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Abstract Plasma disturbances affect satellites, spacecraft and can cause serious
problems to telecommunications and sensitive sensor-systems on Earth. Considering
the huge scale of the plasma phenomena, data collection at individual locations is not
sufficient to cover this entire relevant environment. Therefore, computational plasma
modelling has become a significant issue for space sciences, particularly for the near-
Earth magnetosphere. However, the simulations of these disturbances present many
physical as well as numerical and computational challenges. In this work, we discuss
our recent magnetohydrodynamic solver, realised within the MPI-parallel AMROC
(Adaptive Mesh Refinement in Object-oriented C++) framework, in which particular
physical models and automatic mesh generation procedures have been implemented.
A performance analysis using a selection of significant space applications validates
the solvers capabilities and confirms the technical importance of our approach.

Müller Moreira Lopes
National Institute for Space Research (INPE), Av.dos Astronautas 1758, Jardim da Granja, São José
dos Campos, São Paulo, Brazil, e-mail: muller.lopes@inpe.br,mullermslopes@gmail.com

Margarete Oliveira Domingues
INPE, Av.dos Astronautas 1758, Jardim da Granja, São José dos Campos, São Paulo, Brazil, e-mail:
margarete.domingues@inpe.br

Ralf Deiterding
Aerodynamics and Flight Mechanics Research Group, University of Southampton, SO16 7QF,
United Kingdom, e-mail: r.deiterding@soton.ac.uk

Odim Mendes
INPE, Av.dos Astronautas 1758, Jardim da Granja, São José dos Campos, São Paulo, Brazil, e-mail:
odim.mendes@inpe.br

1

CFDMETHODS, 005, v3 (final): ’Magnetohydrodynamics adaptive solvers in the AMROC . . . 1



2 Moreira Lopes, Domingues, Deiterding & Mendes

1 Introduction

The number of studies on space plasmas has increased during the last decades, driven
by the significant effects that space plasma can have on sensitive electro-electronic
technologies. The road map for 2015–2025 commissioned by the Committee on
Space Research (COSPAR) and the International Living With a Star working group
(ILWS) [43] describes damaging influences of space phenomena on current technolo-
gies and infrastructure, implying a high economic cost that – albeit not completely
measurable – has a significant impact on the world economy [21].

There are significant international efforts to produce space weather forecasting
systems in order to anticipate when very intense solar events can occur and how they
can interact with the Earth or human-built space equipment. The global simulations of
the Magnetohydrodynamics (MHD) model are a fundamental part of such forecasting
systems, especially to clarify processes, quantify, and even in the next years predict a
complete phenomenology of the interaction of plasmas with the Earth’s magnetised
and ionised atmosphere, as described, for instance, in [47].

In recent years, our research group has been contributing to such efforts by
developing a high performance numerical MHD solver to simulate the near-Earth
environment using the solar wind data as boundary conditions. This solver is being
developed under the AMROC (Adaptive Mesh Refinement in Object-oriented C++)
framework [17], which implements a patch-Structured Adaptive Mesh Refinement
(SAMR) method [4] with the parallel strategy proposed in [14] using the Message
Passing Interface (MPI) protocol.

Snapshots of these developments are given in [36], which introduces our solver
by presenting the results of classical ideal MHD benchmarks using the adaptive and
parallel strategies for both two-dimensional and three-dimensional formulations, and
in [19], where we presented some improvements concerning the adaptive criteria of
the SAMR method by using wavelet-based techniques. A core finding of these
publications is that the Multiresolution (MR) approach, as it is mathematically more
rigorous, leads to an adaptive mesh well fitted to the structures of solutions in the
MHD context and to an improvement in the overall computational time. Furthermore,
this approach is more suitable for the numerical approaches to solve the magnetic
field divergence problem presented in MHD simulations.

In recent years the number of studies in computational plasma modeling has been
increasing; many other MHD codes were developed for a variety of applications.
For instance, [22] presents an extensive review of global magnetosphere models,
codes and numerical methods. In particular the RAMSES code [23] was developed
in Saclay to study large scale structure and galaxy formation, however it is now a
rather flexible package to be used for general purpose simulations in self-gravitating
fluid dynamics. It is written in Fortran 90 with extensive use of the MPI library and
built on a grid-based hydro solver with adaptive mesh refinement. The underlying
data structure is the so called fully threaded tree. As opposed to patch-based SAMR,
cells are refined on a cell-by-cell basis: it is therefore called a tree-based AMR as
described in [23]. A comparison of advantages and disadvantages of patch-based
and tree-based AMR is presented in [24], stating that the patch-based SAMR codes
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provide a better memory layout and a simpler geometry at the cost of the refinement
of unnecessary cells and the extra memory consumption due to the patch manager.
Another widely used MHD solver is the ATHENA code [44]. It is a grid-based
code for astrophysical magnetohydrodynamics (MHD). It was developed primarily
for studies of the interstellar medium, star formation, and accretion flows. Athena
has been made freely available to the community in the hope that others may find it
useful. It uses Static Mesh Refinement (SMR), as decribed in [44]. This approach
consists of using a fixed mesh that is more refined in some regions of the domain.
Besides being faster, this approach is not as flexible as the full SAMR algorithm in the
sense that, for many problems, the structures of interest may be formed dynamically
or transported through the domain.

This paper aims to present the new milestones reached in the development of
our MHD solver. In particular, this work develops the resistive formulation of the
MHD equations using a set of physical benchmark problems that occur due to
the resistive effects. Furthermore, we introduce an early two-dimensional MHD
formulation for the Earth magnetosphere based on [39, 38, 40]. After the simulated
magnetosphere converges to steady-state conditions, the model is implemented such
that the boundary condition containing typical values for the solar wind proceeds with
an evolution using actual interplanetary measurements, for instance, data collected
from the OMNI web service, NASA.1

The outline of this work briefly presents the AMROC framework in Section 2,
explaining the numerical, computational and design decisions of the software de-
velopment process that are contributing to the success of our ideal MHD solver,
as discussed in [36, 19]. Then, the numerical and implementation aspects of the
ideal and resistive MHD solvers are presented in Section 3. In Section 4, the content
refers to some fundamental experiments related to physical phenomena that occur
in space weather. At last, in Section 5, we discuss the lessons learned and the next
development steps.

2 AMROC

The compressible MHD equations are a system of nonlinear hyperbolic partial
differential equations. Considering the vector of conservative physical quantities q,
these equations can be written as a conservation law, i.e.,

∂q
∂t
+ ∇ · F (q) = S(q) , (1)

where F and S are the flux function and the source term respectively. A suitable
approach to simulate this type of model is the finite volume scheme [33]. This method
consists of discretising the physical domain of the problem into cells or control
volumes, so that each cell contains an average value for its coverage. Then, each cell

1 OMNI web service, NASA: https://omniweb.gsfc.nasa.gov/
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average is evolved in time according to the flux between its adjacent cells. Note that
in here, simulations are always performed inside rectangular physical domains. This
choice allows particular optimisations in comparison with the algorithms required
for unstructured meshes, such as the implementation of a single numerical scheme
routine, independent of the refinement.

