singlemodel (Dong et al. 2015; Kim et al.

2012; Toh et al. 2018; Zhou et al. 2014).

However, due to the poor performance of some

models for aspects of regional climate, an ensemble of

all models equally will reduce the performance of the

MME. For example, Gong et al. (2014) analyzed the

output from 18 CMIP5 models and found that only half

of the models can reasonably characterize the circula-

tion pattern of the East Asian winter monsoon. Herger

et al. (2018) developed a subset of the CMIP5 archive

that minimizes regional biases in present-day climatol-

ogy based on RMSE over space. Zhang and Soden

(2019) found that the selected top five models for each

continental subregion, the intermodel spread is reduced

significantly in all cases compared to the full model

ensemble. Therefore, selecting the most appropriate

model and/or model ensembles based on statistical at-

tributes to evaluate various impacts are important for

specific study purposes (Aloysius et al. 2016;Ahmadalipour

et al. 2017).

As a result, some researchers have focused on how to

select a portion of models with better performance to

compute the ensemble. For instance, Aloysius et al.

(2016) classified models according to the differences in

horizontal resolution, performance measures and causal

mechanisms, and recommended a subset of models

based on these criteria in areas without high-quality

climate observations. Based on the pattern correlation

coefficient (PCC) and signal-to-noise ratio of annual

average precipitation, Lee and Wang (2014) found that

the ensemble of the best four selected CMIP5 models

has better skills than the multimodel ensemble average

of all models. Thober and Samaniego (2014) developed

computationally efficient methods for selecting sub-

ensembles of RCMs to represent extreme precipitation

and temperature indices over Germany and recom-

mended a method that removes the worst performing

models. Herrera-Estrada and Sheffield (2017) followed

a similar path in identifying performance-based sub-

ensembles over the continental United States but fo-

cused on the impact on uncertainty in future projections

and showed via bootstrap sampling that small ensembles

of models underestimated the variance in projections

when limited to less than about 13 models out of

24 models. These studies demonstrate the challenge in

identifying the optimal set of models as the goals,

methods, and focus variables used by each study are

different.

There are many model selection methods, such as

simple ranking based on different performance metrics

(Ahmadalipour et al. 2017; Salman et al. 2018; Pour et al.

2018). However, most studies focus on one climate

field (precipitation or temperature) or give different

ensemble for each climate fields (e.g., Gu et al. 2015;

Ahmadalipour et al. 2017; Herger et al. 2018; Zhang and

Soden 2019), rather than same members of the optimal

ensemble. Normally, we need consistent members of

optimal ensemble for both precipitation and temperature

to ensure the physical consistency (relationship between

precipitation and temperature should bemaintained) and

to further study the climate changes on hydrological

process, which are the most important inputs of hydro-

logical models (Woldemeskel et al. 2012; Teutschbein

and Seibert 2012).

In this study, we aim to develop a novel method to

generate an optimal subset that is representative of the

range of precipitation and temperature indicated by the

full ensemble, which could be adopted by hydrological

model for climate change effects assessment across

China. This paper is organized as follows. Sections 2 and

3 describe the datasets used in the study as well as

the statistical downscaling methods, the bias-correction

method, the performance evaluation metrics, and the
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subensemble selection methods. Section 4 presents the

main results, including evaluation of the model perfor-

mance, optimization of the model subensemble, and its

verification. Sections 5 and 6 discuss and summarize the

main results of the study.

2. Datasets

The observed precipitation and temperature from 756

meteorological stations in China from 1961 to 2005 are

obtained from the China Meteorological Administration

Data Sharing Service System (http://data.cma.cn/). The

distribution of the meteorological stations and the digital

elevation model (DEM) are shown in Fig. 1. The ob-

served data are interpolated to 0.58 3 0.58 using the in-

verse distance weighted method (IDW; Ma et al. 2016).

The interpolation of temperature data takes into account

the elevation, with a temperature decrease of 0.658C for

every 100m increase in elevation (Choi and An 2010).

In this study, China is divided into four climate

regions based on the long-term (1961–2005) mean

precipitation: arid (precipitation , 200mm), semi-

arid (200mm # precipitation , 400mm), semihumid

(400mm # precipitation , 800mm), and humid

(precipitation $ 800mm) (Fig. 1). These regions are

used to summarize the results.

We select monthly precipitation and temperature from

25 GCMs with r1i1p1 historical realization, which are ar-

chived at the Program on Climate Model Diagnosis and

Intercomparison (PCMID) website (https://pcmdi.llnl.gov/

index.html; Table 1).Due to the different spatial resolutions

of the models, all of the climatic fields (monthly pre-

cipitation and temperature) are interpolated to the

same 0.58 3 0.58 grid as the observations through the

bilinear interpolation method (Kirkland 2010).

