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ABSTRACT: The superradiant instability modes of ultralight massive vector bosons are
studied for weakly charged rotating black holes in Einstein-Maxwell gravity (the Kerr—
Newman solution) and low-energy heterotic string theory (the Kerr—Sen black hole). We
show that in both these cases, the corresponding massive vector (Proca) equations can be
fully separated, exploiting the hidden symmetry present in these spacetimes. The resultant
ordinary differential equations are solved numerically to find the most unstable modes of
the Proca field in the two backgrounds and compared to the vacuum (Kerr black hole) case.
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1 Introduction

Ultralight bosons feature in many different extensions of the standard model, such as string
theory [1], and provide compelling candidates for explaining dark matter [2]. One particular
model for these ultralight bosons is a massive spin-1 particle known as the Proca field.
Considered first by Proca [3] as a way to understand short-range nuclear forces in flat
spacetime (see also [4, 5]), the Proca equation is presently an integral part of the Standard
Model where it is used for describing the massive spin-1 Z and W bosons, as well can be
generalized to curved spacetime, e.g. [6].

Although direct detection of dark matter proves to be very difficult, recently a new
line of investigation has opened up with a flurry of papers considering the interplay of
these ultralight bosons and superradiance from black holes [7—12|. In particular, it has been
shown that the instabilities from these superradiant modes can, in principle, be used to
detect beyond Standard Model particles [7] and put bounds on the potential masses of dark
matter candidates, e.g. [9]. For example, in the LIGO/LISA era ultralight bosons and
superradiance can leave signatures in the signals of detected gravitational waves [8, 13—15];
see [12] for the most recent fully relativistic calculation of the gravitational wave signals. The
first step to studying these instabilities is to consider test fields on a background spacetime.
Naturally, almost all the previous studies have focused on, likely the most astrophysically
relevant, rotating black hole of Einstein’s general relativity — the Kerr black hole solution.

However, taking seriously the low energy limits of string theory leads to new kinds of
black holes, and, if one is extending the Standard Model to include ultralight bosons it is
a natural question to ask how the superradiant instabilities generated by these particles
are modified by extensions to general relativity.Such extensions lead to black holes that
typically carry extra fields and charges. In the astrophysical D = 4 dimensions the Kerr—
Sen geometry [16] arises from the low energy limit of heterotic string theory. It represents a



black hole with mass M and U(1) charge @ and contains two extra background fields; the
scalar dilaton ® and the 3-form H. In the limit that these two fields vanish the spacetime
reduces to the Kerr black hole. On the other hand, this spacetime should be compared to
the Kerr-Newman solution [17] which is the unique stationary black hole solution to the
Einstein equations with U(1) charge (it can also be understood as a solution of N = 2,
D = 4 supergravity). Both Kerr-Newman and Kerr—Sen black holes are stationary and
axisymmetric spacetimes, possessing two Killing vectors which aid in understanding the
behaviour of test fields in these backgrounds. In the Kerr-Newman case there exists an
additional hidden symmetry of the principal Killing—Yano tensor which gives rise to Carter’s
constant for charged geodesics [18|. For the Kerr—Sen spacetime only a generalized principal
tensor with torsion exists which is a weaker but still rather useful structure [19].

The aim of this paper is to study the superradiant instabilities of the Kerr—Sen and
Kerr—Newman black holes, as triggered by the ultralight massive bosons. These are well
understood in the case of massive scalar fields, see [20] and [21], but the corresponding study
for massive vectors is currently missing. The reason is simple. Even for vacuum (Kerr)
black holes, the corresponding Proca equations are rather complicated partial differential
equations whose direct decoupling and separation a la Teukolsky [22, 23] does not work due
to the presence of the mass term [24, 25]. As a consequence the problem was investigated
either using approximations |9, 24, 25| or employing serious numerical analysis [10, 26, 27].

However, a separability renaissance for vector fields has begun in the last couple of years
due to a new ansatz by Lunin [28]. Simplified and written in covariant form by Frolov—
Krtous—Kubiznak [29, 30|, the new ansatz works for the massive vector field case [31] and
can be applied in the Kerr-NUT—-AdS spacetimes for all dimensions. Importantly the
Lunin—Frolov—Krtous—Kubizndk (LFKK) ansatz exploits the existence of hidden symme-
tries in these spacetimes which are encoded in the principal tensor [18] and allows the Proca
equations to be decoupled and separated into ordinary differential equations [31]. In four
dimensions, the separation equally applies to the non-accelerating electro-vacuum type D
Plebaniski-Demiariski spacetimes and thence to the Kerr-Newman black holes.!

More recently, the LFKK ansatz has been applied to study the Proca equations in the
background of the Chong—Cveti¢—Lii—Pope black hole of D = 5 minimal gauged supergrav-
ity [35] where, as for Kerr—Sen, the principal tensor must be generalized to the case with
torsion and is a weaker construction [36, 37|. In this case, the torsion is naturally identified
with the Maxwell 3-form present in the spacetime, and both the principal tensor and the
Proca equations pick up a corresponding torsion modification. Despite these significant dif-
ferences, the LFKK ansatz still applies and the (torsion) modified Proca equations decouple
and separate [38].

In this work, we will apply the LFKK ansatz to separate the Proca equations in the
Kerr—Sen black hole background. Similar to the black hole of minimal gauged supergravity,
the corresponding Proca equations have to be modified by the presence of torsion, now
naturally identified with the 3-form field H. To account for the dilaton field ®, we work in

!See [31-33] for further discussions of the LFKK ansatz in four dimensions, and [34] for an alternative
way of separating the Maxwell equations in the Wahlquist metrics.



the string frame. The corresponding unstable superradiant modes are studied numerically,
and compared to those of the Kerr-Newman spacetime. We do so in an astrophysically
viable situation where the black holes are fast spinning (close to extremal) and weakly
charged [39, 40].

