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ABSTRACT Unmanned aerial vehicles (UAVs) with the potential of providing reliable high-rate con-
nectivity, are becoming a promising component of future wireless networks. A UAV collects data from a
set of randomly distributed sensors, where both the locations of these sensors and their data volume to be
transmitted are unknown to the UAV. In order to assist the UAV in finding the optimal motion trajectory
in the face of the uncertainty without the above knowledge whilst aiming for maximizing the cumulative
collected data, we formulate a reinforcement learning problem by modelling the motion-trajectory as a
Markov decision process with the UAV acting as the learning agent. Then, we propose a pair of novel
trajectory optimization algorithms based on stochastic modelling and reinforcement learning, which allows
the UAV to optimize its flight trajectory without the need for system identification. More specifically, by
dividing the considered region into small tiles, we conceive state-action-reward-state-action (Sarsa) and
Q-learning based UAV-trajectory optimization algorithms (i.e., SUTOA and QUTOA) aiming to maximize
the cumulative data collected during the finite flight-time. Our simulation results demonstrate that both of
the proposed approaches are capable of finding an optimal trajectory under the flight-time constraint. The
preference for QUTOA vs. SUTOA depends on the relative position of the start and the end points of the
UAVs.

INDEX TERMS Reinforcement learning, sensor data collection, trajectory optimization, UAV communi-
cations

I. INTRODUCTION

In the emerging Internet of Everything (IoE), future networks
are expected to autonomously determine the connection of
people, processes and things. The exciting applications of
unmanned aerial vehicles (UAVs) or drones have drawn con-
siderable attention from academia, industry and regulatory
bodies, for expanding the attainable communication coverage
and offering on-demand connectivity [1]. Given the versatil-
ity and manoeuvrability of UAVs, artificial intelligence aided
smart UAV-assisted solutions are capable of enhancing next-
generation wireless networks. Hence a range of professional

and civil applications of UAVs have been envisioned, includ-
ing parcel delivery, communications and media, inspection of
critical infrastructure, communication relaying, search-and-
rescue operations, and surveillance, among others [2], [3].

Due to the limited on-board battery, it is a pressing practi-
cal challenge to increase the UAVs’ flight time. For example,
some off-the-shelf UAVs have a recharge-duration of less
than 20 minutes, and a flight range of about 15 miles [4].
Sophisticated laser-charging might come to rescue based
on the laser-beam characteristics of monochromaticity and
directionality [5]. Furthermore, with imperfect information
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of the environment and the communication dynamics of UAV
networks, reinforcement learning (RL) becomes a promising
technique of improving the control of UAV networks for en-
hancing their communication qualities, on-demand deploy-
ments and trajectory optimization.

A. PRIOR WORKS
In contrast to terrestrial communications, the communication
between UAVs and ground devices is generally dominated
by line-of-sight (LoS) channels [6], which are beneficial for
implementing reliable communications between the UAVs
and ground devices. One of the key applications of UAVs in
wireless communications is wide-area data collection from
geographically dispersed ground devices such as sensors,
ground users or ground base stations [7]. Moreover, in UAV
aided offloading scenarios [8], [9], the UAV acts as a flying
BS or edge server for reducing the tele-traffic. As a result, in
addition to conventional wireless resource management, the
design of UAV enabled communication networks critically
hinges on trajectory optimization due to the mobility of
UAVs. By constructing the continuous trajectory as a set of
discrete waypoints as well as the UAV speed, Zeng et al. [10]
proposed a sequential virtual base station (BS) placement
approach for minimizing the mission completion time in
a UAV-enabled multicasting system. Furthermore, in [11],
the speed control and the data scheduling of UAV enabled
sensor networks were investigated and a heuristic algorithm
was developed for minimizing the energy consumption. In
[12], a dynamic programming based UAV flight-time mini-
mization problem was solved for a one-dimensional sensor
network by serving nodes located in a straight line. With
the goal of exploiting cloud-like computing functionalities,
a successive convex approximation (SCA) based approach
for bit allocation between communication and computing as
well as path planning of UAV based cloudet was developed
in [13] for maximizing the energy efficiency. Furthermore,
with successive convex approximation (SCA) techniques, an
intelligent reflecting surface aided UAV communication sys-
tem was investigated in [14] by designing the beamforming
and trajectory of the UAV. In [15], a SCA based power and
trajectory optimization approach was proposed for the an
UAV-aided secure communication network.

If accurate models of UAV networks and of their flight dy-
namics are available, then the trajectory optimization may be
carried out by exploiting standard optimization techniques,
such as those in [10]–[13], [16], [17] regardless of the specific
objective function (OF) used. However, accurate network
models are hard to construct. Hence, there is a need to
conceive model-free machine learning techniques to control
UAVs in support of wireless services. The ability of ma-
chine learning to exploit past experience may be beneficially
invoked for formulating an autonomous control policy for
UAVs in a timely and flexible manner [18]. In [19], the au-
thors proposed a multi-agent reinforcement learning frame-
work for optimizing multi-UAV networks, where the associ-
ated resource allocation scheme was designed by maximizing

the systems’ long-term reward. Pearre and Brown [20] used a
policy gradient method for trajectory optimization by learn-
ing the optimal waypoints for minimizing the total traveling
distance of the UAV. In [21], the UAV utilized both con-
ventional and deep Q-learning for optimizing the trajectory
in order to maximize the sum rate during its flight-time by
assuming that the UAV knew nothing about the environment.
By modelling the data ferrying task as a Markov Decision
Process (MDP), a standard temporal difference (TD) learning
technique based on state value functions was proposed in
[22] for minimizing the average packet delay by finding
an optimal routing policy. Given the promising benefits of
UAVs in communication networks, application-driven intel-
ligent trajectory control strategies and resource allocation
designs of UAV networks have attracted substantial attention
[23], [24]. In [25], a deep reinforcement learning approach
based on echo state networks was developed to design the
UAV’s path with the goal of minimizing the system’s total
interference in UAV-aided cellular networks. In terms of the
network having very large populations of UAVs, an online
trajectory optimization approach based on federated learn-
ing and mean-field games was proposed in [26]. Moreover,
some applications of reinforcement learning in UAV aided
networks can be found in [27]–[30]. For instance, an multi-
UAV Q-learning approach is proposed for a coordinate UAV
network in [27] and the application of reinforcement learning
for a cellular UAV network was introduced in in terms of
protocol design, trajectory control, and resource management
[29].

