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Abstract 

It is generally considered that a Timoshenko beam is superior to an Euler-Bernoulli beam for 

determining the dynamic response of beams at higher frequencies but that they are equivalent 

at low frequencies. Here, the case is considered of the parametric excitation caused by spatial 

variations in stiffness on a periodically supported beam such as a railway track excited by a 

moving load. It is shown that large differences exist between the results obtained using 

Timoshenko and Euler-Bernoulli beams for a railway track with typical parameters; the Euler-

Bernoulli beam model underestimates this parametric excitation by around a factor of 3. This 

difference is shown to be due to shear deformation in the rail, which is significant for span 

lengths less than about 2 m. A 2.5D finite element model of the rail is used as a reference. This 

gives a deflection that is closer to the Timoshenko beam model. However, the displacement 

profile obtained from the Timoshenko beam model has a discontinuity of gradient at the 

support points, whereas neither the Euler-Bernoulli beam nor the 2.5D finite element model 

contains the discontinuity of gradient. Finally, the moving load is introduced explicitly in the 

various periodically supported models. The results for a moving constant load, expressed as an 

equivalent roughness, are not strongly affected by the load speed until the sleeper passing 

frequency approaches the vertical track resonance at which the track mass bounces on the 

support stiffness. Consequently, a quasi-static model gives satisfactory results for moderate 

load speeds. 
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1. Introduction 

The Timoshenko beam formulation is generally considered to be more accurate than the Euler-

Bernoulli beam for higher frequency problems. The inclusion of shear deformation and 

rotational inertia in the Timoshenko beam formulation leads to differences in their frequency 

responses, wavenumbers and hence natural frequencies, which become significant once the 

structural wavelength becomes comparable with the size of the cross-section [1]; for a 

rectangular cross-section this is typically smaller than 6 times the section height.  

At low frequencies, however, the wavenumbers and mobilities obtained from the two beam 

formulations are very similar. It is therefore perhaps surprising to discover that there are 

substantial differences between the results of the two models in the response of a periodically 

supported railway track to a moving load, the so-called parametric excitation at the ‘sleeper 

passing frequency’. The aim of this paper is to highlight and explore these differences. 

Many models of railway track vibration represent the rails as beams [2,3]. Classical Euler-

Bernoulli beam theory is widely used for low frequency dynamic problems, for example, to 

calculate the track deflections under moving loads [4], or in studies of ground vibration from 

trains [5,6], for which the frequency range of interest is below 250 Hz. For higher frequencies, 

however, the Timoshenko beam formulation is considered more reliable; for the vertical 

vibration of a rail, the Timoshenko beam formulation is preferred above approximately 500 Hz 

[2,3,7].  

Although the rail supports are approximately periodically spaced, nevertheless a good 

approximation to the frequency response at most frequencies can be obtained by an equivalent 

continuous model [3]. The main exception to this is close to the pinned-pinned frequency, 

typically occurring at around 1 kHz for the vertical direction, at which half the bending 

wavelength equals the inter-sleeper distance. Grassie et al. [7] and Vincent and Thompson [8] 

compared measured receptances of a track with analytical frequency-domain models based on 

a beam, either continuously or discretely supported on rail pads, sleepers and ballast, and found 

good agreement when a Timoshenko beam is used. De Man [9] presented a finite element 

model of track in the frequency domain based on Timoshenko beam elements and also showed 

good agreement with measurements, including at the pinned-pinned resonance.  
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Another effect of the discrete support of the railway track is that the track stiffness varies within 

a sleeper bay. This can lead to a parametric excitation at the sleeper-passing frequency. An 

early study was carried out by Inglis [10] who approximated this parametric excitation by the 

variation in the quasi-static response of the system to a very slowly moving load. He also 

considered dynamic effects and showed that softer supports lead to a reduced range of 

movement. 

Belotserkovskiy [11] presented an analytical model of a moving constant or harmonic load on 

an Euler-Bernoulli beam with periodic elastic supports. Nordborg [12] studied the parametric 

excitation by using an analytical frequency-domain formulation that included the moving load. 

