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Abstract
Introduction A simple tool to estimate loading on the lower limb joints outside a laboratory may be useful for
people who suffer from degenerative joint disease. Here, the accelerometers on board of wearables (smartwatch,
smartphone) were used to estimate load rate on the lower limbs and were compared to data from a treadmill force
plate. The aim was to assess the validity of wearables to estimate load rate transmitted through the joints.
Methods Twelve healthy participants (female n=4, male n=8; aged 26± 3 years; height: 175± 15 cm; body mass:
71± 9 kg) carried wearables, while performing locomotive activities on an anti-gravity treadmill with an integrated
force plate. Acceleration data from the wearables and force plate data were used to estimate load rate. The
treadmill enabled 7,680 data points to be obtained, allowing a good estimate of uncertainty to be examined. A
linear regression model and cross-validation with 1,000 bootstrap resamples were used to assess the validation.
Results Significant correlation was found between load rate from the force plate and wearables (smartphone:
R2 = 0.71; smartwatch: R2 = 0.67).
Conclusion Wearables’ accelerometers can estimate load rate, and the good correlation with force plate data
supports their use as a surrogate when assessing lower limb joint loading in field environments.
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1 Introduction

1.1 Background

Physical activity monitoring with inertial sensors is
a growing field of research, with applications in elite
sport (Gabbett et al. 2010; Barrett et al. 2014),
clinical conditions (Item-Glatthorn et al. 2012; Silva
et al. 2002), and the general population. Commercially
available inertial sensors allow individuals to count
steps, measure distances travelled, and record physical
activity duration; all of which may positively effect
physical activity behaviour (Consolvo et al. 2006).
However, excessive mechanical loading might be a risk
factor for the progression of degenerative joint diseases,
such as osteoarthritis (Litwic et al. 2013). Estimating
(and so enabling the monitoring/control of) the loading
on joints during physical activity in everyday life
with commercially available inertial sensors may benefit
some populations, such as people with a high risk of

developing degenerative joint diseases or people with
arthritis.

The term ‘load’ describes biomechanical physical
stresses which act on the body or anatomical structures
within the body (National Research Council 2001).
These stresses can be kinetic, kinematic, oscillatory
or thermal energy sources. In the present study, since
kinetic energy sources are of interest, the term ‘load’ is
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strictly applied to weight-bearing forces on the joints.
Load rate is the time derivative of this load.

1.2 Load rate and its effects
While we are concerned with monitoring loading on
joints during everyday life, much of the literature
is in sports science, where repetitive loading on the
lower limb joints is known to be a key component
in the pathophysiology of stress fractures (Milner et
al. 2006). Tibial stress fractures are related to tibial
acceleration and vertical load rates (Milner et al.
2006). Daoud et al. (2012) showed on a large group
of runners that higher positive vertical load rates were
found mostly in people with tibial stress fractures in
comparison to controls. These studies measured the load
rate on the lower limbs with force plates, which are
considered the gold standard for load rate measuring in
biomechanical laboratories. However, being conducted
in the biomechanical laboratory means that their
methods are not suited for measuring the load rate
of everyday activities. Pressure-measuring insoles are a
valid and reliable method to measure ground reaction
force without a force plate (Chen and Bates 2000;
Koch et al. 2016). However, due to their expense
and cumbersome (often wired) nature, these too are
unsuitable for taking measurements during everyday
life. Development of a simple, portable, and inexpensive
method to quantify load rate on the lower limb joints
during daily living must be identified.

1.3 Estimating load rate using accelerometers
Commercially available acceleration sensors are com-
monly used for physical activity monitoring during
everyday life (Meyer et al. 2015; Neugebauer et al.
2014). Neugebauer et al. (2014) developed a method for
estimating peak vertical and braking ground reaction
forces with accelerometers which they then validated
against a force plate. The errors that were obtained
are for peak vertical ground reaction forces (8.3%) and
braking ground reaction forces (17.8%).

Neugebauer et al. (2014) and Meyer et al. (2015)
validated the use of accelerometers as tools for
estimating peak ground reaction forces on force plates,
with both studies yielding high correlation coefficient
values. However, the focus of their validation was the
peak ground reaction forces and not the load rate. The
present study hypothesizes that load rates might be a
better indicator for impact loading on the lower limb

joints (following the studies of Daoud et al. (2012)
and Milner et al. (2006)). Nevertheless, it should be
mentioned that there may be other indications for joint
damage such as biomechanics, age, strength, sex, or
predisposing conditions (Litwic et al. 2013), which are
not included in this paper.