During the discretisation process, the choices of proper refinements are challeng-
ing. An overly coarse mesh may cause the solution to be not adequately represented,
especially in cases that contain localised structures or steep gradients, causing loss
of information. On the other hand, an exaggerated refinement leads to a consider-
able amount of unnecessary computations, wasting a lot of computational time and
memory. In this context, the use of adaptive techniques proposes to overcome these
limitations. These techniques maximise the efficiency of the simulation by using an
adaptive mesh, which is more refined in the regions where the localised structures
are present and is coarser in the smooth solution regions.

2.1 Adaptive meshes

The MHD solver developed for this work uses an SAMR method to construct the
adaptive meshes. The work of Berger and Oliger [5, 3] was the first to introduce this
method. Subsequently, Berger and Colella [3, 4] proposed a simpler version, in which
every mesh of the hierarchy must be aligned with cells of the next coarser level, al-
lowing simpler interpolation operations. Bell, Berger and Saltzman [2] demonstrated
that this version can be more efficient, especially with vector and super-scalar com-
puters.

The strategy of the SAMR methods to construct adaptive meshes is based on
refinement criteria that measure the local smoothness of the solution in every mesh
element. If the result of the criteria exceeds a predetermined value ǫ , the mesh
element is flagged for refinement. After that, the flagged elements are overlaid by
sub-meshes, i.e. patches, of finer cells that are refined by a factor of r . Note that
the presently implemented multiresolution criterion only uses a refinement factor
of r = 2; however, AMROC principally permits arbitrary integer values for other
refinement criteria.

The process of overlaying more refined sub-meshes over coarser meshes produces
a hierarchy of embedded level domains, i.e. the domain covered by a finer refinement
level is also covered by the next coarser level. This hierarchy can be expressed
as the sequence of meshes Mℓ , where ℓ is associated with the refinement levels
ℓ = 0, 1, . . . ,L. Each meshMℓ has its spatial mesh widths denoted as ∆xℓ , ∆yℓ and
∆zℓ so that they present a constant ratio r between adjacent levels. Considering that
the meshes in this hierarchy are embedded, the physical domain covered by each
meshMℓ follows the propertyML ⊂ ML−1 ⊂ · · · ⊂ M0 = Ω,where the base mesh
M0 cover the entire physical domain Ω. Each one of these meshes is divided into
a set of non overlapping rectangular submeshesMℓ

m so thatMℓ := ∪Mℓ

m=1Mℓ
m with
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Mℓ
m1 ∩Mℓ

m2 = ∅, m1 , m2, where Mℓ is the number of submeshes, or patches, used
to represent the meshMℓ .

One of the advantages of this mesh hierarchy is allowing a single implementation
of the numerical scheme to be executed on each patch, independent of the refinement
level. Thereby, the time evolution process can be performed for every patch indi-
vidually. However, to compute fluxes along the boundaries of every patch requires
a solution of the cells in adjacent patches. This restriction compromises the patch
independence to perform the time evolution. In order to overcome this limitation,
the patch structure are complemented with extra auxiliary cells, called ghost cells, at
their boundaries, allowing the boundary values to be stored in the same data structure
as the submesh.

The values in the ghost cells must be set or updated before and during the time
evolution. For that, the ghost cells are divided into three cases regarding their position.
At the physical boundary, the ghost cells are updated according to the problem
boundary conditions. If there exists an adjacent patch on the same level, the ghost
cells are updated by copying the solution from the neighbour. If the adjacent patch
is however coarser, the ghost cells are interpolated from the solution in the coarser
level using a multi-linear interpolation. In order to ensure discrete conservation in the
fluxes between patches of different levels, the SAMR approach eventually replaces
the coarse-cell fluxes by averaged fine-mesh fluxes, hence modifying the numerical
stencil on the coarse mesh, cf. [14, 15] for AMROC-specific implementation details.

Wavelet coefficients as refinement indicator

Wavelet theory shows that the decay of the wavelet coefficients estimates the local
regularity of the solution [11]. Therefore we can use such coefficients to predict where
we could not have an adequate local approximation and consequently, we need to
improve the refinement. This can be used to determine dyadic refinement (i.e. r = 2)
as these coefficients indicate regions of steep gradients or discontinuities [37, 20].
In this context, our proposed MHD solver implements ideas based on the adaptive
multiresolution method introduced by [27] to use as the refinement criteria. For
that, the solver uses the multiresolution operations to predict the expected solution
at a finer scale based on the solution from a coarser scale. Then, this prediction
is compared with the actual solution. Besides this criterion, the MHD solver also
allows using the criteria discussed in [15, 19].

Our underlying idea of applying multiresolution techniques for mesh adaptation
is based on representing the numerical solution in two or more different resolution
levels. Compression of the number of mesh cells, corresponding to coarsening the
mesh locally, can be obtained by checking what happens between subsequent mesh
resolutions [18]. For instance, for a discrete solution of a FV discretisation we
consider as initial cell average data Qℓ+1

at level ℓ + 1. The transformation of these
data Qℓ+1

into an equivalent multiscale representation in one decomposition level is
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Qℓ+1 projection
⇋

prediction
Qℓ+1

MR = {Q
ℓ } ∪ {dℓ+1},

where the set dℓ+1 contains the information between the two consecutive levels ℓ
and ℓ + 1, and Qℓ

stores a smoothed version of the original numerical solution
Qℓ+1

. The data at the highest resolution level are transformed into a set of coarser
scale approximations plus a series of prediction errors corresponding to wavelet
coefficients dℓ in a multiresolution analysis. In order to perform the MR method
with finite volume data, operations for projection and prediction are required, where
the cell values are local averages.

Patch creation

In SAMR methods, once the refinement criteria flag the coarser cells that require
refinement, these cells are clustered into blocks by using a dedicated algorithm. Then,
these blocks are used to construct patches of a finer refinement level. The AMROC
framework uses the clustering algorithm proposed in [2], which was inspired by
image detection techniques. This clustering algorithm is illustrated in Figure 1. Let
Υi be the number of flagged cells, i.e. signatures, in the i-th row or column of cells
on the current meshMℓ . As the first step, this method splits the domain in every row
and column where Υi = 0. In the second step, the cuts are placed where the discrete
second derivative ∆ = Υi+1−2Υi +Υi−1 crosses zero, starting from the steepest zero
crossing and then using the lowest ones recursively. This step is repeated until the
ratio among all cells and flagged ones in every new submesh is above the prescribed
clustering ratio ϑ. In principle ϑ ∈ [0.00, 1.00], however, in practice, typical values
for ϑ ∈ [0.80, 0.99].

Time evolution strategy

As the adaptive mesh is defined, the time evolution for simulations with adaptive
meshes presents minor challenges regarding stability and conservation. Obviously,
the time step parameter ∆t needs to satisfy the Courant–Friedrichs–Lewy (CFL)
condition in every patch. In this context, the time evolution process using adaptive
meshes may be performed with two different approaches [15]. One is based on a
global time-stepping where the patches of every level are updated with a∆t that satis-
fies the CFL condition on the finest meshes. The other strategy is a refinement-based
recursive time-stepping where ∆tℓ varies between levels in the same proportion as
their spatial refinement. This latter strategy requires the solution in patches of dif-
ferent refinement levels to be available at different time instants, which is handled in
the SAMR method by constructing time-interpolated coarse level data as a boundary
condition for interior fine level patches.
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a) 1st step: Mesh division where Υ = 0. b) 2nd step: Division of the white mesh where the
value ∆n presents the highest variation between
adjacent values with opposite signals.

c) Recursive execution of the 2nd step over the
new subdivisions.

d) Stop criteria: Percentage of flagged cells in the
subdivision surpass the predefined clustering ratio
ϑ

Fig. 1 Cell clustering algorithm. The value Υi associated with each row and column is defined as
the number of flagged cells in that row or column, and ∆i = Υi+1 − 2Υi + Υi−1.