The track was modelled using an Euler-Bernoulli beam with a reduced bending stiffness to 

ensure that the pinned-pinned frequency agreed with measurements [13]. Sheng et al. [14] 

introduced a wavenumber-based approach for the computation of the response of periodically 

supported structures to a moving harmonic load in the frequency domain and applied it to the 

vibration of a rail. For the vertical vibration, the rail was represented by a Timoshenko beam 

and for the lateral vibration it was represented by a multiple beam model. In an alternative 

approach, Wu and Thompson [15] studied parametric excitation of a railway track using a 

Timoshenko beam model, which was approximated by a rational polynomial function with 

variable coefficients to allow solution in the time domain.  

Mazilu [16, 17] introduced an analytical method for the response of a periodic track based on 

Green’s functions transformed from the frequency domain to the time domain. The results 

included the response to a moving mass representing the wheel, connected to the track through 

a contact spring. It was shown that the response has a maximum when the sleeper passing 

frequency is equal to the natural frequency of the coupled wheel/rail system. Sub-harmonic 

parametric resonance was also seen when the wheel velocity was one-half or one-third of the 

value corresponding to the main parametric resonance. 

The problem of a moving load on a railway track can also be solved using numerical methods 

such as the finite element method in the time domain. Authors have variously used either Euler-

Bernoulli beams [18-25] or Timoshenko beams [26-30] for this. In [29, 30], for example, FE 

models were used for a switch in which the rails were modelled using Timoshenko beams. As 

well as the impact loading at the crossing, Andersson and Dahlberg [29] observed variations in 

wheel load through each sleeper bay which can be associated with the parametric excitation. 

In a finite element model, however, the use of Timoshenko beams leads to a fictitious response 
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due to slope discontinuity at loading points, not present for Euler-Bernoulli beams. This was 

noted by Nielsen & Igeland [26] but they were able to neglect it as it is much smaller than the 

response to the roughness excitation or wheel flats that they studied. More recently, Koro et al. 

[31] and Yang [32] have introduced modified FE formulations of Timoshenko beams to 

overcome this fictitious response.  

There have been many comparisons of Euler-Bernoulli beams and Timoshenko beams for 

various applications. For example, Lubaschagne et al. [33] compared models for a cantilever 

beam based on Euler-Bernoulli and Timoshenko beam theories and on two-dimensional 

elasticity. By comparing the natural frequencies and mode shapes, they concluded that the 

Timoshenko theory is close to the two-dimensional theory for modes of practical importance. 

Beck and da Silva [34] presented a comparison of the Euler-Bernoulli and Timoshenko beam 

theories for the example of a finite clamped-clamped beam, taking into account parameter 

uncertainties and uncertainty propagation and showed that the propagation of uncertainties was 

quite different in the two models. 

Yavari et al. [35] studied moving loads on bridges modelled as beams. A discrete element 

technique was introduced and results were compared with those from finite element and finite 

difference methods. The Euler-Bernoulli and Timoshenko beam formulations were also 

compared and differences between them were only found to be significant when the beam 

slenderness is small, that is the square of length divided by the radius of gyration of the cross-

section. 

In the context of railway track, Grassie et al. [7] compared the frequency response of a railway 

track calculated using infinite Euler-Bernoulli and Timoshenko beam formulations and showed 

that the Timoshenko beam model was to be preferred above 500 Hz. Mosavi et al. [36] 

compared the Euler-Bernoulli and Timoshenko beam equations representing a track as an 

infinite beam on a Winkler foundation but did not give any results. Ruge and Birk [37] 

compared the Timoshenko and Euler–Bernoulli beam models of a rail on a continuous (Winkler) 

support under transient loading and concluded that the physically more realistic Timoshenko 

beam model also offers additional numerical advantages when dealing with transient dynamic 

problems in unbounded domains. Abe et al. [38] studied an instability occurring on a 

periodically supported track due to parametric excitation, particularly for light damping. They 

included a comparison of Euler-Bernoulli and Timoshenko beams for this problem and showed 

some differences in the critical speed. However, the magnitude of the stiffness variation (which 
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will be shown here to be a major difference between the two beam formulations) was taken as 

an input parameter which was assumed to be the same in both cases. 

