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Abstract The complexity of today’s integrated circuit

(IC) supply chain, organised in several tiers and in-

cluding many companies located in different countries,

makes it challenging to assess the history and integrity

of procured ICs. This enables malicious practices like

counterfeiting and insertion of back doors, which are

extremely dangerous, especially in supply chains of ICs

for industrial control systems used in critical infrastruc-
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tures, where a country and human lives can be put at

risk.

This paper aims at mitigating these issues by in-

troducing Anti-BlUFf (Anti-counterfeiting Blockchain-

and PUF-based infrastructure), an approach where ICs

are uniquely identified and tracked along the chain,

across multiple sites, to detect tampering. Our solution

is based on consortium blockchain and smart contract

technologies, hence it is decentralised, highly avail-

able and provides strong guarantees on the integrity

of stored data and executed business logic. The unique

identification of ICs along the chain is implemented

by using physically unclonable functions (PUFs) as

tamper-resistant IDs.

We first define the threat model of an adversary in-

terested in tampering with ICs along the supply chain,

then provide the design of the tracking system that

implements the proposed anti-counterfeiting approach.

We present a security analysis of the tracking system

against the designated threat model and a prototype

evaluation to show its technical feasibility and assess

its effectiveness in counterfeit mitigation. Finally, we

discuss several key practical aspects concerning our so-

lution ad its integration with real IC supply chains.

Keywords supply chain · physically unclonable

function · blockchain · smart contract · counterfeit

detection · tracking

1 Introduction

Counterfeited ICs can lead to catastrophic conse-

quences, in particular when they are used in criti-

cal infrastructure, military applications or in food and

medicine industries. These include significant economic

losses (e.g. in the order of billion USD per year in
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the UK [24]), serious security risks from malfunction-

ing military weapons and vehicles due to counterfeited

parts [16], and potentially loss for human lives (e.g.

deaths due to contaminated food, such as 2018 E. coli

infection 1). It is therefore of paramount importance

to develop and deploy effective strategies for IC coun-

terfeit mitigation to ensure a trustworthy and secure

supply chain. One of main factors magnifying the scale

of the counterfeit problem is the trend towards global-

isation. The latter is driven by the need to cut costs to

gain a competitive advantage and resulted in a remark-

able growth of outsourcing levels, which in turn led to a

significant increase of supply chains complexity because

more firms are involved and the chain must be spread

over further tiers [30]. Such an evolution of the supply

chain structure has brought about a number of serious

challenges linked to the problem of counterfeiting:

– Visibility [15]. The network of buyer-supplier re-

lationships has become more intricate and partici-

pants have little to no visibility and control on up-

stream stages, which makes it harder to assess the

integrity of procured ICs.

– Traceability [21]. Tracking data is fragmented and

spread among involved companies, which makes it

very challenging to uniquely identify each procured

IC and trace its history back to its origin and, in

case of incidents, there is a shortage of data that

can be used for forensics investigations.

– Accountability [14]. In such a scenario afflicted by

obscurity and lack of information, fraudulent con-

duct of companies is noticeably facilitated. There is

a lack of means to keep organisations accountable

for the portion of processing they handle within the

supply chain.

Coping with counterfeiting in these IC supply chains

calls for a platform integrated throughout the whole

chain to reliably record every transition of products

between involved companies. The availability of such

a ledger would be an effective means to provide any

legitimate actor with precise information on what or-

ganisations are operating at upstream stages of the

chain (visibility) and on the history of each procured

IC (traceability). Moreover, ensuring recorded transac-

tions are truthful and not tampered with is crucial to

enable legally binding liability policies (accountability).

The implementation of such a platform for counterfeit

mitigation requires an infrastructure deployed over the

considered supply chain, to enable fine-grained moni-

toring of ICs sold and bought by involved companies. It

1 Multistate Outbreak of E. coli O157:H7 Infections Linked
to Romaine Lettuce (Final Update), available online https:

//www.cdc.gov/ecoli/2018/o157h7-04-18/index.html

would be infeasible to identify a single specific authority

or enterprise eligible for controlling and operating an in-

frastructure like this, possibly spanning different coun-

tries and diverse regulatory frameworks. Furthermore,

such an authority should be trusted globally and have

the resources to effectively setup and maintain such a

world-wide, complex interconnected network, ensuring

at the same time top levels of security, availability and

performance.

A decentralised approach is more suitable, where

the infrastructure itself is a peer-to-peer network dis-

tributed across all the supply chain partners, devoid of

any centralised control that may become a single point

of failure or a performance bottleneck. An emerging

technology that lends itself well to implement a plat-

form like that is the blockchain, because of its full decen-

tralisation, high availability and strong guarantees on

the immutability of stored data. In brief, a blockchain

is a distributed system consisting of a network of peer

nodes sharing a ledger of transactions, where each peer

keeps a replica of that ledger. The consistency among

replicas is ensured by a distributed consensus algorithm

run by all the nodes, which also guarantees that trans-

actions cannot be censored or redacted unless an at-

tacker succeeded in controlling a certain percentage of

nodes or of computational power. In addition to stor-

ing data, blockchain can be used to execute application

logic through the smart contract technology. A smart

contract is an application whose code and execution

traces are stored immutably in the blockchain, which

provides strong guarantees on execution integrity.

Since such infrastructure has to be run across a pre-

defined set of parties, and considering that part of man-

aged data is not meant to be disclosed publicly, it is

reasonable to not rely on existing public permissionless

blockchains like Ethereum. Rather, it is more sensible

to build on a consortium blockchain where nodes are

authenticated, membership is predetermined and data

cannot be accessed from the outside.

In this paper, we introduce Anti-BlUFf (Anti-

counterfeiting Blockchain- and PUF-based infrastruc-

ture), an approach based on consortium blockchain and

smart contract technologies for item tracking and coun-

terfeit detection in IC supply chains . Items, i.e. ICs, are

uniquely identified to enable tracking by using tamper-

proof tags. We choose to use physically unclonable func-

tions (PUF) to implement those tags. PUFs are cir-

cuits that provide unique signatures deriving from man-

ufacturing process variations of the circuits themselves.

Each alteration of those tags leads to changes of the

function computed by the PUF, hence this technology

is well suited to enable counterfeit detection. We pro-

vide the design of a supply chain management system

https://www.cdc.gov/ecoli/2018/o157h7-04-18/index.html
https://www.cdc.gov/ecoli/2018/o157h7-04-18/index.html
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based on the proposed approach and carry out a pre-

liminary analysis on its effectiveness and feasibility. We

define the adversary model to characterise what types

of threats can arise in the context of supply chain coun-

terfeit. We then analyse how the proposed design can

address those threats to deliver improved counterfeit

detection. Finally, to show the technical feasibility of

this solution, we describe its prototype implementa-

tion and preliminary experimental evaluation, where we

measure the effectiveness of using PUFs for counterfeit

detection. Finally, we provide an ample discussion on

some key pragmatic aspects of integrating the proposed

platform with real supply chains.

Although some other blockchain-based IC supply

chain management systems have been proposed in liter-

ature and industry, a few of them rely on PUFs for item

tracking. The main novelty of this work lies in present-

ing a more complete solution that encompasses (i) the

integration of PUF and consortium blockchain, (ii) the

detailed description of smart contract implementation

and how PUF data is stored in the blockchain and (iii)

a security analysis against a threat model.