3. Methodology

a. Bias-correction method

The EDCDFmethod, developed by Li et al. (2010), is

used to bias correct the output from the 25 climate

models after interpolated by bilinear interpolation over

China. Considering the differences between the two cli-

matic variables (i.e., temperature and precipitation), the

EDCDF constructs the cumulative distribution function

(CDF) of the historical simulated value and the future

simulated value of the climate elements, respectively.

It improves on previous approaches based only on the

historical CDF because it takes into account any changes

in the future distribution (Aloysius et al. 2016; Yang et al.

2018). Equation (1) is used to bias correct the future

GCM simulations of the temperature, adopting the beta

distribution with four parameters [Eq. (2)]:

x
m–p_adjust

5 x
m–p

1F21
o–t [Fm–p

(x
m–p

)]

2F21
m–t[Fm–p

(x
m–p

)] , (1)

f (x; a, b,p, q)5
1

B(p, q)(b2 a)p1q21
(x2 a)p21(b2 x)q21 ,

(2)

a# x# b; p,q. 0:

Equation (3) is used to bias-correct precipitation,

with a two-parametermixed gamma distribution [Eq. (4)]

considering the intermittent nature of precipitation:

x
m–p_adjust

5 x
m–p

F21
o–t [Fm–p

(x
m–p

)]

F21
m–t[Fm–p

(x
m–p

)]
, (3)

f (x; k, u)5 xk21 e2x/u

ukG(k)
, for x. 0 and k, u. 0,

(4)

where xm–p is the model projection value; xm–p_adjust is

the adjusted model projection value after bias cor-

rection; F21
o–t and Fm–t is the quantile function corre-

sponding to the observations o and simulation m in

the training period t; and Fm–p is the CDF of the

model simulated fields; B is the beta function, a and b

are the range parameters as the extreme values from

the data, s is the standard deviation, and p and q are the

shape parameters determined by the maximum likeli-

hood estimation method. In the EDCDF method, the

parametric distributions are fitted to both temperature

and precipitation fields for each grid point. Meanwhile,

the distribution range parameters are taken as the ex-

treme values from the data extended by half of one

standard deviation of each grid point. Further details

FIG. 1. Distribution ofmeteorological stations, the elevation, and

classification of the four climate regions based on the long-term

(1961–2005) averaged precipitation over China.
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about this method can be found in Li et al. (2010) and

Yang et al. (2018).

Reifen and Toumi (2009) and Li et al. (2010) found

that bias-corrected time series are directly tied to the

model’s performance during the training period. In this

study, the training period is from 1961 to 1990 for cali-

brating the model parameters and the validation period

is from 1991 to 2005.We choose the period of 1961–90 as

the training period for two reasons that this period is the

reference period of many climate change studies (e.g.,

Giorgi and Mearns 2002) and have experienced warm-

ing and thus are more likely to resemble future projec-

tions (Yang et al. 2018).

b. Performance evaluation methods

We use the Taylor diagram (Taylor 2001) to quantify

the degree of correspondence between the original and

bias-corrected CMIP5 modeled and observed monthly

climate fields. Both precipitation and temperature are

smoothed by a 3-month running mean, which is a typical

filter for examining interannual anomalies (Su and

Neelin 2003). The diagram can effectively reflect the

strength and weaknesses of each model’s simulated re-

sults, especially for large ensembles. It utilizes the tri-

angular conversion relationship among three indices,

which are the correlation coefficient (CC), standard

deviation (SD), and root-mean-square error (RMSE). The

CC represents the strength and direction of the rela-

tionship between changes in two variables. The SD re-

flects the degree of dispersion of a dataset. The RMSE

measures the deviation between the simulated and ob-

served values. The normalized SD (NSD) is defined as

the ratio of the standard deviation of simulated and

observed climate fields. The closer the CC and NSD

TABLE 1. Summary of the 25 climate models used in this study.

No. Model Name Country Institute Resolution (lat 3 lon)

1 ACCESS1.0 Australia Commonwealth Scientific and Industrial Research

Organisation (CSIRO) and Bureau of

Meteorology (BOM)

1.258 3 1.8758

2 ACCESS1.3 Australia CSIRO and BOM 1.258 3 1.8758
3 BCC_CSM1.1 China Beijing Climate Center 2.88 3 2.88
4 CanESM2 Canada Canadian Centre for Climate Modeling and Analysis 2.88 3 2.88
5 CCSM4 United States National Center for Atmospheric Research 0.98 3 1.258
6 CMCC-CM Italy Centro Euro-Mediterraneo per i Cambiamenti Climatici 0.758 3 0.758
7 CMCC-CMS Italy Centro Euro-Mediterraneo per i Cambiamenti Climatici 3.78 3 3.758
8 CNRM-CM5 France Centre National de Recherches Meteorologiques and

Centre Européen de Recherche et Formation Avancée
en Calcul Scientifique

1.48 3 1.48

9 CSIRO Mk3.6.0 Australia Queensland Climate Change Centre of Excellence

and CSIRO

1.88 3 1.88

10 GFDL CM3 United States National Oceanic and Atmospheric Administration

(NOAA)/Geophysical Fluid Dynamics

Laboratory (GFDL)