Despite the fact that many authors use either the Euler-Bernoulli beam or Timoshenko beam 

to study moving loads on a periodic railway track, the two approaches have not previously been 

compared in a systematic way for this problem. It is likely that, because the parametric 

excitation at the sleeper-passing frequency is a low frequency phenomenon, the two approaches 

are believed to be approximately equivalent. The aim of this paper is to investigate the 

differences in the parametric excitation occurring for a load moving along a periodic track 

using models based on Euler-Bernoulli beams and Timoshenko beams. The reasons for the 

discrepancies found are addressed by comparing the results with those obtained using a model 

of a discretely supported rail based on a 2.5D finite element (FE) model [39] which is used as 

a reference. The influence of the moving load speed on the parametric excitation is also 

explored. For simplicity, the study is limited to a moving constant load. Although the 

interaction with the unsprung mass of the wheel affects the magnitude of the excitation [16, 

17], by expressing the parametric excitation as an equivalent roughness, the frequency-

dependent excitation can also be taken into account. Consequently, the relative differences 

between the Euler-Bernoulli beam and Timoshenko beam will remain approximately the same 

because the track mobilities from the two models are very similar in this low frequency range. 

First, in Section 2 the beam and 2.5D FE models are introduced and the point mobilities and 

wavenumbers of a discretely supported track are compared for the three models. Then, in 

Section 3, results at the sleeper-passing frequency are estimated using a quasi-static approach 

based on the variation of track deflections within a sleeper span. To minimise the effect of the 

vehicle-track interaction, the results are then expressed in the form of an equivalent roughness 

excitation. The effect of varying the support stiffness or the support spacing is also considered. 

Finally, in Section 4 the effect of the load speed is introduced explicitly using the Fourier series 

method of [14] for a moving constant load using the Euler-Bernoulli and Timoshenko beams 

as well as the 2.5D FE model. 

2. Track models and point mobility 

2.1 Free beam models 

Consider first a free rail in vertical bending represented by either Euler-Bernoulli or 

Timoshenko beam models [1]. The equation of motion of an Euler-Bernoulli beam in the 

absence of damping excited by a point force is  
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where E is Young’s modulus, I is the second moment of area of the cross-section,  is the 

density of the beam and A the cross-sectional area. F is the amplitude of the external excitation 

force applied at x=0, while ω is the excitation frequency. u denotes the vibration amplitude of 

the beam, x is the distance along the beam and t is time.  

The equations of motion for a Timoshenko beam can be written as 
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where G is the shear modulus and κ is the shear coefficient. u is the deflection, while   is the 

rotation of the cross-section relative to the undeformed axis.  

The parameters for a UIC60 rail are listed in Table 1 together with the support properties that 

will be used later. For these parameters, below 500 Hz the difference in mobility is found to be 

less than 2.5% and the difference between the free wavenumbers is less than 7%.  

 

2.2 Periodically supported beam models 

Consider now a track consisting of a periodically supported beam. For simplicity, a single layer 

support is used in which each support is assumed to consist of a single damped spring for the 

rail pads; the sleepers, ballast or track slab are neglected. The track model is shown in Figure 

1 and the parameters adopted are listed in Table 1.  

 Feit 

x 

kp(1+ip) 

EI, A  
u(x,t) 

 

Figure 1 Model of discretely supported track. 
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Table 1 Parameters adopted for the track. 

  Vertical 

Rail bending stiffness EI 6.42 MNm2 

Rail mass per unit length A 60 kg/m 

Rail shear stiffness* GA 6.17108 N 

Rail shear parameter*  0.4 

Rail rotational inertia* I 0.240 kgm 

Rail damping loss factor  0.02 

Pad stiffness kp 100 MN/m 

Pad damping loss factor p 0.2 

Support spacing d 0.6 m 

*: not used for Euler-Bernoulli beam model. 

 

The model for the discretely supported Timoshenko beam is described in [3,40]. The infinite 

beam is supported by a finite number of discrete springs; in this case 60 springs are used on 

each side of the force point. If u(x) is the displacement of the beam at the point x and the beam 

is attached to supports of stiffness kp at xn=nd for integer values of n, a reaction force, equal to 

–kpu(xn), acts at each of these points. Here kp is understood as the complex stiffness, i.e. 

implicitly including the term (1 + i sgn()p)), where the term sgn() is introduced to ensure 

causality [5]. The total response of the beam at x to a harmonic point force Feiωt applied at xc 

is given by  

( ) ( ) ( ) ( ), ,
N

c p n n

N

u x F x x k x x u x 
−

= −                                      (4) 

where (x, xc) is the transfer receptance of the unsupported beam between a force at xc and the 

displacement at x. The displacement u(xm) at the support point xm can be written as 

( ) ( ) ( ) ( ), ,
N

m m c p m n n

N

u x F x x k x x u x 
−

= −                                     (5) 

This can be rearranged into a matrix equation  
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( )( ) ( ) ( ), ,p m n n m ck x x x F x x+  =I α u α                                     (6) 

where (xm, xn) is a square matrix consisting of point and transfer receptances of the free beam, 

I is a unit matrix, u(xn) is a vector of the displacements at the support points xn and (xm, xc) is 

a vector of the transfer receptances between the excitation point xc and the support points xm. 