B. MOTIVATION AND CONTRIBUTIONS
As discussed above, machine learning algorithms provide
promising solutions for UAVs by autonomously learning
their task-centered control policies in diverse wireless net-
works [20]–[22], [25], [31]. However, most of these con-
tribution focus on developing standard optimization tech-
niques for the performance analysis of UAV networks un-
der the idealized simplifying assumption of having perfect
environmental information available for the UAV. Although
some deep learning methods were exploited in recent UAV-
enabled wireless networks [25] and [31], an accurate learning
model still remains hard to attain due to the dynamics and
uncertainties in the environment. On the other hand, rein-
forcement learning has been used for the control of UAVs
in diverse applications [21], [22] by harnessing the UAV as
an autonomous agent of learning the optimal policy from
its environment. However, given the challenges in modelling
UAV-aided communications, there is a paucity of literature
on their model-free trajectory optimization.

Hence we fill this gap by developing a reinforcement learn-
ing based trajectory optimization framework for UAV-aided
data collection, where the transmission time corresponding
to the amount of data is considered in the light of the limited
on-board energy. In the compact conference paper [32], we
introduced a Q-learning based trajectory design for the UAV
network. In this article, we extend [32] by introducing the
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Sarsa learning algorithm and analyse its pros and cons. More
specifically, we consider a wireless network interrogating a
set of randomly distributed sensors such as environmental
sensors storing data in their memory. Then, the UAV collects
the data when flying over the region that sensors are de-
ployed. Explicitly, a bold comparison to different approaches
conceived for the UAV’s trajectory optimization is provided
in Table 1. Based on the proposed framework, our main
contributions are as follows:

• We maximize the cumulative data volume of the UAV
collected from the sensors by optimizing the flight
trajectory between a pair of the start point and the
destination subject to the constraint of the limited flight
time as well as the received signal quality. Due to
the dynamics and uncertainties of the environment, the
network information are assume to be unavailable to the
UAV. Therefore, the optimization problem formulated is
challenging to solve using standard optimization tools
since an accurate system model is unknown to the UAV.
To tackle these challenges, we develop novel reinforce-
ment learning based trajectory optimization algorithms.

• We transform the trajectory optimization formulated
into a multi-period decision problem having a finite
number of states and actions by partitioning the region
considered into small tiles. Specifically, we model the
flight-time-limited trajectory optimization problem for-
mulated as a Markov decision process (MDP), where
the tiles represent the state space and the actions cor-
respond to the movements of the UAVs over the tiles.
Furthermore, the sensors having finite data volumes
for transmission are assumed to be located at the grid
points. As the UAV will collect the data when it flies
over the sensors, the volume of the data transmitted from
a sensor can be treated as the reward attained by the
UAV from its communications with that specific sensor.
As a result, the problem formulated can be transformed
into a gridworld problem [33] associated with general
rewards.

• We apply a pair of time difference (TD) learning al-
gorithms for discovering the optimal policy for the
problem formulated that allows the UAV to optimize
its flight trajectory without the need for system identi-
fication. First, a state-action-reward-state-action (Sarsa)
based UAV-trajectory optimization algorithm (SUTOA)
is conceived for finding the current policy for all states
and actions, which uses the Q value of the action ac-
tually chosen by the learning policy [34]. Furthermore,
to enhance the learning process, we also construct a Q-
learning based UAV-trajectory optimization algorithm
(QUTOA), which does not require the previous Q-
values.

• We analyse both the convergence and the complexity of
SUTOA and QUTOA constructed for the UAV system
considered. Furthermore, our simulation results demon-
strate that both SUTOA and QUTOA are capable of

learning the optimal trajectories for the UAV system
considered. However, SUTOA and QUTOA will find
different trajectories for the UAV due to their different
update rules between SUTOA and QUTOA.

C. ORGANIZATION
The rest of this article is organized as follows. In Section
II, the system model is presented and the problem of UAV-
trajectory optimization is formulated, followed by the system
analysis and the transformation for MDP are discussed in
Section III. In Section IV, reinforcement learning based
trajectory optimization is designed and both the convergence
as well as the complexity of the learning algorithms are
analyzed. Our simulation results are presented in Section V,
followed by our conclusions in Section VI.

II. SYSTEM MODEL
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FIGURE 1: UAV enabled communication systems. The UAV
flies at a fixed altitude H and the movement directions of the
UAV.