The paper is organized as follows. In Sec. 2 we review and compare the Kerr—-Newman
and Kerr—Sen spacetimes, and discuss their symmetries and extremality. In Sec. 3 we discus
how the Proca equation is modified by the presence of the dilaton ® and the 3-form H,
and present the separated equations (a full derivation of which may be found in App. A).
In Sec. 4 we numerically investigate the separated equations and visualize the behaviour of
the most unstable superradiant modes. We conclude in Sec. 5.

2 Kerr—Sen and Kerr—Newman black holes

In this section we present the Kerr—Sen and the Kerr-Newman metrics, the background
spacetimes in which we will study the instability modes of the Proca equation. The two
metrics we consider both describe rotating and charged black hole spacetimes, however
there are some key differences in the Kerr—Sen case due to modifications of general relativity
coming from the low energy heterotic string theory effective action.

Kerr—Newman geometry

The Kerr-Newman solution [17] is the most general solution of the Einstein-Maxwell equa-
tions for an asymptotically flat, stationary and axisymmetric black hole. Its line element
and vector potential read:

A 2 : 29 2
ds? = — ?(dt - asin29d¢)2 + %er + 51;12 adt — (r* + a®)de| + p°d?,
A=— Q—g(dt — asin*0dg), (2.1)
p
where
p? =12 +a*cos?’0, A=r>—2Mr+ad®+Q%. (2.2)

The solution describes a black hole with mass M, charge @), angular momentum J = Ma,
and a magnetic dipole moment py = Qa. The metric possesses a curvature singularity at
p? = 0, which is protected by an event horizon at r = r, = M + \/M? — a2? — Q2 provided
that a® + Q% < M?2. In the case where the equality holds we have an extremal black hole.
The rotation of the black hole causes inertial frame dragging whose extreme manifestation
is the existence of the ergosphere, for ry < r < re = M 4+ /M2 — Q2 — a2cos2 . In this
region the time-like vector d; becomes null and therefore any massive particle must rotate.

It is this region that leads to superradiant emission and is responsible for the instability
modes for perturbations on this spacetime.
The black hole horizon rotates with angular velocity

Jto a
Qp=-—""F=———, 2.3
9éo 7’3_ + a? ( )



and can be assigned the following Hawking temperature, entropy, and electrostatic poten-
tial:

A'(ry) r —a® - Q? 2 2 Qry
Ty = = S = ) = . 2.4
H r2 +a®  Arri(r? +a?)’ Tl a), ou r? + a? (24)
These quantities satisfy the first law of black hole thermodynamics
OM =TygdéS + QuoJ + ¢gdQ, (2.5)

as well as the associated Smarr relation, M = 2(TyS + QpJ) + @ .

The Kerr-Newman metric admits a hidden symmetry of the principal tensor (PT),
which is a non-degenerate closed conformal Killing—Yano 2-form h, obeying the following
equation [18|:

1
Vehay = gealp — 9evba, &£ = gvchca . (26)

It is this tensor that underlies the separation of variables in the Proca equation. It explicitly
reads as follows

h=r(dt — asin®0d¢) A dr — a cosO[adt — (r* + a*)d¢| Adcosf, (2.7)
and gives rise to the associated Killing tensor
1
Kap = hachcb - §gabh2 ) (28)

which generates the generalized Carter’s constant for charged geodesics. It also yields the
two independent isometries of the spacetime: ¢ in (2.6) and n* = K¢, [18].

Kerr—Sen geometry

The Kerr—Sen black black hole [16] is an exact classical solution of the low-energy effective
theory describing heterotic string theory given by the following action:

1 1
S / dzt /=g e?® <R + g%, 90,® — Fop F%* — — abcH“*’C) , (2.9)

~ 167 12

where g,; represents the metric in the string frame, ® is the dilaton field, F' = dA is the
Maxwell field strength, and H = dB — 2A A F' is a 3-form defined in terms of the vector
potential A and a 2-form potential B.2 The action is invariant under a U(1) transformation
A — A+dA\ provided we also send B — B+2AF and the corresponding equations of motion
for the background fields A and H are,

Ve e®(Fap — Hape A9 =0, V(e Hype) = 0. (2.10)

These will be important in section 3 where we motivate a generalization of the Proca
equation to this background. The full set of equations of motion is supplemented by the
Einstein and dilaton equations. Since these will not play any role in the further discussion
we do not write them here explicitly and refer the interested reader to for example [19].

2Note that we have rescaled the vector potential A — 2v/24 so that the Maxwell Lagrangian has the
canonical prefactor [16].



In any case, the Kerr-Sen metric in the standard Boyer—Lindquist-type coordinates and
the string frame reads [16, 19, 41]:

A 2 : 20 2
ds?=e~*{ == (at - asin0do)” + Loar? + = adt — (12 + 207 + a?)dg| + pRa6?
oy Ay Py
2b 2
B= —QT a sin?0dt A dy, A:—Q—;e_q)(dt —a Sin20d¢) . e = p—z, (2.11)
Ph p Py
where the metric functions are given by
p? =12 +acos?0, pi=p°+2br, Ap=1>—2(M —b)r+ad>. (2.12)
The 3-form H reads
2b
H = -2 dt ndg A [(r? = a? cos0) sin0 dr — rA,sin 2046 (2.13)
Py

Note that, the transformation g,, — €®gqp can be performed to go from the string frame
to the Einstein frame. Our choice for the string frame is guided by the fact that, in the
context of separability, the string frame seems to be more fundamental than the Einstein
one, as are the hidden symmetries present in the Kerr—Sen spacetime, see [19].