This can be solved for u(xn) by applying a matrix inversion and then the response at a general 

position x can be obtained by substituting back into Equation (4). The point and transfer 

receptances of the infinite beam can be calculated for either the Euler-Bernoulli beam or the 

Timoshenko beam using this method. 

 

2.3 2.5D finite element model 

A 2.5D finite element model (also known as waveguide FE or semi-analytical FE model) [41] 

of the rail is used for comparison.  This approach is briefly described here; further details can 

be found in [41]. Consider a structure which is invariant in one direction, here denoted the x-

direction, and has an arbitrary cross-section in the (y, z) plane, which is discretised into finite 

elements. The partial differential equation of the structure can be written as   

[Κ𝟐
𝜕2

𝜕𝑥2 + Κ𝟏
𝜕

𝜕𝑥
+ K𝟎 + 𝐌

𝜕2

𝜕𝑡2] U(𝑥, 𝑡) = F(𝑥, 𝑡)                       (7) 

where K2, K1 and K0 are stiffness matrices and M is the mass matrix of the cross-section; U(x, t) 

is the vector of displacements of FE node points on the cross-section and F is the corresponding 

external force vector. Since the structure is invariant in the x direction, all the matrices in the 

equation are independent of x. Assuming harmonic motion with respect to time at frequency  

and with respect to the x coordinate with wavenumber kx, the displacement vector can be 

written as U(𝑥, 𝑡) = Ũ𝑒𝑖(𝜔𝑡−𝑘𝑥𝑥) and Equation (7) becomes  

[Κ𝟐(−i𝑘𝑥)2 + Κ𝟏(−i𝑘𝑥) + K𝟎 − 𝜔2𝐌]Ũ = F̃                               (8)   

where Ũ and F̃ are the displacement amplitudes of the nodes and the corresponding amplitudes 

of the external forces in the wavenumber domain, respectively. Equation (8) can be solved to 

obtain the response Ũ  at each wavenumber and frequency. The spatial distribution of the 

displacement U(x) can then be recovered by a Fourier transform: 

U(𝑥) = 
1

2𝜋
∫ Ũ

∞

−∞
(𝑘𝑥)𝑒−i𝑘𝑥𝑥d𝑘𝑥                                       (9) 

The free rail is represented using this method by 11 eight-node elements, as shown in Figure 2.  
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Figure 2 Finite element mesh used for rail cross-section. 

 

Figure 3 Dispersion curves of unsupported beams. …, from 2.5D FEM; ─ ─ ─, from Timoshenko beam model; 

− ∙ −, from Euler-Bernoulli beam model 

 

Vertical bending wave 
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2.4 Results 

The wavenumbers of the free waves in this rail are shown in Figure 3 as discrete points at a 

spacing of 0.1 rad/m. These are obtained from Equation (8) by setting F̃ = 𝟎 and solving for  

at each value of kx. They are compared with the wavenumbers obtained from the beam models. 

The wavenumber from the Timoshenko beam model is similar to that of the vertical bending 

wave obtained from the 2.5D FE model up to about 3 kHz. The Timoshenko beam also has a 

second propagating wave but this cuts on above 5 kHz for the current parameters. The Euler-

Bernoulli beam, however, differs from the other models above about 500 Hz, as noted above. 

Other waves obtained from the 2.5D FE model, from highest to lowest, are lateral bending, 

torsion, longitudinal waves and two higher order waves involving bending of the cross-section 

[3]. 

The mobility of the discretely supported rail is calculated using the method described in Section 

2.2 in which a finite number of supports are added to the bottom of the rail and the full system 

is solved using a receptance coupling method [39]. For the FE model, at each support point 

three springs of approximately equal stiffness are included across the width of the rail foot. 

