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1 Introduction

The Reissner-Nordström and Kerr black holes have the property that they can be analyti-

cally extended beyond an inner horizon. This inner horizon is a Cauchy horizon bounding

the region of spacetime in which physics can be predicted uniquely from initial data. Even
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the extension of the spacetime beyond the Cauchy horizon is not predictable: there are in-

finitely many smooth (but non-analytic) extensions that satisfy Einstein’s equation. Thus

the presence of a Cauchy horizon represents a failure of determinism in classical physics.

Fortunately it is well-known that the Cauchy horizons of Reissner-Nordström or Kerr

black holes are unstable [1–5]. If the initial data is perturbed then the resulting spacetime

can still be continuously extended beyond a Cauchy horizon [5–7]. But, generically, this

extension is not C2 [4, 8] and it is believed that, generically, no extension can satisfy

Einstein’s equation, even in a weak sense, at the Cauchy horizon (see [9] for a discussion).

Thus, in the perturbed spacetime, there is strong evidence that the Cauchy horizon is

replaced by a curvature singularity and determinism is restored. The claim that this must

happen is called the strong cosmic censorship conjecture [10].

There has been recent interest in strong cosmic censorship with a positive cosmological

constant. It has been argued that strong cosmic censorship is violated by near-extremal

Reissner-Nordström-de Sitter black holes [11–13] (see [14] for earlier work). In particular,

it has been shown that linearized gravitational and electromagnetic perturbations of such a

hole can be arbitrarily differentiable at the Cauchy horizon if the black hole is near-extremal

and large enough [12]. On the other hand, it has been shown that linear gravitational

perturbations of a Kerr-de Sitter black hole exhibit behaviour that is in agreement with

strong cosmic censorship [15].

What about the case of negative cosmological constant? In four spacetime dimensions,

linear perturbations of asymptotically anti-de Sitter (AdS) black holes exhibit very slow

decay. This was first noticed by studying quasinormal modes of such black holes [16].

This slow decay arises from the stable trapping of null geodesics in such spacetimes [17]:

there exist null geodesics which orbit the black hole, and such orbits are stable against

perturbations. The very slow decay of perturbations outside the black hole is expected

to strengthen the instability of the Cauchy horizon.1 Thus, in 4d, AdS black holes are

expected to respect strong cosmic censorship.

In this paper, we will consider the rotating BTZ black hole, which is a 3-dimensional

vacuum solution with negative cosmological constant [20, 21]. Since there is no gravitational

dynamics in 3 dimensions, when discussing strong cosmic censorship for BTZ we must

perturb the black hole using matter fields. In contrast with the 4-dimensional case, the

BTZ black hole does not exhibit stable trapping, and its quasinormal modes do not exhibit

slow decay. Hence it is not obvious whether or not the BTZ black hole will respect strong

cosmic censorship.

We will start by considering the behaviour of a free massive scalar field in the BTZ

geometry. The initial perturbation is taken to be a smooth outgoing wavepacket emanating

from the white hole region of the geometry. We also allow for outgoing waves in the black

hole interior and a “non-normalizable” wavepacket incident from infinity. The resulting

solution is not smooth at the Cauchy horizon. The degree of differentiability at the Cauchy

horizon depends on how close the black hole is to extremality. If the black hole is far from

1But not enough to prevent the existence of a continuous extension across the Cauchy horizon [18]. See

also [19] for a discussion of tidal forces at the Cauchy horizon.

– 2 –



J
H
E
P
1
2
(
2
0
1
9
)
0
9
7

extremality then the scalar field is not C1 at the Cauchy horizon, which implies that

its energy-momentum tensor diverges there, in agreement with strong cosmic censorship.

However, if the black hole is close to extremality then the scalar field is smoother. We will

show that the scalar field is Ck at the Cauchy horizon if β > k with

β ≡ ∆
r+

r−
− 1

, (1.1)

where ∆ is the conformal dimension of the operator dual to the scalar field in the AdS/CFT

correspondence [22],2 and r± are the radii of the BTZ horizons. This implies that the

energy-momentum tensor of the scalar field is finite at the Cauchy horizon if β > 1. Note

that β diverges in the extremal limit. Therefore, for any given ∆ and k, scalar field

perturbations are Ck at the Cauchy horizon if the black hole is close enough to extremality.

If there are multiple scalar fields then the one with the smallest value of ∆ exhibits the

least smooth behaviour at the Cauchy horizon.

This result relies on a surprising coincidence. The analysis reduces to considering

quasinormal modes of the BTZ black holes. These can be divided into two classes: pro-

grade (i.e., co-rotating) and retrograde (i.e., counter-rotating) [23]. The coincidence is that

the prograde quasinormal frequencies coincide with the frequencies of a class of quasinor-

mal modes of the black hole interior. (We will define below precisely what we mean by

interior quasinormal modes.) It turns out that this implies that the prograde modes do not

contribute to the non-smooth part of the field at the Cauchy horizon, which is determined

by the much faster-decaying retrograde modes. This rapid decay leads to the enhanced

differentiability near extremality.

We will also discuss linear fields with higher spin. These include massive Chern-Simons

fields (i.e. Maxwell fields with a gauge-invariant mass term), Proca fields and massive spin-2

fields. In all cases we find that the equations of motion can be reduced to the massive scalar

equation and so we obtain the same result, i.e., a violation of strong cosmic censorship near

extremality.

We emphasize that the discussion above concerns perturbations arising from smooth

initial data. The similar failure of the strong cosmic censorship conjecture for Reissner-

Nordström de Sitter black holes [11, 12] led to the formulation of a weaker version of the

conjecture in which one allows perturbations arising from non-smooth initial data [24] (see

also [12]). We will show that this weaker form of strong cosmic censorship is respected by

the BTZ black hole. However, it is not clear whether one should allow non-smooth initial

data in, say, the AdS/CFT correspondence.