2.2 Implementation aspects

AMROC is a freely available framework2 that uses object-oriented programming
concepts in the C++ language to support the numerical simulation of partial differ-
ential equations using adaptive methods. In this framework, presented in [15], the
SAMR core contains about 46, 000 lines of code C++ and around 6, 000 lines of
code for visualisation and data conversion routines. Besides being written in the C++

language, the framework uses the FORTRAN language to perform mesh operations,
such as prolongation and restriction, due to its better performance in mathematical

2 AMROC webpage: http://www.vtf.website/asc/wiki/bin/view/Amroc.
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computations. The AMROC framework uses a space-filling curve to implement a
dynamic re-partitioning algorithm and to redistribute the workload among the pro-
cesses in the adaptive cases. In here, this load balancing operation is carried out after
each time step on level 0. AMROC is pursuing a rigorous domain decomposition
strategy, in which the increased computational expense on higher refinement levels
in the patch-based AMR algorithm is considered when evaluating parallel workload.
However, only units of the smallest resolution corresponding to a cell on level 0
can be considered [14]. This approach simplifies the implementation and reduces
the expense of the partitioning algorithm, but can lead to slight load imbalances on
deep hierarchies. The algorithm used for partitioning is always a multi-dimensional
space-filling curve [13, 15].

3 MHD modelling

The study of MHD phenomena presents a series of demands concerning their physics,
such as the formation of instabilities, discontinuities and shocks in the physical
quantities and the diversity of scales with which these behaviours may occur [32, 6].
MHD modelling describes the behaviour of a single, non-viscous, compressible and
conducting fluid under a magnetic field. This model is applied in problems in which
the plasma has macroscopic force balance, equilibrium and dynamics. In the scope
of space sciences, the MHD formulation describes phenomena such as the Earth
magnetosphere, the solar wind, the Heliosphere and many instabilities in plasma
that occur in those regions.

The MHD model describes the plasma dynamo using the variables ρ, u, B, p,
E and η, corresponding to density, velocity, magnetic flux, pressure, total energy
and resistivity, respectively. These variables are modelled by combining the Euler
equations and the Maxwell equations [32], obtaining a set of eight non-linear partial
differential equations. In order to simplify the representation of these equations for
the modelling purpose, they are rewritten in a non-dimensional form so that the
magnetic permeability yields the identity µ = 1 [25], obtaining:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2a)

∂ (ρu)
∂t

+ ∇ ·
[
ρuu +

(
p +

B · B
2

)
I − BB

]
= 0, (2b)

∂E
∂t
+ ∇ ·

[(
E + p +

B · B
2

)
u − (u · B) B + [

η (∇ × B)
] × B

]
= 0, (2c)

∂B
∂t
+ ∇ ·

[
uB − Bu + η

(
(∇B)T − ∇B

)]
= 0. (2d)

This system is completed by the definition of total energy, which is the combination
of the hydrodynamic and magnetic energies, i.e.,
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E = p
γ − 1

+ ρ
u · u

2
+

B · B
2

, (3)

where γ is the adiabatic index. Furthermore, the plasma must satisfy the Gauss law
for the magnetism ∇ · B = 0, i.e., the divergence over the magnetic field is constant
and zero over time and no monopole is allowed (since it is a nonphysical behaviour).

Numerical aspects

The numerical simulation of the MHD equations presents several inherent challenges,
for instance, the operator ∇ · (∇ × ·) over a vector quantity is zero, what implies, in
our study, that ∂t (∇ · B) = 0. So, ∇ · B is a constant value, but as earlier mentioned,
there is no monopole. However, in many numerical methods, due to numerical
approximation errors, the term containing ∇ · (∇ × ·) does not indeed result in zero.
Hence ∇ · B , 0, so that the MHD system does not satisfy Gauss’ law as expected.
The loss of this constraint causes spurious behaviours in the numerical solution,
creating magnetic monopoles. This phenomenon leads to numerical instabilities as
discussed, for instance, in [7, 46], and more recently in [29].

To deal with this problem, the AMROC-MHD module implements the Gener-
alised Lagrangian Multiplier (GLM) formulation for the MHD equations [12]. In
general, GLM methods are used to maximise or minimise a function under some
constraints. In this context, the GLM method is used to maximise the induction
equation while imposing ∇ · B = 0. This is done by coupling a differential operator
D to the Gauss’s Law so that D (ψ) + ∇ · B = 0. Then, the solution ψ is coupled to
the induction equation, obtaining

∂B
∂t
+ ∇ ·

[
uBT − BuT + η

(
(∇B)T − ∇B

)
+ ψI

]
= 0, (4)

In particular, the MHD simulations in this work use the parabolic-hyperbolic
divergence cleaning approach as proposed in [12] and updated in [34]. This correction
is characterised by the operatorD (ψ) = 1

c2
p
ψ+ 1

c2
h

∂ψ
∂t , with cp and ch ∈ (0,∞), where

the parameter ch = max
[
σ ∆h
∆t , max

(
|ui | ± cf

)]
, with ∆h being the minimal value

of the mesh sizes in each direction, σ the Courant number, ui the velocity of the
i-th component, cf the fast magneto-acoustic wave of the MHD model, and the cp
value is defined in terms of the parameter αp =

∆h ch
c2
p

for αp ∈ [0, 1]. Applying this
operator into the modified Gauss’ Law, the equation that describes the evolution of
ψ is obtained as

∂ψ

∂t
+ c2

h∇ · B = −
c2
h

c2
p

ψ. (5)

The choice of this operator results in a method that transports and diffuses the
components of∇·B to the boundaries [12]. Besides not eliminating these components
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completely, this method is capable of maintaining the accuracy and the stability of
the solution at a very low computational cost.

Moreover, the AMROC-MHD module also implements the Extended GLM-MHD
formulation (EGLM-MHD), as described in [12], that includes Powell’s source terms
into the GLM-MHD model. However we will not discuss EGLM experiments herein
as the GLM approach presents solutions that are mathematically more rigorous in
the sense of conservation laws.

The discussed GLM-MHD system is completed by suitable initial and boundary
conditions as presented in the numerical experiments section. Note that the variable
ψ is always initialised as zero for the entire domain.

The AMROC-MHD solver implements the HLL [28] and the HLLD [35] fluxes
using a two-stage second-order-accurate Runge–Kutta method to perform the flux
computations of the MHD equations. Furthermore, the AMROC-MHD module uses
MUSCL (Monotone Upstream-Centered Scheme for Conservation Laws) [48] as
a high-resolution scheme. This approach is based on the usage of a slope limiter,
which consists of piece-wise linear reconstructions to extrapolate each variable q
of the solution to the left and right boundaries of the cell. These extrapolations are
performed as presented in [45].

