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Abstract4

Multiple features can be extracted from time-frequency representation (TFR) of signals for the purpose of acoustic event5

detection. However, many underwater acoustic signals are formed by multiple events (impulsive and tonal), which generates6

difficulty on the high-resolution TFR for each component. For the characterization of such different events, we propose an7

anisotropic chirplet transform to achieve the TFR with high energy concentration. Such transform applies a time-frequency-8

varying Gaussian window to compensate the energy of each component while suppressing unwanted noise. Using a set of9

directional chirplet ridges from the obtained TFR, a structure-split-merge algorithm is designed to reconstruct a multimodal10

sparse representation, which provides instantaneous frequency and time features. Specifically, a pulsed-to-tonal ratio, based on11

these features, is computed to distinguish two acoustic signals. The presented method is validated using shallow water experimental12

underwater acoustic communication signals, and large sequences of harmonics and pulsed bursts from common whales.13

Index Terms14

Anisotropic chirplet transform (ACT), multimodal sparse representation (MSR), pulsed-to-tonal ratio (PTR), time-frequency15

representation (TFR), underwater acoustic (UWA) signals.16

List of symbols

s Signal si Each mode of a signal
ti Time point of i-th mode ωi Frequency point of i-th mode
t̂i Instantaneous time (IT) ω̂i Instantaneous frequency (IF)
S Time-frequency transform c Chirp rate
δ Dirac delta function ω̂′ The second derivative of a phase
ϑ Instantaneous rotating operators (IROs) arctanϑ Instantaneous rotating angles (IRAs)
g∗c Conjugation kernel of chirplet transfrom (CT) hσt Analysis window of CT
σt Time scale σf Frequency scale
L Gaussian window width ĥ TF-varying Gaussian window
λ Anisotropic operator µ Height-to-width ratio of window
σ2
ε̄ Variance of the smoothed noise

∑
S Energy sum in sub-contours of the spectrogram S

ρ Observed energy function Ŝ Multimodal sparse representation (MSR)
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Multimodal sparse time-frequency representation18

for underwater acoustic signals19

I. INTRODUCTION20

THE detection of different acoustic events is an important task in distinguishing between underwater acoustic (UWA)21

signals, e.g., marine mammal sounds, UWA communication signals, shipping noise and sonar pulses [1]–[8]. However,22

the characteristic analysis is usually difficult, because many UWA signals display low signal-to-noise ratio (SNR) or multiple23

modes. An instance of a whale signal (Fig. 1(a)), ranging from short pulsed transients to long tones, has various mode structures.24

To analyze such UWA signals, multiple features are used to characterize events of interest and merged together to solve the25

detection problem, and the time-frequency (TF) analysis is an efficient technique for the representation of multiple features [2],26

[5], [9]–[12].27
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Fig. 1. Time-frequency representation (TFR) of sound generated by a whale and a multi-carrier multiple frequency-shift keying (MCMFSK) modulated signal.
(a) TFR of a creak whistle sound; (b) TFR of a MCMFSK signal. The guide fragment is a pilot part of a modulation signal.
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The main goal of the TF analysis is to determine the energy distribution along the frequency axis at each time instant. When32

the analysed UWA signal is multiple components (modes), defined by33

s(t) =

N∑
i=1

si(t) + n(t) (1)34

35

with each mode si(t) = a(t)ejφ(t), where n(t) is a noise representing any undesirable components, and a representation36

of each element’s energy concentration should be expected. The analytical signal s(t) is generated by the Hilbert transform37

H , i.e., s(t) = x(t) + jH[x(t)]. The majority energy of each component si(t) is concentrated on the TF location (ti, ωi).38

The instantaneous frequency (IF) [13], [14] and instantaneous time (IT) [14] provide a measurement index of the energy39

concentration for the si(t) defined by the time derivative of the phase ω̂i(t, ω) = 1
2π

dφ
dt , and the subtraction of current time and40

the frequency derivative of the phase t̂i(t, ω) = t− 1
2π

dφ
dω [14], respectively. The transformation (ti, ωi)→ (t̂i(t, ω), ω̂i(t, ω))41

reveals multiple features of acoustic events. For a single tone of frequency ωk, the (ti, ωi) pairs are transformed into several42

lines (t̂i(t, ω), ωk), such as a multi-carrier multiple frequency-shift keying (MCMFSK) signal as shown in Fig. 1(b); for a43