Our Contribution. In this paper, we rely on

blockchain, smart contract and PUF technologies to de-

sign a tracking system of ICs for supply chain manage-

ment, aimed at mitigating the problem of counterfeit-

ing. With respect to the state of the art on this topic,

our main research contributions are

– the explicit modelling of the overall system, in-

cluding IC supply chain, blockchain, smart con-

tracts, PUFs and adversary behaviour, i.e. the threat

model ;

– the detailed design of the proposed tracking system

for detecting counterfeits in IC supply chains;

– based on the designated threat model, the identifi-

cation of the possible attacks to the tracking system

aimed to bypass counterfeit detection;

– the analysis of how the proposed tracking system

reacts against each of the identified attacks;

– a prototype implementation and preliminary exper-

imental evaluation of the proposed tracking system,

where PUF-based counterfeit detection accuracy is

assessed;

– a discussion on most relevant points concerning the

integration of our solution in real scenarios.

Paper Organisation. The remainder of this paper is

organised as follows. Section 2 describes related work.

Section 3 introduce background information on PUF,

blockchain and smart contract technologies. The sys-

tem model is presented in section 4, as well as the threat

model. Our tracking system is detailed in section 5 and

its security properties are analysed in section 6. Sec-

tion 7 describes the prototype implementation and eval-

uation. Section 8 discusses security analysis results and

the limitations of our solution. Finally, section 9 out-

lines conclusion and future work.

2 Related Work

The use of blockchain and smart contracts for supply

chain management is currently being investigated in

some recent industrial projects 2 3, and led to the launch

of a number of new businesses and companies, which

supports the perceived potentialities of this application.

Some of these projects use a blockchain-as-a-service so-

lution provided by a third party, such as TradeLends 4,

which employs the platform delivered by IBM Cloud.

The limitation of such an approach is the need to totally

trust an external organisation, which brings about the

same issues mentioned before regarding centralisation.

Different companies use diverse technologies to

tag products and reliably link physical assets to the

blockchain. Waltonchain 5 uses RFID (Radio-frequency

identification) as tags to identify and track items along

the chain. Others make use of proprietary solutions. For

example, BlockVerify 6 uses their own Block Verify tags,

Chronicled 7 employs trusted IoT chips, Skuchain 8 ap-

plies Proof of Provenance codes called Popcodes. The

problem of existing approaches that rely on the use of

RFID-based tags is that these tags are vulnerable to

cloning attacks [19, 17], this makes it less effective in

protecting against counterfeit attempts.

RFID are also proposed by Toyoda et al. [27]. They

introduce a blockchain-based solution for product own-

ership management system, to be used to prevent coun-

terfeits in the post supply chain. They explain how their

system allows to detect counterfeits, and discuss the

2 How Blockchain Will Transform The Supply Chain
And Logistics Industry (https://www.forbes.com/sites/
bernardmarr/2018/03/23/how-blockchain-will-transform-

the-supply-chain-and-logistics-industry)
3 Using blockchain to drive supply chain transparency

(https://www2.deloitte.com/us/en/pages/operations/
articles/blockchain-supply-chain-innovation.html)
4 TradeLends, available online https://www.tradelens.com/
5 Waltonchain https://www.waltonchain.org/doc/

Waltonchain-whitepaper_en_20180208.pdf
6 BlockVerify: Blockchain Based Anti-Counterfeit Solu-

tion, Introducing transparency to supply chains http://www.

blockverify.io/
7 Chronicled: Trusted Internet of Things and Smart Sup-

ply Chain Solutions, Secure identities, trusted IoT data, and
automated business logic https://www.chronicled.com/
8 Skuchain: Turn Information Into Capital http://www.

skuchain.com/

https://www.forbes.com/sites/bernardmarr/2018/03/23/how-blockchain-will-transform-the-supply-chain-and-logistics-industry
https://www.forbes.com/sites/bernardmarr/2018/03/23/how-blockchain-will-transform-the-supply-chain-and-logistics-industry
https://www.forbes.com/sites/bernardmarr/2018/03/23/how-blockchain-will-transform-the-supply-chain-and-logistics-industry
https://www2.deloitte.com/us/en/pages/operations/articles/blockchain-supply-chain-innovation.html
https://www2.deloitte.com/us/en/pages/operations/articles/blockchain-supply-chain-innovation.html
https://www.tradelens.com/
https://www.waltonchain.org/doc/Waltonchain-whitepaper_en_20180208.pdf
https://www.waltonchain.org/doc/Waltonchain-whitepaper_en_20180208.pdf
http://www.blockverify.io/
http://www.blockverify.io/
https://www.chronicled.com/
http://www.skuchain.com/
http://www.skuchain.com/
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provided security guarantees only in terms of the pos-

sible vulnerabilities of the underlying technology they

use, i.e. Ethereum 9.

Alzahrani and Bulusu [2] propose a solution

based on Near Field Communication (NFC). They

present Block-Supply Chain, a design for a consor-

tium blockchain-based supply chain where products are

tracked using NFC technology to detect counterfeits.

Their security analysis is limited to the novel consensus

protocol they propose and does not take into account

any other aspect of the overall supply chain ecosystem,

which includes, but is not restricted to, the blockchain.

Furthermore, they do not define a threat model to spec-

ify what attacks they want to defend from.

We propose to produce tamper-proof tags by using

physically unclonable functions (PUF), i.e. circuits that

can generate a unique identifier for each chip due to

the intrinsic variability of the IC fabrication process.

Previously reported works on using PUF technology in

the context of IC supply chain management are limited

in both scope and depth. Guardtime [10] proposes the

use of PUF for IoT device authentication, based on a

consortium blockchain (i.e. KSI Blockchain). However,

they provide no clear information on the integration

with supply chain, they do not explain how PUF data

is stored and do not provide any security analysis.

Islam et al. [18] propose the use of PUF and consor-

tium blockchain for tracing ICs. Their work does not

investigate in depth what security guarantees are pro-

vided and gives no description of the way PUF data is

stored in the blockchain.

Similarly, Negka et al. [23] describes a method to

detect counterfeit IoT devices by tracking each single

device component along the supply chain. They rely on

PUFs to authenticate components and implement their

detection logic in Ethereum. Although they provide

some figures on the fees to pay to use Ethereum smart

contracts, they do not detail how PUFs and smart con-

tracts are integrated, nor what specific mechanism is ac-

tually employed to implement the detection. Obtained

detection accuracy and provided security guarantees

are not discussed.

To the best of our knowledge, the lack of appro-

priate security analysis of proposed solutions is cur-

rently a gap in the state of the art on the application

of blockchain and PUF technologies for counterfeiting

mitigation in IC supply chains. Table 1 details how our

solution, Anti-BlUFf, compares with respect to the re-

lated work considered in this section. Anti-BlUFf is the

only proposed approach that at the same time (i) relies

on PUF and consortium blockchain, (ii) gives details

on smart contract implementation and how PUF data

9 Ethereum Project (https://www.ethereum.org/)

is stored in the blockchain and (iii) includes a security

analysis against a threat model.

3 Preliminaries

In this section we introduce some preliminary back-

ground on physically unclonable functions (section 3.1)

and blockchain and smart contract technology (sec-

tion 3.2).

3.1 Physically Unclonable Function

Physically unclonable functions (PUF) are security

primitive capable of generating a hardware-based dig-

ital signature unique for each device [13]. PUFs are

commonly implemented as circuits and ensure that re-

sponses are different for each hardware by exploiting

the inherent randomness of the internal structure in-

troduced by the manufacturing process. This technol-

ogy has many attractive advantages, including its rel-

atively low cost (a typical PUF can be built using few

thousands transistors), and its inherent security deriv-

ing from the extreme difficulty of forging its design. In-

deed, it is almost impossible to create a physical clone

of a PUF, which means that this technology can be

used reliably to identify those physical objects where a

PUF can be integrated, and therefore to detect possi-

ble forgery. From a mathematical point of view, a PUF

is a function that generates an output (also called re-

sponse) starting from an input (also called challenge).

The challenge-response data (CRD) must be unique for

a single device. The use of PUF for building entity-

authentication protocols has been extensively explored

in the literature [32, 6, 31]. In general, each entity is

provided with a PUF and the authentication scheme

consists of two stages [11]:

1. Enrolment Phase: when a new entity has to be en-

rolled, a verifier collects the required CRD from en-

tity’s PUF and stores it in a database, together with

the ID of the entity itself.

