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REPRESENTABILITY OF PERMUTATION REPRESENTATIONS ON

COALGEBRAS AND THE ISOMORPHISM PROBLEM

CRISTINA COSTOYA, DAVID MÉNDEZ, AND ANTONIO VIRUEL

Abstract. Let G be a group and let ρ : G → Sym(V ) be a permutation representation of G on

a set V . We prove that there is a faithful G-coalgebra C such that G arises as the image of the

restriction of Aut(C) to G(C), the set of grouplike elements of C. Furthermore, we show that V

can be regarded as a subset of G(C) invariant through the G-action, and that the composition of

the inclusion G →֒ Aut(C) with the restriction Aut(C) → Sym(V ) is precisely ρ. We use these

results to prove that isomorphism classes of certain families of groups can be distinguished through

the coalgebras on which they act faithfully.

1. Introduction

Given X an object in a category C, the study of its automorphism group, Aut(X), is a difficult

task. In fact, even deciding which groups arise as the automorphism groups of objects in C is far from

trivial, see [13]. Nonetheless, it is also rewarding, as it can be expected that distinguished objects

have distinguished automorphism groups, which in turn may give valuable information regarding

the object X. Not only that, but if we know the automorphism groups of enough objects in C,

we can also draw conclusions regarding the category itself. One clear example of this comes from

representation theory, as the automorphism groups of the objects of a category tell us a lot about

which groups may act on which objects.

The category of rings is one instance in which the possible automorphism groups of objects have

been extensively studied. Indeed, there are many references in the literature regarding the realis-

ability of groups as automorphisms of rings (see for example [4, 5, 14] regarding the associative case,

and [10] on the non-associative one). However, very little is known about the problem of represent-

ing groups as automorphisms of coalgebras. Moreover, given that coalgebras are only truly dual of

algebras in the finite-dimensional case, general results on automorphisms of coalgebras cannot be

deduced from the preexisting literature on automorphism groups of rings.

This article aims at providing the first result on the realisability of groups as automorphisms of

coalgebras. Not only are we successful on that task, we also prove results regarding the realisability

of (not necessarily finite) permutation representations. The key ingredient is the classical solution to

the group realisability question in graphs, [7, 9, 17], which allows us to define the desired coalgebras

associated to graphs and draw conclusions on the realisability of groups. Following this idea, in

Definition 2.1 we introduce a coalgebra C(G) associated to a given graph G whose automorphism

group is related to that of the graph. Namely, we prove:

Theorem 1.1. Let k be a field and let G be a digraph. There is a k-coalgebra C(G) such that

G
(

C(G)
)

= V (G) and the restriction map Aut
(

C(G)
)

→ Sym
(

G(C(G))
)

= Sym
(

V (G)
)

induces a
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split short exact sequence of groups

1 −→
∏

e∈E(G)

(

k ⋊ k
×
)

−→ Aut
(

C(G)
)

−→ Aut(G) −→ 1.

In particular, since every group can be realised as the automorphism group of a digraph, [7, 17],

we obtain the following immediate consequence:

Corollary 1.2. Let k be a field and let G be a group. There is a k-coalgebra C such that Aut(C) ∼=

K ⋊ G, where K is a direct product of semidirect products of the form k ⋊ k
×. Furthermore, G is

the image of the restriction of the automorphisms of C to Sym
(

G(C)
)

.

Consequently, every group arises as the permutation group induced by the restriction of the

automorphisms of a coalgebra to its set of grouplike elements. Thus, it is natural to ask if every

possible permutation group (or more generally, every permutation representation) arises in this way.

This would follow from Theorem 1.1 if every permutation representation were realisable in the context

of graphs. However, we know that to be false, [2, Section 4], [9].

Nonetheless, we do know that every finite permutation group appears as the restriction of the

automorphism group of a graph to an invariant subset of its vertices, [1, Theorem 1.1]. In Theorem

3.14 we generalise this result to include (non-necessarily finite) permutation representations. Using

this result, we prove:

Theorem 1.3. Let G be a group, k a field and ρ : G → Sym(V ) a permutation representation of G

on a set V . There exists a G-coalgebra C such that:

(1) G acts faithfully on C, that is, the action induces a group monomorphism G →֒ Aut(C);

(2) the image of the restriction map Aut(C) → Sym
(

G(C)
)

is G;

(3) there is a subset V ⊂ G(C) invariant through the Aut(C)-action on C and such that ρ is the

composition of the inclusion G →֒ Aut(C) with the restriction Aut(C) → Sym(V ); and,

(4) there is a faithful action ρ̄ : G→ Sym
(

G(C) \ V
)

such that the composition of the inclusion

G →֒ Aut(C) with the restriction map Aut(C) → Sym
(

G(C)
)

is ρ⊕ ρ̄.

Finally, we want to study the isomorphism problem in the category of groups using the repre-

sentation theory on coalgebras. Namely, we want to see how isomorphism classes of groups can

be distinguished through the coalgebras on which they act. This kind of problem has been deeply

studied in other contexts. For example, the problem of distinguishing groups through their linear

representations received significant attention until Hertweek solved it in the negative in a celebrated

paper, [12]. In this paper, Hertweek proves that there are two non-isomorphic finite groups G and

H, both of order 2219728, with the same integral group ring, which in particular implies that they

both have equivalent linear representation theories.

One more recent example is [5], where the authors deal with the isomorphism problem in groups

using the representation theory on commutative differential graded algebras. They are able to show

that groups in a family containing all finite groups can be distinguished through their faithful actions

on these algebraic structures.