Other features used for identifying impact loading
can be found in elite sports research. Hollville et al.
(2016) validated the MinimaxX accelerometer against
a force plate by calculating the mean acceleration rate
magnitude of the accelerometer and force plate (specific
to a team sport activity performed on the force plate).
The correlations between the accelerometer data and
the force plate data were between 0.74 and 0.93. Their
study supports the use of acceleration rate magnitude
as a suitable method for capturing impact loadings on
the lower limb joints.

Wundersitz et al. (2013) assessed the validity
of a MinimaxX accelerometer worn on the upper
body for estimating peak forces during running and
change-of-direction tasks. Peak vertical acceleration and
acceleration magnitude values [ms−2] were converted to
force values [N] via Newton’s second law of motion (i.e.
multiplying by the participant’s body mass) and were
compared against the peak ground reaction force from
the force plate. They showed that accelerometers worn
on the upper body could provide a relative measure
of peak impact force experienced during running and
two change-of-direction tasks (45◦ and 90◦). This
approach involved including the participant’s body
mass in the equation, which was one of the hidden
variables that Hollville et al. (2016) did not use. Since
the accelerometer was attached to the upper body of
the individuals, the actual accelerometer measurements
came from the upper body where a lighter/attenuated
force was applied. This could be construed as not
being an accurate way of measuring load. Nevertheless,
as an estimation, it had high correlation with the
ground reaction force and, hence, might be seen as a
valid method for estimating ground reaction force with
accelerometers.

Hollville et al. (2016) and Wundersitz et al. (2013)
validated two different acceleration values against force
plate data: the mean acceleration rate (jerk) magnitude
and the peak force (peak acceleration multiplied by
the participant’s body mass). The approach in the
present study is a combination of both quantities: the
accelerometer rate magnitude was multiplied by the
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participants’ body mass to obtain an estimation of the
load rate.

Although previous studies using accelerometers for
the purpose of estimating ground reaction forces or
accelerometer rates showed good correlations with
respect to force plate data (Meyer et al. 2015;
Neugebauer et al. 2014; Hollville et al. 2016; Wundersitz
et al. 2013), validation studies assessing the relationship
between load rate estimated with wearables and force
plates are still necessary.

The aim of the current study was to assess the validity
of load rate estimated with wearables against the ‘gold
standard’ equipment, the force plate, during locomotive
activities (walking, jogging, running) on an anti-gravity
treadmill.

2 Methods
The study design was cross-sectional. Twelve healthy
adults (female n=4, male n=8; aged 26± 3 years; height:
175± 15 cm; body mass: 71± 9 kg; means ± standard
deviation) participated in the study. Participants were
recruited via posters on multiple noticeboards around
the University of Southampton. Once a participant
showed interest, the researchers sent an email to
them with the participant information sheet and an
invitation to the study. Based on the screening, which
excluded those with lower limb pathologies or any
musculoskeletal, neurological, or systemic diseases or
other physical disabilities which may have limited their
mobility, 12 of 18 volunteers accepted the invitation.
Data collection took place at Southampton Football
Club’s training facilities. The sample of convenience
of 12 participants was chosen due to limited time
and access to the facility. Each participant completed
18 different trials (six different bodyweight conditions:
30%, 60%, 80%, 90%, 100%, 110% × three speed
conditions: 5, 8, 12 kmh−1). The study was approved
by the Faculty of Health Science Ethics Committee at
the University of Southampton (no. 17086).

2.1 Data collection
A simple Android app was used to acquire acceler-
ation values from the microelectromechanical systems
(MEMS) sensors in one smartphone between the shoul-
der blades (Smartphone 1, SP1) and one smartwatch on
the right wrist (Smartwatch 1, SW1). All participants
were asked to put on an elastic sports vest holding
Smartphone 1, which was positioned in such a way as

to have it located between their shoulder blades. This
location aligns with elite sports practice (Gabbett et al.
2010; Barrett et al. 2014) where athletes wear accelerom-
eters between their shoulder blades. However, to sim-
ulate the real world activity monitoring an additional
smartphone (Smartphone 2, SP2) was attached to the
lateral right thigh with cohesive tape, and a smartwatch
(Smartwatch 2, SW2) was placed on the left wrist.
For Smartphone 2 and Smartwatch 2 only data for 6
participants were available due to technical limitations.
The lateral right thigh was chosen to represent the usual
position on the body of the smartphone: the hip pocket.
The smartphones were Sony® XperiaTM Z Compact
(127× 65× 9.5mm, 137g), and the smartwatches were
Moto 360 from Motorola® (46× 46× 11mm, 54g).