“click” whale signal as shown in Fig. 1(a), Dirac delta function δ(t− tk) localized at time tk, all energy points are transformed44

into the vertical lines (tk, ω̂i(t, ω)).45

The classical TF analysis includes short time Fourier transform (STFT) [15], continuous wavelet transform (CWT) [16]–46

[18], Wigner-Ville distribution (WVD) [10], [19], [20] and chirplet transform (CT) [21]–[24]. Energy concentration of the47

STFT and the CWT is limited by the Heisenberg uncertainty principle [15], [16], [21], [22]. The WVD [19], [20] can obtain48

good TF resolution, but when multicomponent signals are considered, the undesired cross terms appear in addition to signal49

components referred to as the auto terms, reducing the readability of the time-frequency representation (TFR). The CT offers50

more flexibility for the TFR than the STFT with an unmodulated basis [21], [22], and becomes a natural tool to analyse the51

chirp signals. However, these methods obtain the TFR with low-resolution energy concentration.52

Currently, there are often two general strategies for the enhancement of the energy concentration: 1) Reassignment techniques53

aim to sharpen the TF representation by assigning the local energy while removing most of the interference [2], [14], [25],54
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Fig. 2. The main framework of the proposed methods. An anisotropic chirplet transform (ACT) provides the TFR of signal. Using the chirplet ridges,
SSM decomposes and extracts tonal and pulsed features from the TFR. Further, we obtain a pulsed-to-tonal ratio (PTR) and the multimodal sparse
representation (MSR) to discriminate UWA signals.
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[26]. Numerous reassigned TF representations have been proposed such as second-order synchrosqueezing transform [14] and55

Fourier synchrosqueezing transform (FSST) [25]. The reconstruction of TFR depends on the maximum of the spectrogram.56

Since the high noise induces false maxima (maxima outside of the auto terms) in the TF plane, the methods are sensitive57

to noise. The reassignment processing also possesses high computational cost. 2) Several energy concentration measuring58

methods [1], [4], [27] have been presented for the optimization of window width by applying special algorithms. Similar to59

the S-transform [27], an adjustment of the window size depends on local signal characteristics. The search of optimal values60

usually suffers from heavy computational complexity.61

The chirplet path fusion [28], cubic phase function [29], [30], and adaptive fractional spectrogram [13], [31], [32] have low62

computational cost to analyze noisy signals with closely-spaced chirps. To enhance the energy concentration of overlapping63

signals under high level of noise, a synchro-compensating chirplet transform [23] utilizes different chirp rates for different64

signal components. Since the condition ω̂′(t, ω) < ∞ or ω̂′(t, ω) < ε in impulsive components of UWA signals no longer65

hold, the TFR obtained by the Gaussian window [23] is still blurred at transient points. In fact, the standard deviation of66

the one-dimensional Gaussian window [13], [16], [23] is proportional to the reciprocal of frequency. No matter what kind of67

signals are analysed, the width of the Gaussian window monotonically decreases as the frequency increases. Considering the68

time-scale and frequency-scale measurement simultaneously, the two-dimensional Gaussian window can be applied iteratively69

in order to improve the estimation reliability. Moreover, detecting TF ridges [23], [33] seems to be effective for the analysis70

of UWA signals consisting of several modes with similar magnitude overlapping in a significant portion of the TF plane.71

In this paper, we focus on a multimodal sparse representation of signals derived from the ridges of anisotropic chirplet72

transform (separation ability). The main contributions of this work are shown as follows (Fig. 2).73

1) For UWA signals, an anisotropic chirplet transform (ACT) is proposed to achieve a high-resolution TFR. A time-frequency-74

varying Gaussian window of the ACT is designed for the enhancement of energy concentration and allows an adjustment75

between complexity and TF resolution. Besides, since the optimal anisotropic operator is selected by maximizing the76

SNR, the ACT is less sensitive to noise.77

2) Using second-order directional derivatives, the chirplet ridges of multimodal structures are defined in terms of points78

(t̂i(t, ω), ω̂i(t, ω)) and extracted from the TFR obtained by the ACT. A structure-split-merge (SSM) algorithm is proposed79

to split the ridges to different TF structures and merge these structures into the sparse representation of tonal and pulsed80

components.81

3) An improved pulsed-to-tonal ratio (PTR) utilizes the multimodal sparse representation of different components to discrim-82

inate similar UWA signals, e.g., marine biological signals.83

The rest of this paper is organized as follows. Section II introduces the basic principle of the ACT, and the TF-varying89

window width. Details of the structure-split-merge (SSM) algorithm based on ACT are provided in Section III. Section IV90

applies experimental data to prove the efficiency of the presented algorithm, and illustrate the improvement in readability and91

detection of UWA signals. Finally, conclusions are drawn in Section V.92
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Fig. 3. Volumetric family of “Time-Frequency-Chirprate” transform. (a) Classical CT. (b) ACT.