2. Verification Phase: when an enrolled entity has to

be authenticated, the verifier receives the entity

ID and retrieves the corresponding CRD from the

database. A random challenge-response pair is se-

lected from the CRD and the challenge is sent in

clear to the entity, which computes the response by

using its PUF and sends it back in clear to the veri-

fier. If the response corresponds to that stored in the

database, then the authentication is successful and

the challenge-response pair is removed from stored

CRD to prevent replay attacks. Otherwise, the au-

thentication fails.

https://www.ethereum.org/
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Proposed solution Tag type Blockchain type Counterfeit detection approach Security analysis

Toyoda et al. [27] RFID Ethereum Smart contracts pseudo-code pro-
vided

Yes

Block-Supply Chain [2] NFC Consortium No details are provided on how the
smart contract is implemented

No

Guardtime [10] PUF Consortium No details on integration with
blockchain, no info on how PUF data
is stored in the blockchain, no details
are provided on how the smart con-
tract is implemented

No

Islam et al. [18] PUF Consortium No info on how PUF data is stored
in the blockchain, no details are pro-
vided on how the smart contract is
implemented

No

Negka et al. [23] PUF Ethereum No info on how PUF data is stored
in the blockchain, no details are pro-
vided on how the smart contract is
implemented

No

Anti-BlUFf PUF Consortium Smart contract pseudo-code pro-
vided, as well as details on how PUF
data is stored in the blockchain

Yes

Table 1 Comparison of Anti-BlUFf with state of the art in blockchain-based anti counterfeit approaches for supply chains.

Ideally, a PUF should always generate the same re-

sponse for a given challenge. Unfortunately, conditions

such as temperature or voltage variations could lead to

different responses [12].

A PUF can be implemented in different ways and

with different technologies, leading to varying secu-

rity guarantees. For example, PUFs based on SRAM

have been proved to be clonable [12], which questions

their suitability to be used to implement authentica-

tion protocols. It has been also shown that a PUF can

be vulnerable to machine learning (ML)-based mod-

elling attacks [12], where an adversary builds an ac-

curate mathematical model of the PUF by collecting a

sufficient number of challenge-response pairs, and uses

that model to clone the PUF itself. There are a number

of techniques that can be used to mitigate the risks of

ML-based attacks, such as using cryptographic blocks

to obfuscate the output of the PUF [22], increasing the

circuit complexity of the design [26], or solving this is-

sue at the protocol level [32, 33].

3.2 Blockchain and Smart Contract

A blockchain is a ledger of transactions, replicated

among a number of nodes organised in a peer-to-peer

network. Transactions are submitted to the blockchain

network and stored in the ledger. A consensus algorithm

is run among blockchain nodes to guarantee the consis-

tency of the ledger, in terms of what transactions are

included in which order. A blockchain provides strong

guarantees in terms of availability, because a peer-to-

peer network with several nodes and no single-point-

of-failure is used. Furthermore, as the ledger is repli-

cated and several nodes participate in the consensus

algorithm, an adversary should take control of a rele-

vant fraction of nodes to take over the blockchain and

tamper with the ledger. That fraction of nodes depends

on the chosen consensus algorithm.

In open, permissionless blockchains like Bitcoin 10

and Ethereum, any node can join the network with-

out any form of authentication, hence additional mech-

anisms are required to cope with the potential pres-

ence of malicious nodes. Proof-of-Work (PoW) is com-

monly employed, which, although effective in counter-

ing cyber threats stemming from malicious blockchain

nodes, is time-consuming and greatly restricts perfor-

mance [28]. In consortium blockchains like Hyperledger

Fabric 11, blockchain membership is restricted to the

nodes owned by interested organisations, so that each

involved firm can take part to the overall process and no

external actor can interfere with any operation or read

any exchanged data. In this way, blockchain nodes are

known and can be reliably authenticated, which allows

to replace PoW with other, more efficient techniques

that ensure high level performance in terms of latency

and throughput, such as byzantine fault tolerance algo-

rithms [5].

On top of a blockchain, a smart contract execution

environment can be built, to extend the functionali-

ties of the blockchain beyond storing data and allow

the execution of any application logic. A smart con-

tract is the code implementing the required application

10 Bitcoin (https://bitcoin.org/en/)
11 Hyperledger Fabric (https://www.hyperledger.org/
projects/fabric)

https://bitcoin.org/en/
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
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logic and it can be installed in a bockchain likewise

a normal transaction, which ensures consequently its

integrity. A smart contract defines an interface with

methods that can be called externally. Each invocation

of a smart contract method is stored as a blockchain

transaction, hence the execution trace can be con-

sidered as immutable. In general, computations exe-

cuted through smart contracts are fully transparent and

tamper-proof.

4 System Model

This section defines the system model representing

supply chain (section 4.1), PUF-equipped items (sec-

tion 4.2), blockchain and smart contracts (sections 4.3

and 4.4, respectively). Finally, thread model is intro-

duced in section 4.5.

4.1 Supply Chain Model

An IC supply chain SC includes N parties P = {pi},
i.e. organisations involved in the chain with different

roles, and that engage among themselves by supplying

and buying items, i.e. ICs. A supplier is a party that

provides items, while a buyer is a party that receives

items. Each party can act at the same time as supplier

for a number of buyers and as buyer for diverse sup-

pliers. There can be parties that are neither suppliers

nor buyers for any other party but operate anyway in

the supply chain, such as auditors or regulators. This

kind of parties usually needs to access tracking data to

assess compliance and solve disputes.

Fig. 1 Example of supply chain with 8 parties p0, . . . , p7
spread across 3 stages. The arrows represent the supplier-
buyer relationships, e.g. (p2, p5) models the fact that p2 is a
supplier of p5.

We model SC as a directed acyclic graph (P,R),

where R is the set of binary supplier-buyer relation-

ships holding within SC. Figure 1 shows an instance of

the supply chain model. Each element of R is in the

form (pi, pj), with pi, pj ∈ P ∧ pi 6= pj , and represents

a supplier-buyer relationship where pi is the supplier

and pj the buyer. According to these relationships, par-

ties can be organised in stages, i.e. the stages of the

supply chain. Let S be the number of stages of SC.
Without loss of generality 12, we define the function

stage : P → N as follows

stage(p) =

{
0 iff @q ∈ P | (q, p) ∈ R
i + 1 otherwise

(1)

where i = max
q∈P|(q,p)∈R

stage(q).

Equation 1 computes the stage of a party p in the

supply chain by recursively identifying the supplier of p

operating at the highest stage, i.e. max
q∈P|(q,p)∈R

stage(q).

Trivially, the stage of p is one unit higher than the stage

of that supplier. If instead p has no supplier (i.e. @q ∈
P | (q, p) ∈ R), this means that p operates at stage

0. Although equation 1 covers the cases where a buyer

has suppliers in different stages, this is not likely to

happen in real supply chains. Indeed, buyers commonly

purchase items from parties in the previous stage only.

Therefore we introduce the following constraint

∀(p, q) ∈ R stage(q)− stage(p) = 1 (2)

We assume the existence of a reliable public key

infrastructure (PKI) for the parties in P. Each party

pi has a key pair (pki, ski), where pki is the public key

known to all the other parties and ski is the private key

known to pi only. We discuss in section 8 how such a

PKI can be realised and the related issues. Given a key
k and a plaintext message m, we indicate with |m|k the

ciphertext derived from encrypting m with k. We use

〈m〉σi
to indicate that the message m has been signed

by pi, i.e. that it includes a digest of m encrypted with

ski.