Since (for smooth initial data) strong cosmic censorship appears to be violated clas-

sically, we examine whether quantum effects might render the Cauchy horizon singular

and thus enforce strong cosmic censorship. If we consider a BTZ black hole formed by

gravitational collapse then, at late time, it is natural to expect the quantum state of fields

in this spacetime to approach the Hartle-Hawking state. In this state, quantum fields will

2Our results do not depend in any way on AdS/CFT but it is convenient to use the parameter ∆ as it

encodes both the mass of the scalar field and the boundary conditions that it satisfies.
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exhibit vacuum polarization, i.e., the expectation value of the energy-momentum tensor

〈Tab〉 will be non-vanishing. Therefore we can ask how 〈Tab〉 behaves near the Cauchy hori-

zon of the black hole. If it always diverges at the Cauchy horizon (as in a 2-dimensional

toy model [25]) then maybe the gravitational backreaction of vacuum polarization could

enforce strong cosmic censorship.

We have computed 〈Tab〉 for a massive scalar field in the Hartle-Hawking state in

the BTZ black hole spacetime. Our result is that, for a near-extremal black hole, 〈Tab〉
is finite on the Cauchy horizon. More precisely, it extends continuously to the Cauchy

horizon of a black hole with β > 1. Thus vacuum polarization does not save strong cosmic

censorship for the BTZ black hole. Surprisingly, the condition β > 1 is the same as the

condition for classical scalar field perturbations to have finite energy-momentum tensor at

the Cauchy horizon.

Our results contradict claims in the literature. A previous study of classical scalar

field perturbations of the BTZ black hole reported results in agreement with strong cosmic

censorship [26]. We will explain below why we think this study contains a subtle error

in its treatment of certain poles on the real axis in the complex frequency plane. In the

quantum case, there seems to be a belief that a calculation of Steif [27] demonstrates that

〈Tab〉 always diverges at the Cauchy horizon. We will explain below why this conclusion is

invalid because it involves considering the behaviour of quantum fields behind the Cauchy

horizon where we can predict neither the classical geometry nor the behaviour of quantum

fields. The correct approach is to consider the limiting behaviour of 〈Tab〉 as the Cauchy

horizon is approached from outside.

This paper is organized as follows. In section 2 we review some background material

that will be used in the following sections. In section 3 we discuss classical scalar field

perturbations of the BTZ black hole and demonstrate that they violate strong cosmic

censorship. In section 4 we find that strong cosmic censorship cannot be restored by other

classical fields (Chern-Simons, Proca, Kaluza-Klein gravitons) that naturally appear when

we embed the BTZ solution in supergravity theories. In section 5 we will show that 〈Tab〉
is finite at the Cauchy horizon of a near-extremal BTZ black hole. Finally, we discuss our

results further in section 6.

Notation. Latin indices on tensor equations are abstract indices, indicating that the

equation holds in any basis. Greek indices refer to a specific basis.

2 Background material

2.1 The BTZ solution

The BTZ black hole is a solution of Einstein’s gravity in three dimensions with a negative

cosmological constant Λ = −1/L2, where L is the AdS radius. This solution (which is

locally AdS3) has metric [20, 21]

ds2 = −fdt2 +
dr2

f
+ r2

(
dφ− Ω dt

)2
,

f =
(r2 − r2

+)(r2 − r2
−)

L2 r2
, Ω =

r+r−
Lr2

. (2.1)
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Figure 1. Penrose diagram for the non-extremal BTZ black hole. Region I is the black hole exterior

and region II the interior. The asymptotic timelike boundary is IR, the future event horizon is H+
R

and the past event horizon is at H−R. Region III is the white hole region. Region IV is another

asymptotically AdS region with timelike boundary IL and future event horizon H+
L . CH+

L,R are the

“left” and “right” future Cauchy horizons, respectively.

The function f has two positive roots 0 < r− ≤ r+ corresponding to the Cauchy horizon

and event horizon, respectively. The asymptotic timelike AdS3 boundary is at r → ∞.

The (positive) surface gravities κ± and the angular velocities associated to each of the two

horizons are, respectively,

κ± =
r2

+ − r2
−

L2 r±
, Ω± =

r∓
Lr±

. (2.2)

It will be important to note that any non-extremal BTZ black hole satisfies

κ− > κ+ , (2.3)

and Ω− > Ω+. The extremal configuration occurs when κ+ = κ− = 0, i.e. when r+ =

r−. For completeness, the mass and angular momentum are M = (r2
+ + r2

−)/L2 and

J = 2r+r−/L.

The causal structure of a non-extremal BTZ black hole is displayed in figure 1. Region

I is the region with r+ < r <∞ between the event horizon and the timelike boundary, i.e.

the black hole exterior. Region II is the black hole interior, where r− < r < r+. Region III

is the white hole region and region IV is another asymptotically AdS region.

As we will explain below, the geometry can be analytically continued beyond the

surfaces r = r− into new regions with r < r−. In the extended spacetime, the surfaces r =

r− are Cauchy horizons.3 Consider any spacelike surface Σ extending from infinity in region

I to infinity in region IV, e.g. the one shown in figure 1. Then, given initial conditions on

Σ and appropriate boundary conditions at timelike infinity, physics is uniquely determined

3Here we use the term Cauchy horizon in the context of the initial-boundary value problem appropriate

to asymptotically AdS spacetimes.
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throughout regions I to IV. However what happens beyond the Cauchy horizon cannot be

predicted from initial data on Σ.