Besides the GLM formulation, in order to ensure that the solution does not develop
spurious oscillations around discontinuities or shocks, the AMROC-MHD module
implements the following slope limiters functions to be used in a MUSCL scheme:
Minmod [41], Monotonized Central (MC) [51], Superbee [41], van Albada [49], van
Leer [50], and Koren [31].

4 Experiments and discussions

This section presents the results of the adaptive simulations of two benchmark cases
for a three-dimensional ideal MHD and a two-dimensional resistive MHD model,
respectively. These benchmarks represent significant phenomena that appear in the
physics of the space environment involving the Earth magnetosphere model. The
experiments aim to quantify the scheme accuracy in the L1-norm, the memory
compression and the CPU-time gain concerning a non-adaptive mesh with the same
refinement as the finest level, as discussed in [18, 16]. Finally, a more complex
configuration setup involving the Earth magnetosphere is discussed.

All experiments are conducted using a Cartesian mesh, the HLLD numerical flux
introduced in [35], and the MinMod limiter as discussed, for instance, in [45]. The
computations were run in parallel using nodes of a recent GNU/LINUX computer
cluster that provides 20 cores with shared memory per node.
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4.1 Magnetic shock-cloud (MSC)

The magnetic shock-cloud problem is a benchmark test that verifies the performance
of the numerical scheme when dealing with super-fast flows [46]. It describes the
disruption of a high-density magnetic cloud by a strong shock wave. For that, an
advancing plasma is considered, which causes a shock with a stationary state that
contains a high-density cloud. This is a conceptual problem, not yet computationally
exploited in the space science literature. These simulations are performed inside the
computational domain [0, 1]3 with outlet boundaries, using the GLM factor αp = 0.4
and η = 0 (ideal MHD case). The time steps are performed under the Courant number
σ = 0.4 until the final time t = 0.06. The initial state of both the advancing (delimited
by x < 0.05) and steady (x > 0.05) plasma regions are described in Table 1 for
the adiabatic constant γ = 5

3 , with non-dimensional quantities compatible with the
defined MHD model. The density solution in the steady plasma ρ0 is given by value
ρ0 = 10 if the coordinates are inside the cloud with centre in (0.25, 0.5, 0.5) and
radius r = 0.15. Otherwise, this density is set as ρ0 = 1. Figure 2 shows a slice
representation of the density initial condition configuration and the solutions at the
instants t = 0.03 and t = 0.06 alongside with the respective adaptive meshes and the
mesh distribution among the 48 processors used for these simulations.

The figure containing the refinement of the adaptive mesh is interpreted such
that the blue regions of the domain represents the coarsest scale, while the red
regions represent the most refined scale. The adaptive mesh localises structures in
the solution, such as the bow shock, the centre of the explosion area and the tail. The
visualisation of the mesh distribution per processor is a complicated task in this three-
dimensional case. However, we can roughly estimate the form of this distribution
using planar cuts, cf. right graphic of Figure 2, so that each colour represents the
sub-domain evolved by each processor. The workload balance algorithm is expected
to create small sub-domains in the most refined regions, while the coarser regions are
evolved using less processors. This can be observed in the initial condition, where
the refinement concentrates in the shock wave and in the sphere borders and hence
more processors are being used in these regions, in contrast with the region with
x > 0, which is predominantly being evolved by the same processor. In the instant
t = 0.03, the processors maintained their concentration around the cloud region and
the yz-plane, where the shock wave is located, while the region x > 0 is still evolved
by few processors. At the final instant t = 0.06, the processors are more spread into
the domain, but a concentration is still visible in the cloud and tail regions. These
graphics indicate an excellent distribution in the regions where more refinement is
desired.

Table 1 MSC: Initial conditions.

ρ p ux uy uz Bx By Bz

x < 0.05 3.86859 167.34500 11.25360 0.00000 0.00000 0.00000 2.1826182 −2.1826182

x > 0.05 ρ0 1 0 0 0 0 0.56418958 0.56418958

CFDMETHODS, 005, v3 (final): ’Magnetohydrodynamics adaptive solvers in the AMROC . . . 11
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ρ Mesh refinement Mesh distribution per processor
t = 0

t = 0.03

t = 0.06

Fig. 2 MSC: Results for density ρ, the adaptive mesh refinement and distribution per processors.
This simulation is performed using L = 4 refinement levels with a base mesh size of 1283 cells,
MinMod limiter, threshold value ǫ = 0.025, and 48 processors until tend = 0.06.

Table 2 presents the results of the AMR simulations using a refinement threshold
value ǫ = 0.025 with a number L of extra refinement levels, so that the finest
level allowed corresponds to a uniform mesh size of 5123 cells. This table also
presents the L1-norm error for pressure, the CPU time, the number of cells used
in the discretisation at the final instant and the number of patches used in the grid
hierarchy for each case. For these parameters, the simulation with L = 3 refinement
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levels presented a better structure localisation than the one with L = 2, due to the
number of cells and patches required. This resulted in a significative reduction in the
CPU time (around 13%) with a small increase in the overall L1-error in the order
of 10−4. Moreover, the simulations with L = 3 and 4 refinement levels presented
similar number of cells and patches in their adaptive meshes. Consequently, these
cases presented similar CPU time. This indicates that the fourth refinement level has
barely been used, causing the number of cells and patches to be similar. Nevertheless,
the small reduction in the CPU time by 1% obtained by the L = 4 simulation, in
relation to the L = 3 simulation, increased the overall L1-error by the order of 10−5.
Therefore, the result with L = 4 is considered to present the best gain considering
precision and CPU time.

Table 2 MSC: Errors in pressure p, memory consumption (number of cells and patches used) and
CPU time obtained by using several refinement levels L using MinMod limiter at tend = 0.06 with
a threshold value ǫ = 0.025.

Mesh L Accuracy (p) Cells Patches CPU Time

size base L1 error (×10−3) # % # (min) %

5123 643 4 2.481 34,032,848 25 10,812 442.8 32
5123 1283 3 2.4176 33,967,120 25 11,548 458.9 33
5123 2563 2 2.1898 40,190,312 30 22,420 636.4 46

In Table 3, we present a comparison between the uniform and an adaptive com-
putation with refinement threshold value ǫ = 0.025 and clustering ratio ϑ = 0.80 for
meshes with different finest refinement and using the same base mesh 323. The gain
of the adaptive computations sharply increases with the enlargement of the mesh.
In particular, for the adaptive computation, we use less than 3% of the number of
cells for computation related to a uniform mesh 10243, and spend a CPU time close
to the computation of the uniform mesh 5123. Moreover, in the highest resolved
computation, the uniform mesh exceeds our cluster memory and we therefore can-
not provide the CPU time for this computation. The numbers of patches are almost
similar among the two refined meshes; however, the most refined mesh presents a
slightly smaller number of patches, which seems to indicate a better localisation of
the structures.

Table 3 MSC on uniform and MR adaptive mesh computations using MinMod limiter.