In this paper we prove two results regarding the isomorphism problem of groups through represen-

tations on coalgebras. The first result tells apart isomorphism classes of groups from a family wider

than the one considered in [5], but it requires that we focus on how the action looks like on grouplike

elements. Recall that a group G is co-Hopfian if it does not contain any proper subgroups isomorphic

to itself, or equivalently, if any monomorphism G →֒ G is an automorphism. For example, finite

groups are clearly co-Hopfian. For this family of groups, we prove:
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Theorem 1.4. Let k be a field and let G and H be two co-Hopfian groups. The following statements

are equivalent:

(1) G and H are isomorphic; and,

(2) for any k-coalgebra C, there is an action of G on C that restricts to a faithful action on G(C)

if and only if there is an action of H on C that restricts to a faithful action on G(C).

For our second result regarding the isomorphism problem we do not focus on grouplike elements,

but we need to further restrict the considered family of groups. Let k be a finite field of cardinality

pn, p a prime. In Definition 4.2 we introduce a family of groups Gp,n for which we prove:

Theorem 1.5. Let k be a finite field of order pn, p prime. Let G and H be groups in Gp,n. The

following are equivalent.

(1) G and H are isomorphic; and,

(2) for every k-coalgebra C, G acts faithfully on C if and only if H acts faithfully on C.

We remark that, although the family Gp,n is smaller than the class of co-Hopfian groups, G2,1 still

contains all 2-reduced groups, that is, all groups with no normal 2-subgroups.

Outline of the paper. In Section 2 we introduce the coalgebra C(G), Definition 2.1, compute its

automorphism group and prove Theorem 1.1. Section 3 deals with the realisation of permutation

representations in the category of graphs, providing a generalisation of [1, Theorem 1.1]. In order to

do so, we first provide a solution using binary relational systems, Theorem 3.11, to then translate it

to simple graphs, Theorem 3.14. Finally, Section 4 is devoted to group actions on coalgebras. In this

section, we use the results in the previous sections to first discuss the realisability of permutation

representations on coalgebras, proving Theorem 1.3, and then consider the isomorphism problem,

proving Theorem 1.4 and Theorem 1.5.

2. From graphs to coalgebras

In this section we want to build, associated to a combinatorial object, a coalgebra on which a given

group acts faithfully. Traditionally, coalgebras associated to combinatorial objects are defined based

on quivers. However, as our constructions are mostly graph-theoretical, we work in the framework

of directed graphs or digraphs.

Then, let G =
(

V (G), E(G)
)

be a digraph. We build, associated to G, a coalgebra C(G) on

which Aut(G) acts faithfully. Furthermore, we show that the restriction of the Aut(G)-action to

the set of grouplike elements of C(G) is also faithful. More precisely, the image of the obvious map

Aut(C(G)) → Sym
(

G(C(G))
)

is precisely Aut(G). We do so in Theorem 1.1, our main result for this

section. Let us begin by introducing the coalgebra C(G).

Definition 2.1. Let k be a field and let G be a digraph. We define a coalgebra C(G) = (C,∆, ε)

where C = k{v | v ∈ V (G)} ⊕ k{e | e ∈ E(G)} and where

• for each v ∈ V (G), ∆(v) = v ⊗ v and ε(v) = 1; and,

• for each e = (v1, v2) ∈ E(G), ∆(e) = v1 ⊗ e+ e⊗ v2 and ε(e) = 0.

Remark 2.2. The coalgebra C(G) corresponds to the degree 1 term of the coradical filtration of the

path coalgebra of G regarded as a quiver, see [3, Section 5.1]. In particular, the grouplike elements

of C(G) are precisely the grouplike elements of the path coalgebra of G, that is, the vertices of the

graph. Therefore, G
(

C(G)
)

= V (G).

We now move on to the computation of the automorphism group of C(G). In order to do so, we first

define a family of automorphisms of C(G), Lemma 2.3, to then show that no other automorphisms
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of C(G) exist, Lemma 2.4. By abuse of notation, given σ ∈ Aut(G), we write σ also to denote the

self-map of E(G) that maps e = (v1, v2) ∈ E(G) to
(

σ(v1), σ(v2)
)

∈ E(G), thus σ(e) =
(

σ(v1), σ(v2)
)

.

Lemma 2.3. Let G be a digraph, k be a field and consider C(G) the coalgebra introduced in Definition

2.1. For any σ ∈ Aut(G), and for any maps λ : E(G) → k and µ : E(G) → k
×, the linear map

fσλ,µ : C(G) → C(G) given by
{

fσλ,µ(v) = σ(v), for all v ∈ V (G),

fσλ,µ(e) = λ(e)
(

σ(v2)− σ(v1)
)

+ µ(e)σ(e), for all e = (v1, v2) ∈ E(G).

is a coalgebra automorphism of C(G).

Proof. First we have to prove that fσλ,µ is a morphism of coalgebras. Thus we need to check that

ε ◦ fσλ,µ = ε and that ∆ ◦ fσλ,µ = (fσλ,µ⊗ fσλ,µ) ◦∆. We do the computations on the generators of C(G)

associated to vertices and edges of G separately.

Let v ∈ V (G). Regarding the counit:

• ε(v) = 1.

• (ε ◦ fσλ,µ)(v) = ε
(

σ(v)
)

= 1.

Thus they are equal. Similarly, regarding the comultiplication:

• (∆ ◦ fσλ,µ)(v) = ∆
(

σ(v)
)

= σ(v) ⊗ σ(v).

•
(

(fσλ,µ ⊗ fσλ,µ) ◦∆
)

(v) = (fσλ,µ ⊗ fσλ,µ)(v ⊗ v) = fσλ,µ(v)⊗ fσλ,µ(v) = σ(v) ⊗ σ(v).

Again they are equal.