Although the main objective of the study was to
assess the validity of the wearables with respect to
data from the treadmill force plate, the acceleration
data from the wearables was also validated. Similar
accelerometers were calibrated in previous works by
Bassett et al. (2012) and Lee (2013), although only
energy expenditure results were reported, while Boyd
et al. (2011) assessed the validity of MinimaxX
accelerometers for measuring physical activity in
Australian football. The smartphone was mounted
on a shaker (Brüel & Kjær (B&K) type 4809),
with the smartwatch (with strap removed) and a
B&K Type 4524-B lightweight triaxial piezoelectric
OrthoShear accelerometer attached to the back of the
phone via beeswax and tape. Data captured from
all three devices during a 0-10 Hz sine sweep was
aligned and resampled at 50 Hz. This frequency range
resulted in a load rate range equivalent to that seen
during the treadmill experiments (0 <

∣∣∣ ∆̂FL

∆t

∣∣∣ < 4× 104

N s−1), using m = 71 kg (see equation 2, below). The
time domain root-mean-squared error ratios between
the B&K accelerometer and smartphone and B&K
accelerometer and smartwatch derived load rate were
5.41% and 5.35% respectively (R2 between all three
devices was 1.00). These errors are 25.8% and 25.5%
of the RMSER values for linear regression Model 1,
detailed in section 2.3. Measurement errors due to the
sensors are therefore significantly smaller than other
factors in the experiment.

The anti-gravity treadmill was the M320 from Alter-
G®. The floor of the anti-gravity treadmill is mounted
on four load cells which serve as a force plate. The
voltage signals from the four load cells were collected
with a sampling frequency of 128Hz using four analogue
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inputs on a NI® DAQ USB™ device. The ported signal
was collected with the LabVIEW™ software with the
help of the data acquisition assistant. 128Hz was the
maximum sampling frequency available for the Alter-
G anti-gravity treadmill. Before the data collection, the
force plate was calibrated with 25 weights between 0
and 90kg. The weights used were weighed on a digital
milligram scale and then placed in the centre of the
force plate. The voltage signal for each weight was
used for building a linear function (R2 = 1.000), which
transformed voltage signal into force.

To test whether the wearables are able to estimate
the amount of loading through joints, different joint
loads needed to be tested and the anti-gravity treadmill
was one way of achieving this. It enabled the collection
of multiple data points for varying speeds and gave a
broad spectrum of different loading conditions on the
joints. The treadmill comes with neoprene compression
shorts that ensure an airtight seal in the enclosure.
Air pressure lifts the participant off the treadmill floor,
controlled by the weight measured by load cells beneath
the floor. During the locomotive activities the researcher
changed randomly the bodyweight percentage (30%,
60%, 80%, 90%, 100 %, 110%) setting and the anti-
gravity treadmill would lift the participants according
to the percentage.

Another advantage of using the anti-gravity treadmill
was that it has an integrated force plate, albeit with a
sampling frequency somewhat lower that a biomechanics
laboratory walk-way force plate (128 Hz vs. > 500 Hz).
The low sampling frequency of the wearables (50 Hz)
required that we sampled many steps to obtain accurate
data. However, a walk-way force plate would only allow
one step to be recorded at a time. A treadmill was
therefore more appropriate as a validation tool. The
multiple steps recorded mitigates the reduced sampling
frequency, with averaging over many steps used here
instead of filtering a high frequency signal. Averaging
over a large number of steps allows us to obtain a
more accurate mean without smoothing problems from
filtering (Meyer et al. 2015).

The speed conditions (5, 8, 12 kmh−1) were chosen
to obtain a broad locomotive range from walking,
to jogging and then to running. Each trial lasted
90 seconds, with the smartphone, smartwatche, and
force plate data being collected simultaneously. The 90
second trials with a 60 second sampling window were
a pragmatic balance between obtaining accurate mean
values from the sensors and participant fatigue. Any

possible effects due to fatigue were further mitigated
by allowing a rest period between trials. The first 20
seconds of recording served as a period of habituation
and were discarded before the data were processed. The
next 60 seconds were used for data processing, while
the last 10 seconds of each trial were discarded to avoid
recording possible behaviour changes associated with
the trial ending.