II. ANISOTROPIC CHIRPLET TRANSFORM93

A. TFR of multimodal signal94

The chirplet transform (CT) [21] S(t, ω) can be formulated as the inner product of the signal s(t) with chirplets:95

S(t, ω) =

∫ ∞
−∞

s(τ)g∗c (τ − t, ω)dτ

=

∫ ∞
−∞

s(τ)hσt(τ − t)ej
c
2 (τ−t)2e−j2πωτdτ,

(2)96

97

where t, ω and c are the time, frequency and chirp rate indices, respectively. The variable σt defines the temporal resolution99

of analysis 4t. The chirplet transform is a linear and unitary transform, rotating an angle θ with a single chirp rate c0 as100

shown in Fig. 3(a). The angle is computed by a function of arctan(2Ts/Fs × c0), where Ts and Fs are the sampling time101

and sampling frequency, respectively [34]. If we utilizes different chirp rate c(t) and rotation angle continuously and repeat102

the process uncountably for a number of times, a different volumetric family of ACT is expected to be generated (Fig. 3(b)).103

The analysis window hσt(t) of the CT is represented by the standard deviation σt centred at time t = τ . Unlike the CT, the104

ACT possesses different window scales corresponding to the chirp rates. This implies that large values of σt and σf should be105

adopted if the instantaneous frequency (IF) of the signal varies smoothly, while small values of σt and σf should be adopted106

if the IF is fast-varying.107

The main goal of the ACT is to apply different chirp rates for different signal components. For such purpose, a dominant108

instantaneous chirp rate coefficient at the interval t is defined as109

α(t, c)) = max {|S(t, ω)|} . (3)110
111

Maximum of α(t, c) generates a robust estimate of appropriate instantaneous rotating angles (IRAs) as112

ϑ(t) = arg max
c
{α(t, c)}, (4)113

114

where instantaneous rotating operators (IROs) ϑ(t) define IRAs arctanϑ(t) in the TF plane. The estimated chirp rates c(t) is115

then determined using tan(ϑ(t))× Fs/(2Ts).116

For a chirp s(t) = a(t)ej
∫
ϕ(τ)dτ signal, the transformation to all angles ϑ(t) is generated as117

%(t, ω) =
1

σt

∫ ∞
−∞

(τ − t)s(τ)g∗c(t)(τ − t, ω)dτ. (5)118

119

The set of points (t̂i(t, ω), ω̂i(t, ω)) is defined by stationary phase positions t̂i(t, ω) = 0 and ω̂i(t, ω) = 0. We obtain the120

points in a closed form121

ω̂i(t, ω) = ∂t= lnS = ω +
1

σt
=
{ %
S
ejϑ(t)

}
,

t̂i(t, ω) = t− ∂ω= lnS = t+ σt<
{ %
S
ejϑ(t)

}
.

(6)122

123



IEEE JOURNAL OF OCEANIC ENGINEERING 4

The
∫
ϕ(τ)dτ of the chirp signal can be expanded by Taylor expansion ω̂i + ω̂′i(τ − t). The spectrogram of CT in the IF ω̂i124

is equivalent to125

S(t, ω̂i) =

∫ ∞
−∞

a(τ)h(τ − t)ejπ[ω̂′
i+c(t)](τ−t)

2

dτ

=

∫ ∞
−∞

z(τ)ejψ(τ)dτ,

(7)126

127

where both integrable z(τ) > 0 and ψ(τ) are C1, and ω̂′i + c(t) 6= 0, the case ω̂′i + c(t) = 0, resulting in a typical Fourier128

transform.129

Assuming that z(τ) > 0 is slowly-varying as compared to the oscillations controlled by the phase ψ(τ), the spectrogram can130

be obtained by the stationary phase approximation [29], [35]. In this situation, negative and positive values of the integrand131

tend to cancel each other, with the result that the main contribution to S(t, ω) only stems from the proximity of points where132

the phase is stationary. For the stationary point at a time τ0, the derivative of the phase ψ(τ) will be zero:133