We should emphasize that even the metric is not uniquely determined beyond the

Cauchy horizon. Analytic continuation can be used to extend the metric beyond the

Cauchy horizon. But there is no reason why the metric should be analytic. If we merely

demand smoothness then there are infinitely many ways of extending the metric. To see

this, consider 3d gravity coupled to matter obeying suitable boundary conditions at timelike

infinity (see below). Start from exactly BTZ initial data on a surface such as Σ. Exactly

BTZ initial data implies that no matter fields are present initially. The matter fields will

remain zero, and the solution will be exactly BTZ, all the way up to the Cauchy horizon.

However, there is no reason why matter fields should remain zero beyond the Cauchy

horizon. Non-zero matter fields will affect the geometry beyond the Cauchy horizon so

that it differs from the metric obtained via analytic continuation of BTZ.

So far we have been discussing the eternal BTZ black hole. If we consider a black

hole formed in gravitational collapse that, at late times, “settles down” to BTZ then the

geometry of this black hole will approach the BTZ geometry in a neighbourhood of the

intersection of IR, H+
R and CH+

R on figure 1. This implies that it is the early time portion

of CH+
R that is relevant for a black hole formed in gravitational collapse. For this reason,

most of our discussion will focus on CH+
R rather than CH+

L .

We need to recall the definitions of various coordinate systems in the BTZ geome-

try [21]. Define the “tortoise” radial coordinate r∗ by

r∗ =
1

2κ+
log |F+(r)| , (2.4)

where

F+(r) ≡ r − r+

r + r+

(
r + r−
r − r−

)r−/r+
(2.5)

and this definition implies dr∗ = dr/f . Note that r∗ → −∞ as r → r+ and r∗ → +∞ as

r →∞ or r → r−. We then define advanced and retarded time coordinates in region I as

u = t− r∗ , v = t+ r∗ . (2.6)

We now define Kruskal coordinates (U+, V+, φ+) in region I (where U+ < 0, V+ > 0) by

U+ = −e−κ+u , V+ = eκ+v , φ+ = φ− Ω+t . (2.7)

In these coordinates we have

t =
1

2κ+
log

∣∣∣∣V+

U+

∣∣∣∣ (2.8)

and r is given by solving

F+(r) = −U+V+ . (2.9)

The metric becomes

ds2 = − f(r)

κ2
+F+(r)

dU+dV+ + r2

[
dφ+ +

(Ω+ − Ω(r))

2κ+F+(r)
(V+dU+ − U+dV+)

]2

. (2.10)
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These coordinates also allow the metric to be analytically extended into region II (where

U+ > 0, V+ > 0) as well as two further regions not displayed in figure 1. The future event

horizon H+
R is the surface U+ = 0 (and V+ > 0). An observer with constant φ+ co-rotates

with the event horizon, i.e., φ+ is constant along the generators of the event horizon.

In region II we define t by (2.8) and (u, v) by (2.6). We then have

U+ = +e−κ+u , V+ = eκ+v , region II. (2.11)

Note that u→ +∞ as we approach H+
R from either region I or II. We define φ in region II

by φ = φ+ + Ω+t.

To extend across the Cauchy horizon we need to define another set of Kruskal coordi-

nates in region II by

U− = −eκ−u , V− = −e−κ−v , φ− = φ− Ω−t . (2.12)

In these coordinates, region II has U− < 0, V− < 0 and r is given by

F−(r) = U−V− , (2.13)

where

F−(r) ≡ r − r−
r + r−

(
r+ + r

r+ − r

)r+/r−
. (2.14)

The metric becomes

ds2 =
f(r)

κ2
−F−(r)

dU−dV− + r2

[
dφ− +

Ω− − Ω(r)

2κ−F−(r)
(V−dU− − U−dV−)

]2

. (2.15)

This metric can now be analytically continued to U− > 0 and/or V− > 0. The “right”

Cauchy horizon CH+
R is the surface V− = 0 (and U− < 0) while the “left” Cauchy horizon

CH+
R is the surface U− = 0 (and V− < 0).

Finally, we will also make use of Eddington-Finkelstein coordinates. Ingoing

Eddington-Finkelstein coordinates are (v, r, φ′) where

dφ = dφ′ − Ω

f
dr . (2.16)

In these coordinates the metric is

ds2 = −fdv2 + 2dvdr + r2
(
dφ′ − Ωdv

)2
. (2.17)

This metric can be analytically extended across the future event horizon H+
R (at r = r+)

into region II so these coordinates cover regions I and II of figure 1. These coordinates are

also smooth at CH+
L (i.e. at r = r−).

Outgoing Eddington-Finkelstein coordinates are (u, r, φ′′) where

dφ = dφ′′ +
Ω

f
dr . (2.18)

The metric in these coordinates is

ds2 = −fdu2 − 2dudr + r2
(
dφ′′ − Ωdu

)2
. (2.19)

These coordinates cover region I and III. However they are not smooth at H+
R. We can

also define these coordinates in region II using the above expressions. In region II these

coordinates are smooth at H+
L (where r = r+) and CH+

R (where r = r−).

– 7 –
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Figure 2. The conformal dimension ∆ as a function of the scalar field mass µ2L2. The upper

branch (blue) corresponds to ∆+, the lower branch (orange) to ∆−. Note ∆±(µBF) = 1 and

∆−(0) = 0.

2.2 Scalar field boundary conditions

Consider a test scalar field Φ(t, r, φ) of mass µ satisfying the Klein-Gordon equation:

2Φ− µ2Φ = 0 . (2.20)

A Frobenius analysis of (2.20) about the asymptotic boundary r → ∞ finds two possible

linearly independent decays4

Φ
∣∣
r∼∞ = r−∆− (A(t, φ) + · · · ) + r−∆+ (B(t, φ) + · · · ) , ∆± = 1±

√
1 + µ2L2 (2.21)

where the ellipses denote terms that decay as r →∞. Note that ∆+ ≥ ∆−. Stability of an

asymptotically AdS3 solution requires that ∆± ∈ R, which occurs if the mass of the scalar

field is above the Breitenlöhner-Freedman (BF) bound µ2
BFL

2 = −1 [28, 29].