28 3 2.58

11 GFDL-ESM2G United States NOAA/GFDL 28 3 2.58
12 GFDL-ESM2M United States NOAA/GFDL 28 3 2.58
13 GISS-E2-R United States Goddard Institute for Space Studies 28 3 2.58
14 HadGEM2-AO United Kingdom/

South Korea

Met Office Hadley Centre/National Institute for Medical

Research

1.258 3 1.8758

15 INM-CM4 Russia Institute for Numerical Mathematics 1.58 3 28
16 IPSL-CM5A-LR France Institute Pierre-Simon Laplace 1.98 3 3.758
17 IPSL-CM5A-MR France Institute Pierre-Simon Laplace 1.38 3 2.58
18 IPSL-CM5B-LR France Institute Pierre-Simon Laplace 1.98 3 3.758
19 MIROC5 Japan Atmosphere and Ocean Research Institute (The

University of Tokyo), National Institute for

Environmental Studies (NIES), and Japan Agency for

Marine-Earth Science and Technology (JAMSTEC)

1.48 3 1.48

20 MIROC-ESM Japan JAMSTEC, Atmosphere and Ocean Research Institute

(The University of Tokyo), and NIES

2.88 3 2.88

21 MIROC-ESM-CHEM Japan JAMSTEC, Atmosphere and Ocean Research Institute

(The University of Tokyo), and NIES

2.88 3 2.88

22 MPI-ESM-LR Germany Max Planck Institute for Meteorology 1.8658 3 1.8758
23 MRI-CGCM3 Japan Meteorological Research Institute 1.128 3 1.1258
24 NorESM1-M Norway Norwegian Climate Centre 1.98 3 2.58
25 NorESM1-ME Norway Norwegian Climate Centre 1.98 3 2.58
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are to 1, the better are the simulation values associated

with the observed values. The smaller the RMSE, the

smaller the errors between the simulated data and the

observed data.

We apply the skill score (SS; Taylor 2001) to evaluate

the quantitative performance of the individual models

over the observed time period. The skill score is de-

fined as

SS5
4(11CC)4

NSD
m
1

1

NSD
m

� �2

(11CC
0
)4
, (5)

where m indicates model simulation; NSDm is the

normalized standard deviation of the simulation; CC0

is the maximum correlation coefficient; and CC is the

correlation coefficient between the simulated and

observed data. The closer SS is to 1, the better the

ability of the individual model to represent the ob-

servations. The SS is used to identify the best per-

forming models, which are then used later to form a

multimodel ensemble (MME).

The MME average reduces the uncertainty derived

from each individual model, while the performance of

each individual model simulation directly affects the

performance of the MME. Therefore, based on the

performance of the individual models, a proportion of

the models with better performances are combined to

form the MME. By calculating different combinations

of models (starting from single model, averaging two

models, averaging three models, etc.), the skill score of

each model combination is computed. The number of

combined models with the highest skill score is the op-

timal number, and the corresponding models are the

best model combination. For each model combination,

all the models in the combination are averaged by sim-

ple averaging.

Once the MME average is calculated, we evaluate

its performance of multimodel ensemble using the

comprehensive index (CI) to determine the optimal

multimodel:

CI5
SS

ME1_pr
1 SS

ME1_tas

SS
ME2_pr

1 SS
ME2_tas

, (6)

where ME1_pr, ME1_tas, ME2_pr, and ME1_tas are

two selected multimodels of precipitation and temper-

ature, respectively. Parameters SSME1_pr and SSME1_tas

are the skill score of precipitation and temperature from

selected multimodels of ME1, respectively. Similarly,

SSME2_pr and SSME2_tas are the ME2’s skill scores of pre-

cipitation and temperature, respectively. If CI . 1, then

ME1 is selected as the optimal ensemble; if CI , 1, then

ME2 is selected as the optimal ensemble; if CI 5 1, both

ME1 and ME2 are the optimal ensembles.

4. Results

a. Performance assessment of each individual model

We calculate the NSD, RMSE, and CC of the 25

models (uncorrectedmodels and bias-correctedmodels)

and summarize the results in Taylor diagrams (Fig. 2),

which are used to qualitatively reflect the models’

performance. The polar plot of the Taylor diagram

shows that, for both precipitation (red) and temperature

(blue), the CC values of uncorrected models and ob-

served data are similar to that of bias-corrected models

and observed data. However, the uncorrected models

show poor performance for the NSD, and the deviation

of the NSD from 1 of the bias-corrected models is much

less than that of the uncorrected models. For precipita-

tion, the NSD of the uncorrected models can reach 2.3

and temperature can reach 1.1. The skill scores of

the uncorrected models are generally lower than that

of bias-corrected models. In general, although the CC

of the uncorrected models is similar to that of bias-

corrected models, their performance based on NSD

is poor, resulting in their skill score being lower than

bias-corrected models. Bias-corrected models therefore

perform better than uncorrected models in overall

performance. Therefore, the bias-corrected models are

used hereinafter.