As mentioned in the introduction, the solution describes a black hole with mass M,

U(1) charge [16] 3

1 P
= — *(F—A-H 2.14
47[_ Sgo € ( ) I ( )
angular momentum J = Ma, and magnetic dipole moment p, = Qa. When the ‘twist
parameter’
Q2
h= < 2.15
i (2.15)

is set to zero, the solution reduces to the Kerr geometry. The horizon of the Kerr—Sen black
hole is located at r = 1. = M — b+ /(M — b)? — a® when the inequality M — b > |a|
holds. As in the Kerr-Newmann case the ergosphere is present and responsible for the
instability modes but it is now located at r1 <7 < re = M — b+ /(M — b)2 — a2 cos? 0.
Moreover, the Kerr-Sen black hole also obeys the first law, (2.5), where now the (Einstein

frame) thermodynamic quantities are given by

Y N SO L
r2 +2bry +a?’ r? 4+ 2bry +a?’
7’3_02 2 2
Ty = S:W(r++2br++a). (216)

4y (rd 4 2bry +a?)’

The spacetime no longer possesses the hidden symmetry of the principal tensor. How-
ever, as shown in [43] a weaker structure of the principal tensor with torsion exists [36].

3That this is the conserved charge of the system follows from the equation of motion (2.10) for F. See
for instance [42] for an explict calculation of the charges in the Kerr—Sen spacetime.



This is a non-degenerate closed conformal Killing—Yano tensor with torsion, obeying the
following generalization of Eq. (2.6):

1
vz—‘hab = gca&; - gcbga ) ga = nghca . (217)
Here, the covariant derivative with torsion is defined as
1 1
ngbmc... - vaMbmc.‘. + 5TbadMg + ... = deachmd.,. +..

and the torsion is simply identified [43| with the 3-form H, (2.13),
Tape = Hape - (2.18)
More explicitly we have
h=e % |r(dt — asin®0de) A dr — acosf[adt — (r? + 2br + a2)d¢] A d cos 9] . (219

Despite being a weaker structure, the principal tensor with torsion still gives rise to stan-
dard Killing tensor, via (2.8). However, the isometries of the spacetime are no longer
straightforwardly generated from h [43].

3 Separability of Proca equations

In this section we present the form of the Proca equations in the Kerr-Newmann geom-
etry and motivate how this changes for the Kerr—Sen case. We then outline our ansatz
and resulting separated equations using the (generalized) hidden symmetries of these two
spacetimes. The full details of the calculation for the Kerr—Sen spacetime can be found in
appendix A.

Proca in Kerr-Newman spacetime

In curved spacetime and in the absence of sources, the standard Proca equation reads

VoF® —m?Pb =0, (3.1)

where m stands for the mass of the particle and the the field strength F is defined in terms
of the massive U(1) vector field P in a standard way, Fa, = VP, — V3 P,. Due to the
presence of mass term, there is no longer gauge invariance, however (3.1) automatically
implies the “Lorenz condition”

V.P*=0. (3.2)

The separability of the Proca equation in the Kerr-Newmann background was demon-
strated in [31] (the Kerr-Newman metric is a special case of the D = 4 canonical metric for
which the separability was shown there). Let us briefly recapitulate this result. The key
step is to use the LFKK ansatz [28-31] for the gauge field P,

P* = B®V,Z | (3.3)



where B is the polarization tensor (not to be confused with the 2-form potential B appearing
in the definition of H), which can be covariantly written in terms of the metric and the
principal tensor h, (2.7), as

B®(goe + ipthye) = 62, (3.4)

where 1 is a separation constant. The function Z assumes the standard multiplicative
separation form,

Z = R(r) 5(f) e™Me? g7t (3.5)

where my and w are the eigenvalues of i0; and —ids. Note that ¢ has period 2w, and
regularity of the spherical harmonics S(6) e™+? requires that m, € Z.

With this ansatz, the Proca equation (3.1) reduces to two differential equations in r
and 6, respectively, which only couple to each other via their dependence on the Killing
parameters {w, my}, the separation constant i, the Proca mass parameter m, and the black
hole parameters {M, @, a}.* These equations take the explicit form

d [AdR K2 2—-qg.0 m?
dr [qr dr] |:AQ7" @ p MQ]R v (3.62)
1 d |[sinfdS K} 2—qo m?

— —| - ———|5=0, 3.6b
Sin9d9[ ] [qesin29+ G noop (3.6b)

q9 db

where
K, =amg— (a*+r®)w, Kg=my—aw sin?0,
@ =1+ p%?, qp=1—p*a®cos? 6, (3.7)
o=ap?(mg —aw) +w.

The demonstrated separation depends crucially on the existence of the principal tensor
in a number of ways. First, the separation occurs in geometrically preferred coordinates
determined by the principal tensor — coordinates r and cos @ are related to the eigenvalues of
the principal tensor, e.g. [18]. Second, the principal tensor explicitly enters the separation
ansatz (3.3) via the polarization tensor (3.4). Third, the principal tensor gives rise to a
complete set of mutually commuting operators that guarantee this separability [29, 34, 43].
Namely, apart from the (trivial) ones connected with Killing vectors, the following two (2nd
order) operators directly link to the separation ansatz:

G =Va(g®Vy) — 2iuVeg™Vy, K = Vu(K®V,) — 2iuV, K%V, (3.8)
where K is the Killing tensor (2.8) and V¢ = &,B%, see App. A for more details.