For µ2 ≥ 0, only the mode r−∆+ with the faster fall-off is normalizable. In the

AdS/CFT correspondence, the non-normalizable mode A(t, φ) is said to be the source of

a boundary operator OΦ since it determines the (deformation) of the boundary theory

action. On the other hand, the normalizable modes B(t, φ) are identified with states of the

theory and B(t, φ) is proportional to the expectation value 〈OΦ〉 of the boundary operator

(in the presence of the source A). ∆+ ≡ ∆ is then the (mass) conformal dimension of the

boundary operator OΦ dual to Φ. The undeformed boundary theory corresponds thus to

the Dirichlet boundary condition choice whereby the source vanishes, A(t, φ) = 0, and we

have a pure normalizable solution.

4When µ2 > µ2
BF. For µ = µBF one of the independent solutions is a power of r and the other is

logarithmic.
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For masses in the range µ2
BF < µ2 < 0, the two modes in (2.21) are normalizable [30].

We then have two choices of boundary conditions: 1) the so called standard quantization

where A(t, φ) is identified with the source and we are often interested on the Dirichlet

boundary condition A(t, φ) = 0, or 2) the alternative quantization where it is instead

B(t, φ) that is identified with the source (absence sources then requires the Neumann

boundary condition, B(t, φ) = 0). These two choices correspond, respectively, to dual

operators with conformal dimension ∆+ and ∆− (since the mass scaling dimensions of

B(t, φ) and A(t, φ) are ∆+ and ∆−, respectively).

We can write the scalar mass µ as a function of the conformal dimension ∆ of OΦ:

µ2L2 = ∆(∆− 2) . (2.22)

This relationship is shown in figure 2. In the next section we will use (2.22) to present our

results in terms ∆ (instead of µ) because ∆ uniquely determines both the mass and the

boundary conditions.

3 Scalar field perturbations

3.1 Introduction

In this section we will consider the behaviour of linear scalar field perturbations of the

BTZ spacetime. Ideally we would like to specify smooth initial data for the scalar field on

a surface such as Σ in figure 1. We then want to determine the behaviour of the resulting

solution at the Cauchy horizon. In particular we want to know: for generic initial data,

how smooth is the scalar field at the Cauchy horizon?

Instead of specifying initial data on a spacelike surface, it is more convenient to specify

(characteristic) initial data on the null surface H+
L ∪H

−
R along with suitable boundary con-

ditions at timelike infinity IR. Given such data one expects a unique solution throughout

regions I and II of figure 1. As shown in figure 3, we will take the data on H+
L ∪ H

−
R to

consist of a smooth wavepacket on H+
L and a smooth wavepacket on H−R. The bound-

ary conditions at IR will allow for a “non-normalizable” perturbation corresponding to a

wavepacket on IR.

The advantage of formulating the problem as above is that we can write the solution

as a superposition of mode solutions of the Klein-Gordon equation. Thus, in subsection 3.2

we review mode solutions in regions I and II and natural bases to construct wavepackets.

The discussion of strong cosmic censorship will turn out to depend crucially on properties

of quasinormal frequencies (just as for the de Sitter case [11, 12, 31]). Surprisingly, it

depends not only on the quasinormal frequencies of the black hole exterior (region I) but

also on quasinormal frequencies of the black hole interior (region II). Therefore, in subsec-

tion 3.3 we review the values of the “exterior” quasinormal mode frequencies of scalar field

perturbations of BTZ [23] and, in subsection 3.4, we will introduce the notion of “interior”

quasinormal modes and find the associated frequencies. A remarkable coincidence between

one of these interior frequencies and one of the exterior quasinormal mode frequencies will

be observed. This coincidence will have far-reaching consequences for the fate of strong

cosmic censorship in BTZ which we will explain in subsection 3.5.

– 9 –
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Figure 3. Our (characteristic) initial-boundary data for solving the Klein-Gordon equation consists

of smooth (outgoing) wavepackets on H+
L and H−R and a smooth wavepacket source at IR. We will

determine the solution in regions I and II and investigate its smoothness at CH+
R.

We should note that there is significant overlap between our analysis and the previous

analysis of ref. [26]. However, a certain amount of repetition is necessary in order for us to

explain carefully why we disagree with the conclusion of ref. [26].

3.2 Bases for mode solutions

To study solutions of the massive Klein-Gordon equation it is convenient to replace the

original coordinate r by the new radial coordinate z,

z =
r2 − r2

−
r2

+ − r2
−
, (3.1)

which has the nice property of locating the Cauchy horizon at z = 0, the event horizon at

z = 1 and the asymptotic boundary at z = +∞. A mode solution of the Klein-Gordon

equation (2.20) has the separable form

Φ = e−iωteimφR(z)

≡ e−iωteimφz
−i ω−mΩ−

2κ− (1− z)
−i ω−mΩ+

2κ+ F (z) , (3.2)

where ω and m are the frequency and azimuthal number of the mode and κ± and Ω± are

the surface gravities and angular velocities of BTZ already introduced in (2.2). Regularity

of the solution requires that m is an integer. In (3.2) we have redefined the radial function

R(z) in terms of F (z). This satisfies the hypergeometric equation

z(1− z)F ′′(z) + [c− z(a+ b+ 1)]F ′(z)− abF (z) = 0 , (3.3)

– 10 –
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with (after using (2.22) to replace the scalar field mass µ by the conformal dimension ∆)5

a =
1

2

(
∆− i ω −mΩ−

κ−
− i ω −mΩ+

κ+

)
,

b =
1

2

(
2−∆− i ω −mΩ−

κ−
− i ω −mΩ+

κ+

)
,

c = 1− i ω −mΩ−
κ−

. (3.4)

The general solution of equation (3.3) can be written in terms of a basis consisting of two

linearly independent solutions. Different choices of basis are convenient for describing the

properties of the solution near each singular point z = 0, 1,∞. This gives a natural trio of

bases for R(z). We will describe each of these three bases, starting from the inner boundary

and moving towards the asymptotic one.