Mesh Uniform mesh Adaptive mesh, ǫ = 0.025, ϑ = 0.80

(size) # Cells CPU Base mesh # Patches # Cells CPU
Time (s) (size) Time (s)

2563 16, 777, 216 4, 563.6 323 148 5, 917, 288 1, 468.5
5123 134, 217, 728 74, 185.5 323 894 27, 444, 592 11, 350.3

1, 0243 1, 073, 741, 824 − 323 847 28, 714, 656 117, 731.4
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Considering the finest adaptive mesh 10243, Table 4 shows the comparison with
different cluster parameters and base meshes taking into account the number of
cells and the CPU time. In both cases, the clustering ratio ϑ = 0.99 presented the
largest number of patches, which is expected. In contrast to what we observed in
the two-dimensional case [19] that these results produced less computational effort
and number of cells. This could be related to the localisation of the structures in
the solution in this three-dimensional case. Therefore, in this case a clustering ratio
ϑ = 0.99 presented better results.

Table 4 MSC: Cell-cluster comparison for MR adaptive computations considering different clus-
tering ratios ϑ and base meshes, with ǫ = 0.025 and MinMod limiter.

Mesh
ϑ # Patches # Cells CPU

size base Time (s)

10243 163 0.99 392 28, 730, 312 158, 152.4
10243 163 0.80 351 28, 991, 200 180, 701.6

10243 323 0.99 868 28, 476, 728 116, 871.8
10243 323 0.80 847 28, 714, 656 117, 731.4

4.2 Magnetic reconnection (REC)

As a relevant question of space science, the magnetic reconnection problem is de-
scribed in [30] as the merging of the magnetic field lines from two predominantly
opposing magnetic fields, liberating a considerable amount of energy, and redirect-
ing the direction of particle flows. This type of phenomenon is common in solar
physics and is highly studied due to the effects of the interaction between the Earth‘s
magnetic field and the interplanetary magnetic field that creates complicated space
environment processes. This test aims to verify the implementation of the resistive
terms in MHD, once the resulting effects can be connected with the process respon-
sible for the morphological transition of the magnetic field lines and changing in the
plasma’s flux, as presented in [42].

The problem is initialised considering two different states, divided at x = 0, with
a small transition gap between them. The two states have magnetic fields that present
opposing orientation over direction, and the reconnection occurs inside a small region
inside the transition gap where there is a small resistivity. The computational domain
for this problem is

[
− 1

2,
1
2

]
× [−2, 2] with Dirichlet boundary conditions. Inside this

domain, the resistivity region

η (x, y) =
η0
4

[1 + cos(10πx)]
[
1 + cos(2.5πy)

]
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is defined in the subdomain [−Lr,Lr ]×
[
− 1

5,
1
5

]
, and zero elsewhere with the param-

eters η0 = 6 · 10−4 and Lr = 0.05. The initial conditions of the physical quantities
are ρ = 1, p = 0.1, u = 0. The components of the initial magnetic field are given
according to its corresponding state, as presented in Table 5, with non-dimensional
quantities compatible with the defined MHD model. The simulations of this problem

Table 5 REC: Magnetic field initial condition.

Region Bx By Bz

x < −Lr 0 −1 0
x > Lr 0 1 0

Transition zone 0 sin
(
π

2Lr
x

)
cos

(
π

2Lr
x

)

are performed using the adiabatic constant γ = 5
3 and the HLLD Riemann solver

combined with the MC limiter. The parabolic-hyperbolic correction uses the factor
αp = 0.4. All simulations are performed under Courant number σ = 0.4 until the
final time t = 2.5.

Table 6 REC: Errors in pressure p, memory consumption and CPU time with refinement levels L.

Mesh L Accuracy (p) Cells Patches CPU Time

size base L1 error # % # (min) %

1024 × 2048 128 × 256 4 0.0231 928,932 44 852 27.7 29
1024 × 2048 256 × 512 3 0.0226 895,292 42 809 48.1 51
1024 × 2048 512 × 1024 2 0.0050 856,968 40 466 48.3 51

Table 6 presents the error in pressure p using the L1-norm, the CPU time and
the number of cells and patches used in the adaptive mesh for simulations with
several refinement levels. These simulations are performed using the threshold value
of ǫ = 0.001 for the MR refinement criteria. The number of levels used in each
simulation is configured such that the most refined scale corresponds to a 1024×2048
mesh. The simulation that presented the best results is obtained with L = 2, which
corresponds to a reduction of 49% of the CPU time, while maintaining an error in the
order of 5×10−3. In that case the gain is roughly four times concerning the simulation
with L = 4. Besides, this case presented the lowest number of cells concerning the
uniform mesh simulation and also the lowest number of patches. Furthermore, these
adaptive cases required only around 40% of the cells of the uniform mesh simulation.

Figure 3 presents the solution for p, and the adaptive mesh for the simulation
with 4 levels. Showing the adaptive mesh refinement, the figure can be interpreted
such that the brightest regions of the domain represent the coarsest scales; while
the darkest regions correspond to the most refined scales. Physically, this figure
represents a snapshot of the magnetic reconnection process. One can identify the
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interface between the domains of opposing orientation connected to the field line
merging processes. Furthermore, there is a convergence of plasma in one direction
and divergence in a perpendicular direction, as can be seen in the velocity plot. These
adaptive results are in agreement with the MHD solutions presented in [30], and the
modelling results in agreement with the underlying physics, as considered in [42].

Uniform mesh simulation
p ‖B‖ with field lines

Adaptive simulations (with four levels)
p ‖B‖ with field lines

‖v‖ with vector field Adaptive mesh

Fig. 3 REC solution for uniform mesh (p, and ‖B‖), and the respective adaptive simulations for
(p, ‖B‖, and ‖v‖) with their adaptive meshes. This simulation is performed using four refinement
levels with threshold value ǫ = 0.001 and 24 processors. These Figures are presented using the
y-axis in the horizontal direction.

Table 7 presents a breakdown of the most computationally costly tasks of the
adaptive REC simulations with different number of refinement levels. In comparison
with the uniform mesh simulation, the Integration costs of the adaptive simulations
exhibit a significant reduction, as expected from the lower number of integrated cells.
Moreover, the Boundary costs also show a reduction for three and four refinement
levels, while costs for not explicitly timed operations (Misc) reduce as more levels
are included. The Output production cost is generally insignificant, however also de-
creases for larger level number. Besides these cost reductions, the Recomposition and
Remeshing tasks associated with the adaptive simulations present a significant cost,
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Table 7 REC: Breakdown of the CPU time, in seconds, spent in main computation tasks for
different numbers of refinement levels L using ǫ = 0.001.

Main task Refinement Levels

one two three four

Integration 3756.8 931.5 747.2 737.9
Boundary 796.1 852.9 591.0 503.5
Memory restart 142.0 29.5 11.0 5.7
Recomposition - 500.7 1141.0 228.2
Remeshing - 24.1 21.4 21.4
Misc 518.6 359.8 203.0 116.6
Output 3.8 6.4 5.4 1.2

especially for the three-level simulation. Nevertheless, even considering these costs,
the adaptive simulations require less CPU time than the uniform mesh simulations.

4.3 Magnetosphere (MAG)

Initially as conceived from the incidence of electrically charged solar particles, the
Chapman-Ferraro model proposed that the close Earth’s space environment was an
empty region that avoids the presence of those particles [8, 9]. Nowadays, governed
primarily by the geomagnetic field, a much more complicated electrodynamics region
develops surrounding the planet, designated as magnetosphere [42], populated by
plasmas.