There are 60 supports on each side of the excitation point for each model. The mobility at mid-

span is compared with the results from the beam models in Figure 4. It can be seen that the 

results from the Timoshenko beam model agree well with those from the 2.5D model, 

especially for frequencies up to 1 kHz. The results all show a resonance peak at 265 Hz caused 

by bouncing of the rail mass on the support stiffness. Below the resonance peak, the track 

mobility is stiffness-controlled and is slightly higher for the Timoshenko beam and 2.5D 

models, especially at mid-span. The peak found at 1425 Hz for the Euler-Bernoulli beam and 

1070 Hz for the other models is the first pinned-pinned mode. These differences are caused by 

the differences in wavenumber observed in Figure 3. There are some differences in the mobility 

magnitude at high frequencies and the phase of the 2.5D model diverges from that of the 

Timoshenko beam model above 1.5 kHz where cross-section deformation starts to become 

important. Similar agreement is found between the responses above a sleeper (not shown). 
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Figure 4 Comparison of point mobility at mid-span for Timoshenko and Euler beams and 2.5D FE model. 

 

3. Simple estimate of parametric excitation 

3.1 Estimate of variations within a span 

When a wheel load runs over the rail, it can excite track and wheel vibration due to variations 

in the track stiffness within a sleeper span. As the rail receptance is approximately independent 

of frequency below 100 Hz, and determined by the inverse of the track stiffness, for low speeds 

this parametric excitation can be estimated from the variation in the quasi-static track deflection 

within a sleeper span. The same models as above can be used to find the quasi-static deflection 

from the receptance for frequencies tending to 0. These models do not include the effect of 

speed; this will be considered in Section 4 below. For simplicity, the comparison between the 

different models is limited to a moving constant load; although the interaction with the 

unsprung mass of the wheel affects the magnitude of the excitation [16, 17], these dynamic 

effects can be expected to be similar for the various models as their track mobilities are very 

similar below 500 Hz. Results are again shown for the single layer support, as shown in Figure 

1, with the parameters given in Table 1. 

Figure 5 shows the results of the three models in terms of the quasi-static track deflection at 

different positions in a span for a unit load. This is shown as positive downwards and for clarity 

three spans are shown. It can be seen that the variations in deflection are much greater for the 

Timoshenko beam than for the Euler-Bernoulli beam and the mean value is also greater. The 

variation in the results for the 2.5D model is similar in magnitude to that for the Timoshenko 
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beam. For the present parameters the deflection above the supports is 2.4% smaller than the 

mid-span results for the Euler-Bernoulli beam and this difference is 8.2% for the Timoshenko 

beam and 5.7% for the 2.5D FE model. Moreover, the variations for the Euler-Bernoulli beam 

are approximately sinusoidal whereas for the Timoshenko beam the slope is discontinuous at 

the support points [31, 32]. The results from the 2.5D model are similar to those of the 

Timoshenko beam model but do not exhibit the discontinuity in gradient at the support points, 

confirming that it is unphysical. 

This discontinuity in slope is a consequence of the fact that the shear force in the Timoshenko 

beam depends on the first derivative of the beam displacement and on the rotation of the cross-

section (F=GA(u/x–)). In this way, because the rotation of the cross-section () must be a 

continuous function, the presence of a concentrated force introduces a discontinuity in the slope 

of the beam (u/x). For the Euler-Bernoulli model the shear force depends on the third 

derivative of the beam displacement (F=EI3u/x3) and a concentrated force introduces a 

discontinuity in that derivative; the first and second derivatives of the beam displacement 

remain continuous functions. 

 

Figure 5 Variation of quasi-static deflection with position within three support spans 

The periodic variations in deflection can be expanded into a Fourier series, the coefficients of 

which are shown in Figure 6 for the three models. The zero-order term, which corresponds to 

twice the average deflection over the span, is almost the same in each case. The first-order term, 

which corresponds to the amplitude of the variation at the sleeper-passing frequency, is 

5.8×10-11 m/N for the Euler-Bernoulli beam and 2.0×10-10 m/N for the Timoshenko beam. Thus, 
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although the peak-to-trough amplitude is four times greater for the Timoshenko beam, the 

component at the sleeper-passing frequency is only three times greater due to the presence of 

the higher harmonics. For the 2.5D model this first-order term is 1.6×10-10 m/N, which is 

similar to the Timoshenko beam. The second-order term is more than an order of magnitude 

greater for the Timoshenko beam than for the Euler-Bernoulli beam and the higher order terms 

then reduce much less rapidly for the Timoshenko beam than for the Euler-Bernoulli beam as 

a consequence of the discontinuity in gradient seen in Figure 5. The results for the 2.5D model 

lie between those of the two beam models. 