We consider a UAV communication system supporting
M sensors by a single UAV flying at a constant altitude
of H meters (m) with speed of w, as shown in Fig. 1.
We denote the sensors by D = {D1, D2, · · · , DM}, which
are randomly distributed across the rectangular region Ψ of
L1 by L2 distances. For guaranteeing the communication
reliability, we assume that for any sensor Dm, Dm ∈ D has
a predefined communication range Cm based on the available
radio resources. Note that the locations of the sensors may
be known to the BS, but it is hard to know whether each
sensor has data to transmit as well as how much data that
each sensor wants to transmit. Therefore, the sensors that
want to communication with the UAV as well as its data
volume are unavailable to the UAV. The goal of the UAV is
to collect as much data as possible by flying the region and
to learn the optimal flight route within its finite flight-time
T . Specifically, the UAV starts to fly from the location L0
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TABLE 1: Comparison between UAV’s trajectory optimization approaches

[22]-2008 [11]-2010 [20]-2012 [6]-2014 [16]-2016 [12]-2018 [25]-2019 [26]-2020 This article

Classical optimization
√ √ √ √

Fully observed environment
√ √ √ √

Partial observed environment
√

Unknown environment
√ √ √ √

Model-based learning
√

Model-free learning
√ √ √

Value function based learning
√ √

Q-value based learning
√ √

Neural network based learning
√ √

and stops at the end point LF for each flight. Assume that
the UAV applies time division multiple access (TDMA) for
sequentially collecting the uploading data from the sensors.
Explicitly, for each time instant t, the UAV only receives the
uplink data from a single sensor. Furthermore, there are Bm
bits data stored at Dm, Dm ∈ D and required to upload to
the UAV.

A. SIGNAL MODEL
The locations of system can be modelled by a three-
dimensional (3D) Cartesian coordinate system, where the
location of Dm can be denoted as (am, bm, 0). The start
location and the end location can be represented as L0 =
(x0, y0, H) and LF = (xF , yF , H), respectively. Further-
more, the location of the UAV at time t is denoted as
(x(t), y(t), H). In addition, the projections of these locations
to the ground plane are written as gm = (am, bm), u0 =
(x0, y0) , u = (xF , yF ) and u(t) = [x(t), y(t)], respectively.
During the UAV’s flight, the instantaneous distance between
the UAV and the sensor Dm can be expressed as

dm(t) =
√
‖u(t)− gm‖2 +H2. (1)

We assume that the UAV and all sensors have a single
antenna and the communication between the UAV and the
sensors are dominated by the LoS link [16]. The channel gain
between the UAV and Dm is given by

hm(t) = β0dm(t)−α =
β0(

‖u(t)− gm‖2 +H2
)αpl

2

, (2)

where β0 denotes the channel’s power loss at d0 = 1 m with
d0 being the reference distance, and αpl ≥ 2 is the pathloss
exponent. Note that hm(t) relies on the instantaneous loca-
tion of the UAV.

B. DATA TRANSMISSIONS
Since only a single sensor can successfully build communi-
cation link with the UAV for uploading its data at each time
instant t, the specific sensor having the maximum channel

gain to the UAV will be scheduled which is denoted as I(t).
Therefore, for each t ∈ [0, T ], we have I(t) = Dm if

Dm = min
Dn∈D

‖u(t)− gn‖. (3)

As a result, the received rate of the UAV at t can be
expressed as

C(t) = log2

(
1 +

Pm|hm(t)|2

σ2

)
= log

(
1 +

γ0
[(x(t)− am)2 + (y(t)− bm)2 +H2]αpl

)
,

(4)

where Pm denotes the transmission power of Dm, σ2 repre-
sents the noise power, and γ0 = Pβ0

σ2 is the signal-to-noise
ratio (SNR). Furthermore, if a sensor such as Dm is selected,
we assume C(t) ≥ r0 within the data collection duration in
order to ensure the reception quality of the data, where r0 is
the predefined minimum target rate. Therefore, the received
data rate at the UAV obeys

R(t) =

{
C(t), if Dm satisfies (3) and C(t) ≥ r0,

0, otherwise.
(5)

C. PROBLEM FORMULATION
This article considers the cumulative volume maximization
problem of collected data in a long term by designing the
trajectory of the UAV, which can be formulated as:

max
{x(t),y(t)}

∫ T

0

R(t)dt (6a)

s.t. (x(t), y(t)) ∈ Ψ, t ∈ (0, T ], (6b)∫
t∈Tm

R(t)dt ≤ Bm,m ∈M, (6c)√
(xF − x(0))2 + (yF − y(0))2 ≤ wT, (6d)

where Tm denotes the time duration that the UAV have to
spend to collect data from Dm and w denotes the speed of
the UAV; (6b) indicates that the UAV has to move within the
predefined region; (6c) is to constrain the data volume that
Dm can upload to the UAV. Furthermore, (6d) guarantees that
the problem (6) formulated is feasible. Explicitly, given a pair
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of T and w, we should guarantee that the UAV is at least able
to fly from the start to the end point along the shortest path
Lmin.

Remark 1. The constraints in (6c) can be treated as an
incentive mechanism for reinforcement learning of the UAV,
which stimulate the UAV to collect data from as many sensors
as possible within T . If Bm →∞, the optimum option of the
UAV is to fly over the sensor that is closest to the minimum
distance of Lmin.

Note that when we remove the constraints in (6c), problem
(6) becomes

max
{x(t),y(t)}

∫ T

0

R(t)dt (7a)

s.t. (x(t), y(t)) ∈ Ψ, t ∈ (0, T ], (7b)√
(xF − x(0))2 + (yF − y(0))2 ≤ wT, (7c)

which is equivalent to instructing the UAV to find a sensor
that has the shortest distance, bearing in mind the starting
point L0 and the destination LF . In this case, most of the
sensors cannot transmit their data to the UAV.

III. SYSTEM ANALYSIS AND PROBLEM
REFORMULATION
In this section, the problem (6) is transformed into a multi-
period decision problem associated with finite states and
actions, where the region considered is divided into perfectly
tessellated tiles. Based on the transformations, the flight-
time-limited UAV’s trajectory optimization is modelled as a
MDP.