We start by considering solutions in region II (r− < r < r+ i.e. 0 < z < 1). In the

vicinity of the Cauchy horizon (r = r− or z = 0) two linearly independent solutions for

R(z) are [32]6

Rout,− = z−
1
2

(1−c)(1− z)
1
2

(a+b−c)
2F1(a, b; c; z) , (3.5a)

Rin,− = z+ 1
2

(1−c)(1− z)
1
2

(a+b−c)
2F1(a− c+ 1, b− c+ 1; 2− c; z) . (3.5b)

Using the hypergeometric property F (α, β, γ; 0) = 1 one finds that the two solutions behave

at the Cauchy horizon z = 0 as

Rout,−
∣∣
z∼0

= z
−i ω−mΩ−

2κ− R̂out,−(ω,m; z) , (3.6a)

Rin,−
∣∣
z∼0

= z
+i

ω−mΩ−
2κ− R̂in,−(ω,m; z) . (3.6b)

where R̂out,−(ω,m; z) and R̂in,−(ω,m; z) are analytic at z = 0 with R̂out,−(ω,m; 0) =

R̂in,−(ω,m; 0) = 1.

We will denote the resulting mode solutions as Φout,− and Φin,−. To investigate the

behaviour of these solutions at CH+
R we convert to the outgoing Eddington-Finkelstein

coordinates (u, r, φ′′) defined in section 2.1. This gives, near z = 0,

Φout,− = e−iω(u−u0)eim(φ′′−φ′′0 ) [1 +O (z)] , (3.7a)

Φin,− = e−iω(u−u0)eim(φ′′−φ′′0 )z
+i

ω−mΩ−
κ− [1 +O (z)] , (3.7b)

where u0 and φ′′0 are real constants depending only on the black hole parameters. Thus, we

see that Φout,− is smooth (i.e. “outgoing”) at CH+
R but Φin,− is not. Similarly to investigate

5Note that the hypergeometric function has the property 2F1(a, b; c; z) = 2F1(b, a; c; z) which, together

with the property |∆ − 1| + 1 = ∆ if ∆ > 1 but |∆ − 1| + 1 = 2 −∆ if 0 < ∆ < 1, allows us to treat the

∆ < 1 and ∆ > 1 cases in a unified way.
6The two solutions in all our bases are strictly independent only when a− b = ∆− 1 is not an integer,

i.e. when ∆ ≥ 0 is not an integer [32]. However, our final physical results should be valid for any ∆ > 0.
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the behaviour at CH+
L we convert to ingoing coordinates (v, r, φ′) to obtain

Φout,− = e−iω(v−v0)eim(φ′−φ′0)z
−i ω−mΩ−

κ− [1 +O (z)] , (3.8a)

Φin,− = e−iω(v−v0)eim(φ′−φ′0) [1 +O (z)] . (3.8b)

Hence Φin,− is smooth (i.e. “ingoing”) at CH+
L but Φout,− is not.

We now consider solutions in a neighbourhood of the event horizon (z = 1). A basis

for solutions R(z) is

Rout,+ = z−
1
2

(1−c)|1− z|−
1
2

(a+b−c)
2F1(c− b, c− a;−a− b+ c+ 1; 1− z) , (3.9a)

Rin,+ = z−
1
2

(1−c)|1− z|
1
2

(a+b−c)
2F1(a, b; a+ b− c+ 1; 1− z) . (3.9b)

At r = r+ (z = 1) this basis behaves as

Rout,+

∣∣
z∼1

= |1− z|+i
ω−mΩ+

2κ+ R̂out,+(ω,m; z) , (3.10a)

Rin,+

∣∣
z∼1

= |1− z|−i
ω−mΩ+

2κ+ R̂in,+(ω,m; z) , (3.10b)

where R̂out,+(ω,m; z) and R̂in,+(ω,m; z) are analytic at z = 1 with R̂out,+(ω,m; 1) =

R̂in,+(ω,m; 1) = 1. Rin,+ gives mode solutions Φin,+ that are smooth at H+
R while Rout,+

gives mode solutions Φout,+ smooth at H+
L and H−R (see figure 1).

Near the asymptotic timelike boundary IR (z →∞) a basis for R(z) is

Rvev,∞ = z−
1
2

(2a−c+1)(z − 1)
1
2

(a+b−c)
2F1

(
a, a− c+ 1; a− b+ 1;

1

z

)
, (3.11a)

Rsource,∞ = z−
1
2

(2b−c+1)(z − 1)
1
2

(a+b−c)
2F1

(
b, b− c+ 1;−a+ b+ 1;

1

z

)
. (3.11b)

At z →∞ these decay as

Rvev,∞
∣∣
z∼∞ = z−∆/2 [1 +O (1/z)] , (3.12a)

Rsource,∞
∣∣
z∼∞ = z−(2−∆)/2 [1 +O (1/z)] . (3.12b)

The corresponding mode solutions will be denoted Φvev,∞ and Φsource,∞.