 

Figure 6 Fourier series of deflection variation within one span. 

 

3.2 Estimate of equivalent roughness 

The variations in stiffness within a sleeper span can be equated to an equivalent roughness 

excitation [3]. At low frequencies the wheel can be represented simply by a mass Mw and a 

static load F0. For a perfectly smooth wheel and rail, where the support stiffness provided by 

the rail, K(x), varies with distance x, the response of the wheel can be written as a quasi-static 

deflection of the track u0 and a dynamic component u. This satisfies 

( ) ( )0 0wM u K x u u F+ + =                                                (10)  

If the stiffness consists of a steady value KT, and a small sinusoidal variation, δKsin(2πx/λ), this 

can be written as 
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where the products of the small quantities have been neglected.  

As KTu0=F0, Equation (11) can be expressed as 
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The steady-state response at frequency ω, corresponding to the wavelength  has the amplitude  
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The simplest way of including the excitation due to the sleeper-passing frequency is to add it 

to the roughness spectrum at the sleeper-passing wavelength. In this way the dynamic 

interaction effects are also included. The displacement response amplitude of the rail and wheel 

to excitation by a harmonic roughness of amplitude r can be written as [3] 

𝑢𝑟 =
−𝜔2𝑀𝑤𝑟

(𝐾𝑇−𝜔2𝑀𝑤)
 ,  𝑢𝑤 =

𝐾𝑇𝑟

(𝐾𝑇−𝜔2𝑀𝑤)
                                      (14) 

where the rail and wheel receptances have been approximated by 1/KT and –1/2Mw and the 

contact stiffness has been omitted. Equating these expressions to Equation (13) allows the 

equivalent roughness to be obtained. The resulting equivalent roughness for the rail and wheel 

responses are different. The equivalent roughness for the rail is 

 0

2req

T w

K F
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and that for the wheel is 

 0
weq

T T

K F
r

K K

 
= − 

 

 (16) 

The two formulae give equivalent values at the wheel-track system resonance frequency (or P2 

frequency) at which KT = 2Mw and which typically occurs at around 60 Hz. 

For the track parameters considered above, the average track stiffness, KT, is 211 MN/m for 

the Euler-Bernoulli beam, 190 MN/m for the Timoshenko beam and 182 MN/m for the 2.5D 
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model. The relative variation K/KT within a sleeper span, derived from the Fourier coefficients, 

has an amplitude of 1.2%, 3.7% and 2.9% respectively. For a static wheel load F0 of 50 kN 

this leads to an equivalent roughness amplitude (for the wheel) from Equation (16) of 2.9 m 

for the Euler-Bernoulli beam, 10.1 m for the Timoshenko beam and 8.0 m for the 2.5D 

FE model. 

Table 2 lists these values and the corresponding results for a range of support stiffness values 

for the three models. As the support stiffness increases, the relative amplitude of the stiffness 

variation increases approximately in proportion to the support stiffness [10]. However, due to 

the presence of KT in the denominator of Equation (16), the equivalent roughness (for the wheel) 

only increases by a factor of around 2 for an order of magnitude increase in support stiffness. 

The equivalent roughness also increases in direct proportion to the wheel load. As can be seen 

from Table 2, the results from the Timoshenko beam model are slightly higher than those from 

the finite element model whereas the results from the Euler-Bernoulli beam model are around 

a factor of three lower.  

Table 2  Effect of support stiffness (kp) on average track stiffness (KT), amplitude of relative variation in 

stiffness (K/KT) and amplitude of equivalent roughness (rweq). 

 Euler beam Timoshenko beam 2.5D FE model 

kp 

MN/m 

KT 

MN/m 

K/KT rweq 

m 

KT 

MN/m 

K/KT rweq 

m 

KT 

MN/m 

K/KT rweq 

m 

25 75 0.26% 1.7 71 0.90% 6.4 70 0.73% 5.3 

50 126 0.56% 2.2 117 1.84% 7.9 114 1.48% 6.5 

100 211 1.19% 2.8 190 3.72% 9.8 182 2.93% 8.1 

200 353 2.55% 3.6 303 7.40% 12.2 282 5.58% 9.9 

400 589 5.40% 4.6 471 14.0% 14.9 416 9.90% 11.9 

 

3.3 Effect of support spacing 

The high frequency dynamic response of a Timoshenko beam diverges from that of an Euler-