The Taylor diagram shows that the CC value of the

simulated and observed precipitation (red dots) data is

0.4–0.7, showing a moderate correlation. The NSD of

the simulated precipitation is far from the observed

value, indicating a poor performance. The CC for tem-

perature varies from 0.95 to 0.98, showing a strong cor-

relation, and the NSD values are close to 1, which

indicates that temperature simulation has a better skill

than for precipitation. The SS of the 25 models (Fig. 2b)

show that the temperature SS are higher than those of

precipitation, which are similar to the results of the three

indices of the Taylor diagram. The SS of precipitation is

less than 0.54, with model CCSM4 (No. 5) having the

highest SS (0.547) for precipitation, while IPSL-CM5B-

LR (No. 18) has the lowest SS of 0.383. The overall SS

of temperature is above 0.93. The highest SS is 0.968

for model CSIRO Mk3.6.0 (No. 9) and NorESM1-M

(No. 24), and the lowest value is 0.939 for MIROC-

ESM-CHEM (No. 21).

The spatial distribution bias of the models with the

highest and lowest SS is evaluated in Fig. 3. Model IPSL-

CM5B-LR and CCSM4 have the worst and best perfor-

mance for precipitation, respectively. For temperature,
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the best performance model is CSIRO Mk3.6.0 but the

worst model is MIROC-ESM-CHEM. Note that the

spatial patterns of the simulated precipitation and tem-

perature of the selected models are markedly different.

For precipitation, both the highest and lowest SSmodels

(IPSL-CM5B-LR and CCSM4) have lower bias in the

northwest and southeast regions, while relatively higher

bias in northeast and southwest China. Meanwhile,

CCSM4 has a relatively lower bias over most parts of

the southwest and northeast China. On the other hand, for

temperature, the overall bias ofCSIROMk3.6.0 is less than

0.28C over most parts of China, except for some border

areas in the southwest China. MIROC-ESM-CHEM has a

higher bias over most parts of northern China.

We classify and compare precipitation and tempera-

ture based on the averaged SS value of 25 models over

the four regions (arid, semiarid, semihumid, and humid

regions) in Fig. 4. Results show that precipitation in the

semihumid region has the highest average SS (0.639),

and the semiarid region has the second highest SS

(0.595), while the arid area has the lowest SS (0.260).

Simulated precipitation in the four regions has a high

consistency. For example, NorESM1-M (No. 24) has

higher SS than other models in the semiarid and

FIG. 2. Taylor diagram and SS summarizing the performance of precipitation (red color) and

temperature (blue color) from 25 CMIP5models. (a) Uncorrected CMIP5models and (b) bias-

corrected CMIP5 models. The 14 models were selected (highlighted by the cyan color), whose

SS values are higher than the mean of the 25 models.
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semihumid areas, while the SS of IPSL-CM5B-LR (No. 18)

is lower in all regions except for arid area. On the other

hand, temperature shows the highest SS (0.966) in the

semihumid area, while the lowest value (0.945) in the hu-

mid region. The simulation abilities in the semiarid area

and arid area are slightly lower than that in the semihumid

area, respectively. The simulations of temperature by the

models are consistent in arid, semiarid, and semihumid

regions. Models [i.e., CMCC-CM (No. 6), CMCC-CMS

(No. 7), GFDL-ESM2G (No. 11), and GFDL-ESM2M

(No. 12)] with a poor simulation accuracy in the humid

areas have better simulations in the other regions.

In general, both temperature and precipitation have

higher SS in the semiarid and semihumid regions than

the other two regions. In other words, the 25 GCMs are

more applicable in simulating the climatic fields in the

semiarid and semihumid regions of China. At the same

time, models with higher SS for the entire China scored

relatively well in the four regions.

b. Optimization of multimodel compositions

Many former studies found that removing the models

with obvious poor skills would certainly be better than

assessing a correlation based on the entire archive and

significantly reduce the range of projections sampled

(e.g., McSweeney et al. 2015; Sanderson et al. 2015;

Herger et al. 2018). Thus we define threshold for the

performance of skill scores. The threshold selected is the

mean value of the skill score. Precipitation simulation

from the models is far less skillful than temperature over

China, so the precipitation is regarded as a constraint for

model selection in this study. The models are selected

using a criterion that the precipitation SS is higher than

0.490 (mean SS of 25 CMIP5 models), resulting in 14

models selected, which are highlighted in cyan color in

Fig. 2b. Based on the SS of each model, 14 models are

systematically selected for combination with Eq. (6),

yielding 16 383 combinations in total. Figure 5 shows the

SS from these combinations for each group ofCi
14 (i5 1,

2, . . . , 14). It shows that the simulated abilities of the

combined models stabilize or reach a maximum when

the number of models reaches a certain value. As more

model runs are included in the ensemble, the SS de-

creases again. For precipitation, the best performance

over China is achieved with a combination of nine

models (Fig. 5a):ACCESS1.0 (No. 1),ACCESS1.3 (No. 2),

CCSM4 (No. 5), CNRM-CM5 (No. 8), HadGEM2-AO

(No. 14), MIROC5 (No. 19), MIROC-ESM (No. 20),

MIROC-ESM-CHEM (No. 21), and NorESM1-M

(No. 24) out of the 2002 possible combinations of C9
14.