ψ′(τ0) = 2π [ω̂′i + c(t)] (τ0 − t) = 0. (8)134
135

In the view of ψ′′(τ0) = 2π [ω̂′i + c(t)], the phase of a linear chirp signal can be considered as a Taylor expansion ψ(τ) =136

ψ(τ0) + ψ′′(τ0)
2 (τ − τ0)2 approximately. Then, the spectrogram (7) can be written as137

S(t, ω̂i) = z(τ0)

∫ ∞
−∞

ej
ψ′′(τ0)

2 (τ−τ0)2dτ. (9)138

139

Letting the change of variables140

v2 =
ψ′′(τ0)

2
(τ − τ0)2 ⇒ dτ =

√
2

ψ′′(τ0)
dv, (10)141

142

we then update the variational (9) as143

S(t, ω̂i) = z(τ0)

√
2

ψ′′(τ0)

∫ ∞
−∞

ejv
2

dv. (11)144

145

According to the Fresnel integral
∫∞
−∞ ejv

2

dv =
√

π
2 + j

√
π
2 , inserting the values of τ0 and ψ′′(τ0), we obtain146

S(t, ω̂i) = a(t)
1 + j

2
√
π [ω̂′i + c(t)]σt

. (12)147

148

The quality of using (12) as an approximation for CT is not only controlled by the item c(t), but also by additional items149

depending upon more complex combinations of ω̂i, σt and certain of their higher-order derivatives.150

The main drawback of the TFR is that the different chirp rates c(t) or Gaussian window width may not be simultaneously156

optimal for all the components. Considering a whale signal with the sampling frequency 48 kHz, the TFR of the signal is157

depicted in Fig. 4(a-f). If the components of UWA signals have different classes of TF structures (such as tone and pulse), it158

is necessary to use several space (4t,4f) scales. A time-frequency-varying Gaussian kernel allows different window scales159

used at different time points.160

B. TF-varying Gaussian window161

The standard deviation of the underlying distribution can control the Gaussian window width, determined by [36]162

L = 2σ
√

2 ln 2. (13)163
164

In [21], [36], an approximate relationship between the time-varying window width and the chirp rate has been derived. For a165

continuous signal, the local stationary length of L(t) is defined by the chirp rate with the following condition:166

L(t) = max
l

2l s.t.

∫ t+l

t−l
|ω′|dt ≤ ∆l, l > 0, (14)167

168

where L(t) is adjusted by the threshold ∆l such that the integral signal in S(t, ω) is quasi-stationary for each time instant t.169

The relationships in Eq.(14) cannot provide the optimal window width with a trade-off in parameter selection between the IF170

bias and σ. Thus, a more robust TF-varying standard deviation σ(t, ω) is designed to allow further control over the window171

width. According to Eq.(13) and Eq.(14), σ(t, ω) of Gaussian window is defined as172

σ(t, ω) =
L(t, ω)

2
√

2 ln 2
, (15)173

174
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Fig. 4. TFR of an acoustic signal with different space scales. (a) 4t = 15, 4ω = 35; (b) 4t = 20, 4ω = 30; (c) 4t = 25, 4ω = 25; (d) 4t = 30,
4ω = 20; (e) 4t = 35, 4ω = 15; (f) multiple space scales.
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154

155

with175

s.t.

{ ∫ t+l
t−l |ω̂

′
i(t, ω)|dt ≤ ∆l, l > 0,∫ ω+f

ω−f |W
′(ωt, ωω)|dω ≤ ∆f, f > 0,

176

177

where W ′(ωt, ωω) is the Fourier transform of ω̂′i(t, ω). The parameters ∆l and ∆f can be obtained respectively by the bounds178

of the frequency-modulated rates of the analytical signal.179

Based on the TF-varying standard deviation, the Gaussian window [14] is generalized in TF space as180

ĥ(t, ω) =
1√

2πσ(t, ω)
e
− κ

2σ2(t,ω) , (16)181

182

with κ = [t ω]R−θ[λ
2 0; 0 λ−2]Rθ[t ω]T . Rθ = [cos θ sin θ;− sin θ cos θ], where θ = ϑopt is the optimal IRA of the chirp187

rate, λ ≥ 1 indicates the anisotropic operator. When λ = 1, the TF-varying Gaussian window degenerates into a normal188