Now let us take e = (v1, v2) ∈ E(G). First, regarding the counit:

• ε(e) = 0.

• (ε◦fσλ,µ)(e) = ε
(

λ(e)(σ(v2)−σ(v1))+µ(e)σ(e)
)

= λ(e)
(

ε(σ(v2))−ε(σ(v1))
)

+µ(e)ε
(

σ(e)
)

= 0.

Finally, regarding the comultiplication:

• (∆ ◦ fσλ,µ)(e) = ∆
(

λ(e)(σ(v2)− σ(v1)) + µ(e)σ(e)
)

= λ(e)
(

∆(σ(v2))−∆(σ(v1))
)

+ µ(e)∆
(

σ(e)
)

= λ(e)
(

σ(v2)⊗ σ(v2)− σ(v1)⊗ σ(v1)
)

+ µ(e)
(

σ(v1)⊗ σ(e) + σ(e) ⊗ σ(v2)
)

.

•
(

(fσλ,µ ⊗ fσλ,µ) ◦∆
)

(e) = (fσλ,µ ⊗ fσλ,µ)(v1 ⊗ e+ e⊗ v2)

= fσλ,µ(v1)⊗ fσλ,µ(e) + fσλ,µ(e) ⊗ fσλ,µ(v2)

= σ(v1)⊗
[

λ(e)
(

σ(v2)−σ(v1)
)

+µ(e)
(

σ(e)
)]

+
[

λ(e)
(

σ(v2)−σ(v1)
)

+µ(e)
(

σ(e)
)]

⊗σ(v2)

= λ(e)
(

σ(v2)⊗ σ(v2)− σ(v1)⊗ σ(v1)
)

+ µ(e)
(

σ(v1)⊗ σ(e) + σ(e) ⊗ σ(v2)
)

.

Consequently, fσλ,µ is a morphism of coalgebras. It remains to prove that it is an automorphism. We

do so by proving that fσ
−1

−λ
µ
σ−1, 1

µ
σ−1

is its inverse. We first consider the composition fσ
−1

−λ
µ
σ−1, 1

µ
σ−1

◦fσλ,µ:

• For v ∈ V (G),

(fσ
−1

−λ
µ
σ−1, 1

µ
σ−1

◦ fσλ,µ)(v) = (fσ
−1

−λ
µ
, 1
µ

)
(

σ(v)
)

= σ−1
(

σ(v)
)

= v.

• For e = (v1, v2) ∈ E(G),

(fσ
−1

−λ
µ
σ−1, 1

µ
σ−1

◦ fσλ,µ)(e) = (fσ
−1

−λ
µ
, 1
µ

)
(

λ(e)(σ(v2)− σ(v1)) + µ(e)σ(e)
)

= λ(e)
(

fσ
−1

−λ
µ
σ−1, 1

µ
σ−1

(σ(v2))− fσ
−1

−λ
µ
σ−1, 1

µ
σ−1

(σ(v1))
)

+ µ(e)fσ
−1

−λ
µ
σ−1, 1

µ
σ−1

σ(e)

= λ(e)(v2 − v1) + µ(e)

(

−
λ(e)

µ(e)
(v2 − v1) +

1

µ(e)
(e)

)

= e.
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We also have to consider the composition fσλ,µ ◦ f
σ−1

−λ
µ
σ−1, 1

µ
σ−1

. However, notice that fσλ,µ is recovered

from fσ
−1

−λ
µ
σ−1, 1

µ
σ−1

by performing on the indexes the same operations that we perform to fσλ,µ to

obtain fσ
−1

−λ
µ
σ−1, 1

µ
σ−1

. Consequently, the proof above already shows that fσλ,µ ◦ fσ
−1

−λ
µ
σ−1, 1

µ
σ−1

is the

identity map. Then, fσλ,µ ∈ Aut
(

C(G)
)

. �

We now prove that every coalgebra automorphism of C(G) is of this form.

Lemma 2.4. Let G be a digraph, k be a field and consider C(G) the coalgebra introduced in Definition

2.1. If f ∈ Aut
(

C(G)
)

, there exists σ ∈ Aut(G) and two maps λ : E(G) → k and µ : E(G) → k
×

such that f is the coalgebra automorphism fσλ,µ introduced in Lemma 2.3.

Proof. Let f ∈ Aut
(

C(G)
)

be a coalgebra automorphism. First notice that any automorphism of

coalgebras must permute the set of grouplike elements. By Remark 2.2, G
(

C(G)
)

= V (G), thus there

is a bijective map σ : V (G) → V (G) such that f(v) = σ(v), for all v ∈ V (G).

Now take e ∈ E(G). Then there are, for every x ∈ V (G) ∪ E(G), elements γ(e, x) ∈ k such that

(2.1) f(e) =
∑

x∈V (G)∪E(G)

γ(e, x)x.

In order for f to be a coalgebra morphism, it needs to verify that ε ◦ f = ε and that (f ⊗ f) ◦∆ =

∆ ◦ f . We first consider the equality involving the counit. Recall from Definition 2.1 that ε(e) = 0,

for e ∈ E(G). Thus,

(2.2) 0 = ε
(

f(e)
)

= ε





∑

x∈V (G)∪E(G)

γ(e, x)x



 =
∑

x∈V (G)∪E(G)

γ(e, x)ε(x) =
∑

v∈V (G)

γ(e, v).

Now consider the equality regarding the comultiplication. Take e = (v1, v2) ∈ E(G). Then,

(∆ ◦ f)(e) = ∆





∑

y∈V (G)∪E(G)

γ(e, y)y



 =
∑

y∈V (G)∪E(G)

γ(e, y)∆(y)

=
∑

w∈V (G)

γ(e, w)w ⊗ w +
∑

h=(w1,w2)∈E(G)

γ(e, h)[w1 ⊗ h+ h⊗w2].