2.2 Data processing

The data were processed using MATLAB (Version
R2016b, The Math Works®, Natick, MA).

If the infinitesimal calculus of the load rate is defined
as:

ḞL =
dFL

dt
= m

da

dt
, (1)

the estimated mean load rate magnitude is:

∣∣∣∣∣∆̂FL

∆t

∣∣∣∣∣ = 1

n− 1

n−1∑
j=1

m

√√√√ 3∑
i=1

(
ai,tj+1 − ai,tj

∆t

)2

(2)

where a1, a2, a3 are the acceleration in the x, y, z

directions and n the number of data samples at interval
∆t. With units of kgm s−3= Ns−1, this estimated mean
load rate magnitude was used for the remaining analyses
(m=meter, s=seconds, N= newton, kg=kilogram).

2.3 Linear regression models

A linear mixed regression model was chosen due to the
existence of hidden variables which were not measured
while collecting the data, such as anatomy, muscle
strength, and the style of the gait of the individuals.
The load rate data from the force plate was the response
variable, the data from the wearables, the predictor
variables, and the participants were all the grouping
variable.

The data were used to build three different linear
regression models. Model 1 (M1):

yM1
m,i = αWear + βWearxm,i︸ ︷︷ ︸

Fixed effect

(3)

is a linear model with fixed effects, considering only
the population’s average behaviour and ignoring the
between-subject variation in ambulatory activities.
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Model 2 (M2):

yM2
m,i = αWear + βWearxm,i︸ ︷︷ ︸

Fixed effect

+ ai︸︷︷︸
Random effect

(4)

is a linear mixed model with random intercept, which
assumes that the between-subject variation affects only
this random intercept. Model 3 (M3):

yM3
m,i = αWear + βWearxm,i︸ ︷︷ ︸

Fixed effect

+ ai + bixm,i︸ ︷︷ ︸
Random effect

(5)

is a linear mixed model with random intercept and slope,
allowing for the between-subject variation affecting both
the intercept and slope.

The estimated mean load rate magnitude (2) from the
force plate (the response variable) is ym,i for observation
m and participant i, αWear and βWear are the intercept
and slope of the estimated load rate of the wearables
(fixed effect predictor variables), and ai and bi are the
intercept and slope of each participant (random effect
predictor variables).

To obtain a better indication of uncertainty in our
models, the bootstrapping resampling method was used,
wherein vectors of the same sample length as the original
data are created by drawing, with replacement, random
observations from the original data set (Efron and
Tibshirani 1994). One thousand bootstrap vectors were
created and cross-validated (Hastie et al. 2001). For
every vector three models were built, Model 1, Model
2 and Model 3. For the three models, the R2 and root-
mean-squared error ratios (RMSER =

√
MSE

ȳforceplate
) were

calculated. Confidence intervals were based on the 1,000
bootstrap samples. Cross-validation has the advantage
that it provides a direct estimate of test errors.

2.4 Statistical analysis
A one-way ANOVA was used to determine if there
was a significant difference between the mean of the
bootstrapped R2 and RMSER values of Model 1, 2 and
3 followed by a pairwise comparison with the Bonferroni
correction (Bonferroni 1936). The Bonferroni correction
was used to include the effect of comparing multiple
groups. Hence, the desired p-value has to be divided by
the number of comparisons being conducted, and so a
value of α = 0.05/4 = 0.0125 was used for significance.
The R2 and RMSER values of each model were
normally distributed (p > 0.15). One-way ANOVA with
the Bonferroni correction was used to compare the
R2 values of the four different devices (Smartphone

1, Smartwatch 1, Smartphone 2, Smartwatch 2). For
comparing the devices with each other, α = 0.05/6 =

0.0083 was used for significance.
�

3 Results
Participants 1 to 11 completed all percentage
bodyweight trials at the three speeds mentioned above.
Participant 12, however, was only able to complete the
5kmh−1 and 8kmh−1 trials due to time restrictions.
Furthermore, the complete data from participant 1 and
the 5kmh−1 data from participant 2 were identified as
outliers and were removed. Therefore, a total of 186
trials were analysed.

The linear relationship between load rates from the
wearables and the load rates from the force plate can be
seen in Figures 1 and 2. The plots show all data points of
Smartphone 1 and Smartwatch 1 with linear regression
lines.

Figure 1. Whole dataset of all participants for Smartphone
1 with linear regression lines.