Gaussian window, and the optimal anisotropic operator is selected by maximizing SNR (Fig. 5). Here, we consider the whale189

signal whose TFR as shown in Fig. 4, where we add different noise, leading to different SNRs. Fig. 5 shows that for integer190

choices of λ. The highest level of concentration and Gaussianity is achieved as λ = 2. For a fixed height-to-width ratio, the191

chirplets have the highest level of TF energy in the range of 1.5 ≤ λ ≤ 2.5.
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In the TF plane, the Gaussian window can be deemed as a two-dimensional Gaussian mask with the width 2
√

2 ln 2Lt and193

the height 2
√

2 ln 2Lω . The height-to-width ratio µ is expressed as194

µ =
2
√

2 ln 2Lt

2
√

2 ln 2Lω
=

tan θ

2πσ2
. (17)195

196

Accordingly, a global minimum of the envelope occurs [36] when ∂ĥ(t, ω)/∂σ2 = 0, the TF-varying standard deviation is197

then obtained by σ2
opt = 1/(2π|c(t)|). The TFR with the highest energy concentration can be implemented by the convolution198

of the ideal TFR with the 2D Gaussian mask µ = tan θ|c(t)|.199

When a noisy signal is corrupted by additive white Gaussian noise (AWGN) ε(t, ω) with a variance of σ2
ε , it is filtered by200

TF-varying Gaussian window in (16). The noise suppression can be estimated by the noise variance in the filtered signal201

σ2
ε̄ = E

{[
ε(t, ω) ∗ ĥ(t, ω)

]2}
=

∫∫
ĥ(v)ĥ(v̄)E [ε(u− v)ε(u− v̄)] dvdv̄

= σ2
ε

∫∫
ĥ(v)ĥ(v̄)δ(v − v̄)dvdv̄

= σ2
ε

∫∫ [
ĥ(v)

]2
dv =

σ2
ε

2πσ2
,

(18)202

203

where u = [t, ω]T , σ2
ε̄ is the variance of a smoothed noise. (18) demonstrates that the capability of noise suppression is204

independent of the anisotropic operator and preference orientation.205

In this case, the ACT only compensates the energy of available signals, but the energy of noise is not concentrated. Thus,206

the proposed method is well suitable to IF estimation in an environment of high level noise.207

III. MULTIMODAL SPARSE TIME-FREQUENCY REPRESENTATION208

A. Directional Chirplet Ridges209

Generally, the directional chirplet ridges with directionality points (t̂i(t, ω), ω̂i(t, ω)) satisfy ω̂i(t, ω) = ω or equivalently210

=
{ %
S
ejϑ(t)

}
= 0. (19)211

212

If defining directional ridges by linking together the points that satisfy (19), splitting IF at the zeros of ACT will guarantee213

smooth continuity of the phase derivative along every ridge segments.214

For precise parameter estimation, a two-dimensional candidate IF ω̂i(t, ω) [13] for the ACT can be expressed as215

ω̂i(t, ω) = −j ∂tS(t, ω)

S(t, ω)
. (20)216

217

The partial derivative can be calculated as218

∂tS(t, ω) = ∂t

(∫ ∞
−∞

s(τ)ĥ(τ − t, ω)ej
c
2 (τ−t)2e−j2πωτdτ

)
= −Sĥ′(t, ω) + jc(t− τ)S(t, ω),

(21)219

220

where Sĥ′(t, ω) = S(t, ω)∂tĥ(t, ω), and ∂tĥ(t, ω) is a first partial derivative of TF-varying Gaussian window in the direction221

θ, obtained by222

∂tĥ(t, ω) = ∂tĥ(Rθu) =
[cos θ, sin θ]u

λ−2σ2
ĥ(t, ω). (22)223

224

According to (20)-(22), the IF for ACT is then rewritten as225

ω̂i(t, ω) = j
(t cos θ + ω sin θ)

λ−2σ2
ĥ(t, ω) + jc(t− τ). (23)226

227

This idea follows the curvilinear structures definition by Steger [37], and identifies ridges from the analysis of the Hessian232

of the multimodal signals. Thus, the second derivative of a phase in the direction θ is expressed as233

ω̂′i(t, ω) = −j λ
2

σ2

(
(t cos θ + ω sin θ)2

λ−2σ2
− 1

)
ĥ(t, ω) + jc. (24)234

235

The ω̂′i(t, ω) considers a variety of ridge curvatures for adapting to the local modes of the TFR. The resulting ridge representation236

of the signal in direction angle θ is given by points (t, ω) satisfying237

ω − ω0 = ω̂′i(t, ω)(t− t0). (25)238
239
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The IF can be estimated unbiasedly by the chirplet ridges while only need to satisfy tan θ = ω̂′i(t, ω).240