A. REINFORCEMENT LEARNING FORMULATION
1) Agent and State Set
For solving the devised problem in (6), the UAV is considered
as the learning agent who aims to learn the optimal trajectory
through reinforcement learning. To model the state set of the
learning agent, we first discretize the flight-time T into N
time slots with step size τ = T

N . Therefore, the region Ψ can
be partitioned into N1 = L1

τw by N2 = L2

τw small tiles with
the length of each side being τw m. Furthermore, we assume
that the location of one sensor belongs to a single tile. An
example of the projection on the horizontal ground plane is
shown in Fig. 2, in which the system includes 4 sensors and
Ψ is partitioned into 11× 11 small tiles.

With the discrete tabular form for the considered region,
we can represent the state set S of the UAV as S =
{s(1), s(2), · · · , s(N1N2)} with each state s(i), s(i) ∈ S,
referring to a small tile. We can see that there are 121 states
in Fig. 2(a). Furthermore, from Remark 1 associated with
Bm →∞, we can readily observe that the optimal trajectory
is represented by the red line in Fig. 2(b). However, this is
not trivial for the UAV, since it cannot perceive the situation
in the same way like humans. This motivates us to apply
reinforcement learning for helping the UAV to make accurate
decisions like humans

Start location: L0

End location: LF

x

y

Data

UAV

N1 =11

N2 =11

up

rightleft

down L(x,y)

(a) Illustration of a fixed rate data collection and four possible directions
of the UAV.

Start location

End location

x

y

!"#$: Refereed !"#$:

(b) The optimal trajectory withBm →∞ for a fixed rate data collection.

FIGURE 2: A table exemplary for trajectory design [32].
Here the cylinder denotes the positions the sensors and the
size of the cylinder denotes the data size.

2) Action Set
Observe from Fig. 1 and Fig. 2 that the UAV has a maximum
of four actions at each state, i.e., {up, down, left, right}.
For ease of clarification, we use A = {+x,+y,−x,−y}
to denote the action set of the UAV, where +x and −x
indicates that the UAV flies along the direction of left and
right, respectively. Analogously, +y and−y indicates that the
UAV flies along the direction of up and down, respectively.

Remark 2. In practice, the UAV is capable of selecting its
direction of movement along any direction θ, i.e., θ ∈ (0, 2π],
which results in an infinite act of movement directions for
the UAV in the action space. Based on our formulation, the
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continuous region Ψ is partitioned into N1N2 discrete small
tiles with size τw. At a fixed UAV speed of w, the optimal
trajectory can be approximated when we have N →∞.

3) Reward Formulation
The rewards of the UAV are devised to promote the quest
for finding beneficial solutions that satisfy the constraints
imposed on the agent in reinforcement learning [20]. In
our application, the UAV aims to gather the maximum data
volume from the sensors within the flight duration. In the re-
inforcement learning process, when the UAV takes an action
a at time t and get a reward at future time t′, the UAV assign
the action a score for the reward according to an estimate
of how important the action was in producing the reward.
Moreover, we consider the fly-hover-and-communicate de-
sign as in [35], where the total data stored at a sensor will be
fetched once it communicates with the UAV. More explicitly,
the communication link is constructed between the UAV and
a sensor, when the UAV hovers over the sensor until the data
transmission is completed.

With guaranteeing the communication quality, the UAV
fetches the data from the sensor only when the UAV moves
to the predefine cell cell(Dm), m ∈ M, as shown in Fig.
2. Assume that the the UAV only receives a reward from
cell(Dm) so that the size of Cm, m ∈ M, will not affect
the reward and can be ignored. Suppose that the UAV builds
communication with Dm for data collection at time t, the
received rate at the UAV can be expressed as

C(t) = log
(

1 +
γ0

[H2]αpl

)
. (8)

Combining (5) and (8), the data volume received by the UAV
at time t can be expressed as

R(t) =

{
C(t), ifC(t) ≥ r0 and

∑t
i=0 C(t) ≤ Bm,

0, otherwise.
(9)

Therefore, the total time taken in one tile can be expressed
as

Treq =

{
max{ BmC(t) , Ts}, if R(t) 6= 0,

Ts, otherwise,
(10)

where Ts denotes the predefined time elapsed if the UAV
moves from one tile to another which depends on the size of
the tile as well as the speed of the UAV. Note that if the UAV
fetches data from a sensor located at a tile, the time elapsed
is equal to the maximum between the time required for the
data transmission and the time elapsed.

Additionally, to make the UAV recognize and move to
the destination during its learning, the UAV has to receive
a reward R(LF ) as its revenue when the UAV arrives at the
destination. In this article, with maximizing the data volume
collected from the sensors, we set some virtual data at the
destination as the revenue to the UAV. Correspondingly, the
reward R(LF ) gleaned upon reaching the destination can be
formulated as a function of the data volume of the sensors,

i.e. R(LF ) = f(B1, · · · , BM ). For the sake of simplicity,
we consider R(LF ) = minm∈MBm in this article. The
reward adopted and the actual data volume collected will be
quantified by our simulations.