As application cases for the solver, the first analysis deals with a predominantly
northward oriented interplanetary magnetic field (IMF) causing – in principle –
a geomagnetically-closed frontal magnetosphere; while the second case takes into
account the southward-oriented IMF, which causes a geomagnetically-open frontal
magnetosphere. The main modelling ideas are described in details in [39, 40], and
references therein. For these studies, the close Earth’s environment is considered
basically as a sphere with density and pressure constant in time and containing a
magnetic dipole. This region is connected to an outer region where the geomagnetic
field is compressed or stretched by the solar wind, defining a region where the
well-known phenomenon of magnetic reconnection can occur.

The physical model of this problem requires changes in the resistive MHD for-
mulation presented in Eqs. 2. These changes consist of the inclusion of an external
gravity field, an artificial viscosity over the density and pressure field to reduce the
MHD fluctuation that arises from the unbalanced forces in the initial condition, and
a modification in the Ampère law so that J = ∇× (B − Bd), where Bd is the intrinsic
dipole magnetic field of the Earth [42, p. 223]. The reason to subtract the dipole
field from the Ampère law is supported to the expectation of a significant electric
current to be generated in the frontal interface layer between the two media, i.e.,
the interplanetary space and the outer terrestrial region [39, 38, 40]. These modi-
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fications imply the inclusion of the source terms D∇2ρ in the continuity equation,
Eq. 2a, ρg + Φ + uD∇2ρ + B × (∇ × Bd) in the momentum equation, Eq. 2b, and
ρu · g+ Dp∇2p

γ−1 +
‖u‖2

2 D∇2ρ+ u ·Φ+ η‖∇ ×Bd‖2 + (∇×Bd) · (u × B − η∇ × B) in
the total energy equation, Eq. 2c. The diffusive terms in this model are given in [39]
as D = Dp =

µ
ρSW
= 0.02 and Φ = µ∇2u, where ρSW = 5.00 · 10−4 corresponds to

the typical value (5 n/cc) for the solar wind density. Moreover, we use the following
induction equation for the magnetic field:

∂B
∂t
+ ∇ ·

[
uB − Bu + η

(
(∇B)T − ∇B − (∇Bd)T + ∇Bd

)
+ ψI

]
= 0 (6)

Physical quantities

The physical quantities included into the model are described by a function related
to the distance to the centre of Earth, represented by ξ (=

√
x2 + y2) defined with the

Earth located in the xy-plane origin. This two-dimensional formulation considers
the x-axis in the Sun-Earth direction crossing the Earth Equator, while the y-axis
is orthogonal to the x-axis so that it contains the Earth north and south poles.
This reference axis orientation is used for computational convenience in the code.
Nevertheless, to be clear, in the domains of the space scientists that use an own
reference coordinate system representation, this axis is considered to be the z-axis.
Besides the initial conditions, the distance ξ is used to determine the external fields
used in these simulations, such as the external gravity g, defined by the vector field
g(x, y) = − g0

ξ2
[
x, y, 0

]
, where g0 = 1.35 × 10−6; the line dipole magnetic field

Bd, given by Bd(x, y) =
[
−2xyξ−4, ξ−4

(
x2 − y2

)
, 0

]
, and the resistivity function

η(x, y) = η0
w

w+1 , where the weight value reads w = 30(max
[
(ξ/16)2 − 1, 0

]
)2, as

defined in Ogino’s implementation.
Those non-dimensional quantities are obtained from a physical system of units in

which the distance, magnetic induction and time are established based in the Earth’s
radius (RE=6.37 · 106 m). We provide some fundamental physical information used
in this context. The Earth magnetic field at the equator is 3.12 · 10−5 T and the
Alfvén transit time, a time required by the Alfvén wave to go through the equivalent
of the Earth radius, is taken as 0.937 s. Based on those quantities, the pressure unit
corresponds to 7.75×10−4 N/m2, the velocity unit to 6.80 · 106 m/s, the acceleration
unit to 7.26 · 106 m/s2, and the current density unit to 3.90 · 10−6 A/m2.

Initial and boundary conditions

The initial configuration for this problem consists in an approximation of the iono-
sphere, which describes the plasma in the Earth’s neighbourhood, based on the initial
condition proposed in [39, 38, 40]. This ionosphere is constructed so that its pres-
sure and density are proportional to ξ. The initial magnetic field in this work agrees
with the one proposed in the works [39, 38] by including an imaginary dipole at
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the coordinate x = 2xm so that B0(x, y) = Bd(x, y) + Bd(2xm, y), where xm is the
equilibrium point on the x-axis where the solar wind kinetic energy counterbalances
the dipole’s magnetic energy, i.e., the coordinate at which ρSWu2

SW = Bd
2 for y = 0.

This imaginary dipole, known as the image method in electrodynamics [42, p. 225-
227], aids to produce an initial magnetic field that has its field lines compressed,
and not crossing the line x = xm. Its initial structures are constrained to the domain
of the Earth (where x ≥ xm). This magnetic configuration is done to accelerate
the convergence into a steady-state magnetosphere so that the Earth magnetic field
does not cross the position immediately beyond the magnetopause, formed around
x = xm. In the domain of the interplanetary medium (where x < xm), the initial
magnetic field is set to be equal to the typical interplanetary magnetic field. This
problem is simulated inside the physical domain [−150, 450]×[−150, 150] RE, which
is complemented with Neumann boundary conditions so that the derivatives of the
physical quantities are zero at the boundaries xe = 450, ys = −150 and ye = 150.
The boundary at xs = −150 is used to prescribe the solar wind parameters.

The entire ionosphere initial condition and the typical solar wind parameters, used
as boundary conditions, are given in Table 8, where p00 = g0(γ−1)/γ = 5.40 ·10−7

for γ = 2, p0 = 3.56 · 10−8 (corresponding to a temperature of TSW = 2 × 105 K),
uSW = 4.41 · 10−2 (300 Km/s) and BSW = ±1.5 · 10−4 (5 nT), in which the positive
(negative) signal of BSW is associated with the northward (southward) orientation
of the magnetic field of the solar wind.

Furthermore, the physical domain also presents an internal boundary corre-
sponding to a near-Earth region, i.e. a region defined indeed by the ionosphere
and the plasmasphere (details can be seen in [26, p. 208-222, and p. 164-173,
respectively]). Considering the Earth positioned at the origin, this internal bound-
ary removes the points with ξ < 16 from the computational domain. In order to
dampen out all perturbations near the ionosphere, the near-Earth neighbourhood is
smoothed in relation with the initial condition after every time step by the operation
qn+1 = f qn+1∗ + (1 − f ) q0, where qn+1∗ is the solution obtained after the time evo-
lution and q0 is the ionospheric initial condition. The weight value f is computed

as f =
f̄ 2

f̄ 2 + 1
, where f̄ = 100

(
max

[(
ξ
16

)2 − 1, 0
])2

. As proposed, this function

guarantees a smooth transition of quantities in a thin layer immediately surrounding
the ionosphere boundary, which presents constant values. This approach avoids the
MHD solver run stopping due to numerical instabilities.