Fig. 6 contains several examples of TFR with different orders ω̂i(t, ω). Since the approach uses the second directional241

derivatives of TFR for the extraction of the line points in the ridges, no specialized directional filters are needed. If the ridges242

detection is not perfect, (25) can overcome the discontinuity caused by noise in the ridges. TF-varying Gaussian window243

provides a simpler and more powerful approach for the study of multimodal structures and empowering the representativity of244

the properties of the patterns (orientation, curvature, scale). Thus, the algorithm can extract ridges of different curvatures.245

B. Structure-split-merge algorithm246

As ideal acoustic components generally present sparsity in a certain TF domain, structure-split-merge method, together with247

the aid of TF methods, can effectively recover the tonal and pulsed features of the signal. The fixed choice of (t̂i, ω̂i) from the248

TFR determines a split-merge transformation kernel, satisfying detailed balance. Selecting a main (t̂i, ω̂i) pair that interprets249

similar data is important for efficiency.250

The output of ACT is a TFR that contains real parts and imaginary parts. SSM, which splits the time-frequency space into251

contours of interest, utilizes this property by counting the number ΣS of detections set to energy value in sub-contours of the252

energy spectrogram. Therefore, the reconstruction procedure for multimodal sparse representation based on SSM is introduced253

in Algorithm 1.254

The hypotheses κv = Σv contains imaginary parts only and κrv = Σr + Σv contains real and imaginary parts. The observed255

energy function ρκv and ρκrv can be obtained with the entire spectrogram. Given a sparse distribution, an estimate of detections256

is determined by ρΣ = −{ρκv < 0}+ {ρκrv > 0}. As a split criterion, the estimate ρκrv is provided by minimization of the257

local KullbackLeibler divergence [38] between the observed distribution ρΣS and the TF distribution S(t, ω) obtained by258

ACT. The merge criterion is constructed based on the two distribution. Therefore, one can determine the merge sparse TF259

representation Ŝ = ΣρΣS × |S(t, ω)|.260

The sound example, consisting of a mix of whistle analysis, is shown in Fig. 7. In the case of a whale whistle, the TFR266

(Fig. 7(a)) information prepares an analytical characterization of signal features. It is easy to notice from the observation267

of the TFR that noise exists in the spectrogram representation. Observing that the SSM can eliminate the noise from the268

TF spectrogram, the noise robustness of the SSM method is illustrated in Fig. 7(b). Unlike the spectrogram, the estimated269

information is clearly presented because only the estimated valuable components are plotted.270

The information of the SSM contains the modes of the pulsed transients (Fig. 7(c)) and the tones (Fig. 7(d)). These split271

modes could have an amount of applications, such as signal detection and classification, underwater source separation and272

reconstruction, UWA communication signal characterization, etc.273
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Algorithm 1: SSM algorithm

Input: Time-frequency representation S, the second derivative ω̂′(t, ω) of a signal phase in the direction ϑ;
Output: Multimodal sparse representation Ŝ;

1 Initialize the spectrum S, %;
2 Initialize η = ω̂′ · S;
3 N = length(ϑ);
4 for k = 1 : N do
5 ρΣ = −{(1− ρκrv ) < 0}+ {ρκrv > 0} ;
6 gt = ∂tS, gω = ∂ωS ;
7 ∆S = −gt cos(ϑ(k) + π

2 ) + gω sin(ϑ(k) + π
2 ) ;

8 µ = Split(∆S, η, %);
9 l = max(µ, 2);

10 w = [],M = length(l);
11 for i = 1 : M do
12 w(i) = l(i)
13 end
14 Ŝ = Merge(w, S)
15 end
16 return Ŝ;
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Fig. 7. TFR of a whale signal with several harmonics, and pulsed bursts. (a) TFR; (b) multimodal sparse representation; (c) extracted pulsed components;
(d) extracted tonal components.

263

264

265



IEEE JOURNAL OF OCEANIC ENGINEERING 9

IV. APPLICATION TO UWA SIGNALS274

To verify the effectiveness of the proposed technique, we apply field experimental UWA communication signals and whale275

signals shown as below.276

Example 1: To analyze the performance of the proposed ACT on the energy concentration, the ACT is compared with the277

CT. For the ACT, the initial angle list ranges from π
4 to π, and an anisotropic operator is λ = 2. A Hanning window with278

length 512 is employed in the spectrogram computation of the CT. We evaluate the ACT with an UWA communication dataset.279
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Fig. 8. TFRs of UWA communication signals by the ACT.