(2.3)

On the other hand,
(

(f ⊗ f) ◦∆
)

(e) = (f ⊗ f)(v1 ⊗ e+ e⊗ v2) = f(v1)⊗ f(e) + f(e)⊗ f(v2)

= σ(v1)⊗





∑

y∈V (G)∪E(G)

γ(e, y)y



 +





∑

z∈V (G)∪E(G)

γ(e, z)z



 ⊗ σ(v2).
(2.4)

Equations (2.3) and (2.4) must be equal. First, notice that σ(v1)⊗ σ(v1) and σ(v2)⊗ σ(v2) are the

only summands of the form w⊗w with w ∈ V (G) that may arise in Equation (2.4). Thus, γ(e, w) = 0

if w 6= σ(v1), σ(v2). Regarding the coefficients γ
(

e, σ(v1)
)

and γ
(

e, σ(v2)
)

, notice that in Equation

(2.4) we have the summand
[

γ
(

e, σ(v1)
)

+ γ
(

e, σ(v2)
)]

σ(v1)⊗ σ(v2),

whereas σ(v1)⊗ σ(v2) does not appear in Equation (2.3). Consequently, γ
(

e, σ(v1)
)

= −γ
(

e, σ(v2)
)

.

Moreover, and since no further restrictions exist regarding these coefficients, γ
(

e, σ(v2)
)

∈ k.

Finally, regarding the summands of the form w1 ⊗ (w1, w2) + (w1, w2) ⊗ w2 arising in Equation

(2.3), the only possible non-trivial such summand in Equation (2.4) is σ(v1) ⊗
(

σ(v1), σ(v2)
)

+
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(

σ(v1), σ(v2)
)

⊗ σ(v2). Furthermore, the corresponding coefficient γ
(

e, (σ(v1), σ(v2))
)

must be non-

trivial, since otherwise f would not be injective. We deduce that
(

σ(v1), σ(v2)
)

∈ E(G), and as a

consequence, σ is in fact a morphism of graphs. An analogous reasoning for f−1 ∈ Aut
(

C(G)
)

lets

us deduce that σ−1 is a morphism of graphs as well, so in fact σ ∈ Aut(G). Regarding the coefficient,

no further restrictions exist, so γ
(

e, (σ(v1), σ(v2))
)

∈ k
×.

We have thus obtained that there is a graph automorphism σ ∈ Aut(G) such that
{

f(v) = σ(v), for all v ∈ V (G),

f(e) = γ
(

e, σ(v2)
)(

σ(v2)− σ(v1)
)

+ γ
(

e, σ(e)
)

σ(e), for all e = (v1, v2) ∈ E(G),

where γ
(

e, σ(v2)
)

∈ k and γ
(

e, σ(e)
)

∈ k
×. Consequently, if for every e = (v1, v2) ∈ E(G) we define

λ(e) = γ
(

e, σ(v2)
)

and µ(e) = γ
(

e, σ(e)
)

, we obtain that f = fσλ,µ as introduced in Lemma 2.3. The

result follows. �

Now that we have computed the automorphism group of the coalgebras C(G) introduced in Defi-

nition 2.1, we can prove the main result for this section, Theorem 1.1.

Proof of Theorem 1.1. Let C(G) be the coalgebra introduced in Definition 2.1. We shall prove that

this is the desired coalgebra. As an immediate consequence of Lemma 2.3 and Lemma 2.4,

Aut
(

C(G)
)

= {fσλ,µ | σ ∈ Aut(G), λ : E(G) → k, µ : E(G) → k
×}.

In particular, since G
(

C(G)
)

= V (G), the map Aut
(

C(G)
)

→ Sym
(

G(C(G))
)

= Sym
(

V (G)
)

takes

the automorphism fσλ,µ ∈ Aut
(

C(G)
)

to σ ∈ Sym
(

V (G)
)

. Indeed, for all v ∈ V (G), fσλ,µ(v) = σ(v).

Therefore, the image of the map Aut
(

C(G)
)

→ Sym
(

V (G)
)

is Aut(G), whereas the kernel is

K = {f
idG
λ,µ | λ : E(G) → k, µ : E(G) → k

×}.

Let us define fλ,µ = f
idG
λ,µ . We now proceed to prove that K ∼=

∏

e∈E(G) (k ⋊ k
×).

First, let us see how the group operation works in K. Thus take fλ1,µ1
, fλ2,µ2

∈ K. Then,

• For v ∈ V (G), (fλ2,µ2
◦ fλ1,µ1

)(v) = fλ2,µ2
(v) = v.

• For e = (v1, v2) ∈ E(G),

(fλ2,µ2
◦ fλ1,µ1

)(e) = fλ2,µ2

(

λ1(e)(v2 − v1) + µ1(e)e
)

= λ1(e)(v2 − v1) + µ1(e)
(

λ2(e)(v2 − v1) + µ2(e)e
)

=
(

λ1(e) + µ1(e)λ2(e)
)

(v2 − v1) + µ1(e)µ2(e)e.

Consequently, fλ2,µ2
◦ fλ1,µ1

= fλ1+µ1λ2,µ1µ2
. Thus, the group operation of K acts independently on

each of the elements of E(G). This implies that K can be decomposed as a direct product of groups

over E(G). Let us focus on one of the factors, thus pick an edge e ∈ E(G) and take

Ke = {fλ,µ | λ : E(G) → k with λ(e′) = 0 for all e′ 6= e, µ : E(G) → k
× with µ(e′) = 1 for e′ 6= e}.

Let us prove that Ke is a semidirect product of the form k ⋊ k
×.