In later sections, we will be interested in studying how a solution written in the event

horizon basis (Rin,+, Rout,+) behaves near the Cauchy horizon. For that, it will be useful

to rewrite the event horizon wavefunctions (3.9) in the Cauchy horizon basis (3.5),

Rout,+ = A(ω,m)Rout,− + B(ω,m)Rin,− , (3.13a)

Rin,+ = Ã(ω,m)Rin,− + B̃(ω,m)Rout,− , (3.13b)

where A and B are transmission and reflection coefficients for fixed frequency scattering of

waves propagating out from H+
L and Ã, B̃ are transmission and reflection coefficients for
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scattering of waves propagating in from H+
R. Applying a hypergeometric transformation

formulae [32] to (3.9) one finds that

A(ω,m) =
Γ(1− c)Γ(1− a− b+ c)

Γ(1− a)Γ(1− b)
, B(ω,m) =

Γ(c− 1)Γ(−a− b+ c+ 1)

Γ(c− a)Γ(c− b)
; (3.14a)

Ã(ω,m) =
Γ(c− 1)Γ(a+ b− c+ 1)

Γ(a)Γ(b)
, B̃(ω,m) =

Γ(1− c)Γ(a+ b− c+ 1)

Γ(a− c+ 1)Γ(b− c+ 1)
. (3.14b)

We will also need to know how to write Rin,+ in terms of the basis at infinity and how

to write Rvev,∞ in terms of the event horizon basis. We define the coefficients in this basis

transformation as7

Rin,+ =
1

T (ω,m)
Rsource,∞ +

R(ω,m)

T (ω,m)
Rvev,∞ , (3.15a)

Rvev,∞ =
1

T̃ (ω,m)
Rout,+ +

R̃(ω,m)

T̃ (ω,m)
Rin,+ . (3.15b)

The coefficients defined in (3.15a)–(3.15b) can be obtained using hypergeometric transfor-

mation formulae, giving

T (ω,m) =
Γ(a)Γ(a− c+ 1)

Γ(a− b)Γ(a+ b− c+ 1)
, R(ω,m) =

Γ(a)Γ(b− a)Γ(a− c+ 1)

Γ(b)Γ(a− b)Γ(b− c+ 1)
; (3.16a)

T̃ (ω,m) =
Γ(a)Γ(a− c+ 1)

Γ(a− b+ 1)Γ(a+ b− c)
, R̃(ω,m) =

Γ(a)Γ(a− c+ 1)Γ(−a− b+ c)

Γ(1− b)Γ(c− b)Γ(a+ b− c)
.

(3.16b)

Finally we will discuss the analyticity properties of our radial solutions in the complex

ω plane. To do this we use the fact that the hypergeometric function 2F1(α, β; γ; ζ) is

analytic in α, β, γ except for simple poles at γ = −N where N = 0, 1, 2, . . .. From this it

follows that Rin,−(ω,m; z) can be analytically continued to the complex ω plane, except for

simple poles when ω−mΩ− is a positive integer multiple of iκ−. Similarly Rout,−(ω,m; z)

has simple poles when ω −mΩ− is a negative integer multiple of iκ−. Rin,+(ω,m; z) has

simple poles when ω −mΩ+ is a negative integer multiple of iκ+ and Rout,+(ω,m; z) has

simple poles when ω−mΩ+ is a positive integer multiple of iκ+. These results are similar

to those for 4d black holes [3, 33]. Rvev,∞ and Rsource,∞ are entire functions of ω.

3.3 Exterior quasinormal modes

The (standard, i.e., exterior) black hole quasinormal mode frequencies of a massive scalar

field in the rotating BTZ black hole background have been studied in detail in [23]. For

completeness we will review them here.

Exterior quasinormal modes are linear mode solutions in region I that satisfy the no-

source boundary condition at the asymptotic boundary IR and are smooth at the future

event horizon H+
R. The no-source condition implies that the radial function must be pro-

portional to Rvev,∞ and regularity at H+
R implies that the radial function must be propor-

tional to Rin,+. Hence quasinormal frequencies are defined by the condition Rin,+ ∝ Rvev,∞.

7Our notation is modelled on a similar calculation in [12].
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From (3.15a) we see this is equivalent to T (ω,m) = ∞. Alternatively, from (3.15b) it is

equivalent to T̃ (ω,m) =∞.8

It follows from (3.16) that quasinormal frequencies are given by a = −p or a−c+1 = −p
for p = 0, 1, 2, · · · . Using the definitions (3.4) for (a, b, c), this yields two sectors of exterior

quasinormal mode frequencies [23]:

ωpL = m− i r+ − r−
L

(
∆ + 2p

)
, for p ∈ N0 = {0, 1, 2, . . .}, (3.17a)

ωrL = −m− i r+ + r−
L

(
∆ + 2p

)
, for p ∈ N0 . (3.17b)

We refer to quasinormal modes with frequency ωp as prograde modes, i.e. modes that

co-rotate with the black hole, while quasinormal modes with frequency ωr are retrograde

modes, i.e. modes that counter-rotate with the black hole.9

For completeness, we note that we can define a second family of exterior quasinormal

modes by demanding smoothness at H−R instead of at H+
R. This corresponds to imposing

the boundary condition R̃(ω,m)/T̃ (ω,m) = 0 in (3.15b). This occurs if 1 − b = −p or if

c − b = −p for p = 0, 1, 2, · · · . These are the “white hole” quasinormal mode family. Its

frequency spectrum is quantized as

ωp,WH = ω̄p , (3.18a)

ωr,WH = ω̄r , (3.18b)

where the bar denotes complex conjugation. That is, the exterior white hole quasinormal

mode frequencies are just the complex conjugates of the exterior black hole quasinormal

mode frequencies. The white hole quasinormal frequencies have positive imaginary part so

these modes grow exponentially with time.

3.4 Interior quasinormal modes

In this subsection we will introduce another class of quasinormal modes defined in region

II, the black hole interior. Therefore we call then interior quasinormal modes. Actually,

there are four families of interior quasinormal modes. One of these families will play a

fundamental role in our discussion of strong cosmic censorship.