Based on the above discussions, we transform the trajec-
tory optimization problem of the UAV into an episodic task
associated with a gridworld form [33], in which the UAV
starts in a start state (i.e. the start point L0) and simulates
until the terminal state (i.e. the predefined destination LF ).
With limited flight-time constraint of the UAV and the char-
acteristics of reinforcement learning, the expected discounted
rewards at time t can be formulated as:

U(t) =

T∑
l=0

γlR(t+ l + 1). (11)

Therefore, the learning form of problem (6) can be reformu-
lated as follows:

max
{a(t)}

U(t) (12a)

s.t.
∑
t∈Tm

R(t)dt ≤ Bm, (12b)

(6b) & (6d), (12c)
a(t) : a(t) ∈ A, (12d)

where a(t) represents the action of the UAV taken at time t
and R(t) is given in (8). Note that the problem in (12) is a
general learning form for UAV trajectory design. Having the
dependencies amongst the associated periods, problem (12)
is a multi-period decision making problem. The UAV as the
decision-maker can learn the solutions of the problem via its
interactions with the environment in the long run.

B. PRELIMINARIES OF MDPS
MDPs provide a mathematical framework for formulating
sequential decision making problems [33], which involves
delayed rewards and needs a tradeoff between immediate and
delayed rewards. In this article, there are a finite number
of elements in the states (S), actions (A) and rewards (R),
which results in a finite MDP. Hence, for specific values of
s′ ∈ S and r ∈ R, the probability of the values occurring at
a specific time t, given the values of the preceding state and
action, can be expressed as

P (s′, r|s, a)

= Pr{S(t) = s′, R(t) = r|S(t− 1) = s,A(t− 1) = a},
(13)

for all s′ ∈ S , r ∈ R and a ∈ A. The function P describes
the dynamics of the MDP and the notation | represents the
conditional probability. Note that the dynamics function P :
S ×R×S ×R → [0, 1] includes four arguments. Hence, P
provides a probability distribution for each choice of s and a,
which satisfies that∑

s′∈S

∑
r∈R

P (s′, r|s, a) = 1, (14)

for all s ∈ S and r ∈ R.
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From (13), we can express the state-transition probabilities
for the UAV from s to s′ by taking action a, which is given
by

P (s, a, s′) = P (s′|s, a)

= Pr{S(t) = s′|S(t− 1) = s,A(t− 1) = a}

=
∑
r∈R

P (s′, r|s, a),
(15)

where the expected rewards for the state-action pair can be
expressed as a two-argument function r : S ×A ∈ R, i.e.,

R(s, a) = E[R(t)|S(t− 1) = s,A(t− 1) = a]

=
∑
r∈R

r
∑
s′∈S

P (s′, r|s, a). (16)

By using the MDP framework, reinforcement learning
techniques can be exploited to solve the problem formulated
by means of learning approximate solutions within a reason-
able time [33]. As a benefit, the dynamics of the process do
not have to be available to the UAV before taking actions.
In contrast, the UAV learns both the process and the optimal
policy, while interacting directly with its environment.

IV. REINFORCEMENT LEARNING BASED TRAJECTORY
DESIGN
In this section, we first present the transformations of the
trajectory learning algorithms adopted. Then a pair of model-
free learning algorithms – SUTOA and QUTOA will be
proposed for maximizing rewards received by the UAV.

A. MODEL-FREE TRAJECTORY LEARNING
TRANSFORMATIONS
Based on the MDP framework, we solve the multi-period
decision making problem formulated by exploiting a model-
free based TD method1, which aims to approximate the ac-
tion state value function (also Q-function) via reinforcement
learning. There are two classes of TD learning methods
[33]: on-policy and off-policy. In the first class, the policy
used for controlling the MDP is the same as the one that is
being improved and evaluated. In the latter, the policy used
for control, also termed as the behavior policy, can have
no correlation with the policy that is being evaluated and
improved, namely the estimation policy.

In reinforcement learning, a policy is defined as a mapping
function from the state set to the specific probabilities of
selecting each possible action2. Let π be the policy for the
UAV, which is a probability distribution over a ∈ A(s) for
each s ∈ S . Explicitly, if the UAV is following policy π at
time t, then π(a|s) denotes the probability that A(t) = a and
S(t) = s. The process of reinforcement learning indicates

1The TD method extracts information from observations of sequential
stochastic processes in order to improve the estimates of future reactions,
which is an efficient stochastic approximation technique based on samples
extracted from the stochastic process that models the environment of the
agent [33], [36].

2Note that a policy defines the learning agent’s behaviour at a fixed time
instant [33], which constitutes a set of rules for the agent.

how the UAV’s policy is changed as a result of its experi-
ence. The action value function of taking action a in state s
following policy π can be expressed as

Qπ(s, a) =Eπ
[ T∑
l=0

U(t)|S(t) = s,A(t) = a
]
, (17a)

=Eπ
[ T∑
l=0

γlR(t+ l + 1)|S(t) = s,A(t) = a
]
,

(17b)

where the first equation in (17a) is the Q-function and the
second equation in (17b) is the Bellman equation of the Q-
function. In model-free TD learning, an optimal policy is a
probability distribution with maximum Q values, when the
agent starts in an arbitrary state and follows the policy there-
after. In the reinforcement learning process, the task of the
UAV is to find the optimal policy that achieves the maximum
reward over the long term. Specially, the relationship of a pair
of policies π and π′ can be described as follows [33]:

Definition 1. Policy π is better than or as good as policy π′,
if the expected reward of opting for π is higher than or equal
to that of pursuing π′ for all states. This can be described as
π ≥ π′, if and only if Vπ ≥ Vπ′ for all s ∈ S.

Hence, the optimal policy can be expressed as

π(s) = arg max
a∈A(s)

Q(s, a), (18)

in which A(s) is the set of the legitimate actions at state s.
Note that there may be more than one optimal policy based
on the features of the problem considered, but they share the
same state-value function and Q-function, denoted as Q∗π ,
which can be expressed as

Q∗π = max
π

Qπ(s, a), for all s ∈ S and a ∈ A(s). (19)

From (17) and (19), we can obtain the Bellman optimality
equation [37] for Q∗π as follows.