First, let us denote the maps taking every e ∈ E(G) to 0k and 1k by 0: E(G) → k and 1: E(G) → k
×

respectively. Now consider the subsets of Ke given by He = {fλ,µ ∈ Ke | λ = 0} and Ne = {fλ,µ ∈

Ke | µ = 1}. Then, for f0,µ1
, f0,µ2

∈ He, f0,µ2
◦ f0,µ1

= f0,µ1µ2
, so He is a subgroup of K isomorphic

to k
×. Similarly, for fλ1,1, fλ2,1 ∈ Ne, fλ2,1 ◦ fλ1,1 = fλ1+λ2,1, thus Ne is a subgroup of K isomorphic

to k. Let us now check that Ne E Ke and that Ke
∼= Ne ⋊He. Consider the map

ge : Ke −→ He

fλ,µ 7−→ f0,µ.
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Then simple computations show that ge is a group homomorphism. Moreover, it is clear that

Ne = ker ge, which exhibits that Ne E Ke and that Ke
∼= Ne ⋊He. We deduce that

K =
∏

e∈E(G)

Ke =
∏

e∈E(G)

(Ne ⋊He) ∼=
∏

e∈E(G)

(k ⋊ k
×).

Finally, let us see that the sequence is split. Define a map Aut(G) → Aut
(

C(G)
)

taking σ ∈ Aut(G)

to fσ0,1. Then, for σ1, σ2 ∈ Aut(G), a simple computation shows that fσ2

0,1 ◦ f
σ1

0,1 = fσ2◦σ1

0,1 , thus it is a

group homomorphism. Moreover, it is clearly a section of the restriction map Aut
(

C(G)
)

→ Aut(G).

The result follows. �

Then, since every group is the automorphism group of a graph, [7, 17], Corollary 1.2 is an imme-

diate consequence of Theorem 1.1. Furthermore, since we know the sequence to be split, we can also

compute the group of automorphisms of C(G) as a consequence of Theorem 1.1, thus proving the

following:

Corollary 2.5. Let k be a field and let G be a digraph. If C(G) is the coalgebra introduced in

Definition 2.1, then

Aut
(

C(G)
)

∼=





∏

e∈E(G)

(

k ⋊ k
×
)



⋊Aut(G).

3. Graphs realising permutation groups

In Corollary 1.2 we have seen that every group can be realised as the permutation group induced by

the restriction of the automorphisms of a coalgebra to its set of grouplike elements. We now ask if it

is possible to realise every permutation group (or more generally, every permutation representation)

in this context. As a consequence of the results contained in Section 2, this would hold if every

permutation group were realisable in the context of graphs, that is, if for every permutation group

ρ : G →֒ Sym(V ) there was a graph G such that V (G) = V and Aut(G) ∼= G. However, such a graph

does not exist for all permutation groups, as shown in [2, Section 4], [9].

In any case, if we allow the set of vertices to be enlarged, the next result can be proven.

Theorem 3.1 ([1], Theorem 1.1). Let ρ : G →֒ Sym(V ) be a finite permutation group. There is a

graph G such that

(1) V ⊂ V (G), and V is invariant through the automorphisms of G;

(2) G ∼= Aut(G); and,

(3) the obvious restriction map G ∼= Aut(G) → Sym(V ) is ρ.

In this section we generalise Theorem 3.1 to any permutation representation, see Theorem 3.14.

To do so, we first build objects solving the considered problem in the category of binary relational

systems over a set I, or IRel, and then translate it to graphs by a procedure called arrow replacement

operation, [11, Section 4.4]. We now introduce the category IRel, following the notation of [11].

Definition 3.2. Let I be a set. A binary relational system over I, S, is a set V (S), called the set of

vertices of S, together with a family of binary relations Ri(S) on S, for i ∈ I, called edges of label

i. Binary relational systems over a set I also receive the name of binary I-systems.

A morphism of binary I-systems, f : S1 → S2, is a map f : V (S1) → V (S2) such that if (v,w) ∈

Ri(S1) for some i ∈ I, then
(

f(v), f(w)
)

∈ Ri(S2). The category whose objects are binary relational

systems over I and whose morphisms are morphisms of binary relational systems over I is denoted

by IRel.
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We now introduce the Cayley diagram, a classical construction of a binary I-system G whose group

of automorphisms is G. It serves as the basic building block to our subsequent constructions.

Definition 3.3. Let G be a group and let S = {sj | j ∈ J} be a generating set for G. The Cayley

diagram of G associated to S, Cay(G,S), is a binary J-system with V
(

Cay(G,S)
)

= G and where

(g, g′) ∈ Rj

(

Cay(G,S)
)

if and only if g′ = gsj .

Remark 3.4. Recall from [7, Section 6] or [6, Section 3.3] that Aut
(

Cay(G,S)
)

∼= G. An element

h ∈ G determines an automorphism of the Cayley diagram, which we denote φh : V
(

Cay(G,S)
)

→

V
(

Cay(G,S)
)

, by taking the transitive group action on the set of vertices obtained by left multi-

plication by h; namely, for g ∈ V
(

Cay(G,S)
)

, φh(g) = hg. Hence if φh fixes any vertex, it is the

identity.

We now proceed to define the binary I-system G giving a solution to our problem.

Definition 3.5. Let ρ : G → Sym(V ) be a permutation representation of G on a set V and let

S = {sj | j ∈ J} be a generating set for G. Take I = J ⊔ V . Define G a binary I-system with vertex

set V (G) = G ⊔ V and edges:

• for each j ∈ J and for g ∈ G, (g, gsj) ∈ Rj(G).

• for each v ∈ V and for g ∈ G,
(

g, ρ(g)(v)
)

∈ Rv(G).