To introduce these interior modes we revisit (3.13) where we write the event horizon

wavefunctions (3.9) in the Cauchy horizon basis (3.5). These two relations can be viewed as

describing scattering of modes propagating out of H+
L,R into modes that propagate across

CH+
L,R (see figure 1). Equation (3.13b) describes “in-scattering” in which an ingoing wave,

proportional to Φin,+, comes in through H+
R and propagates to the Cauchy horizon CH+

L,R.

Equation (3.13a) describes “out-scattering” in which a wave proportional to Φout,+ enters

region II coming out from H+
L and then propagates to the Cauchy horizon CH+

L,R.

8Note R/T and R̃/T̃ are finite when T → ∞ or T̃ → ∞.
9This is an abuse of language when m = 0.
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We can define the four families of interior quasinormal modes (QNMs) as follows:

1) in−out interior QNMs: Ã(ω,m) = 0 ; (3.19a)

2) in−in interior QNMs: B̃(ω,m) = 0 ; (3.19b)

3) out−in interior QNMs: A(ω,m) = 0 ; (3.19c)

4) out−out interior QNMs: B(ω,m) = 0 . (3.19d)

The first pair is associated with the “in-scattering” while the second pair is associated with

the “out-scattering”.

Family 1), the in−out interior QNMs, describes modes that come in from H+
R and

are completely reflected outwards CH+
R, i.e., these quasinormal modes occur in the special

case where Rin,+ and Rout,− become linearly dependent. Equivalently, the in−out interior

QNMs are smooth at the “right” event horizon H+
R and at the “right” Cauchy horizon

CH+
R. An inspection of (3.14), where we write the transmission/reflection coefficients in

terms of (a, b, c) which are themselves functions of the parameters (κ±,Ω±, ω,m) via (3.4),

indicates that Ã(ω,m) = 0 when a = −p or if b = −p for p = 0, 1, 2, · · · . This determines

the spectrum of in−out interior QNMs as

ωin-out,1L = m− i r+ − r−
L

(
∆ + 2p

)
, for p ∈ N0 = {0, 1, 2, . . .}, (3.20a)

ωin-out,2L = m− i r+ − r−
L

(
2−∆ + 2p

)
, for p ∈ N0 . (3.20b)

Family 2), the in−in interior QNMs, describes modes that come in from H+
R and are

completely transmitted inwards to CH+
L . So these modes are smooth both at the “right”

event horizon H+
R and at the “left” Cauchy horizon CH+

L . From (3.14), B̃(ω,m) = 0 occurs

when a− c+ 1 = −p or if b− c+ 1 = −p for p = 0, 1, 2, · · · . This determines the spectrum

of in−in interior QNMs as

ωin-in,1L = −m− i r+ + r−
L

(
∆ + 2p

)
, for p ∈ N0 , (3.21a)

ωin-in,2L = −m− i r+ + r−
L

(
2−∆ + 2p

)
, for p ∈ N0 . (3.21b)

Family 3), the out−in interior QNMs, describes modes that come out from H+
L and are

completely reflected inwards to CH+
L . Thus, these modes are smooth at the “left” event

horizon H+
L and at the “left” Cauchy horizon CH+

L . From (3.14), A(ω,m) = 0 occurs when

1−b = −p or when 1−b = −p for p ∈ N0. This determines the spectrum of out−in interior

QNMs as

ωout-in,1 = ω̄in-out,1 , (3.22a)

ωout-in,2 = ω̄in-out,2 , (3.22b)

where the bar stands for complex conjugate.

Family 4), the out−out interior QNMs, describes modes that come out from H+
L and

are completely transmitted outwards to CH+
R. Thus, these modes are smooth at the “left”
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event horizon H+
L and at the “left” Cauchy horizon CH+

L . From (3.14), A(ω,m) = 0 occurs

when 1− b = −p or when 1− b = −p for p ∈ N0. This determines the spectrum of out−in

interior QNMs as

ωout-out,1 = ω̄in-in,1 , (3.23a)

ωout-out,2 = ω̄in-in,2 . (3.23b)

From (3.22)–(3.23), we see that the “out-scattering” frequencies are related to “in-

scattering” frequencies by complex conjugation.

Note that some of the interior quasinormal frequencies have positive imaginary part.

This does not mean that they can be interpreted as describing instabilities of region II

because t is not a time coordinate in this region, and because the boundary conditions

defining the interior QNMs are not those appropriate to a study of stability. Only the

quasinormal frequencies with negative imaginary part will be relevant for us.

We can now present the coincidence that will have significant consequences for strong

cosmic censorship: one of the in-out interior quasinormal mode frequencies in (3.20) is the

same as the prograde exterior quasinormal frequency given in (3.17), namely

ωin-out,1 = ωp . (3.24)

Similarly, one of the in-in interior QNM frequencies in (3.21) coincides with the retrograde

exterior QNM frequency given in (3.17): ωin-in,1 = ωr. The out-in and out-out quasinormal

frequencies are similarly related to the white hole quasinormal frequencies defined above.

This coincidence is a remarkable property of the BTZ black hole. We do not expect

such a coincidence to occur for more general black hole e.g. in 4d. This coincidence appears

to be related to the fact that the radial equation reduces to a hypergeometric equation,

which has only three regular singular points. Perturbation equations about 4d black hole

backgrounds are of the Heun type with more than three regular singular points.

3.5 Strong cosmic censorship violation in BTZ

We can now apply the results above to investigate strong cosmic censorship. Our strategy

is as follows (see figure 3). Consider characteristic initial data on H+
L ∪ H

−
R consisting

of a smooth outgoing wavepacket on H+
L and a smooth outgoing wavepacket on H−R. At

timelike infinity IR we turn out a source consisting of a smooth wavepacket, i.e., the “non-

normalizable” part of the field is a wavepacket. (Of course this encompasses standard

“normalizable” boundary conditions by taking this wavepacket to vanish.) These initial-

boundary conditions uniquely determine a solution Φ throughout regions I and II. We can

then investigate the smoothness of Φ at the Cauchy horizon.