4.2 PUF-equipped Item Model

A number of items are moved along the supply chain

SC, from parties at stage 0 to downstream parties. We

refer to the generic ith PUF-equipped item produced at

stage 0 of the supply chain as xi, and to the party that

produced it as its producer. Furthermore, as items can

be forged along the chain, we define xsi as the item xi
after its processing at stage s, where s = 0 . . . S − 1.

12 It would be possible for an organisation to operate at
different stages of a supply chain. In these cases, we model
such an organisation as multiple parties, one for each stage
where it operates.
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Fig. 2 Example of item xi moving from pj in stage s − 1 to
pk in stage s (xs−1

i ), and from there to pl in stage s + 1 (xs
i ).

That is, xsi is the item xi when it is delivered from

the supplier at stage s to the buyer at stage s + 1 (see

figure 2).

We refer to the function computed by the PUF in-

tegrated with item xsi as pufsi : N→ N. When an item

xi is produced at stage 0 and equipped with a PUF, it

is considered intact.

If xi is never tampered with along the chain, then

the following property holds with high probability 13

∀c ∈ N ∀s ∈ [1 . . . S − 1] puf0
i (c) = pufsi (c) (3)

If instead xi is forged at stage s > 0, then puf0
i 6= pufsi

and the following property holds with high probabil-

ity 14

∀c ∈ N puf0
i (c) 6= pufsi (c) (4)

The fact that equations 3 and 4 do not hold with

100% probability can be accounted for by querying the

PUF more times, in order to increase that probability

exponentially. We consider the case where PUFs are

built by using techniques that mitigate the risk of ML-

based attacks 3.1, hence we assume that an adversary

cannot clone a PUF by collecting a sufficient number

of challenge-response pairs.

4.3 Blockchain Model

We consider a consortium blockchain B with N nodes

N = {ni}, deployed over the supply chain parties’

premises (see section 3.2). More precisely, node ni is lo-

cated at party pi. Nodes can communicate among each

other over the network by sending messages. The net-

work is asynchronous, there is no known bound on mes-

sage latencies but messages are eventually delivered to

their destination. B uses a byzantine fault tolerant con-

sensus protocol, such as PBFT [5], which ensures safety

if up to f = bN−13 c nodes are byzantine. Subsection 4.5

will explain how byzantine nodes behave.

13 As explained in section 3.1, the function computed by a
PUF is not 100% stable. An in-depth discussion about PUF
stability can be found in [12]
14 Even if the two functions are different, they might return
the same response for some challenge.

Interactions between nodes take place by sending

digitally signed messages. When a node ni wants to

send a message m to another node nj , ni sends a mes-

sage 〈i, j, ts,m〉σi
to nj . The parameter ts is a times-

tamp set by ni, used to avoid replay attacks.

Clients running within supply chain parties’

premises can submit transactions to B by broadcast-

ing them to all B’s nodes. Submitted transactions are

eventually confirmed by B and persistently stored, with

strong guarantees on their immutability, i.e. persisted

transactions cannot be tampered with or removed un-

less more than f = bN−13 c nodes are byzantine.

4.4 Smart Contract Execution Environment Model

Consortium blockchains like those described in sec-

tion 4.3 can support the execution of smart contracts

(see section 3.2), i.e. a smart contract execution en-

vironment SCEE can be built on top of a consortium

blockchain B. SCEE is deployed over the same nodes N
of B.

Smart contracts can be installed in SCEE . A smart

contract C includes a number of methods, which can

be invoked externally, and a key-value store kvs, which

can be accessed internally only, inside those methods.

The installation of a smart contract C in SCEE and

every invocation of C’s methods are persisted as trans-

actions submitted to the underlying blockchain B. This

implies that the application logic encoded by a smart

contract cannot be tampered with as long as the under-

lying blockchain B guarantees immutability, i.e. unless

more than f = bN−13 c nodes are byzantine.

The key-value store of each smart contract provides

an interface set(k, v) and get(k) to set and get values for

given keys, respectively. Any internal key-value storage

kvs relies on the underlying blockchain B to ensure con-

sistency and immutability of its state. In the specific,

each set operation invoked through the set(k, v) method

is saved as a transaction in B, hence the whole redo log

of the storage is persisted immutably [9]. Furthermore,

we assume that a single set operation is allowed for each

key, i.e. the value stored for a key cannot be overwrit-

ten. In case of overwriting attempt, the set operation

returns an error. External applications can also register

themselves to receive notifications when specific types

of transactions are committed, in order to implement

callback-based application logic.

In the considered scenario, there is also the need

to verify the identity of the entity that invokes a smart

contract method, in order to make sure that the invoker

is actually authorised to call the method. We assume

that each method invocation includes an additional in-

put parameter that proves the identity of the invoker.



8 Leonardo Aniello et al.

In particular, this parameter is the invoker’s digital sig-

nature of the concatenation of all the other input pa-

rameters, plus a timestamp to avoid replay attacks. In

the following, we do not explicitly include this addi-

tional parameter in the pseudo-code of smart contracts

in order to keep them as light as possible. However, we

specify what actors are expected to invoke each method,

and the corresponding verification is assumed to be car-

ried out by relying on this additional parameter.

4.5 Threat Model

The final goal of the adversary is to tamper with items

to introduce counterfeit ICs in the supply chain. Hence,

it aims at avoiding that counterfeit items are detected

to prevent raising suspicion. We assume the existence of

a single adversary in the supply chain, section 8 encom-

passes a brief discussion on considering the presence of

more independent adversaries.

At supply chain level (see subsection 4.1), the adver-

sary can operate at one of the parties, say pA at stage

stage(pA), with A ∈ [0 . . . N − 1]. We assume that the

adversary cannot control more than one party and can-

not alter any supplier-buyer relationship.

At item level (see subsection 4.2), the adversary can

tamper with items during the manufacturing processes

of the party pA where it operates. For each bought

item x
stage(pA)−1
i , the adversary can decide whether

or not to forge it before supplying it in turn to some

other party. However, any tampering with x
stage(pA)−1
i

affects the internal structure of the integrated PUF,

hence puf0
i 6= pufsAi (see equations 3 and 4). Further-

more, if the adversary succeeds to collect at least NPUF

challenge-response pairs, it can build a clone of the PUF

and attach it to a different item, i.e. it can replace an

original product with a counterfeit.

At blockchain and smart contract execution envi-

ronment levels (see subsections 4.3 and 4.4), the ad-

versary can control the local node nA of B and SCEE ,

i.e. such node is byzantine. The behaviour of a byzan-

tine node can deviate arbitrarily from the expected con-

duct, hence it can for example drop messages and send

not expected or wrong messages. Anyway, the adver-

sary cannot break used cryptographic protocols, hence

it cannot decrypt messages encrypted without know-

ing the corresponding keys and cannot forge message

signatures.

5 Tracking System

Items are tracked as they move along the supply chain,

first when they are produced at stage 0 and then each

time they are supplied to a buyer operating at the next

stage. When delivered at buyer side, the integrity of

each item is verified by using its integrated PUF. Track-

ing information are stored as blockchain transactions to

ensure they are immutable and available to any party

in P.

The tracking system is built as a smart contract T S
on top of a blockchain-based smart contract execution

environment SCEE (see subsection 4.4). We consider a

consortium blockchain B like the one presented in sub-

section 4.3, and leverage on the PUFs integrated with

the items to assess whether they have been tampered

with (see subsection 4.2). The high-level architecture is

shown in figure 3, where basic building blocks and in-

terfaces with supply chain business processes are high-

lighted. Consortium blockchain B, smart contract exe-

cution environment SCEE and tracking system T S are

distributed and deployed over the IT infrastructures of

all the parties.