Generalized Proca in Kerr—Sen spacetime

Test fields in the Kerr—Sen background naturally pick up modifications due to the presence
of background fields ¢, A, and H, see for example [19, 36, 44] for a modification of the Dirac

*In the actual separation, it is advantageous to first concentrate on the Lorenz condition (3.2). This
already yields the resultant separated equations, but contains an arbitrary new separation constant. This
constant is then fixed in terms of the mass m and the separation constant p by using the full Proca equation
(3.1), we refer to refs. [29, 31, 38] and App. A for more details.



equation. To motivate the generalized Proca equation, we assume that the massive vector
field P couples to the background fields ® and H in analogy to the massless Maxwell field
already present in the Kerr—Sen action (2.9). As in [38], we also demand that the modified
Proca is linear in P, reduces to the Proca equation in the absence of the background fields,
and obeys current conservation in the presence of sources.

It follows that there are two key modifications to the Proca equation in the Kerr—Sen
background. First, in the string frame the dilaton enters the field equation

Ve (e?FL) —m?e® P, =0. (3.9)
Second, the 3-form Hgp. = Type contributes to the field strength in a torsion-like fashion
’F:Zb = <dTP)ab = van - VbPa - PCHcab 5 (310)

where d” is the torsion generalization of the exterior derivative, d! = VA .> With this
definition and using the equation of motion for H, (2.10), the Proca field equation (3.9)
takes the same form as the equation of motion of the Maxwell field with the addition of the
standard mass term. (3.9) also implies a modified “Lorenz condition”

Va(e®?P¥) =0. (3.12)

To separate the generalized Proca equation (3.9) in the Kerr—Sen background we exploit
the same machinery as for the Kerr—Newman case, with the only difference that the principal
tensor (2.7) is now replaced with the principal tensor with torsion (2.19). Upon this, the
LFKK ansatz (3.3) continues to work, see App. A, and we recover the following separated

equations:
d [AydR K2 2—gqg.0 m? 4dbrwpu
— | == L - = 3.13
d?“[qr dr] [Abqur 2 u e g |0 (3132)
1 d [sinfdS K} 2—qypo mz]
-— —| = ———15=0, 3.13b
sin @ d6 [ Qo dﬁ] [q@ sin29+ qg pooop? ( )
where

K, =amg— (a®>+r% 4+ 2rb)w, Ky= me — aw sin 6,
o =1+p%r?, qo=1-p2a%cos®0, (3.14)
o= ap® (my — aw) +w,
which are to be compared to the Proca equations in the Kerr-Newman spacetime (3.6),
and upon setting b = 0 reduce to the those in the Kerr spacetime. Note that the angular

equation in all three cases is exactly the same, while the radial one picks up some small
modifications.

5Note that of the 3 possible generalizations of the ‘Maxwell operator’ V - dP:
01=V-(d"P), O;3=V"-dP, 03=V"-(d"P), (3.11)

it is only the first one which obeys the current conservation equation and (upon including the dilatonic
modification) consequently appears in (3.9).



Similar to the Kerr—Newman case, the separability is underlain by a complete set of
mutually commuting symmetry operators, one of which is constructed from the generalized
principal tensor,

§=e" 2V, (V) — 2iuV,g®V,, K = e PV, (e?K®V,) — 2iuV, KV,  (3.15)

see App. A for more details.

Now that we have presented and separated the Proca equations for the Kerr—-Newman
and Kerr—Sen black holes we can turn to studying the consequences for the instabilities of
the massive vector field.

4 TUnstable modes

Numerics: formulation of the problem

Let us now present our numerical results for finding the most unstable modes of the Proca
equation in the three backgrounds. We need to solve numerically the Proca coupled pair
of (radial and angular) ODEs (3.6) for the Kerr-Newman black hole and (3.13) for the
Kerr—Sen black hole; the results for the Kerr black hole are obtained by setting Q = 0 in
these equations.

Using A(ry) = 0 (for Kerr—-Newman) or Ay(ry) = 0 (for Kerr—Sen) we can replace the
mass M by the outer horizon radius parameter ro. We then find it convenient to work with
a compact radial coordinate y € [0, 1] and with a new polar coordinate x € [0, 1] related to
the standard coordinates r, 60 of (2.1) and (2.11) by
_ ™+
=1

r cosf =2z —1. (4.1)
Note that the horizon is located at y = 0 and asymptotic infinity is at y = 1. For numerics
it is also convenient to work with the dimensionless quantities {a = a/r , Q=0Q [T+, m =
mry,w=wry, = pry} (although our final results will be presented in mass units, i.e.
in terms of the dimensionless quantities (4.6) below). In this setting, we have two unknown
functions R(y) and S(z) whose equations have to be solved subject to appropriate physical
boundary conditions®.

We are particularly interested in searching for unstable modes as these determine the
signatures of the Proca fields in gravitational wave signals. These modes have frequencies
whose real part is smaller than the potential barrier height set by the Proca field mass,
Re(w) < m. A Frobenius analysis at asymptotic infinity y = 1 then indicates that unstable

modes must decay as

22 (7712 ~2)

e 1—y2 (1 _y2)27 where X = i(l _’_62 +@2)

R ~
}y—)l m2 — w2

Here, we have already imposed a boundary condition that eliminates a solution that grows
unbounded at infinity as eVm? =&/ (1=y?)

SFor a systematic and detailed discussion of regularity of perturbations and associated boundary condi-
tions, we invite the reader to see the discussions in [45, 46] and in the pedagogical topical review [47].



At the horizon, regularity of the perturbation in ingoing Eddington—Finkelstein coor-
dinates requires that we impose the boundary condition,

. w—m¢QH

g0 YT (4.3)

R|

(where Qg and Ty are the horizon angular velocity and temperature, given in see (2.3),
(2.4) and (2.16), respectively) which excludes outgoing modes, y* (W=¢21)/27TH) ~at the
horizon.