Figure 2. Whole dataset of all participants for Smartwatch
1 with linear regression lines.
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For both the R2 and RMSER values, 95% confidence
intervals were calculated (Table 1). The R2 values of
the three models for Smartphone 1 are R2

M1 = 0.600.710.48,
R2

M2 = 0.680.800.54 and R2
M3 = 0.710.810.60, demonstrating a

linear relationship exists for all models between
wearables and the force plate.

The one-way ANOVA showed that the three models
had a significant difference (p < 0.0001). The pairwise
comparison showed that Model 3 is the best choice.

For Model 3, Smartphone 1 the performances of
the models for the three different speed conditions are
R2

5km/h = 0.860.930.76, R2
8km/h = 0.740.900.52, and R2

12km/h =

0.770.900.56, (see Table 2).
The R2 values of the four devices were (all for

Model 3): R2
SP1 = 0.790.870.69, R2

SP2 = 0.780.870.66, R2
SW1 =

0.750.860.62, R2
SW2 = 0.770.870.66 (Table 3). The R2 values

of each model and device were normally distributed
(Kolmogorov-Smirnov, p5km/h = 0.89, p8km/h = 0.28,
p12km/h = 0.81).

The one-way ANOVA showed that there was a sig-
nificant difference (p < 0.0001). And the pairwise com-
parison showed that just Smartwatch 1 was significantly
different (p < 0.0001, α = 0.05/6 = 0.0083).

The data for this current study are available on
Github (Nazirizadeh et al. 2017).

4 Discussion
The present findings show R2-values between 0.28−
0.86 for force plate and wearable estimates of load
rate data while the participants performed locomotive
activities on an anti-gravity treadmill. In this section,
the different models (Model 1, Model 2, Model 3),
the models with different speed conditions (5kmh−1,
8kmh−1, 12kmh−1), and the difference between the
wearables on different body parts are discussed.

In Figures 1 and 2 the linear regression lines for
walking have a higher slope than the slopes of the
jogging or running data. Looking in detail at the slope of
the walking data, the wearables seem to underestimate
the load rate in comparison to the force plate. This
indicates that wearables might slightly underestimate
the load rate for low-intensity activities. For jogging and
running, however, it seems that the wearables mostly
overestimated the load rate data in comparison to
the force plate data. This speed-dependent relationship
highlights that, although data from wearables might
be used as a surrogate for ground reaction data,
it is not a direct replacement. This information is

important if future applications are being developed.
For each activity, a dedicated model might lead to better
predictions.

To assess the validation of load rate estimated with
wearables against the force plate during locomotive
activities two linear mixed regression models and a
linear regression model were developed. A one-way
ANOVA showed that all models were significantly
different from each other (p < 0.0001). The pairwise
comparison helped to identify the best model, which
was Model 3. The difference between Model 1
and Model 3 was the highest with ∆R2

M3,M1 =

0.11, ∆RMSERM3,M1 = −0.031. Hence, knowing that
Model 3 had the highest R2 and lowest RMSER
values would lead to the decision that Model 3
(R2

M3 = 0.710.810.60) is the best performing model. Model
3 included, in comparison to Model 1, random
slope and intercept effects, which takes into account
unknown participant-specific characteristics, such as
muscle structure, skeletal structure, or participant
height, all of which are hidden variables for the model.
To examine a simpler model, the random slope of Model
3 was excluded: i.e., Model 2 with a fixed effect and a
random intercept, which led to a lower R2

M2 = 0.680.800.54.
Therefore, Model 2 implies that different participants
did, indeed, have hidden variables which, in turn,
influenced the slope and intercept of the function.
Nevertheless, the improvement of Model 3 over Model 2
was small, with ∆R2

M3,M2 = 0.080.
It was essential to consider Model 1 (R2

M1 = 0.600.710.48),
with just fixed effects, to be able to develop a
baseline model. Adding random slope and intercept
effects creates a more accurate model but with the
disadvantage of being a less generalisable model.
Neugebauer et al. (2014) also created linear mixed
models for their analysis, which were in comparison
to the models in this study much more complex.
They considered the predictor variables: acceleration,
participant mass, type of activity (walk=0, run=1),
and interaction between acceleration data and type of
activity. This complex model yielded a small absolute
error value of 8.3%, where the type of activity had
the most significance in the model. This led to the
decision to conduct further analysis considering the
speed condition (5kmh−1, 8kmh−1 and 12kmh−1) to
be able to compare the model from Neugebauer et al.
(2014) with Model 3 in this study.