Module 1 shows the pseudo-code of the tracking

system, which defines the five methods shown in fig-

ure 3. These methods are used to integrate the proposed

tracking mechanism with the business processes of the

supply chain. In particular, this integration occurs on

three specific events: when an item is first introduced in

the supply chain at stage 0 (event 1, see subsection 5.1),

when a supplier ships an item to a buyer (event 2,

see subsection 5.2) and when an item is verified by a

buyer (event 3, see subsection 5.3). After an item has

been processed by a party in the last stage, no further

tracking is enforced. However, consumers can still ver-

ify items they buy asking the corresponding producers

to release additional batches of CRDs.

All tracking data is kept in the blockchain-based

key-value storage via set operations, where any rele-

vant information is digitally signed (see section 4.1) by

the party executing the method where the set operation

itself is invoked. This, together with the constraint that

keys cannot be overwritten and method invocations are

authenticated (see section 4.4), ensures that an adver-

sary cannot execute any tracking system method on

behalf of another party.

In order to integrate the business processes of sup-

ply chain SC with the tracking system T S, an addi-

tional layer is required to interface the existing legacy

business process management software of SC with the

T S smart contract. This integration can be achieved

through standard software engineering approaches and

does not entail any element of novelty or challenge, so

it is not described here. However, this integration layer

needs to be accounted for as another potential attack

surface that the adversary may exploit, hence in sec-
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Fig. 3 High-level architecture of the tracking system and its integration within supply chain business processes.

tion 6 we also address the corresponding security im-

plications (attack 4).

5.1 Event 1: New Item

When a new item xi is produced by a party pj at stage

0, a PUF is integrated with xi and B × C challenge-

response pairs 〈ck, rk〉 are collected. C challenges will be

used for each item verification, which makes it more ro-

bust against possible variations in the responses gener-

ated by a PUF (see section 3.1). Hence, up to B parties

can verify the integrity of an item at delivery time. B

has to be set sufficiently large to accommodate for ver-

ifications requested by supply chain parties, end users

and external auditors.

The set of pairs is partitioned in B disjoint batches

bw, with w = 0...B − 1, each containing C pairs. Each

challenge-response pair for batch w is produced by gen-

erating a unique random challenge cw,k ∈ N, giving it as

input to the PUF of xi and recording the correspond-

ing output rw,k = puf0
i (cw,k). We refer to the vector

of batches of challenge-response pairs as the challenge-

response data CRDi of xi, i.e. CRDi = [b0, ..., bB−1].

CRDs are not disclosed forthwith to all the

other parties, otherwise an adversary could de-

velop an ad-hoc circuit to provide correct re-

sponses to expected challenges, which could then

be used to introduce counterfeits. Rather, at this

stage the producer discloses a hashed version of

CRDi, referred to as hashedCRDi, which is a

vector of B pairs 〈hashedCw, hashedRw〉, where

hashedCw = hash(cw,0, ..., cw,C−1) and hashedRw =

hash(rw,0, ..., rw,C−1), i.e. each pair contains (i) the

hash of the concatenation of all the challenges of the

batch and (ii) the hash of the concatenation of all the

responses of the batch. The method registerItem() is

invoked after the generation of the CRD. This method

simply stores in the key-value storage the information

that hashedCRDi is available and has been produced

by party pj (line 5). Furthermore, pj registers itself to

be notified (see section 4.4) whenever a delivery trans-

action for xi is stored into the blockchain (see sec-

tion 5.3).

In order to prevent that any two items in the whole

supply chain could clash in the key-value store, the key

used to store hashed CRDs also includes the producer

party’s identifier. The latter has to ensure that no two

items are assigned the same identifier among those it

registers .

5.2 Event 2: Item Shipping

When a party ps finishes the manufacturing processes of

an item x
stage(ps)
i and supplies it to a buyer pb operating

at the next stage, the procedure shipItem() is invoked.

Likewise registerItem(), this method simply tracks in

the blockchain the fact that item xi, produced by party

pp, has been shipped from party ps to party pb. At

line 13 of module 1, all the relevant shipping informa-

tion are included in the key to make it easier to retrieve

shipping data. The value, i.e. the second parameter of

the set operation, is not significant and is set to 〈p, i〉
by convention. Indeed, when querying the blockchain on

whether the shipping of item xi, produced by pp, from

party ps to party pb took place, it suffices to check that
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Module 1 Tracking Mechanism (continue on next page)
global variables:

1: C . number of challenges to send for each verification
2: R . number of responses (out of C) that need to be correct for the verification to succeed
3: kvs . local key-value storage instance

B This method is called by the item producer; p is the item producer identifier, i is the item identifier, hashedCRDi its hashed
challenge-response data

4: method registerItem(p, i, hashedCRDi)
5: kvs.set(〈registered, p, i〉, crdi)
6: end method

B This method is called by the seller; p is the item producer identifier, i is the item identifier, s is the seller identifier and b the
buyer identifier

7: method shipItem(p, i, s, b)
8: if kvs.get(〈registered, p, i〉) == null then

9: kvs.set(〈notRegistered, p, i〉, 〈p, i〉)
10: else if s 6= p ∧ kvs.get(〈deliver, p, i, s〉) == null then
11: kvs.set(〈notDelivered, p, i, s〉, 〈p, i〉)
12: else

13: kvs.set(〈shipped, p, i, s, b〉, 〈p, i〉)
14: end if

15: end method

B This method is called by the buyer; p is the item producer identifier, i is the item identifier, s is the seller identifier and b the

buyer identifier

16: method deliveryItem(p, i, s, b)
17: if kvs.get(〈registered, p, i〉) == null then

18: kvs.set(〈notRegistered, p, i〉, 〈p, i〉)
19: else if kvs.get(〈ship, p, i, s, b〉) == null then

20: kvs.set(〈notShipped, p, i, s, b〉, 〈p, i〉)
21: else
22: kvs.set(〈delivered, p, b, i〉, s)
23: end if

24: end method

B This method is called by the item producer; p is the item producer identifier, i is the item identifier, w is the batch index and

crdBatch the wth batch of challenge-response pairs for item i, where each response is hashed
25: method releaseCRDBatch(p, i, w, crdBatchi,w)
26: if w > 0 ∧ kvs.get(〈crdBatchReleased, p, i, w − 1〉) == null then

27: kvs.set(〈invalidBatchID, p, i, w〉, crdBatchi,w)
28: else
29: hashedCRDi = kvs.get(〈register, p, i〉)
30: if hashedCRDi[w].hashedCw 6= hash(crdBatchi,w.challenges) then
31: kvs.set(〈invalidBatch, p, i, w〉, crdBatchi,w)
32: else
33: kvs.set(〈crdBatchReleased, p, i, w〉, crdBatchi,w)
34: end if

35: end if
36: end method

the value stored for the key 〈shipped, p, i, s, b〉 is not

null.

The method shipItem() also queries the key-value

store to perform checks regarding the registration of

xi by pp and, in case pp 6= ps, whether xi has been

previously delivered to ps.

5.3 Event 3: Item Delivery and Verification

When an item is delivered to a party pb from a sup-

plier ps operating at the previous stage, an integrity

verification is carried out. This process includes three

steps, each corresponding to a different method: (i) the

buyer first notifies that the item has been delivered,

then (ii) the item producer releases a batch with C

challenge-response pairs, where challenges are in clear

and responses are hashed and, finally, (iii) the buyer
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B This method is called by the buyer; p is the item producer identifier, i is the item identifier, s is the seller identifier and b the

buyer identifier, w is the batch index and crdResponsesi,w is the vector with the C PUF responses

37: method verifyItem(p, i, s, b, w, crdResponsesi,w)
38: if kvs.get(〈verify, p, i, s, b, w〉) 6= null then

39: kvs.set(〈batchAlreadyV erified, p, i, w〉, 〈p, i〉)
40: end if
41: crdBatchi,w = kvs.get(〈crdBatchReleased, p, i, w〉)
42: if crdBatchi,w == null then
43: kvs.set(〈noBatchReleased, p, i, w〉, 〈p, i〉)
44: else

45: correctResponses = 0
46: for y = 0 to C − 1 do

47: if crdBatchi,w.hashedResponses[y] == hash(crdResponsesi,w[y]) then

48: correctResponses + +
49: end if

50: end for

51: if correctResponses < R then
52: kvs.set(〈verify, p, i, s, b, w〉, FAIL)
53: else

54: kvs.set(〈verify, p, i, s, b, w〉, SUCCESS)
55: end if

56: end if
57: end method

queries the item PUF with those challenges and pub-

lishes obtained responses to enable item verification by

any party in the supply chain. The following three sub-

sections describe each step in detail.