Remark 3.6. Notice that the full binary I-subsystem of G with vertex set G is precisely Cay(G,S).

We denote such subsystem by G(G). On the other hand, the full binary I-subsystem of G with vertex

set V has no edges.

We now proceed to prove that Aut(G) ∼= G. In order to do so, we first show that any element

g̃ ∈ G induces an automorphism of G:

Lemma 3.7. Consider the map

Φ: G −→ Aut(G)

g̃ 7−→ Φg̃.

where, for a given g̃ ∈ G, the map Φg̃ is defined as follows:

• For g ∈ G, define Φg̃(g) = g̃g.

• For v ∈ V , define Φg̃(v) = ρ(g̃)(v).

Then Φ is a group monomorphism.

Proof. We first prove that Φg̃ is a morphism of binary I-systems, that is, that it respects relations

Ri(G), i ∈ I.

• For g ∈ G and j ∈ J , (g, gsj) ∈ Rj(G). And
(

Φg̃(g),Φg̃(gsj)
)

= (g̃g, g̃gsj) ∈ Rj(G).

• For g ∈ G and v ∈ V ,
(

g, ρ(g)(v)
)

∈ Rv(G). And since ρ is a group homomorphism,
(

Φg̃(g),Φg̃(ρ(g)(v))
)

=
(

g̃g, ρ(g̃)(ρ(g)(v))
)

=
(

g̃g, ρ(g̃g)(v)
)

∈ Rv(G).

Our next step is to prove that Φ is a group homomorphism, that is, that for g̃, h̃ ∈ G, Φg̃◦Φh̃
= Φ

g̃h̃
.

• For g ∈ G,
(

Φg̃ ◦ Φh̃

)

(g) = Φg̃

(

Φ
h̃
(g)

)

= Φg̃(h̃g) = g̃h̃g = Φ
g̃h̃
(g).

• For v ∈ V and since ρ is a group homomorphism,
(

Φg̃ ◦ Φh̃

)

(v) = Φg̃

(

Φ
h̃
(v)

)

= Φg̃

(

ρ(h̃)(v)
)

= ρ(g̃)
(

ρ(h̃)(v)
)

= ρ(g̃h̃)(v) = Φ
g̃h̃
(v).
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Thus Φ is a group homomorphism. Notice that, as a consequence, Φg̃ is bijective, as Φg̃ ◦ Φg̃−1 =

Φg̃−1 ◦ Φg̃ = ΦeG is clearly the identity. Finally, to show that Φ is a monomorphism notice that

Φg̃(eG) = g̃, thus if g̃ 6= h̃, Φg̃ 6= Φ
h̃
. �

To show that Aut(G) ∼= G, it remains to prove that Φ is surjective:

Lemma 3.8. For every ψ ∈ Aut(G) there exists g̃ ∈ G such that ψ = Φg̃.

Proof. Take ψ ∈ Aut(G). Notice that the only vertices of G that are starting vertices of edges labeled

v for some v ∈ V are those in G. Thus, ψ must leave G invariant, so it must induce an automorphism

on the full binary I-subsystem with vertex set G, that is, ψ|G ∈ Aut
(

G(G)
)

. But recall from Remark

3.6 that G(G) ∼= Cay(G,S). Consequently, by Remark 3.4, there exists g̃ ∈ G such that ψ|G = φg̃.

We shall prove that, in fact, ψ = Φg̃.

We already know that ψ|G = Φg̃|G. It remains to prove the equality for vertices in V . Thus take

v ∈ V . We know that
(

eG, ρ(eG)(v)
)

= (eG, v) ∈ Rv(G). Then,
(

ψ(eG), ψ(v)
)

=
(

φg̃(eG), ψ(v)
)

=
(

g̃, ψ(v)
)

∈ Rv(G). But the only edge in Rv(G) starting at g̃ is
(

g̃, ρ(g̃)(v)
)

. Thus ψ(v) = ρ(g̃)(v) =

Φg̃(v), for all v ∈ V . Then ψ = Φg̃. The result follows. �

As a consequence of Lemma 3.7 and Lemma 3.8 we immediately obtain the following:

Corollary 3.9. Aut(G) ∼= G. Moreover, every ψ ∈ Aut(G) leaves V ⊂ V (G) invariant.

We finally need to consider what happens with the restriction of Aut(G) to V .

Lemma 3.10. The restriction map G ∼= Aut(G) → Sym(V ) is ρ. Moreover, there is a faithful action

ρ̄ : G ∼= Aut(G) → Sym
(

V (G)\V
)

such that the restriction map G ∼= Aut(G) → Sym
(

V (G)
)

is ρ⊕ ρ̄.

Proof. Let g ∈ G. Then g is represented in Aut(G) by Φg, see Lemma 3.7. We first need to consider

Φg|V . For each v ∈ V , by definition, Φg(v) = ρ(g)(v). Consequently, Φg|V = ρ(g), for all g ∈ G.

On the other hand, consider Φg|V (G)\V . Since V (G) \ V = G, we have eG ∈ V (G) \ V . Moreover,

Φg(eG) = g, for all g ∈ G. Consequently, the action ρ̄ : G → Sym
(

V (G) \ V
)

taking g ∈ G

to Φg|V (G)\V is faithful. Moreover, the restriction map G ∼= Aut(G) → Sym
(

V (G)
)

is ρ ⊕ ρ̄, as

claimed. �

Finally, summing up Lemmas 3.7, 3.8 and 3.10, we deduce the following:

Theorem 3.11. Let G be a group, V be a set and ρ : G→ Sym(V ) be a permutation representation

of G on V . There is a binary relational system G such that

(1) V ⊂ V (G) and each ψ ∈ Aut(G) is invariant on V ;

(2) Aut(G) ∼= G;

(3) the restriction G ∼= Aut(G) → Sym(V ) is precisely ρ; and,

(4) there is a faithful action ρ̄ : G ∼= Aut(G) → Sym
(

V (G) \ V
)

such that the restriction map

G ∼= Aut(G) → Sym
(

V (G)
)

is ρ⊕ ρ̄.