Different datasets with different modulations were collected at different locations in Wuyuan Bay, Xiamen, China, from285

2016 to 2018. We use sensors called Universal Deck Device and Underwater Acoustic Transducer, the specifications of which286

are listed in Table. I. Dataset consists of audio files (.WAV) with length between 2.6 s and 42.3 s.287

TABLE I
SPECIFICATIONS OF TWO SENSORS.

Description Parameters

Universal Deck Device
(UDD-630 Series)

• Usable frequency: 20 to 40 kHz
• Highest bit rate: 2.4 kbps
• Maximum cable length: 200 m
• Interface type: RS-232
• Directivity: Omni

Underwater Acoustic
Transducer

• Resonant frequency: 30 kHz
• Usable frequency: 20 to 40 kHz
• Maximum operating depth: 300 m
• Horizontal: Omni-directional
• Vertical: 280◦

Fig. 8 displays the spectrogram of the five modulation types. They are labelled as MCMFSK, OFDM (Orthogonal Fre-288

quency Division Multiplexing), CIOFDM (Carrier Interferometry, CI), LFM OFDM (Linear Frequency Modulation, LFM) and289

DFT OFDM (Discrete Fourier Transform, DFT), respectively. Each signal contains guide fragment and data fragment. For the290

variety of the recorded communication signals, the guide fragments present very different structures due to the superimposition291
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Fig. 9. TFRs of UWA communication signals by the CT.

of linear frequency modulation components. Since these structures have different chirp rates, it is better to use time-frequency-292

varying standard deviation adapted to each component.293

In Fig. 8, the ten spectrogram plots describe the variations of time-frequency contour in terms of their shape, energy294

distribution, time duration and frequency span. Some components may be blurred, as shown in Fig. 9, but a few representative295

TF structures of the signal are extracted by the CT. The CT suffers from poor energy concentration for two main reasons: 1)296

the window is time-varying but not frequency-varying; 2) the relationship between the window width and the chirp rate in (17)297

is not adequate. This example verifies that the ACT is superior to the CT for UWA communication signals.298

The information obtained by the proposed method is rich, because we obtain a series of parameters, such as modulation299

type, bandwidth, duration, location in time, etc. The proposed method is a valuable tool in the analyzed signals involved in300

energy concentrated in the components. In this case, a separation of the guide fragment makes the communication type easily301

interpretable. Thus, through the TF representation of the modulation signals, it is easy to be discriminated based on the two302

parts.303

Example 2: Compared to the above example, we show a more complicated example here, where the analysed signal consists304

of multiple components with pulsed and tonal components overlapping in the TF plane. The carried out example shows that,305

apart from the sparse TF representation, SSM-based PTR analysis determines if the signal has a dominant pulsed or tonal306

component.307

In terms of whale signals, the detection of multiple events depends on pulsed and tonal components as well as a combination319

of these two main categories. However, there are some situations, where the algorithm using only TFR features, do not guarantee320

a correct detection of acoustic events. The TFR with the aid of the pulsed-to-tonal ratio (PTR) [3] to distinguish between two321

similar whale signals. When a ‘click’ event appear in a signal, the value of PTR increases, but the PTR decreases as the322

number of tone events increases. Therefore, the PTR provides valuable information for comparing signals that contain energy323

which is concentrated in the tonal or pulsed components. In the paper, an alternative ratio can also be derived by decomposing324

the TFR using the SSM. The PTR can be calculated as325

R = 10 log
S(t, ω)p
S(t, ω)t

, (26)326

327

where S(t, ω)p =
∑M
m=1 S(t,m)p and S(t, ω)t =

∑M
m=1 S(t,m)t are sum of the spectrum of pulsed and tonal components328

at the interval t, respectively.329

In the test, we consider two marine-mammal signals that were recorded at the Voices in the sea website. The sample330

frequency of both the selected signals of length Ns =20000 is equal to 48 kHz. Some chirp-like components correspond to331

the associated non-linear tonal components existing in the signal structure of a ringtone Bottlenose.332
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Fig. 10. TFR and PTR estimation of two whale signals, ringtone Bottlenose (left) and ringtone Beluga (right). (a) TFR by ACT. (b) Pulsed components by
SSM. (c) Tonal components by SSM. (d) Estimated PTR.