5.3.1 Item Delivery

The buyer pb acknowledges the reception of xi by in-

voking the method deliveryItem(), which stores in the

blockchain the fact that xi, produced by pp and shipped

by ps, has been delivered to pb. This method also carries

out sanity checks to verify the existence of blockchain

records proving that xi was actually produced by pp
and shipped by ps to pb. Party pb also registers itself

to be notified (see section 4.4) whenever a new batch

release transaction for xi is committed (see next sub-

section 5.3.2).

5.3.2 Challenge-Response Batch Release

The producer pp of xi is notified of the delivery and

releases a new batch of challenge-response pairs. Party

pp keeps track of how many batches have been already

released for xi and makes sure to select from CRDi a

batch that has not been disclosed before. Let w be the

index in CRDi of the new batch to release. The chal-

lenges need to be published in clear to enable the buyer

to feed them to the item PUF. The responses need to

be hashed instead, to allow to verify whether obtained

responses are valid without disclosing the correct re-

sponses in clear.

In the specific, pp prepares a vector crdBatchi,w
with C entries, built as follows. Let bw be the wth

batch of CRDi, i.e. bw = [〈c0, r0〉, ..., 〈cC−1, rC−1〉]. The

kth entry of crdBatchi,w is the pair 〈ck, hash(rk)〉. The

method releaseCRDBatch() is invoked by pp to store

crdBatchi,w in the key-value store (line 33).

The sanity checks performed by this method aim to

ensure that w − 1 batches have been already released

(line 26) and that the challenges in this batch are con-

sistent with the hashedCRDi disclosed at item registra-

tion time (line 30). To simplify the notation, we intro-

duce the following two convenient fields of crdBatchi,w:

– crdBatchi,w.challenges is the concatenation of all

the challenges in the batch, i.e. c0, ..., cC−1
– crdBatchi,w.hashedResponses[k] is the kth hashed

response of the batch, i.e. hash(rk)

5.3.3 Item Verification

Party pb is informed when the batch crdBatchi,w is re-

leased. The PUF of item xi is then queried with the

challenges crdBatchi,w.challenges and responses are

collected in a vector crdResponsesi,w. Finally, pb calls

the procedure verifyItem() to disclose obtained re-

sponses to the other parties and let them verify whether

these responses are valid.

In the specific, this method first verifies that the

same batch has not been already verified, in order to

avoid replay attacks where an adversary tries to reuse

correct responses learned previously (line 38). Then, the

crdBatchi,w data is retrieved and the responses pro-

vided by the buyer are checked against the hashed re-

sponses included in crdBatchi,w. If at least R responses

out of C are valid, then the verification is considered as

succeeded.
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6 Security Analysis

In this section we discuss what a malicious party pA op-

erating at stage stage(pA) can do and how our proposed

tracking mechanism would react. We first define the rel-

evant attacks an adversary may launch in section 6.1,

based on the threat model introduced in section 4.5 and

the tracking system proposed in section 5. Then, in sec-

tion 6.2 we analyse the response of our tracking system

to each of the identified attacks and whether it succeeds

in coping with them.

6.1 Attacks Definition

According to the threat model introduced in subsec-

tion 4.5, the adversary pA can operate at different lev-

els. As it cannot collude with any other party nor con-

trol their resources, attacks at supply chain level are

not relevant. At item level, pA has several options. The

basic one is to just forge an intact item before supplying

it to another buyer (attack 1):

Attack 1. The adversary pA tampers with an item re-

ceived from an honest supplier and delivers it to an hon-

est buyer at the next stage.

If party pA works at stage 0, it can tamper with an

item before its PUF is fed with the required number

of challenges to compute the corresponding CRD. In

this way, the CRD stored in the blockchain matches

the forged item (attack 2):

Attack 2. The adversary pA tampers with an item at

stage 0 before its CRD is generated and delivers it to

an honest buyer at the next stage.

At blockchain and smart contract execution envi-

ronment levels, the adversary can try to compromise

the application logic of the smart contract or the data

stored in the blockchain by properly instructing the lo-

cal node nA, i.e. node nA becomes byzantine (attack 3).

Attack 3. The adversary pA alters the behaviour of

the local node nA, i.e. node nA becomes byzantine.

The layer between supply chain business processes

and tracking system is an additional attack surface to

consider (see section 5). At this level, the adversary

can compromise the way smart contract methods are

invoked, e.g. by using maliciously modified parameters

or by not calling a method at all (attack 4):

Attack 4. The adversary pA alters how methods of the

tracking system smart contract are called.

6.2 Attacks Analysis

for each of the five attacks identified in the previous

subsection, we provide an analysis of how the proposed

tracking system reacts.

Analysis of Attack 1. In this scenario, party pA tam-

pers with an item x
stage(pA)−1
i received by an honest

supplier ps. Since the supplier is honest, we assume that

x
stage(pA)−1
i has not been forged yet. We also assume

that party pp, producer of xi, is honest; we will cover

the case where the producer is malicious in the analysis

of attack 2. The tampered item is supplied to another

honest party pj at stage stage(pA) + 1. As pp and pj
are honest, they comply with the tracking mechanism

described in section 5; hence, pj declares it received

xi by invoking the method deliveryItem(p, i, A, j) and

pp releases a new batch of challenge-response pairs for

xi by calling the method releaseCRDBatch(). After-

wards, pj retrieves this batch and uses the included C

challenges in clear to query the PUF puf
stage(pA)
i and

collect the corresponding responses, which will be used

to invoke the method verifyItem() of the tracking sys-

tem.

We can assume that pA stored the correct track-

ing information regarding the shipping of xi, other-

wise an alert discrediting pA would be raised (mod-

ule 1, line 20). We can also assume that the correct

CRD of xi has been stored in the storage, indeed in

this scenario we assume the producer of xi is hon-

est. With reference to module 1, this means that the

check at line 42 is positive and the C PUF responses

in crdResponsesi,w can be compared against those

in crdBatchi,w.hashedResponses. From the properties

expressed by equations 3 and 4, and by the fact that

x
stage(pA)
i has been tampered with, it follows that, with

high probability, less than R out C responses match,

hence an alert is raised (line 52) to notify the detec-

tion of a counterfeit item supplied by pA. The accuracy

of this forgery detection mechanism clearly depends on

the choice of R. In section 7 we show an experimental

evaluation where R is tuned to maximise the probabil-

ity that counterfeits are recognised and minimise the

chances that intact items are mistaken for forged.

Note that the challenge-response pairs that will be

used for the verification are known by the producer

party only, hence an adversary could not discover them

in advance and build a model to implement a clone.

Analysis of Attack 2. If pA operates at stage 0 and

tampers with an item x0
i , then there are two cases. If

the counterfeiting occurs after the invocation of method

registerItem(), then this attack is equivalent to at-

tack 1 and the forgery is detected by the buyer of xi at
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stage 1. Otherwise, if the tampering is made before and

the stored CRD hashedCRDi accurately corresponds

to puf0
i , then this attack cannot be detected by the

proposed tracking mechanism.

Analysis of Attack 3. The attacker can make the

local blockchain node nA behave arbitrarily, i.e. nA be-

comes a byzantine node, with the aim of compromising

data stored in the blockchain or the application logic

encoded in the smart contract of the tracking system.