We now want to use results from [4, Section 3] to translate the construction in Theorem 3.11 to

simple graphs. The idea is to perform an arrow replacement operation, following classical ideas by

Frucht, [9], and de Groot, [7]. The arrow replacement operation is a procedure by which the labeled

edges on a binary relational system are replaced by a certain asymmetric graph (that is, a graph

whose only automorphism is the identity map). These asymmetric graphs are chosen in such a way

that automorphisms of the resulting simple graph must take the asymmetric graphs to copies of

themselves, so they play the role of the labeled edges. The key idea to make this work is to ensure

that the degrees of the vertices in the asymmetric graphs are different to those of the vertices in the
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starting relational system. Consequently, we first need to compute possible degrees of vertices in our

binary I-system G, introduced in Definition 3.5. Let us clarify what we mean by vertex degree.

Definition 3.12. Let G be a binary I-system. For v ∈ V (G) we define:

• the indegree of v ∈ V (G) as deg−(v) = | ⊔i∈I {w ∈ V (G) | (w, v) ∈ Ri(G)}|,

• the outdegree of v as deg+(v) = | ⊔i∈I {w ∈ V (G) | (v,w) ∈ Ri(G)}|,

• the degree of v as deg(v) = deg+(v) + deg−(v).

Observe that both the indegree and the outdegree of a vertex must be respected by the automor-

phisms of G. In particular, the degree must also be respected.

We now compute the degrees of vertices in the binary relational system from Definition 3.5.

Lemma 3.13. Let G be the binary I-system introduced in Definition 3.5.

(1) Vertices in G have degree 2|S|+ |V |.

(2) Vertices in V have degree |G|.

Proof. We begin by proving (1). Fix g ∈ G. First, recall from Remark 3.6 that the full binary

subsystem with vertex set G is G(G) = Cay(G,S). Thus g is the starting (respectively ending)

vertex of exactly |S| edges with labels in S. Furthermore, for each v ∈ V there is precisely one edge

labeled v starting at g, and no more edges start or end in vertices in G. Thus, deg(g) = 2|S|+ |V |.

Now take v ∈ V . Then, for each g ∈ G, ρ(g) ∈ Sym(V ). This implies that each vertex v ∈ V is

connected with g by exactly one edge. As this holds for every g ∈ G, and since there are no other

edges starting or ending at v ∈ V , deg(v) = |G|, for all v ∈ V . Thus (2) follows. �

We can finally build a simple graph fulfilling the conditions stated at the beginning of this section.

We remark that, although the coalgebra C(G) introduced in Definition 2.1 is defined over a digraph,

we construct simple graphs here since they provide a more general result, given that any graph can

be regarded as a digraph where every edge is bidirected (that is, if (v,w) is an edge in the digraph,

(w, v) is an edge as well).

Theorem 3.14. Let G be a group, V be a set and ρ : G→ Sym(V ) be a permutation representation

of G on V . There is a (simple, undirected) graph G such that

(1) V ⊂ V (G) and each ψ ∈ Aut(G) is invariant on V ;

(2) Aut(G) ∼= G;

(3) the restriction G ∼= Aut(G) → Sym(V ) is precisely ρ; and,

(4) there is a faithful action ρ̄ : G ∼= Aut(G) → Sym
(

V (G) \ V
)

such that the restriction map

G ∼= Aut(G) → Sym
(

V (G)
)

is ρ⊕ ρ̄.

Proof. Let G′ be the binary I-system introduced in Definition 3.5. As a consequence of Theorem

3.11, G′ verifies properties analogous to (1)–(4) in the category IRel. We need to translate the

solution from IRel to Graphs.

By Lemma 3.13, the set of possible degrees of vertices in G′ is finite. Thus we can perform a

replacement operation, following [4, Section 3]. In particular, in [4, Subsection 3.1], the authors

show that there is a (simple, undirected) graph G such that V (G′) ⊂ V (G) and Aut(G) ∼= Aut(G′).

Moreover, corresponding automorphisms in Aut(G) and Aut(G′) induce the same map on V (G′).

In particular, V ⊂ V (G′) ⊂ V (G) is invariant through automorphisms of G and the restriction

G ∼= Aut(G) → Sym(V ) is equivalent to the restriction G ∼= Aut(G′) → Sym(V ) and, thus, it is

precisely ρ. For the same reason, the automorphism of G associated to g ∈ G takes eG ∈ V (G′)\V ⊂

V (G) \ V to g ∈ V (G′), thus the action ρ̄ : G → V (G) \ V is faithful and the restriction map

G ∼= Aut(G) → Sym
(

V (G)
)

is ρ⊕ ρ̄. The result follows. �
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4. Permutation representations on coalgebras and the isomorphism problem

In this section, we use the results proved so far to obtain conclusions regarding the representation

theory of coalgebras. On the one hand, we show that the permutation representations of a group

G can be realised as the restriction of a G-action on a coalgebra to a certain subset of its grouplike

elements, Theorem 1.3. On the other hand, we show that faithful coalgebra actions can be used in

some cases to distinguish isomorphism classes of groups, Theorem 1.4 and Theorem 1.5.