316

317

318

In Fig. 10, we observe that the TF components represented by the ACT algorithm are visually close to the acoustic event333

behaviour illustrated by the TF spectrogram. By unifying the arbitrary curvatures for all frequency sub-bands and for all334

temporal location, the detection ridges are obtained by the SSM in both time and frequency domains. This IT and IF ridges cover335

information of the transient pulsed and tonal components of the signals. The analysis of extracted chirplets and corresponding336

modes from all contours of interest leads to the identification of TF components of the signal. Therefore, the sparse modeling of337

signal can provide the parametric information about the signal. The extracted parameters can be related to the signal features.338

After the sparse representation, for each corresponding signals, the feature extraction procedure is executed to obtain the339

parameters PTR of TF components.340

Fig. 10 also displays a comparison of the PTR when multimodal components are decomposed into IF S(t, ω)t and IT341
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S(t, ω)p modes of the tonal and pulsed components using the SSM algorithm. The proposed SSM-based estimation provides342

a higher sensitivity to small transient pulses in low PTR signals. The result illustrates that the PTR increases as the density of343

bursts increases.344

Moreover, the analytical estimation of the PTR provides useful information for further processing stage. The parameters of345

the PTR constitute the extracted patterns of the analysed signal and they could be used for signal detection or classification.346

Example 3: Besides the energy concentration, we measure the time complexity of different TFR methods on the Intel(R)347

Core(TM) i7-8700 CPU and MATLAB R2019b. Table. II compares the computational complexity of the proposed method to348

the CT and Fourier synchrosqueezing transform (FSST) [25] on two datasets in the Example 1 and 2.349

Compared to the CT, the FSST has much higher complexity due to its reassignment process to improve the readability of350

the TFR. The proposed method has lower complexity than FSST, because the calculation of the SSM in the ACT is simpler351

than the optimization process in the FSST. Further, the proposed approach is more flexible, allowing an adjustment between352

the complexity and the energy concentration.353

354

TABLE II355

COMPARISON COMPLEXITY OF DIFFERENT METHODS.356

Methods MCMFSK OFDM CIOFDM LFM OFDM DFT OFDM Whale

CT 0.17 0.038 0.032 0.047 0.12 0.051
FSST [25] 5.3 2.58 1.81 2.02 3.08 2.42

ACT 2.86 1.06 1.03 1.19 2.05 1.13
ACT with SSM 2.98 1.51 1.39 1.5 2.37 1.56

357

V. CONCLUSIONS AND DISCUSSION358

In this paper, we propose the ACT to generate high-resolution TF representations for the analysis of UWA signals. The359

ACT with the TF-varying Gaussian window allows the use of different window width controlled by anisotropic operators360

at different time points. Its advantage lies in its ability to achieve high energy concentration and readable TF representation361

without auto-term distortion, demonstrated by the application of UWA communication signals. Better time-frequency resolution362

than the CT can be attained by the ACT, although at a higher computational cost. A comparison with the reassigned FSST363

shows that the ACT gives better results with less computational complexity. The ACT, as a kind of general tools for the analysis364

of overlapping multicomponent signals, will bring more advanced applications in a future research.365

For a classification, a critical step is to extract discriminating features from the TFR. The directional chirplet ridges from366

the TFR can provides the estimation of intersected IF and IT of multicomponent signals. Utilizing the chirplet ridges, the367

proposed SSM can decompose and extract the tonal and pulsed features while is regarded as a filter to suppress noise. The368

multimodal sparse representation obtained by the SSM with similar properties to the ACT, the improvement in performance369

over the ACT has been verified through the analysis of whales. A new parameter PTR can measure the pulsed to tonal strength370

of multimodal sparse representation. The SSM-based PTR gives information about the energy in the pulsed component in371

relation to the energy in the tonal component of a given signal. A real example has illustrated the utility of the parameter in372

helping to classify whale sounds with mixed pulses and tonal modes.373

Moreover, the presented methodology may potentially be useful in suppressing reverberation. Consequently, the proposed374

sparse representation methodology, as a standard signal imaging techniques, could potentially be merged in the learning model375

to further enhance the concurrent detection, identification and localization of underwater multi-target. The application of SSM376

on UWA signals can exact time-frequency features to monitor the structural state of acoustic events, which effectively achieve377

online extraction of the structural signature.378
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