By design, according to the model presented in sec-

tion 4.3, in a blockchain with N nodes the adversary

should control at least bN−13 c+ 1 nodes to compromise

the consensus, hence if there are at least 4 parties in the

supply chain, each with its own local blockchain node,

then this attack cannot succeed.

Analysis of Attack 4. The adversary can interact

with the methods provided by the tracking system dif-

ferently from what expected. In the specific, pA can

either invoke a method when it should not, or avoid to

call a method at all, or purposely specify wrong values

for methods parameters. As explained in section 5, an

adversary cannot call any method on behalf of another

party, hence pA can only operate on the methods it is

expected to invoke.

If pA operates st stage 0, it can intentionally avoid

to store the CRD for item xi, i.e. it can skip calling

registerItem() method. The motivation could be to

prevent forgery checks from taking place and indeed

such a goal can be partially achieved by the attacker.

Anyway, the honest party pj receiving xi from pA eas-

ily discovers that the required CRD crdi is missing

(line 17) and raises an alert (at line 18). Although no

forgery can be actually detected in this way, that alert

marks xi as a suspicious item and pA as a disreputable

party because it did not store the expected CRD.

If pA does not call method shipItem() when ex-

pected, then the next party receiving the corresponding

item xi detects this anomaly at line 19 and consequently

raises an alert at line 20, which again explicitly points

at pA as the party responsible for this misbehaviour.

Avoiding the execution of methods

releaseCRDBatch() and verifyItem() would bring

no advantage to the adversary, with respect to its goal

(see section 4.5) of introducing counterfeited products

without being detected.

Altering the parameters used for either

registerItem() or shipItem() method has the

same effect of not calling them at all. Altering the

parameters of releaseCRDBatch() or verifyItem()

methods would not be beneficial for the adversary to

introduce counterfeits.

7 Experimental Evaluation

We implemented a prototype of the proposed solution

to verify the technical feasibility of the integration of

blockchain and PUF, and to assess the reliability of

PUF technology to accurately detect counterfeit. We

used HyperLedger Fabric 15 to implement the consor-

tium blockchain and the smart contract execution en-

vironment (see sections 4.3 and 4.4). We chose this

platform because it is one of the most stable and well

documented platforms for consortium blockchains. The

tracking system T S defined in module 1 has been coded

as a Fabric chaincode. A 4 bit sequential ring oscil-

lator architecture [29] PUF has been synthesised and

implemented on 17 separate Zynq Zybo 7000 FPGA

boards [7].

The interface between the tracking system and the

PUFs has been implemented as a Java application. The

communication with PUF has been done using RXTX-

Comm 16, a library which makes use of Java Native

Interface (JNI 17) to provide a fast and reliable method

of communication over serial ports. The communication

at PUF side has been encapsulated in a dedicated mod-

ule which used General Purpose Input Output (GPIO)

as Tx and Rx pins for Universal Asynchronous Re-

ceiver/Transmitter (UART) serial communication.

We first describe how we tuned the PUF (sec-

tion 7.1), then we describe the use case we tested and

what results we obtained (section 7.2).

7.1 PUF Tuning

The tuning of PUFs consisted in choosing the right

value of parameter R, i.e. how many responses out of C

need to be correct for the validation to succeed, where

C is the number of unique challenges sent to the PUF.

We set C to 10.

We first generated the CRD for all the 17 PUFs by

collecting a large number of challenge-response pairs for

each PUF (more than 21000 pairs). We then randomly

selected 3 out of the available 17 PUFs for tuning, while

the others were used for the prototype test (section 7.2).

We refer to those 3 PUFs as the tuning PUFs. Chal-

lenges drawn from CRD data of all the PUF have been

sent to the tuning PUFs to collect the correspondent

responses. The resulting dataset has been used to find

a value of R that guarantees that each tuning PUF

15 Hyperledger Fabric (https://www.hyperledger.org/
projects/fabric)
16 RXTXComm (https://seiscode.iris.washington.edu/
projects/rxtxcomm)
17 JNI (https://docs.oracle.com/javase/8/docs/
technotes/guides/jni/)

https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://seiscode.iris.washington.edu/projects/rxtxcomm
https://seiscode.iris.washington.edu/projects/rxtxcomm
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
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(i) passes the validation when stimulated with its own

CRD and (ii) fails the validation when stimulated with

CRD of any of the other 16 PUF.

Each tuning PUF has been stimulated with C = 10

unique challenges from each of the 17 PUFs (hence

including itself) for 15 times. For each batch of C

challenge-response pairs, different values of R has been

tested, ranging from 5 to 9, and the corresponding val-

idation outcome has been recorded. The metrics of in-

terest for the tuning are

– True Admission Rate (TAR): rate of successful val-

idations when the tuning PUF is validated against

its own CRD;

– False Admission Rate (FAR): rate of successful val-

idations when the tuning PUF is validated against

the CRD of another PUF;

– True Rejection Rate (TRR): rate of failed valida-

tions when the tuning PUF is validated against the

CRD of another PUF;

– False Rejection Rate (FRR): rate of failed valida-

tions when the tuning PUF is validated against its

own CRD;

The ideal situation is when TAR and TRR are 1

while FAR and FRR are 0.

Figure 4 shows the values of those metrics for R

varying from 5 to 9 (out of 10) for the three tuning

PUFs. It can be noted that TAR is always 1 and FRR

always 0, which means that the tuning PUFs are suc-

cessfully validated all the times their own CRD is used.

When the validation is based instead on CRD of a dif-

ferent PUF, sometimes tuning PUFs still pass the val-

idation. This happens because the functions computed

by different PUFs can overlap for certain challenges.

Figure 4 shows that the probability that this occurs

(i.e. FAR) decreases as R grows, and that with R = 9

FAR is 0 (and TRR is 1) for all the 3 tuning PUFs.

Hence, for the prototype test, the validation of a PUF

is considered successful if at least 9 out of 10 responses

match those stored in the corresponding CRD.

7.2 Prototype Test

We developed a prototype with three organisations:

manufacturer, logistic and distribution. The corre-

sponding supplier-buyer relationships are depicted in

figure 5. We considered two cases: when no adversary is

present and when the logistic organisation is malicious

and tampers with the items supplied by the manufac-

turer before delivering them to the distribution organ-

isation.

We used the other 14 PUFs for the prototype test,

8 for the case where no party is malicious and 6 for the

case where the logistic organisation is the adversary. In

the latter case, the manufacturer delivers 3 PUFs to the

logistic organisation, which replaces each of them using

the other 3 PUFs and deliver them to the distribution

organisation.

When there is no adversary, all the 8 PUFs pass the

validation both at the logistic and at the distribution

organisation, hence the TAR is 1 and FRR is 0. When

instead the logistic organisation replaces the the three

PUFs, all of them fail the validation at the distribution

organisation, therefore the FAR is 0 and TRR is 1.

These preliminary results are promising to prove

both the technical feasibility and the effectiveness in

counterfeit mitigation of the proposed tracking system.

8 Discussion

This section discusses several key aspects of the pro-

posed solution, pointing out key limitations and main

research directions to investigate as future work: the

results of the security analysis (section 8.1), the issues

of implementing a PKI infrastructure for a consortium

blockchain (section 8.2), the limitations of the chosen

threat model (section 8.3), the feasibility of embedding

PUFs within the items to track (section 8.4), possi-

ble privacy issues when sharing data among parties

through the blockchain (section 8.5), observations on

consortium blockchain performance and scalability (see

section 8.6) and, finally, considerations on the costs as-

sociated with adopting the proposed solution in real

supply chains (section 8.7).