Bernoulli beam due to shear deformation when the wavelength becomes short. From Figure 3 

and Figure 4, the two models diverge for a rail above about 500 Hz, which corresponds to a 

wavenumber of about 3 rad/m, i.e. a wavelength of about 2 m. In the discretely supported model, 

under a static load the rail bends between the supports. It is therefore hypothesised that the 

differences between the two models are associated with the ‘wavelength’ of this bending.  
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To test this, cases have been run using the two beam models with different values of support 

spacing. For convenience, the stiffness of each support has been adjusted to maintain the same 

stiffness per unit length. The average deflection of the rail over a span and the amplitude of the 

variation over the span (determined from the Fourier coefficients) are plotted in Figure 7. This 

shows that the amplitude of displacement variation increases with increasing span length 

(Figure 7(b)) and the average displacement increases for span lengths greater than 1.2 m 

(Figure 7(a)). Importantly, the results for the Timoshenko beam and Euler-Bernoulli beam 

converge for large values of the span length but there are large differences when the span length 

is small. Figure 7(c) shows the ratios between the results for the two models. For span lengths 

greater than 2 m the ratio between the amplitude obtained from the two models is greater than 

0.9, i.e. the models agree to within less than 10%. This limit of 2 m agrees with the wavelength 

noted from (i.e. a wavenumber of 3 rad/m). Thus it can be seen that the difference between the 

two models is associated with shear deformation occurring for bending within short span 

lengths. Even though the frequency is low, the ‘wavelength’ of this deformation is no longer 

sufficiently large compared with the size of the cross-section to neglect shear deformation. 
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Figure 7 Effect of varying support spacing keeping a constant stiffness per unit length. (a) Average displacement 

per unit load; (b) displacement amplitude per unit load; (c) ratio of results for Euler-Bernoulli beam to those for 

Timoshenko beam. 

 

4. Effect of moving load speed on the track deflections  

In the results in the previous section the moving load is approximated by a static load applied 

at different positions within the span length [10]. In this section, to include the effect of load 

speed explicitly, the method of Sheng et al. [14] is used. This describes the response to a 

moving load of a 2.5D structure with a set of periodic supports. Although Ref. [14] also allows 

for a harmonic load, only the case of a constant moving load is considered here. The Euler-

Bernoulli and Timoshenko beams are introduced into the same framework by describing them 

by 2.5D mass and stiffness matrices and the results are compared with those for the 2.5D FE 

model of the rail shown in Figure 2. The parameters are the same as used previously, as listed 

in Table 1. The calculations are based on integrals over wavenumber [14]; in the present 

calculations the maximum wavenumber is set to 200 rad/m with 1024 steps. For the FE model, 
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only 10 supports on each side are used in the calculations in order to save computation time; 

there are again three springs at each support across the rail width. The maximum wavenumber 

is 200 rad/m with 256 steps. It has been verified that this range is sufficient to achieve 

convergence. 

In Figure 8 the track deflections at the loading point obtained by using the Timoshenko beam 

are shown for four different speeds, including the quasi-static result (actually calculated for a 

speed of 0.4 m/s to avoid numerical difficulties). This quasi-static result is almost identical to 

that calculated in Section 3, and shown in Figure 5, the remaining differences being due to the 

wavenumber resolution used here. At 40 m/s the track deflection is very similar to the quasi-

static result but at higher speeds the results are modified by the track dynamic behaviour.  

Figure 9 shows the Fourier coefficients of these deflections. The zero and first order terms are 

virtually unaffected by the load speed but higher order terms are influenced to some extent. At 

40 m/s the sleeper-passing frequency corresponds to 66.7 Hz and the fourth order to 267 Hz, 

which coincides closely with the peak in the rail mobility seen in Figure 4. The track dynamic 

behaviour therefore leads to a slightly higher response in the fourth order and lower responses 

at orders 5 and above. At 80 m/s the slight peak occurs at the second order (corresponding to 

267 Hz) and the amplitude is lower for orders 3 and above, while for 160 m/s the sleeper-

passing frequency (i.e. order 1) corresponds to 267 Hz. 

        

Figure 8 Variation of track deflection with position within a support span for a Timoshenko beam for a load 

moving at different speeds 
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Figure 9 Fourier series of deflections within one span for a Timoshenko beam for a load moving at different 

speeds. 