We still need to apply boundary conditions at north and south poles of the S%. Here,
regularity of the perturbations requires that mg is quantized to be an integer. We are
interested in unstable modes which must co-rotate with the black hole because these will
extract energy from the black hole. Thus we must have mg > 0. Under these conditions,
regularity requires that the perturbations behave as

S|, g ~azmel S| (1 a)zmel, (4.4)

z—1
which eliminates irregular modes that would diverge as x_%"%'(l — ac)_%“%'.
The boundary conditions (4.3) and (4.4) are straightforwardly imposed if we define the

new functions ¢;, i = 1,2, as

Mm2_m2 . w*md;.QH

Rly)=¢ =7 (1-y)% " =0 qy), S(z)=a2"l(1—2)3lmlgy(z). (4.5)

and search numerically for analytical functions ¢;(y) and g2(z).
Our pair of Proca ODEs are coupled only via the eigenvalues w and p. But this is a

non-linear eigenvalue problem for w and p.

Numerics: technique

We discretize the field equations using a pseudospectral collocation grid on Gauss—Chebyshev—
Lobbato points. The eigenvalues and respective eigenvectors are efficiently and accurately
computed using a powerful numerical procedure developed in gravitational contexts in
[45, 46, 48-60] — discussed in detail in [56] and in section III.C and VI.A of the topical
review [47] — which employs the Newton-Raphson root-finding algorithm. These numerical
methods are very well tested in different contexts and extremely robust. In particular,
they are the same that were used to compute the ultraspinning and bar-mode gravitational
instabilities of rapidly spinning Myers—Perry black holes [45, 46, 48-51], the near-horizon
scalar condensation and superradiant instabilities of black holes [52-54], the gravitational
superradiant instability of Kerr-AdS black holes [55, 56|, the electro-gravitational quasinor-
mal modes of the Kerr-Newman black holes [57] and the modes that violate strong cosmic
censorship in de Sitter backgrounds [58-60], to mention a few. All our results have the
exponential convergence on the number of gridpoints expected for a code that uses pseu-
dospectral collocation (see [47]). In particular, all the results that we present in the next
section are accurate at least up to the 11th decimal digit.

~10 -



Discussion of the parameter space

Our Proca-black hole system has a scaling symmetry which we use to present the dimen-
sionless physical quantities measured in black hole mass units, namely

{J/M?*,Q/M, mM,wM, uM} (4.6)

(black hole angular momentum, black hole charge, Proca mass, and frequency and angular
eigenvalues, respectively). Recall that J = Ma so the dimensionless rotation a/M gives
also the dimensionless angular momentum of the black hole: J/M? = a/M.

The linear modes scan a 3-parameter phase space parametrized by the Proca mass
mM > 0, the black hole angular momentum 0 < J/M? < 1, and the electric charge
0<Q/M<Q/M ‘ext. For Kerr-Newman extremality (i.e. zero temperature) for a given
a/M is attained at @/M|_ = /1 —J2/M* while the extremal Kerr-Sen black hole has
Q/M| . = V21— J/M2.

In these conditions one could fix, for example, the rotation of the black hole and plot
the frequency and angular eigenvalues as a function of Q/M and mM. Alternatively, one
could fix the black hole charge /M or the Proca mass mM and generate the corresponding
3-dimensional plots. However, we find that these 3-dimensional plots are not particularly
enlightening (especially because we want to compare Kerr-Newman with Kerr—Sen and
thus we would have two 2-dimensional surfaces on the same plot). Therefore, we opt to
produce 2-dimensional plots that are clear and describe the typical qualitative behaviour
of the system. Concretely, we will fix J/M? = a/M and mM and show how the frequency
wM and angular eigenvalue pM change as 0 < Q/M < Q/M }ext. The qualitative features
for other values of J/M? and mM are similar.

To localize ourselves in the parameter phase space it is a good idea to consider first
a Proca field in the Kerr black hole background. Recall that both the Kerr-Newman and
the Kerr—Sen solutions reduce to Kerr when Q/M = 0. The properties of this solution
were already studied in [10, 31, 33| and, as a test of our numerical codes for Kerr—-Newman
and Kerr—Sen when @@ = 0, we have reproduced them. As described in detail in [10, 31,
33|, Proca fields have three sectors of perturbations. Here, we will only discuss the most
interesting family, namely the one that is the most unstable. For the same reason, we also
only consider its lowest radial overtone case and modes with azimuthal number mgy = 1.

Kerr: unstable modes at fixed black hole rotation

Firstly, in Fig. 1 we fix the the rotation of the Kerr black hole to be
J/M? = a/M = 0.998, (4.7)

and we plot how the frequency wM and angular eigenvalue puM of the unstable modes
change as we change the Proca mass mM. In the upper panels we give the behaviour of
the dimensionless frequency wM while in the lower panels we describe the properties of
the angular eigenvalue pM. On the left-upper panel, we analyze the imaginary part of the
frequency, Im(wM). We see that starting from zero at mM = 0 it first increases until it
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Figure 1. Kerr black hole: effect of Proca mass. Unstable Proca modes for a Kerr black
hole with J/M? = a/M = 0.998 (mg = 1) as a function of the dimensionless Proca mass mM.
The upper panels describe the imaginary (left) and real part (right) of the dimensionless frequency
wM, while the lower panels give the imaginary (left) and real (right) parts of the dimensionless
angular eigenvalue puM. For this J/M? the instability is present for 0 < mM < 0.64853159519,
and the maximum of Im(wM) occurs for mM ~ 0.5391620000. The brown diamond signals the
solution with Proca mass mM = 0.51 that will be analyzed in the Kerr-Newman and Kerr—Sen
backgrounds (see Fig. 3).

reaches a maximum at mM ~ 0.5391620000. For reference, at this extremum one has

wM =~ 0.43493600153 + 0.00042563345599 ¢ ,
uM ~ —0.89562026456 — 0.00088831409834 7 . (4.8)