Configuration of the magnetosphere

The initial condition presented earlier describes the initial state of the ionosphere,
without contemplating an initial state for the magnetosphere. Thus, before intro-
ducing inputs composed of realistic data from the interplanetary environment, an
approximate configuration for the magnetosphere should be realised. The initial
ionospheric configuration is simulated using the typical solar wind parameters qSW ,
presented in Table 8, in order to obtain an initial state for a magnetosphere in equi-
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librium. Figure 4 presents the density and, in white, the magnetic field lines. The
panels in the figure contain the initial condition and intermediary states of the mag-
netosphere configuration before a stationary state is obtained using southward IMF.
These configurations are presented alongside with its corresponding adaptive grids.
An IMF orientation choice is made to match the orientation of the magnetic field at
the beginning of the dataset. This choice is due to the Earth magnetic field, under
typical northward and southward IMF, converging to different states, as presented
in Figure 5. In the lower panel in the figure, there is a frontal reconnection, and
in the upper panel, reconnection does not occur in this position. The errors, CPU
time and number of cells and patches of the adaptive simulations using two and
three refinement levels are presented in Table 9 for both northern and southern
oriented solar wind. The simulations with southern oriented solar wind presented
better performance due to its simpler mesh configuration, as illustrated in Figure 5.
Besides the dipole, which is being compressed on the solar wind side while being
elongated downstream for both cases, these steady-state magnetospheres differ by
potential locations of the magnetic reconnection process. These simulations with
typical solar wind parameters are assumed to have converged to steady-state at the
instant t = 172, 799.666 s, that corresponds to around two days of simulated time.
Both steady stationary states reached are in agreement with the space physics con-
ditions. After that, the solar wind dataset input starts and the evolution of the solar
wind-magnetosphere coupling process is simulated.

Table 8 Initial conditions and typical solar wind parameters.

ρ p ux uy uz Bx By Bz

q0(x > xm, y) max
(

1
ξ2 , 10−4

)
max

(
p00
ξ
, p0

)
0 0 0 B0

x B0
y 0

q0(x ≤ xm, y) max
(

1
ξ2 , 10−4

)
max

(
p00
ξ
, p0

)
0 0 0 0 BSW 0

qSW (xs, y, t) ρSW p0 uSW 0 0 0 BSW 0

This problem is simulated using the HLLD Riemann solver [35] combined with
the MinMod limiter under the Courant number σ = 0.4. The GLM formulation uses
the factor αp = 0.4.

Solar wind experiments in the inflow

After the establishment of the bow shock and the magnetosphere at the stationary
state, we introduce the interplanetary parameters obtained from the OMNI web
service, NASA, corresponding to the period from January 16th to 18th of 2018. By
the examination of the geomagnetic disturbance indices (using for instance planetary
index K p, auroral electrojet index AE, and low latitude geomagnetic index Dst) from
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ρ with magnetic field lines Adaptive mesh
t = 0

t = 15, 618

t = 25, 500

Fig. 4 Density solution (left) at various time instants during the southern solar wind steady-
state magnetosphere construction with its correspondent adaptive mesh (right) with finest level
corresponding to a 512 × 256 mesh and threshold value ǫ = 0.05. Magnetic field lines represented
in white evolving from a southward orientation.

the information of the World Data Center for Geomagnetism, Kyoto3, this interval
corresponds to a typical period of geomagnetically quiet conditions (details in the
Appendix). Nevertheless, it still represents a situation of interesting variation in the
IMF orientation, which challenges the actual MHD modelling. We use a smoothed
version of the data that preserves the primary realistic features, plotted in Figure 6,
to avoid unnecessary oscillations in the simulation. In detail, the filtering process is
built with an orthogonal wavelet transform reconstruction with Daubechies family 8
removing the first 6 levels of the wavelet coefficients.

These datasets, displayed in Figure 6, consist of interplanetary magnetic field
components (in Geocentric Solar Magnetospheric refence system, GSM [42, p.
536]) Bx and Bz in nanotesla, the plasma flow speed in kilometre per second, the
numerical density in particle per cubic centimetre, and solar wind temperature in
Kelvin. All these quantities are given in a function of the time in Day Of Year

3 World Data Center for Geomagnetism: http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
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Steady-state Adaptive mesh

Northward oriented

Southward oriented

Fig. 5 Steady-state magnetosphere predictions obtained respectively from northward (top) and
southward (bottom) oriented interplanetary magnetic field using an adaptive mesh with finest level
corresponding to a 512×256 mesh. Left: density solution (in n/cc) with magnetic field lines. Right:
adaptive mesh using the threshold value ǫ = 0.05.

Table 9 MAG: Errors in pressure p, memory consumption (number of cells and patches used) and
CPU time obtained by using several refinement levels L using MinMod limiter at tend = 184396
with a threshold value ǫ = 0.05. The experiments were performed using magnetic field orientation
in both north and south directions until the stationary state is obtained.

Solar Wind Mesh L Accuracy (p) Cells Patches CPU Time

Orientation size base L1 error (×10−3) # % # (min) %

North

512 × 256 128 × 64 3 3.4158 84,468 65 313 161 74
512 × 256 256 × 128 2 2.6703 81,784 62 323 159 67

1024 × 512 256 × 128 3 2.0036 191,176 36 505 849 74

South

512 × 256 128 × 64 3 1.4590 78,556 60 266 93 66
512 × 256 256 × 128 2 1.1366 74,624 57 257 84 60

1024 × 512 256 × 128 3 1.1953 167,228 32 416 621 36
1024 × 512 512 × 256 2 0.9073 189,490 36 293 740 43

(DOY). Also, the pressure value is obtained using the particle density data n and
the temperature T as p = nkT , where k = 1.38064852 · 10−23 m2kgs−2K−1 is the
Boltzmann constant.

Furthermore, due to our computational formulation of considering the y-axis as
the axis which the dataset considers as being the z-axis, the component Bz of the
dataset is inputted as the By component of the solar wind.
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These smoothed time series are introduced as an inflow boundary condition of the
northward orientated steady-state magnetosphere, that is used as an approximation
of the Earth magnetosphere on Jan 16th 00 : 00h-UT (shown at the top-left panel in
Figure 5). Selected from the numerical evolution as an example, Figure 7 presents
the configuration of the Earth magnetosphere on the instants Jan 17th at 07 : 04h-
UT, Jan 17th at 08 : 00h-UT and Jan 17th at 10 : 04h-UT, which respectively refer
to the effect of the IMF orientation. The upper panel in the figure corresponds
to the northward-oriented Bz interval (letter A in Figure 6), the intermediate one
corresponds to the start of negative value (letter B), and the lower panel corresponds
to the peak of the southward-oriented interval (letter C). As expected, reconnection
processes are noticed in a remarkable way, at the lower panel, in the frontal face
and inside the tail of the magnetosphere. The analysis of the dynamic evolution
represented in the plots can justify the importance of these kind of simulations even
for geomagnetically quiet conditions on the ground. Interestingly, related to letter
C, a time-coincident small intensity effect was noted in the auroral index, and no
effect stands out in the other equatorial index (condition reported in the Figure 8 in
Appendix). A more complete physical investigation is out of the scope of this work. In
the simulation figure, the grey pattern used for the density allows clear identification
of the interplanetary region, the bow shock, the interplanetary magnetosheath, and
the own magnetosphere.