Q∗(s, a)

=E
[
R(t+ 1) + γmax

a′
Q∗(S(t+ 1), a′)|S(t) = s,A(t) = a

]
=
∑
s′∈S

P (s′|s, a)
[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
.

(20)

To elaborate further, Fig. 3 illustrates the directed graphical
representation of the reinforcement learning process of the
UAV, where X and Y denote the actual environment and
the environment observed by the UAV, respectively. Fur-
thermore, the solid line represents the relationship of the
operating unit in reinforcement learning, while the dashed
line represents the relationships related to the actual environ-
ment. The circles around the dotted curved arrow represent
a complete computation period, when the UAV takes an
action, which is the minimum component of a reinforcement
learning process. In Fig. 3, the UAV at time t associated with
state s(t) takes the action a(t) and gets the reward R(t+ 1).
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Note that when X(t) = Y (t), the environment is fully
observed by the UAV. In this case, we can find the optimal
policy by solving a set of equations, where any method of
solving nonlinear equations can be used. More specifically, if
there are |S| states and |A| actions for each state, then there
are |S||A| equations in the form of (20) in |S||A| variables, i.e.
(s, a) for all s ∈ S and a ∈ A. In the article, the UAV have no
information about the environment, i.e., X(t) 6= Y (t). Note
that the information concerning Q-function are unavailable
in the system considered, two approximations to (17) can be
learned iteratively as follows.

1) On-Policy TD Learning
Sarsa as an on-policy method of learning the optimal policy
learns theQ-value for the current policy and for all states and
actions [34], [38]. The update rule for the Q-function can be
expressed as

Q(s, a) = Q(s, a) + α [R(s, a, s′) + γQ(s′, a′)−Q(s, a)] . (21)

Note that the update equation in (21) relies on information
about the variables s, s′, a, a′. SUTOA continually esti-
mates Qπ for the behaviour policy π, and at the same time
changes π in a greedy manner based on Qπ . The SUTOA is
concluded in Algorithm 2.

2) Off-Policy TD Learning
In this subsection, QUTOA is proposed, which is an off-
policy learning approach for finding the optimal Q-values as
well as the optimal policy of the UAV. The update rule for
QUTOA is given by

Q(s, a) =Q(s, a)+

α

[
R(s, a, s′) + γ max

a′∈A(s′)
Q(s′, a′)−Q(s, a)

]
.

(22)

The Q-learning based UAV-trajectory optimization process
is concluded in Algorithm 1. In fact, the actions chosen can
be based on some other policy that may have no relationship
with Qql(s). For instance, a policy associated with a uniform
distribution over the action space can be used for generating
the actions. However, the random behavior policy usually
generates a poor control performance for the MDP, as we will
demonstrate in Section V.

B. ACTION SELECTION POLICIES
An important component of both on-policy and off-policy
learning algorithms is the action selection policy, which is
used for generating a sequence of actions that the UAV will
perform during the learning process. Its objective is to ensure
the success of reinforcement learning by striking a tradeoff
between exploration and exploitation during the learning pro-
cess [33], where the exploration allows the learning process
getting trapping out of a local optimum, while the exploita-
tion prompts the convergence of the learning process. More
specifically, the exploration motivates the learning agent (the
UAV) to learn from the environment, in which the UAV

Algorithm 1: Sarsa based UAV-trajectory learning
process

input : Parameters for learning: γ ∈ [0, 1],
α ∈ (0, 1], ε ∈ [0, 1]); Agent information: ts,
L0, LF , T , N1, N2, w, H . ep = 0

output: Rewards: Rsarsa; Optimal policies: π∗sarsa.
1 while ep ≤ maximum episodes do
2 Initialize Qsarsa(s, a) = 0, for all s and a;

s = s′ = L0, Ts = 0, ep = 0, Tp = 0;
3 For state s, the UAV chooses action a according to

the policy derived from Qsarsa(s) of (23)
4 repeat
5 The UAV takes action a ;
6 The UAV receives a reward R, moves to a

successor state s′ and observes the elapsed
Ts;

7 Choose an allowed action a′ from the state s′

following the policy derived from Qsarsa(s′)
as in (23) ;

8 Update the Q-values based on (21), we have
Qsarsa(s, a)←
Qsarsa(s, a) + α

[
R(s, a, s′) +

γQsarsa(s′, a′)−Qsarsa(s, a)
]
;

9 Update the state, the action and the elapsed
time: s← s′, a = a′; Tp ← Tp + Treq;

10 until s′ == LF or Tp >= T ;
11 ep← ep+ 1;
12 end

opts for a specific action, observes a certain reward and then
updates its action choices. On the other hand, the exploitation
helps the UAV take advantage of the knowledge that is
already available to make the best action choice. Therefore,
our goal is to choose an action selection method that allows
the UAV to reinforce beneficial actions, whilst also exploring
new actions during the learning process. In this article, we
consider the so-called ε-greedy exploration [39], in which the
probability of choosing action a at state s can be expressed
as

a∗ =

{
arg maxa∈A(s)Q(s, a), with probability 1− ε,

random selection, with probability ε.
(23)

C. ANALYSIS OF THE PROPOSED ALGORITHMS
In this subsection, we investigate the convergence and the
complexity of the proposed reinforcement learning algo-
rithms for the UAV system considered.

1) Convergence Analysis
Note that in Algorithm 1 and Algorithm 2, the learning
processes both in SUTOA and QUTOA visit all possible
Q-values, which allows convergence to an optimal policy,
avoiding getting stuck in sub-optimal policies. Moreover, for
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X(t+1) X(t+2) ...