Then, increasing mM, Im(wM) quickly drops to zero at mM ~ 0.64853159519. The right-
upper plot studies the behaviour of the real part of the frequency. More concretely, we take
the difference mgQgM — Re(wM ), with mg = 1, because the instability of the system is
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sourced by superradiance and this quantity should go to zero when Im(wM) — 0. We find
that this is indeed the case, i.e. mgQg—Re(w) = 0 at the same value mM ~ 0.64853159519
where Im(wM) = 0. Not shown in Fig. 1, the plots for other values of fixed J/M?
are qualitatively similar. The critical mass mM above which the instability ceases to
exist decreases when .J/M? decreases. These behaviours for the superradiant instability of
massive Proca fields are similar to those found in massive scalars in the Kerr black hole,
as pointed out in [10, 31, 33]. The plots in the lower panel of Fig. 1 for the angular
eigenvalue speak for themselves and need few further explanations. We just highlight that
the minimum of Im(uM) — see (4.8) — occurs at the same mass mM ~ 0.5391620000
where Im(wM) has its maximum and Im(pM) vanishes at the same mM ~ 0.64853159519
as Im(wM).

Kerr: unstable modes at fixed Proca mass

In the plots of Fig. 1, the brown diamond pinpoints the solution with mM = 0.51 (and
J/M? = a/M = 0.998). We find that this value of the Proca mass displays typical behaviour
when instability modes are present and so provides a bridge to Fig. 2. Here we still consider
the Kerr background but this time we fix the Proca mass to be

mM = 0.51, (4.9)

and study the evolution of the frequency and angular eigenvalue as the background rotation
varies from J/M? = 0 till the extremal J/M? = 1 value. In this path, the system passes
again through the brown diamond point with J/M? = 0.998. The sequence of plots follows
the same structure of the previous figure. The main plots of Fig. 2 focus on the region of
large J/M? where the instability is present. To have a wider picture, the inset plots zoom
out to cover the full range 0 < J/M? < 1. Starting from the left-upper plot, we see that
mM = 0.51 Proca modes only become unstable, i.e. Im(wM) turns positive, above the
critical rotation value of J/M? ~ 0.9976975410. Further increasing the rotation, Im(wM)
reaches a maximum at J/M? = 0.98483373627, where

wM ~ 0.42207731732 + 0.00041468477293 7 ,
uM ~ —0.83342120050 — 0.00080597999349 % . (4.10)

and then it decreases monotonically towards extremality, J/M? = 1, where

wM ~ 0.42243470228 + 0.00041405349126 ¢ ,
uM ~ —0.83552601425 — 0.00080955432080% . (4.11)

Again, if we fix other values of mM, we obtain plots that are qualitatively similar to those
of Fig. 2 as long as the Proca mass mM is not too large, in which case there is no regime of
J/M? where the system is unstable. The maximum of the instability decreases when mM
decreases (as shown in Fig. 1). Altogether, the plots of Figs. 1 and 2 allow to anticipate
the shape of the 2-dimensional surface describing the system if we did the 3-dimensional
plots wM (or uM) as a function of J/M? and mM, so we do not plot this here (the reader
can find these in Figs. 4 and 5 of [10]).
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Figure 2. Kerr black hole: effect of black hole rotation. Unstable Proca modes with
dimensionless mass mM = 0.51 (mg = 1) as a function of the dimensionless angular momentum
J/M? = a/M of the Kerr black hole. The upper panels describe the imaginary and real part
of the dimensionless frequency wM, while the lower panels give the imaginary and real parts of
the dimensionless angular eigenvalue pM. Both Im(wM) and Re(mygQy — w)M change sign at
J/M? ~ 0.98483373627 and the main plots show the region that extends from the neighbourhood
of this transition all the way to extremality at J/M? = 1 (the inset plots show all the range
0 < J/M? < 1). The maximum of Im(wM) is attained for J/M? ~ 0.9976975410. The brown
diamond signals the solution with rotation .J/M? = 0.998 that will be analyzed in the Kerr—Newman
and Kerr—Sen backgrounds, namely in Fig. 3 (this is the same solution that was pinpointed in Fig.
1 also with a brown diamond).

Unstable modes in Kerr—Newman and Kerr—Sen black holes

We are now ready to present our results for the unstable modes of the Kerr—Newman and
Kerr—Sen black holes. Recall again, that the brown diamond in Figs. 1 and 2 (Kerr black
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hole) has J/M? = a/M = 0.998 and mM = 0.51 for which one finds that:

wM ~ 0.42212572826 + 0.00041466190852 7 ,
uM ~ —0.83369985496 — 0.00080656941824 7 . (4.12)

Our strategy, to illustrate and discuss the properties of unstable Proca modes for the
charged rotating black holes, is now to take this particular Proca—Kerr solution with Q /M =
0,J/M? = 0.998, mM = 0.51 and see how it evolves in the charged rotating black holes
when the charge increases. In Fig. 3 we increase the charge from the Kerr limit Q/M =
0 all the way up to the extremal limit Q/M = Q/M’ext. As in the previous figures,
the upper panels describe the imaginary (left) and real part (right) of the dimensionless
frequency wM, while the lower panels give the imaginary (left) and real (right) parts of
the dimensionless angular eigenvalue pM. The red disks describe the solution in the Kerr—
Newman background while the black squares describe the unstable Proca modes in the
Kerr—Sen black hole. In all the plots of Fig. 3 the brown diamond at Q/M = 0 is the
solution (4.12) already pinpointed with the same diamond in the Kerr plots of Figs. 1
and 2. Also, the vertical black dashed line always signals extremality which occurs at
Q/M = 0.063213922517 for Kerr—-Newman and at /M = 0.063245553203 for the Kerr—
Sen black hole (both cases are approximately given by Q/M ~ 0.0632 so the two extremal
vertical cannot be distinguished in the plots).