For temperature, the best performance of the multi-

model combination is achieved with 11 models (Fig. 5b):

ACCESS1.0 (No. 1), ACCESS1.3 (No. 2), BCC_CSM1.1

(No. 3), CCSM4 (No. 5), CMCC-CM (No. 6), CNRM-CM5

FIG. 3. Maps showing the spatial distribution of the bias of the model with the worst and best simulation capa-

bility. The (a) worst (IPSL-CM5B-LR) and (b) best (CCSM4) model performance for precipitation and the

(c) worst (MIROC-ESM-CHEM) and (d) best (CSIRO Mk3.6.0) model performance for temperature.
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(No. 8), CSIROMk3.6.0 (No. 9), HadGEM2-AO (No. 14),

IPSL-CM5B-LR (No. 18), MPI-ESM-LR (No. 22), and

NorESM1-M (No. 24) out of the 364 possible combi-

nations of C11
14. We obtain two multimodel combinations:

the 9models ensemble (9ME) for precipitation and the 11

models ensemble (11ME) for temperature.

c. Comprehensive index

A single evaluation index cannot effectively and ac-

curately describe the merits of a model’s performance.

Therefore, a CI is proposed to further evaluate the

performance of two multimodel ensembles. The CI

is obtained by a weighted average of the SS of two

multimodel ensembles (9ME and 11ME). Table 2 shows

the performance metrics for China and the four regions.

Nationwide, the CI of the 9ME is slightly higher than

that of the 11ME. The 9ME is superior in the arid

(1.084), semiarid (1.007), and semihumid (1.006) regions

than that of the 11ME but trivial lower in the humid

region. It demonstrates that the 9ME is slightly superior

to the 11ME, which is more suitable for China as a

whole. Therefore, we choose the 9ME as the optimal

multimodel ensemble for China.

d. Evaluation of the multimodel ensemble

Table 3 lists the SS of the single model optimal (SMO;

the individual model with the highest SS, which is

NorESM1-M for precipitation and CSIRO Mk3.6.0

for temperature), 25 models ensemble (25ME), 9ME,

and 11ME of precipitation and temperature. It shows

that the skills of the multimodel combinations for

precipitation have been significantly improved by

FIG. 4. SS of simulated precipitation and temperature from each GCM model over four

regions (arid, semiarid, semihumid, and humid regions) in China. The black rectangle repre-

sents the best single model.

FIG. 5. The SS of each group of Ci
14 (i 5 1, 2, . . . , 14) for

(a) precipitation and (b) temperature. The asterisks represent the

combination with the highest SS for each group. The red star

represents the group with the highest SS for all combinations.

852 JOURNAL OF HYDROMETEOROLOGY VOLUME 21



7%–10% in all regions except for arid areas, com-

pared to the SMO. Although their performances show

large variability, the spatial patterns of the SS of these

four types of model combinations are similar with

better performance in the southwest and northeast

than other regions (Figs. 6a–d). Except for the SMO,

the simulated effects of precipitation from other models

in the semiarid and semihumid areas (SS above 0.68) are

slightly better than those in humid areas (approximately

0.57), which is better than those in dry areas (less

than 0.32).

The SMO shows lower skill in simulating temperature

over most border areas of southwest China (Figs. 6e–h),

which has the highest elevations and distinctive geo-

graphic features are likely to increase the errors in

model simulations in this region (Song et al. 2013).

Meanwhile, the SS for humid regions is lower than that

for other regions. For example, the simulated accuracy

of the humid area (approximately 0.95) is significantly

lower than that in other areas. Meanwhile, the SS ac-

curacies are similar in the arid and semiarid regions,

both of which are lower than that in the semihumid re-

gion (0.975). It shows that the three multimodel en-

sembles have better performance than that of the SMO.

The relative absolute bias (ABIAS) is the ratio of the

mean of the absolute deviations to the mean of obser-

vations, which can reflect the degree of deviation of the

simulated sequence from the observed sequence. We

compare the boxplots (maximum, the first quartile, the

median quartile, the third quartile, and minimum) of the

ABIAS of two model ensembles (9ME and 11ME) in

Fig. 7. It shows that the 9ME has slightly lower ABIAS

value of precipitation than that of the 11ME over China

and the four regions. The 9ME and the 11ME have

significantly higher ABIAS in the arid areas than other

regions. On the other hand, the 11ME has lower ABIAS

of temperature over China and the four regions. Among

these, the ABIAS of temperature in the arid region is

significantly higher than in other areas, which is lowest in

the humid regions.