S(t+1) S(t+2) ...

A(t+1) R(t+2) Y(t+2)

X(t)

S(t)

A(t) R(t+1) Y(t+1) ... ...

FIGURE 3: Directed graphical representation of the UAV trajectory optimization considered.

Algorithm 2: Q-learning based trajectory learning
process

input : Parameters for learning: γ ∈ [0, 1],
α ∈ (0, 1], ε ∈ [0, 1]); Agent information: ts,
L0, LF , T , N1, N2, w, H . ep = 0

output: Rewards: Rql; Optimal policies: π∗ql.
1 while ep ≤ maximum episodes do
2 Initialize Qql(s, a) = 0, for all s and a;

s = s′ = L0, Ts = 0, ep = 0, Tp = 0;
3 repeat
4 For state s, the UAV chooses action a

according to the policy derived from Q(s) of
(23) ;

5 The UAV takes an action a, receives a reward
R, moves to a next state s′ and observes the
elapsed time Ts;

6 Update Q-values based on (22), we have

Qql(s, a)← Qql(s, a) + α
[
R(s, a, s′) +

γmaxa′∈A(s′)Qql(s
′, a′)−Qql(s, a)

]
;

7 Update the state, the action and the elapsed
time: s← s′, a = a′; Tp ← Tp + Treq;

8 until s′ == LF or Tp >= T ;
9 ep← ep+ 1;

10 end
11 Find the optimal policy:

π∗sarsa(s) = arg maxaQsarsa(s, a) for any s ∈ S.
π∗ql(s) = arg maxaQql(s, a) for any s ∈ S.

each episode both SUTOA and QUTOA in Algorithm 1
and Algorithm 2, will stop when the UAV reaches its final
destination point or exhausts its maximum flying time. If the
algorithm stops by satisfying the first condition, i.e., the UAV
reaches its destination point, this indicates that the UAV has
learned a path by using the proposed reinforcement learning
algorithms. The second stopping condition of Tp > T is
used for ensuring that the learning process cannot exceed the
maximum flying time of the UAV in each episode. In order to
guarantee a high learning performance, the flight-time is as-

sumed to be higher than the learning time of a single episode.
Therefore, we focus on the proof of convergence for SUTOA
and QUTOA in Algorithm 1 and Algorithm 2, based on the
first stopping condition. Although both SUTOA and QUTOA
estimate the optimal Q-value by iterating, SUTOA is an on-
policy algorithm, hence its convergence relies on the learning
policy found. The convergence behaviour of QUTOA for
solving the UAV system considered that satisfies finite MDPs
can be found in [19], [40]. In this article, an ε-greedy learning
policy is considered, which satisfies the condition of greedy
in the limit with infinite exploration (GLIE) [41]. Hence
the convergence of SUTOA can be characterized by the
following remark.

Remark 3. Let us assume that the UAV’s trajectory opti-
mization problem is modelled by a finite MDP and fix a
greedy policy as in Algorithm 1, of Section IV-B. SUTOA
converges to the optimal Q-value Q∗ and the learning policy
converges to an optimal policy π∗, if the following conditions
are satisfied:

1) The Q-values of SUTOA are stored in a lookup table,
which means that no function approximations are used;

2) The learning rate of SUTOA satisfies 0 ≤ α ≤ 1∑+∞
t=0 α =∞ and

∑+∞
t=0 α

2 <∞;
3) Var[R(s, a)] is bounded for all state-action pairs

(s, a) ∈ S × A, where Var denotes the variance of
the reward R(s, a).

2) Complexity Analysis

In this article, we portray the task of the UAV as the gridworld
of finding the optimal policy of the UAV. In Algorithm 1
and Algorithm 2, the trajectory learning processes both in
SUTOA and QUTOA visit all possible Q-values based on
their update equations within a single episode. Let n = |S|
and e =

∑
s∈S |A(s)| represent the total number of states

for the UAV and the total number of actions for the UAV, re-
spectively. Note that in the formulated reinforcement learning
problem for the UAV considered, we assume that the action
space is deterministic, i.e., all actions are known to the UAV
and the state space is observable for the UAV. This indicates
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TABLE 2: Simulation parameters

Parameter Value

Area of the considered region 10× 10 m2

Number of sensors M 2,4,5
Maximum flight time of the UAV T 30 mins
Altitude of UAV H 100 m
Speed of the UAV w 20 m/s
Noise power σ2 -110 dBm
Channel power gain β0 -50 dB
Path loss exponent αpl 2
The transmit power Pm 10 dBm
Bandwidth B 2 MHz
(Ts, N1) (0.5s, 5) and (0.1s, 11)
Learning rate α 0.5
Discounting factor γ 0.98

that the UAV is capable of perfectly determining its current
state, including whether it is currently achieving its goal. In
this case, the number of iterations of QUTOA is at most on
the order of O(e · n) steps [42]. In particular, the worst-case
complexity of QUTOA can be expressed as O(n3), if a state
space has no duplicate actions, i.e., e ≤ n2. More specifi-
cally, in the problem formulated in Section III, the UAV has
at most four actions in each sate, hence we have e ≤ 4n
and the worst-case complexity becomesO(4n2). This means
that the complexity of QUTOA is polynomial in n, even if
it uses undirected exploration during its iterations. Moreover,
SUTOA has the same computational complexity, O(en) as
QUTOA [43], but the update in SUTOA is based on on-policy
samples, hence it may impose a high sample complexity.
Finally, it should be pointed out that the number of states is an
exponential function of the number of state variables. Hence,
the computational complexity of both SUTOA and QUTOA
will increase rapidly, when the state space becomes large.