The most important plot is the left-upper plot where we display the imaginary part
of the frequency. As discussed above, the system is already unstable (Im(wM) > 0) in
the @Q/M = 0 Kerr limit (brown diamond). We then find that when the electric charge
Q/M is turned on, Im(wM) decreases monotonically — both in the Kerr—-Newman and
Kerr—Sen black holes — until it reaches a (positive) minimum at extremality: the electric
charge decreases the strength of the superradiant instability. For reference, for the extremal
Kerr-Newman black hole (Q/M = 0.063213922517) one finds

wM ~ 0.42250831467 + 0.00040957576857 ¢ ,
uM ~ —0.83444459418 — 0.00079784543679 7%, (4.13)

while for the extremal Kerr—Sen black hole (Q/M = 0.063245553203) one has

wM ~ 0.42232700296 + 0.00041186820894 7 ,
uM ~ —0.83409151869 — 0.00080175357192% . (4.14)

The left-upper plot of Fig. 3 also shows that, in the parameter space range where both
co-exist, Kerr-Sen black holes are more unstable than Kerr-Newman.” The other plots
of Fig. 3 are self-explanatory and need no further comments other than that they also
have a monotonic behaviour and start at the expected Proca—Kerr solution. These plots

"A word of caution for interpreting these results is due here regarding the use of the string vs. the
Einstein frame. Namely, our calculation for the Kerr—Sen black hole has been performed in the string
frame, where the Proca equations decouple and separate. It remains to be seen whether this can be directly
compared to the Kerr—-Newman case where the dilaton field identically vanishes.
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Figure 3. Kerr—Sen vs. Kerr—-Newman black holes: effect of charge. Unstable Proca
modes with mass mM = 0.51 and my = 1 for Kerr-Newman (red disks) and Kerr—Sen (black
squares) black holes with J/M? = a/M = 0.998 as a function of the dimensionless hole charge
Q/M. The upper panels describe the imaginary and real part of the dimensionless frequency wM,
while the lower panels give the imaginary and real parts of the dimensionless angular eigenvalue
uM. The brown diamond at Q/M = 0 describes the Kerr solution already signalled also with a
brown diamond in the plots of Figs. 1 and 2. The vertical black dashed line signals extremality
which occurs at Q/M = 0.063213922517 for Kerr-Newman and at /M = 0.063245553203 for the
Kerr—Sen black hole (so the two extremal vertical lines cannot be distinguished in the plots).

illustrate in a clear way the main properties of unstable Proca fields in Kerr—-Newman and
Kerr—Sen black holes. Indeed if we fix other combinations of J/M? and mM (for which the
instability is already present in the Kerr limit) we find similar qualitative features as those
illustrated in Fig. 3. Thus we conclude our discussion of the most unstable Proca modes

in Kerr—Newman and Kerr—-Sen black holes.
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5 Conclusions

In this paper we have shown that the LFKK ansatz can be used to separate the Proca
equations in the Kerr—Sen black hole background of the low energy heterotic string theory.
This happens for a (well motivated) modification of these equations and in the string frame.
It is a highly non-trivial result as the Kerr—Sen black hole no longer admits the principal
tensor, which is the key object for the LFKK ansatz, and only its much weaker (torsion)
generalization is present.

We have then used the resulting separated ordinary differential equations to study
the corresponding instability modes of the Proca field in the Kerr—Sen background and
compared them to the instability modes in the Kerr and Kerr-Newman backgrounds. This
is the first study of the Proca instability modes around rotating black holes which considered
a possibility of weakly charged solutions. Moreover we have considered an astrophysically
viable setting where the black holes are highly spinning (close to extremal) and weakly
charged. Our results allow one to compare the prediction of the two theories: the Einstein—
Maxwell theory (represented by the Kerr—-Newman solution) and the low energy heterotic
string theory (with the corresponding Kerr—Sen black hole). Our findings indicate that, at
equal asymptotic charges, Kerr-Newman black holes are more stable than Kerr—Sen ones.

Finally, our work not only generalizes the exploitation of black hole superradiance for
detecting possible dark matter candidates to include charged black holes, it also opens new
horizons for applications of the generalized hidden symmetries (which may not be so weak
structure as previously expected).
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A Separation of Proca equations in Kerr—Sen background

Carter form of the metric

The separation of the modified Proca equation (3.9) in the Kerr-Sen background is easiest
when the metric is expressed in the pseudo-Euclidean Carter-like coordinates (1o, ¥1, 1, x2)
[18]. In fact, in these coordinates a more general solution to the heterotic string theory
action (2.9), which includes a NUT parameter, can easily be written and reads [19]:

ds? = )U;ld +§2d §+‘;§1A%+){§§A§, eq’—[[]}f,
A = 252 (s (Ao + o3 ) — maza(di + wddun) )
B = E(dwo —codpr) A A, (A1)
with the field strengths F' = dA and H = dB — A A F.® Here
U, = x% — xl -Us, U, = a:% — x% — 2my %z + 2masiag ,
A = gl depg + dwl(x2 + 2m2x232)] Ay = [(J]; deg + dwl(xl + 2mix18 )] , (A2)
and the metric functions take the following form:
X1 =co—2miz1 + :v% , Xo=1cp—2moxo + x% . (A.3)

Here, s = sinh d, ¢ = cosh d, and co, m1, ms, § are arbitrary constants, related to the rotation
parameter, mass and NUT charges, and the twist parameter.