When comparing the different speed conditions
recorded with Smartphone 1, it can be seen that
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Device Model 1 Model 2 Model 3
SP1 - R2 0.600.710.48 0.680.800.54 0.710.810.60

SP1 - RMSER 0.210.240.18 0.190.220.15 0.180.210.15

SW1 - R2 0.600.700.48 0.630.740.49 0.670.780.55

SW1 - RMSER 0.210.240.19 0.200.240.17 0.190.220.16

Table 1. R2
Model and RMSER values, +

− 95% confidence intervals for all participants using all of the smartphone and
smartwatch data which was collected. All differences in the models were significant (p < 0.0001, α = 0.05/4 = 0.0125)

Speed Model 1 Model 2 Model 3
5kmh−1 0.510.690.29 0.830.900.72 0.860.930.76

8kmh−1 0.400.620.21 0.690.830.53 0.740.900.52

12kmh−1 0.280.540.02 0.470.770.13 0.770.900.56

Table 2. R2
speed values, +

− 95% confidence intervals for each speed for Smartphone 1 (between the shoulder blades).

Device (location) Model 1 Model 2 Model 3
SP1 (between shoulder blades) 0.650.770.51 0.760.860.65 0.790.870.69

SW1 (right wrist) 0.640.750.52 0.700.800.56 0.750.860.62

SP2 (right hip) 0.750.850.62 0.770.870.62 0.780.870.66

SW2 (left wrist) 0.690.800.56 0.750.840.62 0.770.870.66

Table 3. R2
speed values, +

− 95% confidence intervals for the devices at different body locations (for 6 participants).
Smartwatch 1 had a significant different mean (p < 0.0001, α = 0.05/4 = 0.0125)

for Model 3 the R2 values do not vary substantially
(R2

5km/h = 0.860.930.76, R2
8km/h = 0.740.900.52, and R2

12km/h =

0.770.900.56, Table 2). The R2 value for the 5kmh−1,
however, was the highest. This implies that the model
was suited to monitoring people using wearables at
varying speeds: e.g. covering the range of people with
a slower gait to people with faster gaits. Knowing
the speed of the locomotive activity increases the
R2 substantially and yields similar results to those
of Neugebauer et al. (2014). However, Model 3 is
less complex and has just one prediction variable
(load rate estimated by wearables) and one grouping
variable (participant), which leads to a direct relation
between load rate estimated by wearables and load rate
estimated by force plates.

When comparing the wearables (Smartphone 1,
Smartwatch 1, Smartphone 2, Smartwatch 2) attached
to different body parts, all devices had very similar
R2 values (R2

SP1 = 0.790.870.69, R2
SP2 = 0.780.870.66, R2

SW1 =

0.750.860.62, R2
SW2 = 0.770.870.66, Model 3 results, see Table

3). However, the pairwise comparison showed that
Smartwatch 1 differed from the other three devices (α =

0.05/6 = 0.0083). Smartwatch 1 was on the right wrist,
which most often deviated from a consistent motion

(for actions such as stroking one’s hair, looking at the
smartwatch, or gesticulating). These results imply that
the suitability of wearables as a surrogate for ground
reaction load is largely independent of location on the
body. However, the authors propose that for further
research, the non-dominant wrist of the participant is
used to avoid confounders. Also, it is suggested that
between the shoulder blades and the right hip are
suitable locations future studies.

The comparison between the three models may help
other researchers understand the generalisability of
the methods used in the present study. Neugebauer
et al. (2014) used a complex generalised regression
model, which included acceleration, weight, type of
activity and the interaction between the type of activity
and acceleration. The generalisation of their model
is difficult due to its complexity. The models used
here are kept as simple as possible. Hence, the load
rates estimated with the wearables and force plate are
directly related to the models. Another finding was that
knowing the speed of the activity increased the quality-
of-fit. Considering the speed led to similar results to
Neugebauer et al. (2014), which included the ‘type of
locomotion (walk or run). However, including the speed
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in the model makes the model less general, hence, less
useful for monitoring everyday living.

Another added complexity of the models of Meyer
et al. (2015) and Neugebauer et al. (2014) is, unlike
load rate estimation, the requirement for an algorithm
to identify peak accelerations (which may also lead to
errors when analysing noisy signals).