The track deflections for the Euler-Bernoulli beam model are shown in Figure 10 for these four 

speeds. The deflection is hardly affected by the speed, apart from an increase in the mean 

deflection at 160 m/s. The Fourier coefficients are shown in Figure 11. These show similar 

variations due to speed as those for the Timoshenko beam, i.e. slight peaks when the frequency 

equals that of the track resonance. As seen in Figure 6 the spectral levels drop more rapidly 

than for the Timoshenko beam. The corresponding results for the 2.5D FE rail model are 

presented in Figure 12 and Figure 13. Again, there is a small influence due to the dynamic 

behaviour for the higher speeds, similar to the results of the Timoshenko beam model. Table 3 

summarises the results in terms of the same parameters as previously, from which it is clear 

that the results are hardly affected by the load speed except for the 160 m/s case where the 

sleeper-passing frequency coincides with the track resonance. 

Generally, it can be concluded that, as long as the track dynamic response is in the stiffness-

controlled region, i.e. below the first track resonance frequency, the sleeper-passing effect due 

to a moving load can be estimated adequately using a quasi-static approach. Thus, the results 

taking account of the moving load confirm those from the quasi-static calculations and show 

that the Euler-Bernoulli beam gives a parametric excitation around three times too small. 
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Figure 10 Variation of track deflection with position within a support span in an Euler-Bernoulli beam for a load 

moving at different speeds 

 

Figure 11 Fourier series of deflections within one span for an Euler-Bernoulli beam for a load moving at 

different speeds. 
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Figure 12 Variation of track deflection with position within a support span in a 2.5D FE rail for a load moving at 

different speeds 

 

Figure 13 Fourier series of deflections within one span in a 2.5D FE rail for a load moving at different speeds. 



22 

 

Table 3 Effect of load speed on average track stiffness (KT), amplitude of relative variation in stiffness (K/KT) 

and amplitude of equivalent roughness (rweq) for kp = 100 MN/m and F0 = 50 kN. 

 Euler-Bernoulli beam Timoshenko beam 2.5D FE model 

Load 

speed, 

m/s 

KT 

MN/m 

K/KT rweq 

m 

KT 

MN/m  

K/KT rweq 

m  

KT 

MN/m  

K/KT rweq 

m 

0 211.1 1.19% 2.82 190.2 3.70% 9.73 176.6 2.85% 8.07 

40 210.9 1.21% 2.88 190.1 3.78% 9.94 176.5 2.92% 8.27 

80 210.4 1.30% 3.09 189.6 4.09% 10.79 176.1 3.17% 9.00 

160 208.6 1.49% 3.57 187.7 4.31% 11.48 174.4 2.73% 7.83 

 

5. Conclusions 

By comparing the parametric excitation occurring for a moving load on either an Euler-

Bernoulli beam or a Timoshenko beam on a periodic support with a 2.5D FE model used as a 

reference, it is shown that, for typical parameters, the Euler-Bernoulli beam model 

underestimates this parametric excitation by around a factor of 3. This difference is shown to 

be due to shear deformation in the rail, which is found to be significant for span lengths less 

than about 2 m.  

The displacement profile obtained from the Timoshenko beam model also exhibits an 

unphysical discontinuity in the gradient at the support points [31, 32]. This leads to greater high 

frequency components so, although the component at the sleeper passing frequency is quite 

well predicted, the higher frequency components are significantly overestimated. This 

discontinuity can be reduced by introducing multiple springs to represent each support point, 

as proposed by [42-44].  

By introducing the moving load explicitly in the various periodically supported models it is 

shown that the results for a moving constant load are not strongly affected by the load speed 

until the sleeper passing frequency approaches the vertical track resonance frequency at which 

the rail mass bounces on the support stiffness. The quasi-static approach to modelling the 

sleeper-passing effect for a moving load gives satisfactory results for speeds up to 40 m/s in 

the example shown, and even at higher speeds the error is not large. For the response due to 

moving harmonic loads or the interaction with moving wheels, however, a more complete 

model, e.g. [14, 45], should be used. 
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The results of this study show clearly that to consider the parametric excitation of a railway 

track due to the sleeper passing effect, at least a Timoshenko beam including shear deformation 

should be used. An Euler-Bernoulli beam formulation leads to considerable underestimates of 

the effect, which does not appear to have been previously recognised. 

All data published in this paper are openly available from the University of Southampton 

repository at https://doi.org/10.5258/SOTON/D1362 
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