The Kerr—Sen solution in the main text is recovered upon the following change of
coordinates and parameters:

(71107@111,5517?32) = (t_a¢7 QS/(I,Z'T‘,GCOSH). (A4)

Here also send m1.92 — ib, imp — (b— M) , turn off the NUT parameter by setting mo = 0,

and send ¢y — —a?. Thence the metric functions become
X; =2r(M —b) —1* —a®> = -Ay, Xo=—a’sin?0, (A.5)
Uy = 2 +a%cos’0 = p?, U, = pi = p? +2br. (A.6)

In what follows we shall work with a more general metric (A.1)-(A.3). In fact, as
already observed for the Kerr—-NUT-(A)dS metrics |29, 31|, the separability actually works
for a more general class of off-shell metrics where

Xy = Xu(zy) (A7)

8To recover the notations in the main text, one has to set A — A/v/2. The other fields ®, B, and H are
unchanged but the coupling between H and A picks up a factor of 2 to compensate the redefinition of A,
that is, H - dB —2ANF = H.
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are arbitrary functions of one variable. Thence in what follows we shall leave X,(x,)
arbitrary.
The off-shell metric admits a generalized principal tensor with torsion, which reads [43]

h=x1dr1 AN AL +xodao A As, (A.8)
and obeys the defining equation (2.17) with
¢ =e%0y, (A.9)
and the torsion identified with the 3-form H,

T:H:ﬁF/\f:— 87(1)(2'|.x1/\141—|-87(1)(11'2/\142 ANE. (A.IO)
c Oxy 02

The associated irreducible Killing tensor is given by

1
Kap = hach§ — 5gabiﬂ . (A.11)

Separability of Proca equations

Let us now apply the LFKK ansatz to separate the Proca equations in the generalized
beckground (A.1). As argued in Sec. 3 the Proca equation in this background reads

Y (e*F™) —m2e® P =0, (A.12)
and implies the corresponding Lorenz condition
V. (e*P*) =0. (A.13)
In order to separate these equations, we employ the LFKK ansatz [28-31],

P*=B™V,Z, B™(gs + iphpe) = 8¢

c

(A.14)

where p is a complex parameter, hy. in the generalized principal tensor (A.8), and the
potential function Z is written in the multiplicative separated form

7 = R1 (xl)R2($2)eiLo¢oeiL11/)1 ) (A15)

Similar to ref. [29, 31| we first concentrate on the Lorenz condition (A.13), for which
the ansatz (A.14) yields:

1
R2 (1‘2)

@Z

v ‘IDPa —
a(e ) ‘ q192

1
<q2 DlRl(ﬂjl) + gv*l
2

Uy Ri(z1) D2R2($2)> , (A.16)

where the differential operators are given by

0o [X, 0 1 2
D, =qu— | 2 — ——[—2—2 22,)L L]
g qpaxu[% 8$u] Xy ( “h s ) Lo L
2 — AuL 2
S gy g (gL - BT (A.17)
j2zem qu
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and
g =1— 2. (A.18)

The Lorenz condition (A.13) will be satisfied provided the mode functions R, obey the
separated equations
D,R, = (C1 — 22Cy)R,, . (A.19)

Here Cj and C) are two new separation constants. Then expression in (A.16) reduces to
® pa P Z 2
Vo (e®P%) = e — [C’o—i—Cl (—p )] , (A.20)

and we see that the Lorenz condition holds provided we fix

C
Ci=—3. (A.21)
1
At this stage we are left with one new separation constant Cy but this will be fixed by
solving the full Proca equations.
The results of [29] can be also used to find the representation of the Proca equa-

tion (A.12) for the ansatz (A.14). Employing the Lorenz condition (A.13) one finds
V, (e?F) —m2e®P* = e* BV, J . (A.22)
Here we have introduced the object
J=e PV, (e®¢?V2) — 2ipé, BV Z — m2 7 . (A.23)

At this stage, by employing the LFFK ansatz and enforcing the Lorenz condition, the Proca
equation has been reduced to solving a scalar “wave equation”.
In particular this “wave equation” may be written as an eigenvalue problem

GZ =m?Z, (A.24)
where
G =e"V,(e®g®Vy) — 2ipV,g®Vy, V=B, (A.25)

In this suggestive form, where we consider the metric tensor as the trivial Killing tensor
Kflg) = gap, one can guess from the Kerr—Newman case that this operator can be general-
ized to the two commuting operators in 4 dimensions which are enough to guarantee the
separability of this equation. Thus we define

A~

K = e PV, (e KV, — 2iuV, KV, (A.26)

where K, is the Killing tensor generated from the principle tensor (A.11). Then one can
explicitly check that these two operators commute, i.e.

[g,ff] ~0, (A.27)
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and that the solution Z is also an eigenvector of K
2
2 m L()
2 K
These operators are just a torsion generalization of those presented in [29, 34, 43| and we

expect that this construction can be generalized to all dimensions.
Thus the separability of J (A.23) is guaranteed and in fact J separates in the form

2
11
J=2Y ——[D, —m?(—-22)|R,, A.29
;UVRJ m?(~a2)] (A.29)
where D,, is same the operator defined in (A.17). In the above expression we have used the
identity,
1 . .
> (e =4 (A.30)
v=1 Y

for 7 = 0, to rewrite the mass term. This identity further ensures J = 0, provided the
modes R, (z,) obey separated equations (A.19) and additionally the extra free separation
constant Cp is given by the Proca mass,

Co=m?. (A.31)

Summarizing, the Proca equation (A.12) for the vector field P in the off-shell Kerr—Sen—
NUT background (A.1) can be solved by using the LFKK ansatz (A.14), (A.15), where
the mode functions R, satisfy ODEs (A.19). Moreover the separation constant Cy is given
by (A.31) and pu satisfies (A.21). To translate our separation (A.19) back into the Boyer—
Lindquist form presented in the main text, (3.13), we perform the map outlined above in
(A.4), (A.5). Furthermore, we need to modify the eigenvalues Ly and L1, to the eigenvalues
of 10y and —idy, w and my. This is simply done via the linear map

Ly=—w, Ly = a(mg — aw) . (A.32)
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