8.1 Security Analysis Results

The results of security analysis presented in section 6

show the capability of the proposed tracking system to

be effective against the identified attacks. Any attempt

to counterfeit items (attack 1) is correctly detected and

attributed to the right malicious party.

If the adversary operates at stage 0 and tampers

with the item before the corresponding CRD is built

and stored in the blockchain (attack 2), then the track-

ing system fails to detect the forgery. This derives triv-

ially from relying on the CRD itself to be the trust root

of the whole counterfeit detection mechanism. Enhanc-

ing the proposed approach to cover threats happening

before CRD generation is one of our main future work.

The other attacks at software level, to make a

blockchain node byzantine (attack 3), or at the interface

between supply chain business processes and tracking

system (attack 4), have been shown to be not effective.

On the one hand, this derives from by-design security
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(a) Tuning PUF 1 (b) Tuning PUF 2 (c) Tuning PUF 3

Fig. 4 Tuning of three PUFs, where R is varied between 5 and 9 out of 10, and the corresponding values TAR, FAR, TRR,
FRR are shown.

Fig. 5 Graphical representation of the supplier-buyer rela-
tionships in the prototype.

properties provided by blockchain-based systems, in-

deed using PBFT-like consensus algorithms allows to

tolerate a single byzantine node when the blockchain

includes at least four nodes (attack 3). On the other

hand, the tracking system prevents an adversary from

invoking smart contract methods on behalf of a differ-

ent party, so attacks based on altering how methods are

called (attack 4) are not relevant.

8.2 PKI Infrastructure for Consortium Blockchains

The proposed tracking system relies on a consortium

blockchain (see section 4.3), which in turn requires a

reliable PKI to obtain the relationships between parties’

identities and public keys. These certificates are issued

when the platform is setup at the beginning and when

the supply chain membership changes. From a security

perspective, the PKI is a single-point-of-failure, i.e. an

adversary may target the PKI to take over the whole

blockchain, and thus the tracking system.

This problem has been already addressed in litera-

ture. For example, there exist proposed solutions based

on blockchain to decentralise the PKI so as to make it

much more resistant to cyber attacks [1, 8], and pro-

vide attack tolerance guarantees comparable to those

already provided by the tracking system. These solu-

tions are based on public blockchains, which may in-

troduce privacy issues. Other approaches have been

proposed for privacy-preserving blockchain-based PKI,

such as PB-PKI [3]. The integration of the tracking

system with this type of PKI is out of the scope of this

paper and is left as future work.

8.3 Threat Model Limitations

The list of attacks identified in section 6.1 depends

tightly on the threat model introduced in section 4.5,

which in turn derives from three main assumptions: (i)

there is a single adversary, (ii) it controls exactly one

party and (iii) only aims at introducing counterfeits in

the supply chain. It can be reasonable to consider the

implications of relaxing those assumptions and identify

what additional attack scenarios may arise when an ad-

versary can control more parties, when more adversaries

are active, either independently or by colluding among

themselves, and when the adversary has a different goal.

We can expect that a security analysis of the pro-

posed tracking system against such a stronger attack

model would point out further vulnerabilities. For ex-

ample, an adversary could aim at blaming another

party by tampering with an item just after the deliv-

ery and before it gets verified by the tracking system.

To avoid any attribution, the adversary can blame the

corresponding supplier for the shipping of a counterfeit

item. However, this analysis should be integrated with

a risk assessment to measure the likelihood of more ad-

vanced attacks, and should estimate out to what extent

they can be considered reasonable. Taking into account

wider threat models is an additional potential future

work.

8.4 Embedding PUFs within Items to Track

The effectiveness of tracking items by using PUFs

strictly depends on how easily an adversary can forge

items without affecting the PUFs themselves. If a PUF

can be removed from an item and embedded within

a different one, then the whole counterfeit detection

mechanism is flawed. In the end, this boils down to

preliminarily check whether it is technically feasible to
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embed PUFs within items in such a way that all the

properties of the PUF-equipped item model hold true

(see section 4.2).

Electronic components are items where PUFs can

be easily and cheaply implanted by integrating PUF

circuitry inside the component circuitry, ensuring that

PUFs cannot be removed and replaced. Hence, the ap-

proach we propose fits well with integrated circuits and

IoT devices supply chains. However, an aspect to be

taken into account is that a failure of the PUF cir-

cuit is likely to lead to inaccuracies in the counterfeit

detection process. Although this problem is intrinsic of

any tag-based tracking mechanism, it would be interest-

ing to explore the feasibility and challenges of devising

methodologies to distinguish between a counterfeited

PUF and a damaged PUF.

8.5 Privacy Issues

Although the network of companies involved in the sup-

ply chain should be made as transparent as possible to

enhance visibility, organisations can be legitimately re-

luctant to disclose their own supplier network and pro-

curement history to other, possibly competitor firms.

What information should be shared needs to be ad-

justed according to this kind of confidentiality require-

ments, on a case by case basis. An important applied

research direction to investigate, for each target supply

chain market, concerns this trade-off between privacy

and scope, with the aim to find the sweet spot where

information on supplier network and procurement his-

tory can be shared smoothly.

A general approach to address those privacy issues

is to make each transaction only visible to a specific

subset of parties. In the specific, only those parties hav-

ing some stakes on the item referenced in the transac-

tion should be able to read it, so that visibility can be

preserved and limited to interested actors only. With

reference to our prototype implementation based on

Hyperledger Fabric, we could implement this general

approach by leveraging on the concept of channels to

establish between subsets of nodes. A transaction can

be associated to a specific channel to ensure only the

nodes in that channel can see its content. Our prototype

can be enhanced with privacy-preserving techniques by

relying on Fabric channels.

8.6 Performance and Scalability

While public permissionless blockchains like

Ethereum’s are known to provide limited performances

in terms of transaction latency and throughput, consor-

tium blockchain can commit thousands of transactions

per seconds with subsecond latency [4], also in WAN

settings [25]. In terms of scalability, BFT-tolerant

algorithms have been proposed in literature that

can scale to tens of nodes with minor performance

penalties [28, 20], which matches realistic supply chain

setting including tens of different organisations.

8.7 Platform Integration Costs

Each supply chain works according to specific business

processes which may differ significantly from market

to market. On the one hand, pinpointing the right ab-

straction level for the interface provided by the track-

ing system is crucial to increase the cases where it can

be integrated. On the other hand, the integration with

those business processes deserves a deeper analysis in

terms of security, to figure out whether additional cy-

ber threats can be identified at those integration points

(see attack 4 in section 6.1), and cost-effectiveness, to

quantify whether and to what extent the benefits of

counterfeiting mitigation outweigh the costs to accom-

plish such a large-scale integration.

In terms of cost-effectiveness, it is to note that rely-

ing on consortium blockchains rather public permission-

less blockchains allows to cut any cost due to the fees to

pay when submitting transactions. Indeed, while supply

chain tracking solutions based on Ethereum have a per-

transaction cost (e.g. see Negka et al. [23]), submitting

transactions in Hyperledger Fabric is totally free.

9 Conclusion

In this paper we design a tracking system to mitigate

counterfeits in IC supply chains. The solution we pro-

pose is based on blockchain and smart contract tech-

nologies to provide high availability and strong toler-

ance against integrity attacks to stored data and appli-

cation logic. We rely on physically unclonable functions

to uniquely identify and accurately track ICs along the

supply chain. We validate our solution against a specific

threat model and find out that it is effective to counter

the identified attacks, but an adversary operating at

the first stage of the supply chain can bypass the anti-

counterfeit mechanism. Finally, we implemented and

tested a prototype of the proposed tracking system to

prove it is technically feasible and accurate in correctly

validating both intact and forged items.

In addition to investigate possible solutions to the

limitations discovered in the security analysis, other fu-

ture work include the integration of a reliable PKI in-
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frastructure within the tracking system and the impli-

cations of considering a stronger threat model.
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