Let us start with the realisability of permutation representations. As a consequence of Theorem

1.1, the permutation group induced by the restriction of the automorphisms of C(G) to its set of

grouplike elements is Aut(G). We now translate Theorem 3.14 to coalgebras, proving Theorem 1.3.

Proof of Theorem 1.3. By Theorem 3.14, there is a simple graph G such that V ⊂ V (G), Aut(G) ∼=

G, the restriction G ∼= Aut(G) → Sym(V ) is ρ and there is a faithful action ρ̄ : G ∼= Aut(G) →

Sym
(

V (G) \ V
)

such that the restriction map Aut(G) → Sym(V ) is ρ⊕ ρ̄. Since any simple graph

can be regarded as a digraph where every edge is bidirected, we can consider C = C(G) the coalgebra

introduced in Definition 2.1. Then, G(C) = V (G). Let us prove that this is the desired coalgebra.

Recall from Lemma 2.3 and Lemma 2.4 that the automorphisms of C are the maps fσλ,µ with

σ ∈ Aut(G), λ : E(G) → k and µ : E(G) → k
×. Then since G ∼= Aut(G), G acts on C by taking an

element σ ∈ Aut(G) to fσ0,1 ∈ Aut(C), thus C is a G-coalgebra.

On the other hand, for v ∈ V (G) = G(C), fσλ,µ(v) = σ(v). Namely, the composition of the inclusion

G ∼= Aut(G) →֒ Aut(C) with the restriction Aut(C) → Sym
(

G(C)
)

= Sym
(

V (G)
)

is precisely the

action of G on G by automorphisms. The result then follows immediately from Theorem 3.14. �

Finally, we review how we can use the results above to distinguish isomorphism classes of groups

through their faithful representations on coalgebras and their restrictions to grouplike elements. Let

us recall the concept of co-Hopfian group.

Definition 4.1. A group G is said to be co-Hopfian if it does not contain proper subgroups isomor-

phic to itself. Equivalently, every monomorphism G→ G must be an automorphism.

Clearly, every finite group is co-Hopfian. Other example of co-Hopfian groups are Artin groups,

Tarski groups, [15, 16], and fundamental groups of surfaces of genus at least two, [8, p. 58]. We can

now prove Theorem 1.4.

Proof of Theorem 1.4. One implication is obvious. Let us prove the remaining one. Suppose then

that G and H are two groups verifying (2). Let us prove that G ∼= H.

Let G and H be digraphs such that Aut(G) ∼= G and Aut(H) ∼= H, which exist as a consequence

of [7, Section 6], [17]. Consider the coalgebras C(G) and C(H) introduced in Definition 2.1. As a

consequence of Theorem 1.1, G acts faithfully on C(G), and the image of the composition of the

inclusion map G→ Aut
(

C(G)
)

with the restriction Aut
(

C(G)
)

→ Sym
(

G(C(G))
)

is G. Therefore,

there is an action of G on C(G) that restricts to a faithful action on G
(

C(G)
)

. By (2), this implies

that there is an action of H on C(G) that induces a faithful action on G
(

C(G)
)

, so we deduce

that H ≤ Aut(G) ∼= G. Similarly, if there is an action of G on C(H) inducing a faithful action on

G
(

C(H)
)

, then G ≤ Aut(H) ∼= H. Thus G ≤ H ≤ G and, since G is co-Hopfian, G ∼= H. �

We now consider the entire action on the coalgebra instead of focusing on its restriction to grouplike

elements. To ensure that groups are still distinguished, and since Aut
(

C(G)
)

has subgroups of the

form k⋊k
×, we have to further restrict the class of groups we are working with. With such objective

in mind, we introduce the following class of groups.

Definition 4.2. Let k be a finite field of order pn, p prime. A group G is in the class Gp,n if
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(1) G is co-Hopfian; and,

(2) G does not have finite non-trivial normal subgroups whose exponent divides pn(pn − 1).

Notice that although this class is quite restrictive, it still contains many interesting groups. For

example, G2,1 still contains all 2-reduced groups, that is, all groups with no normal 2-subgroups. We

can now prove Theorem 1.5.

Proof of Theorem 1.5. One implication is obvious. Let us prove the remaining one. Thus let G and

H be two groups in Gp,n verifying (2) and let us prove that G ∼= H.

Again, let G and H be digraphs such that Aut(G) ∼= G and Aut(H) ∼= H, which exist by [7, Section

6], and consider C(G) and C(H) the respective coalgebras from Definition 2.1. Then G ∼= Aut(G)

acts faithfully on C(G) as an immediate consequence of Corollary 2.5. By the same result, if H acts

faithfully on C(G), there is a group monomorphism

H →֒ Aut
(

C(G)
)

∼=





∏

e∈E(G)

(k ⋊ k
×)



⋊G.

Thus H is isomorphic to a subgroup of Aut
(

C(G)
)

, which we also denote by H. We shall see that

H ∩
(
∏

e∈E(G)(k ⋊ k
×)

)

= {1}.

First notice that
∏

e∈E(G)(k⋊k
×) is normal in Aut

(

C(G)
)

, thus H ∩
(
∏

e∈E(G)(k⋊k
×)

)

is normal

in H. On the other hand, k⋊k
× is a group of order pn(pn−1), thus the exponent of

∏

e∈E(G)(k⋊k
×)

divides pn(pn − 1). Therefore H ∩
(
∏

e∈E(G)(k ⋊ k
×)

)

is a normal subgroup of H whose exponent

divides pn(pn−1). Hence, sinceH is in Gp,n, the intersection must be the trivial group. Consequently,

the image of H falls in G, so H ≤ G.

By a similar argument, we deduce that if G acts faithfully on C(H), then G ≤ H. We then have

G ≤ H ≤ G and, since G is co-Hopfian, G ∼= H. �
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