V. SIMULATION RESULTS
In this section, we characterize the performance of our UAV
system using the two different learning approaches. The
simulation parameters are given in Table. 2. We first consider
the scenario of N1 = N2 = 5 and |S| = 25 states in total,
where the size of the region considered is 10× 10m2. There
are two sensors, namely D1 has B1 = 100 Mbits of data and
D2 has B2 = 200 Mbits of data, which are randomly located
in the region considered.

In particular, a specific scenario with two sensors D1 and
D2 is illustrated in Fig. 4, where the optimal trajectories
are found using SUTOA and QUTOA, separately. Note that
the differences of the update rues on Sarsa and Q-learning
lead to Sarsa is more conservative than Q-learning when it
explored the actions, which resulted in Sarsa and Q-learning
will find different solution [33]. Fig. 4(a) shows the optimal
policies for the two different algorithms. Fig. 4(b) shows the
cumulative rewards and the true amount of the data collected
at the UAV using different algorithms. From Fig. 4(b), we can
see that in the two learning algorithms, the true amount of the
data collected by the UAV has the same increasing trend as
the sum of rewards, which indicates that the reward function

D1

D2

(a) Optimal policy for different algorithms, where U, D, L, R denote
up, down, left, right, respectively.

(b) Cumulative Rewards received by the UAV using different algorithms in
different episodes

FIGURE 4: Learning results of different algorithms in a 5×5
grid region, where γ = 0.98 and α = 0.5.

is capable of resulting in the good learning performance.
Furthermore, since a virtual reward will be received by the
UAV when it arrives at the destination, the sum of rewards is
higher than the true amount of the collected data.

In Fig. 5, we investigate the sum rewards of reinforcement
learning based on SUTOA and QUTOA proposed in Algo-
rithm 1 and Algorithm 2, where these data were collected
over 50 runs and using γ = 1 corresponding to a non-
discounted scenario. For comparisons, we also consider an
off-policy scheme for QUTOA, in which the actions are
generated by the policy that follows the uniform distribution
on the action space. As observed from Fig. 5, the sum rewards
attained by SUTOA is higher than that attained by QUTOA.
This is because SUTOA takes the action selection into ac-
count and learns a near-optimal policy whilst exploring,
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which can be found from Step 6 - Step 7 of Algorithm 1.
Moreover, QUTOA with random action selection has lower
sum rewards than the other two algorithms.

FIGURE 5: Sum of rewards received by different algorithms
in different episodes.

Fig. 6 illustrates the sum of rewards received by different
algorithms during the episodes associated with N1 = N2 =
11 and two sensors randomly distributed across the tiles.
As seen from Fig. 6, QUTOA has a significant advantage
over SUTOA in this case due to the limited flight-time T
of the UAV. Specifically, during the process that the UAV
learns the optimal policy, SUTOA requires more actions than
QUTOA, which can be seen from Step 7 for SUTOA and Step
5 for QUTOA in Algorithm 2. As a result, the UAV cannot
reach the destination in SUTOA when the flight-time is not
sufficiently long. That is the loop in SUTOA would terminate
by the second condition in Step 9 of Algorithm 1. Moreover,
from Fig. 6, we can observe that QUTOA is a better option
than SUTOA for learning the UAV’s trajectory in the system
considered. This is because the reward received by the UAV
in this article is a positive feedback from the environment and
the punishments for taking wrong actions by the UAV are not
included [33].

In Fig. 7, we investigate the average sum rewards of rein-
forcement learning based on SUTOA and QUTOA proposed
in Algorithm 1 and Algorithm 2 with N1 = N2 = 11.
Furthermore, different number of sensors are considered with
M = 4 and M = 5, which are randomly distributed in
the grids with each sensor having B = 200 Mbits of data
for transmission. As observed from Fig. 7, QUTOA is a
beneficial option for the data collection problem in the system
considered, when finding the optimal policy under flight-time
constraints.

VI. CONCLUSIONS
In this article, we invoked the reinforcement learning for the
UAV’s trajectory optimization with the goal of maximizing

FIGURE 6: Sum of rewards received by different algorithms
during episodes with γ = 0.98.

(a) M = 4

(b) M = 5

FIGURE 7: Sum of rewards and sum of collected data during
episodes with different algorithms, where N1 = N2 = 11
and B = 200Mbits.

the cumulative data volume fetched from the sensors, where
the network information are unavailable to the UAV, such
as the locations of the sensors and the amount of data to
be transmitted. Given the associated uncertainties and chal-
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lenges, we transform the trajectory optimization of the UAV
into a finite MDP by dividing the region considered into
small tiles. Furthermore, model-free reinforcement learning
approaches were utilized to solve the MDP problem formu-
lated, which allowed the UAV to optimize its flight trajectory
without the need for system identification. Specifically, we
developed SUTOA and QUTOA for finding the optimal
trajectory. Our simulation results revealed that SUTOA and
QUTOA could find an optimal trajectory under our flight-
time constraint with the rewards defined. Furthermore, since
SUTOA is more conservative than QUTOA when it explored
the actions, which resulted in SUTOA performing a little
better, when some penalties were encountered between the
starting point and the destination. A promising extension of
this work is to consider model-based approaches such as
Dyna-Q based UAV-trajectory learning based on the idea of
combining experience and model. When the state space and
the action space are continuous or have multiple dimensions,
deepQ-learning based UAV-trajectory optimization becomes
a promising technique of circumventing to handle the chal-
lenges by using a deep neural network to approximate the
Q-function, which is another promising research direction.
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