Figure 8 presents the bias of the multiyear averaged

precipitation and temperature of the 9ME in each

month. It demonstrates that there is a high consistency

between the multiyear averaged precipitation simulated

by the 9ME and the observed values, with the large

seasonal variation. According to the seasonal pie chart,

summer precipitation is the most abundant, accounting

for approximately 50% of the annual precipitation, and

winter precipitation is the lowest, less than 7% of the

annual total, which is similar with the results of Liang

et al. (2011) and Sui et al. (2013). However, the 9ME

slightly underestimates the precipitation in JJA (about

2.6%) and SON (about 1%) and slightly overestimates

the precipitation in MAM (about 3.5%). Similarly,

the 9ME is accurate in simulating the seasonality of

temperature. The monthly temperature values from

TABLE 2. Model performance indicators and the optimal model

selection results for China and the four regions.

Areas Models

Climatic

variables SS

Mean

value

of SS CI

Optimal

model

China 9ME P 0.648 0.811 1.022 9ME

T 0.975

11ME P 0.608 0.793

T 0.978

Arid 9ME P 0.434 0.703 1.084 9ME

T 0.973

11ME P 0.320 0.649

T 0.978

Semi-arid 9ME P 0.760 0.869 1.007 9ME

T 0.977

11ME P 0.746 0.863

T 0.980

Semi-

humid

9ME P 0.778 0.879 0.999 11ME

T 0.981

11ME P 0.777 0.880

T 0.983

Humid 9ME P 0.665 0.816 1.006 9ME

T 0.967

11ME P 0.650 0.811

T 0.971

TABLE 3. The SS of the SMOand the threemodel combinations (25ME, 9ME, and 11ME) for the simulated precipitation and temperature

in the five regions.

China Arid Semiarid Semihumid Humid

Precipitation SMO 0.547 0.392 0.682 0.728 0.573

25ME 0.613 0.321 0.762 0.785 0.647

9ME 0.648 0.434 0.760 0.778 0.665

11ME 0.608 0.320 0.746 0.777 0.650

Temperature SMO 0.968 0.971 0.971 0.974 0.961

25ME 0.976 0.975 0.979 0.983 0.968

9ME 0.975 0.973 0.977 0.981 0.967

11ME 0.978 0.978 0.980 0.983 0.971
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the 9ME are lower than the observed temperatures in

January, March, and December, and higher the ob-

served values in July, August, and November.

The bias of the multiyear monthly average precipita-

tion varies between20.9 and 1mm month21 (Fig. 9). In

the western part of the Tibetan Plateau, the deviation of

precipitation is greater than 1mm month21. The bias of

the multiyear monthly average temperature is negative

(from 20.48 to 08C) in the northwest and northeast of

China and positive in the southeast area (.0.058C).
Furthermore, the 9ME can well reproduce the spatial

characteristics of the seasonal [MAM (March–May),

JJA (June–August), SON (September–November) and

DJF (December–February)] climatic fields (Fig. 10). In

most parts of China, especially in the humid part, the

precipitation of 9ME underestimates observed precipi-

tation. The temperature from the 9ME has a larger bias

in DJF, which is underestimated in the west and

southwest but overestimated in other regions (Fig. 11).

The SON average temperature shows a negative bias in

the eastern region and a positive bias in other regions.

The biases (from 228 to 28C) of temperature in MAM

and JJA in the semiarid and semihumid regions are

smaller than other areas. In general, the 9ME can well

simulate the spatial–temporal patterns of the observed

precipitation and temperature over China.

5. Discussion

In this study, we apply the SS to assess the performance

of 25 climate models over China. We select 14 models to

optimize the combination of models with higher SS. The

optimal combination is 9ME and 11ME for precipitation

and temperature, respectively. According to the CI, we

conclude that the optimal ensemble is the 9ME over

China, which yields better performance in arid, semiarid

and semihumid regions than that in humid region.

Simulations of the 9ME are verified with the observed

climatic fields. The 9ME has good skill in simulating the

annual variation of precipitation and temperature.

However, there are three issues related to the per-

formance of the MME to be further discussed: 1) the

uncertainty of model selection and observational data,

2) the underestimation of interannual variability by the

MME, and 3) the weighting of individual models when

forming the ensemble.

a. The uncertainty of model selection and
observational data

This study focuses on developing an optimal subset of

climate models for making informed recommendations to

FIG. 6. Spatial distribution of the SS from the SMO, 25ME, 9ME,

and 11ME during 1960–2005.

FIG. 7. ABIAS of the 9ME (yellow) and 11ME (green) in the

four subregions and China. The asterisk represents the regional

average.
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those whomay use these model outputs for climate changes

effects on hydrology in China. Input uncertainties from cli-

mate forcingplayan important roleof theoverall uncertainty

quantification of climate change impact (Herrera-Estrada

and Sheffield 2017; Ahmadalipour et al. 2017). Therefore,

we need to pay particular attention to the uncertainty when

arbitrarily choosing a small number of models.