A major limitation of the four previous validation
studies (Meyer et al. 2015; Neugebauer et al. 2014;
Hollville et al. 2016; Wundersitz et al. 2013) is that all
force plates were placed in the middle of the laboratory,
thereby giving the participants between 10-15 meters
to perform the activities. Except for Hollville et al.
(2016), who used six force plates, all other studies used
one force plate in the middle of the room. One force
plate means that, for each trial, data for just one step
was available. Hollville et al. (2016) and Wundersitz
et al. (2013) repeated their trials around six to seven
times to obtain a better estimate of the uncertainty.
The force plate integrated treadmill, on the other hand,
generated data for every step over the 60 s sampling
time. A better estimate of uncertainty in the data could
therefore be made. Furthermore, with the treadmill, a
period of habituation for 20 s of walking, jogging or
running was possible during each trial, which would not
have been possible if the participants just had 10-15 m

in which to do the activities. Additionally, to obtain
a better estimate of the uncertainties in the models,
bootstrapping and cross-validation were used.

4.1 Limitations
One of the weaknesses of this study was the limited
number of participants. A larger number of participants
would have been desirable but, due to restricted time at
the facility, the number was kept to 12 participants.

The lower limb has in some sense been treated as a
single segment, rather than a complex chain of joints,
whose interactions might vary based on age, strength,
gender or predisposing conditions.

Participants’ trainers (shoes) were not standardised,
which could be a confounder as they have different
absorption properties.

One limitation was the number of wearables attached
to the participants. A great number would have given
a better understanding of the position of the wearables
on the participants’ bodies and how they affect the load
rate data.

Improved R2 and RMSER values might have been
achieved with more participants and higher sampling

rates (the on-board sensor sampling rates of wearables
continue to improve with the development of the
technology).

There are studies showing that a force measuring
treadmill produces noise due to the treadmill (Dierick
et al. 2004). This was not included in the analysis and
might be a limitation of the study.

5 Conclusion
Smartphones appear to provide an acceptable level
of accuracy for estimating load rate on the lower
limbs during locomotive activities on a treadmill. The
best model was Model 3 with 71% validity. The term
‘acceptable’ is warranted because the correlation found
between load rate data from the wearables and the force
plate can be described as a “high positive correlation”
from the guidelines of Hinkle et al. (2003). The present
results may, therefore, be considered as positive. The
models’ validity was high for varying speeds. Therefore,
it is suitable for a range of activities, from everyday to
the athletic.

These positive results support further research in
using wearables to estimate load rate, which may lead
to a progressive development in healthcare and the self-
management of arthritis and exercise. Wearables with
load rate estimation may provide an easy, objective,
and cost-effective method for people to measure their
activity concerning the load on their joints during daily
activities.

6 Declaration

6.1 Conflict of Interest
The Authors declare that there is no conflict of interest.

6.2 Funding
The maintenance and university fees of the PhD student
was partially funded by the Arthritis Research UK
Centre for Sport, Exercise and Osteoarthritis (Grant
reference 20194).

6.3 Guarantor
SN

6.4 Contributorship
SN and AF designed the study, carried out the study and
data analysis, and drafted and edited the manuscript.

Prepared using sagej.cls



Nazirizadeh et al. 9

MS helped in the design of the study, reviewing
the data and editing the manuscript. NA helped in
designing the study and reviewing the manuscript. All
authors reviewed and approved the final version of the
manuscript

6.5 Acknowledgements

The authors thank the participants for their time, Mo
Gimpel (Director of Medical & Science Performance
Support Southampton Football Club) for providing
access to the anti-gravity treadmill, and Arthritis
Research UK for funding the PhD student.

References

Barrett S, Midgley A and Lovell R. (2014) PlayerLoad™:
Reliability, convergent validity, and influence of unit
position during treadmill running. Int J Sports Physiol
Perform. 9(6):945-52.

Bassett Jr DR, Rowlands AV, Trost SG (2012). Calibration
and validation of wearable monitors. Med Sci Sports
Exerc, 44(1 Suppl 1):S32.

Bonferroni C E (1936). Teoria statistica delle classi e calcolo
delle probabilita. Libreria internazionale Seeber.

J Boyd L J, Ball K, and Aughey R (2011). The Reliability
of MinimaxX Accelerometers for Measuring Physical
Activity in Australian Football. International journal of
sports physiology and performance, 6:311-21.