5 Conclusion

The framework AMROC with its implemented SAMR algorithm, MPI paralleli-
sation, multiresolution criterion, and clustering structure was the base of the pre-
sented ideal and resistive GLM-MHD solvers with parabolic-hyperbolic magnetic
divergence-free correction. These solvers achieved a milestone in the development
of an Earth’s magnetosphere model. In this work, three physical and numerical chal-
lenging tests demonstrate the computational efficiency and memory utilisation of
the framework for these new solvers with parallel mesh adaptation, compared to the
correspondent solvers using a uniform mesh.

As expected, the performance gain of the MR adaptive MHD simulations depends
on the local regularity of the solution in all physical quantities. For instance, excellent
adaptive performance can be observed when the solution requires a high-resolution
discretisation and has few localised disturbances relative to its domain size. Further-
more, we successfully have validated the proposed solver for a real-world magneto-
sphere scenario of space plasma, performing a challenging two-dimensional test for
the Earth magnetosphere, and additionally, a three-dimensional implementation is
also already a work in progress. Nevertheless, from our analyses, further performance
enhancements also seem feasible through better parameter choices. In summary, our
MHD solvers can deal with complex problems in space research; for instance, as it
is, we already have a potentially straightforward numerical space weather forecast
model that forthcoming projects will complete.
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Fig. 6 MAG solar wind inflow conditions corresponding to the period between January 16th to
18th of 2018. The dataset is presented in grey while the smoother version effectively used on the
simulation is presented in black.

This work contributes to the rapidly developing area of space weather forecast
and is concerned with the inherent computational challenges of reducing memory
and CPU time which – in the three-dimensional case – is still urgent work in process,
even for supercomputers.
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January 17th: 07 :0h-UT (A)

January 17th: 08 :00h-UT (B)

January 17th: 10 :04h-UT (C)

Fig. 7 MAG plot of density (in n/cc) with representative magnetic field lines for the scenarios after
the inclusion of the smoothed solar wind inflow satellite data.
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Appendix

Code organisation

In the context of this work, the AMROC framework, as described in [15] and pub-
lished online4 is divided into two main folders, the implementation and compilation
folders. The folder vtf/amroc/amr contains the base algorithm for a numerical simu-
lation using SAMR methods for a generic system of hyperbolic equations. The files
contained in this folder specify the data structures and routines outside the scope

4 AMROC webpage: http://www.vtf.website/asc/wiki/bin/view/Amroc
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of the simulated equations, such as mesh adaptation, mesh distribution per proces-
sor, boundary conditions, restriction and prolongation operators, etc. In particular,
the function IntegrateLevel() in the file AMRSolver.h calls the numerical scheme
associated with the simulated equation, implemented in the base module, using the
mpass counter. For each iteration of this counter, the scheme defined in the base
is computed, then the ghost cells are updated. Considering the implemented MHD
solver, this counter performs three iterations, corresponding to the first Runge-Kutta
(RK) step, the second RK step and the divergence cleaning step, respectively. The
GLM implementation files are located in the mhd directory of the implementation
folder. They contain the base virtual functions to perform a generic simulation of the
MHD equations for two and three dimensions.

In special, these files contain the time evolution function Step(), called from the
Generic SAMR solver, and the virtual functions called from this function. The use
of virtual functions allows the definition of base functions that may be used for
most of the experiments, while allowing the redefinition of these functions in the
specific MHD module, if required by the studied problem. In general, the functions
from the base module implement numerical operations that are independent from
the problem simulated, such as flux computations, limiters and divergence cleaning
routines. The problem-specific file located in the respective source directory src,
implements functions that are particular to each experiment. In general, this file
contains initial conditions, resistivity and gravity fields. However, if necessary for
the experiment, this file may contain redefinitions of virtual functions implemented
in the base module. We also have for each simulation an input parameter namelist
called solver.in.

Finally, the MHD module in AMROC runs scripts that already contain the com-
mands to convert the output HDF (Hierarchical Data Format) files into binary VTK
(Visualization ToolKit) files used for data visualisation in tools such as VisIt 5[10]
and ParaView 6[1].

Geomagnetic disturbances

To attend the interests of the geophysical community, devices to measure the geo-
magnetic field, designated in a general sense as magnetometers, have been installed
on the ground, nowadays composing a large net spread around the world. One can
find more information and specific documentation in the World Data Center for Ge-
omagnetism, Kyoto7. Also, related fundamentals on space physics are available in
[42]. To quantify the level of geomagnetic disturbance occurring upon the Earth, the
interested reader can survey and examine some geomagnetic disturbance indices, for
instance, the index K p for an estimated planetary disturbance behaviour, the index
AE for auroral electrojet disturbance effects, and the index Dst for a low latitude

5Visit webpage:https://wci.llnl.gov/simulation/computer-codes/visit/downloads
6 Paraview webpage: https://www.paraview.org/download/
7 World Data Center for Geomagnetism: http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
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magnetic disturbance. In our case, we choose and present in Figure 8 the interplan-
etary magnetic field Bz, the index AE, and the index Sym-H. This information can
be collected effortlessly from the OMNI web service, NASA.8 Bz is the primary
variable responsible for triggering of the magnetic reconnection process (merging of
the interplanetary magnetic field lines with the geomagnetic field lines), when this
IMF component is a predominantly southward-oriented field (i.e., in opposition to
the geomagnetic field orientation), in the frontal side, i.e. towards to the Sun, of the
Earth’s magnetosphere. AE is the geomagnetic index concerning the modification
of the auroral electrojet currents, that produce magnetic disturbances in the higher
latitudes. Sym − H is the index concerning the intensification of an equatorial, sym-
metrical ring electrical current (at a distance about 6 − 7 Earth radii), that produce
magnetic disturbances in the lower latitudes. Recorded by geomagnetic indices, any
geomagnetic variations link intrinsically to the electrodynamical coupling between
the solar plasma and the Earth’s magnetosphere.

Fig. 8 MAG: Geomagnetic disturbances shown by the geomagnetic indices: Auroral Electroject
(AE) and Symmetric Equatorial ring current effect (Sym-H) corresponding to the period between
January 16th to 18th of 2018. Indicated in the interplanetary magnetic field Bz. Letter A indicates
northward-oriented field interval, B a transition value, and C southward-oriented interval.

From the figure, indicated in the interplanetary magnetic field Bz, the letter
A identifies a corresponding maximum-value time in the northward-oriented field
interval, B a time under a transition value (close to zero), and C a corresponding
minimum-value time in the southward-oriented interval. There are two reasons to
select this dataset region: to pick up distinct interplanetary behaviours, and to be
far from the simulation beginning. This procedure allows for exemplifying evolution
consistency related to record inputs and tangible results. As shown in the plot, a

8 OMNI web service, NASA: https://omniweb.gsfc.nasa.gov/form/omni\_min.html
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time-coincident small intensity effect was noted in the auroral index, AE, and no
effect stands out in the equatorial index, Sym-H. Shown in Figure 7, the simulation
results for the Earth’s magnetic field configuration are in physical agreement with
the magnetic effects on the ground, as the physics presented and discussed, for
instance, by [42]. The current code features provide the means for evolution analysis
of the Earth’s magnetosphere in complicated scenarios, such as investigations for
geomagnetically quiet conditions.
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