To evaluate the uncertainty of subsets of multimodel

ensemble, we follow the methodology and performance

indices proposed byHerrera-Estrada and Sheffield (2017)

to look at the uncertainty from different ensemble sizes for

all combinations of models and comparing with ensembles

of the best performance over China. We use bootstrap

sampling to randomly select model runs from the pool

FIG. 8. Monthly climatology of (top) precipitation and (bottom) temperature.

FIG. 9. Spatial distribution of (top) precipitation (mm month21) and (bottom) temperature (8C) for the (a),(d) observation, (b),(e) 9ME

simulation, and (c),(f) bias during the 1960–2005.
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(25 models) 1000 times without repetition for each en-

semble size in order to gauge sampling uncertainty.

The uncertainty range is found not to be very sensitive

to the number of iterations. We present the ranges of

the sampling uncertainty for ensemble sizes ranging

from 5 to 25, 9ME, and 11ME in Fig. 12. The 25 models

are ranked according to the skill score in precipitation

and temperature separately. The interquartile range of

the changes compared to the observed precipitation

and temperature is calculated for each sample as a

measure of uncertainty.

Results show that selecting a small sample of models

using the rankings based on temperature yields overall

larger uncertainties in precipitation than the median of

the bootstrap analysis. In comparison, the ranking from

precipitation consistently produces a lower uncertainty

range. It is noticed that the 9ME has significantly lower

uncertainty values for both precipitation and tempera-

ture. It indicates that selecting small subsets of the

CMIP5 models will likely artificially reduce the uncer-

tainty range of the projections (e.g., Gleckler et al. 2008;

Knutti et al. 2010). The method developed in this study

can be used for optimal subset in China for climate

changes applications. It is similar to the suggestion of

Gleckler et al. (2008) and Knutti et al. (2010).

This study uses meteorological station data interpo-

lated to 0.58 grids as the reference data. Although the

interpolated data fitted well with the observational data

(Fig. S1 in the online supplemental material), we still

need to pay attention to the quality of the observed

FIG. 10. Spatial distribution of the (left) observed precipitation (mm season21; three months), (center) the 9ME simulated

precipitation (mm season21), and (right) bias (mm season21; 9ME-OBS) for (a)–(c) MAM, (d)–(f) JJA, (g)–(i) SON, and (j)–(l)

DJF during 1960–2005.
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dataset. Themeasurement error can be largely depending

on the variables (precipitation or temperature) and can

thus result in a different optimal subset. Previous studies

found that the optimal ensemble of climate models is

sensitive to the metric, observational product, and pre-

processing steps used (Yin et al. 2015; Herger et al. 2018).

Therefore, the researchers need pay attention to the

observational datasets for further application of the

optimal ensemble method in this study.

The results show that the optimal combination has

relatively poor performance on both precipitation and

temperature in northwest China. In addition, optimal

combination of precipitation shows good skills in most

climate zones, except for dry areas, which may be re-

lated to the difficulties in modeling the inherent spatial

variability and characteristics of precipitation (Stephens

andEllis 2008; Yang et al. 2019). However, uncertainties

from the optimal ensemble combination are expected to

be larger at smaller scales (e.g., river basin), which are

more relevant to hydrological applications and need to

be investigated in future work.

b. Interannual variability

We compare the normalized standard deviation

(standard deviations are normalized by the standard

deviation of the observed fields) of selected individual

model and the 9ME in Fig. 13. It shows that the multi-

model ensemble underestimates the interannual vari-

ability over the time period. For each individual model,

the standard deviation is similar to the observations.

However, the 9ME shows a significant decrease for

precipitation, indicating that it underestimates the in-

terannual variations of precipitation compared to ob-

servations. These results are consistent with previous

FIG. 11. As in Fig. 10, but for temperature (8C).
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studies (e.g., Cavazos and Arriaga-Ramírez 2012; Xu

and Xu 2012; Chen and Frauenfeld 2014). Because each

model is free running (no internal constraints on sea

surface states, for example), they will have different

peaks (wet or warm) and troughs (dry or cold), and so

when averaged these peaks and troughs will tend to

cancel each other out.

The interannual variability in each model is mainly

driven by ENSO, one of the major drivers of interannual

variability inChina (Zou andZhou 2015). Understanding

howENSO and its teleconnections with regional climate

are represented in climate models is important for un-

derstanding the fidelity of models to simulate the year to

year variations that have the most impacts (Guilyardi

et al. 2009; Taylor et al. 2012; Zou and Zhou 2015).

Comparing to CMIP3, the CMIP5 models have im-

proved the physical credibility of their simulations of

ENSO overall and its response to climate change,

exhibiting a behavior qualitatively similar to that of the

real-world ENSO (Guilyardi et al. 2009; Sperber et al.

2013; Bellenger et al. 2014). Nevertheless, many studies

have shown that CMIP5 models still have some limita-

tions in the simulation of ENSO phenomena (Jha et al.