Chen B and Bates BT. (2000) Comparison of F-scan insole
and AMTI force plate system in measuring vertical
ground reaction force during gait. Theory Pract; 3985:
45-53

Consolvo S, Everitt K, Smith I, and Landay J A (2006).
Design requirements for technologies that encourage
physical activity. In Proceedings of the SIGCHI
conference on Human Factors in computing systems,
457–466. ACM

Daoud AI, Geissler GJ, Wang F, et al. (2012) Lieberman
DE. Foot strike and injury rates in endurance runners: a
retrospective study. Med Sci Sports Exerc. 1;44(7):1325-
34.

Dierick F, Penta M, Renaut D et al.(2004) A force measuring
treadmill in clinical gait analysis. Gait & posture,
20(3):299-303.

Efron B and Tibshirani RJ. (1994) An introduction to the
bootstrap. CRC press; p. 168-176.

Gabbett T, Jenkins D and Abernethy B. (2010) Physical
collisions and injury during professional rugby league
skills training. J Sci Med Sport, 13(6):578-583.

Hastie T, Tibshirani R and Friedman J. (2001) Model
assessment and selection. In: The elements of statistical
learning, Springer New York; p. 193-224.

Hollville, E., Couturier, A., Guilhem, G., and Rabita, G.
(2016). Minimaxx player load as an index of the center
of mass displacement? a validation study. In ISBS-
Conference Proceedings Archive, volume 33.

Hinkle D E, Wiersma W, and Jurs S G (2003). Applied
statistics for the behavioral sciences.

Item-Glatthorn J F, Casartelli N C, Petrich-Munzinger J,
Munzinger U K, and Maffiuletti N A (2012). Validity of
the intelligent device for energy expenditure and activity
accelerometry system for quantitative gait analysis in
patients with hip osteoarthritis. Arch Phys Med Rehabil.
93(11):2090–2093.

Koch M, Lunde LK, Ernst M, et al. (2016) Validity and
reliability of pressure-measurement insoles for vertical
ground reaction force assessment in field situations. Appl
Ergon ; 53: 33-51

Lee JM, 2013. Validity of consumer-based physical activity
monitors and calibration of smartphone for prediction of
physical activity energy expenditure.

Litwic A, Edwards MH, Dennison EM, et al. (2013)
Epidemiology and burden of osteoarthritis. Br Med Bull.
1;105(1):185-99.

Meyer U, Ernst D, Schott S, Riera C, Hattendorf J,
Romkes J, Granacher U, Göpfert B, and Kriemler S
(2015). Validation of two accelerometers to deter- mine
mechanical loading of physical activities in children. J
Sports Sci, 33(16):1702–1709.

Milner CE, Ferber R, Pollard CD, et al. (2006)
Biomechanical factors associated with tibial stress
fracture in female runners. Med Sci Sports Exerc.
1;38(2):323.

National Research Council (2001). Musculoskeletal disorders
and the workplace: low back and upper extremities.
Number p. 219. National Academies Press.

Nazirizadeh S, Stokes M, Forrester A, et al (2017) Data
from: Wearable technology for load rate monitoring
during physical activity. Github. See https://github.
com/susannazirizadeh/Data.git

Neugebauer J M, Collins K H, and Hawkins D A (2014).
Ground reaction force estimates from actigraph gt3x+
hip accelerations. PloS one, 9(6):e99023.

Prepared using sagej.cls

https://github.com/susannazirizadeh/Data.git
https://github.com/susannazirizadeh/Data.git


10 Journal of Rehabilitation and Assistive Technologies Engineering XX(X)

Silva M, Shepherd E F, Jackson W O, Dorey F J,
and Schmalzried T P (2002). Average patient walking
activity approaches 2 million cycles per year: pedometers
under-record walking activity. J Arthroplasty, 17(6):693–
697.

Wundersitz D W, Netto K J, Aisbett B, and Gastin
P B (2013). Validity of an upper-body-mounted
accelerometer to measure peak vertical and resultant
force during running and change-of-direction tasks.
Sports Biomech, 12(4):403–412.

Prepared using sagej.cls


	1 Introduction
	1.1 Background
	1.2 Load rate and its effects
	1.3 Estimating load rate using accelerometers

	2 Methods
	2.1 Data collection
	2.2 Data processing
	2.3 Linear regression models
	2.4 Statistical analysis

	3 Results
	4 Discussion
	4.1 Limitations

	5 Conclusion
	6 Declaration
	6.1 Conflict of Interest
	6.2 Funding
	6.3 Guarantor
	6.4 Contributorship
	6.5 Acknowledgements