2014; IPCC 2014). In the context of MME, the CMIP5

experimental design for the ‘‘historical’’ model runs

is for initialization from a random point of a quasi-

equilibrium control run (Taylor et al. 2012). Therefore,

El Niño and La Niña years in the historical climate

simulations will not necessarily coincide with the regular

years in which they actually occurred and will differ

across models. Further work, therefore, should evaluate

the relationship of climate variability with ENSO in

these models, and understand how to better represent

the observed interannual variability in multimodel en-

semble average.

c. Impact of ensemble averaging method

Another caveat in our study is that we combine the

models using equal-weight averaging (EWA), without

considering the individual skill of the models. Stott et al.

(2006) suggested that the observed changes that are at-

tributed to the anthropogenic activities can be used to

restrain estimates of future climate warming, and they

proposed a weighted climate probability prediction us-

ing a measure (e.g., decadal-mean temperature changes

of observation) of the model performance evaluated

FIG. 12. Interquartile range of (a) precipitation and (b) temperature over China. The black line represents the median value

when randomly sampling a subset of models, and the envelope corresponds to the 10th and 90th percentiles (derived from

1000 repetitions for each subset). Colored lines represent the range of uncertainty when using the models along the order of the

rankings based on precipitation (blue) and temperature (orange). Colored stars represent the selected 9ME (green) and 11ME

(brown) in this study.

FIG. 13. Normalized standard deviation of each selected model

and 9ME simulated annual precipitation and temperature in China

from 1961 to 2005.
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by the observations. Several other studies have used

weightedmultimodel ensemble methods [e.g., reliability

ensemble averaging (Giorgi and Mearns 2002; Xu et al.

2010), rank weighting method (Chen et al. 2011), and

Bayesian model average (Raftery et al. 2005; Yang et al.

2011)] to improve the accuracy of the simulations com-

pared with the equal-weighted multimodel ensemble.

Here we use the skill scores of the individual models to

explore the impact of weighted ensemble averaging on the

performance of the multimodel combination. We compare

two different weighted ensemble methods: SS weighting

average (SWA) and SS rank weighting average (SRWA)

withEWA.SWAtakes the valueof SS as theweight of each

model directly and SRWA ranks the models according to

the SS and assigns weight based on the ranks.

Figure 14 presents the differences of SS for precipi-

tation among three different weighting methods (EWA,

SWA, and SRWA). It can be seen that the SS of

SWA simulated precipitation is higher than EWA over

67.92%of China, but themagnitude of the improvement

SS only accounts for 0–63 1023. In contrast, the SRWA

performs relatively worse, with only about 31.34% of

China has higher SS (ranging from 0 to 0.08) compared

with EWA (Figs. 14a,b). For temperature, the weighting

effect is slightly better than that without considering the

weighting, but the effect is not visually obvious. SWA is

slightly better (less than 8 3 1025) than EWA in about

57.56% of areas of entire China. However, although the

magnitude of deviation between SRWA with EWA is

larger than that of SWA–EWA, the SS of 85.58% of the

region are less than that of EWA. These results indi-

cate that the weighted average methods have improved

the SS in some regions, or for one climate field, than

that of EWA, but they show lower skill in other

regions/climate fields. We do not find a consistent

pattern of better skill among these three multimodel

ensembles averaging methods. Therefore, different

weighted averaging methods should be used with care

in different regions and for different climate fields.

6. Conclusions

In this study, we present an evaluation of the per-

formance of an optimal multimodel ensemble from 25

bias-corrected CMIP5 models over China. The EDCDF

method is used to bias-correct and downscale the models,

which are then shown to have good skills in simulating

climate fields over China with substantial spatial hetero-

geneity andwith relative smaller uncertainty. Furthermore,

we identify an optimal multimodel ensemble based on

historical performance that can provide future projec-

tions associated with model skill. The optimal selected

nine member multimodel ensemble (ACCESS1.0,

ACCESS1.3, CCSM4, CNRM-CM5, HadGEM2-AO,

MIROC5, MIROC-ESM, MIROC-ESM-CHEM, and

NorESM1-M) represents well the spatiotemporal

FIG. 14. Spatial distribution of the SS bias (decimation fromEWA) for (a),(b) precipitation and (c),(d) temperature

with two different weighting methods (SWA and SRWA).
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variability of precipitation and temperature over China,

albeit with some regional differences and uncertainties.

Although the choice of weighted averaging has some

regional influence and is variable dependent, the equal

weighting method in this study is generally superior

across China. The optimal nine models averaged en-

semble (9ME) could be applied to hydrologic mode

for a range of uses related to climate assessments. The

framework developed in this study can be extended and

applied to other multimodel ensemble datasets, such as

the recently developed sixth phase of the CMIP models

(CMIP6; Pascoe et al. 2019), to investigate the robust-

ness of the optimal combination with respect to im-

proved physics and model parameterizations.
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