We start by determining the solution in region I. Consider the following superposition

of mode solutions (where x denotes all three coordinates)

Φ(x) =
∑
m

∫
dω
[
X(ω,m)T̃ (ω,m)Φvev,∞(ω,m;x) + X̃(ω,m)T (ω,m)Φin,+(ω,m;x)

]
,

(3.25)
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where X(ω,m) and X̃(ω,m) are chosen so that the above sum and integral converge. Recall

that Φvev,∞ is the mode solution whose radial part is Rvev,∞ and similarly for Φin,+ and

that the coefficients T and T̃ were defined in (3.15). Clearly Φ satisfies the equation of

motion in region I. We will now determine the initial-boundary value data that gives rise

to this solution.

Using the first equation of (3.15) we have (suppressing the (ω,m) arguments)

Φ(x) =
∑
m

∫
dω
[
(XT̃ + X̃R)Φvev,∞(x) + X̃Φsource,∞(x)

]
(3.26)

and hence as r →∞ we have

Φ(x) ≈ z−(2−∆)/2
∑
m

∫
dωe−iωteimφX̃(ω,m) , (3.27)

with z the radial coordinate defined in (3.1). Hence we see that at infinity, the above

solution obeys the boundary condition corresponding to switching on a source with Fourier

transform X̃(ω,m). If X̃(ω,m) = 0 then the solution obeys normalizable boundary condi-

tions. Note that if the source is compactly supported in t then X̃ is an entire function of ω.

Using the second equation of (3.15) gives

Φ(x) =
∑
m

∫
dω
[
XΦout,+(x) + (X̃T +XR̃)Φin,+(x)

]
. (3.28)

Recall that Φout,+ describes waves propagating out of H−R and Φin,+ describes waves prop-

agating into H+
R. The second term above describes a superposition of these ingoing waves.

We claim that this superposition vanishes on H−R . To see this we assume that X and X̃

are analytic in ω in a neighbourhood of the real axis. We’ve already seen this is the case

for X̃ if the source at IR is compacty supported in t. It will remain true if the source

is not compactly supported but decays sufficiently rapidly as t → ±∞. We will justify

this assumption about X below, where we will also show that T and R̃ are analytic in a

neighbourhood of the real axis. The analyticity properties of Rin,+ discussed at the end

of section 3.2 imply that Φin,+ is analytic in a neighbourhood of the real ω axis. There-

fore to evaluate the second term above we can deform the contour of integration to a line

Im(ω) = ε > 0. Now H−R has r = r+ and v → −∞. As r → r+ we have Φin,+ ∝ e−iωv,

which vanishes as v → −∞ because ε > 0. This justifies the claim.

It now follows that

Φ(x)|H−R =
∑
m

∫
dωX(ω,m)Φout,+(ω,m;x)|H−R (3.29)

so we see that on H−R, the above solution reduces to an outgoing wavepacket with profile

specified by X(ω,m). Note that on H−R we have Φout,+ = e−iω(u−ũ0)eim(φ′′−φ̃′′0 ) for some

constants ũ0 and φ̃′′0 (cf (3.7)) and so X(ω,m) is essentially the Fourier transform (w.r.t.

u) of the wavepacket on H−R. Hence if this wavepacket is compactly supported in u, or

decays sufficiently rapidly as u → ±∞ then X will be analytic in a neighbourhood of the

real ω axis, which justifies our assumption above.
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In summary, we have shown that (3.25) is the solution of the Klein-Gordon equation

that obeys initial-boundary conditions corresponding to an outgoing wavepacket on H−R
with profile specified by X(ω,m) and a non-normalizable wavepacket on IR with profile

specified by X̃(ω,m).

We will need to know the behaviour of this solution on H+
R. The first term in (3.28)

can be shown to vanish at H+
R (using a similar argument to the one below (3.28)). Hence

we have

Φ(x)|H+
R

=
∑
m

∫
dωZ̃(ω,m)Φin,+(x)|H+

R
(3.30)

where

Z̃(ω,m) = X̃(ω,m)T (ω,m) +X(ω,m)R̃(ω,m) (3.31)

i.e., the solution on H+
R consists of waves transmitted from IR (the part proportional to X̃)

and outgoing waves from H−R that are reflected back into H+
R (the part proportional to X).

Now we turn to the solution in region II. As before, we start by writing down a solution

in this region and then investigate how it behaves on H+
L,R. The solution is

Φ(x) =
∑
m

∫
dω
[
Z(ω,m)Φout,+(ω,m;x) + Z̃(ω,m)Φin,+(ω,m;x)

]
, (3.32)

where Z̃ is defined in (3.31) and Z is a new free function. In region II, Φout,+ describes waves

propagating out from H+
L and Φin,+ describes waves propagating in from H+

R. Assuming

that Z is analytic in ω in a neighbourhood of the real axis then we can argue as we did

below (3.28) to show that the first term in the above integral vanishes at H+
R and hence

evaluating the above solution at H+
R reproduces (3.30) (recall that the mode functions Φin,+

are smooth at H+
R). Thus the solution we have defined in region II matches continuously

to the solution in region I.

Arguing once again as we did below (3.28) one can show that the second term of (3.32)

vanishes at H+
L . Hence we have

Φ(x)|H+
L

=
∑
m

∫
dωZ(ω,m)Φout,+(ω,m;x)|H+

L
(3.33)

so on H+
L the solution reduces to an outgoing wavepacket with profile specified by Z(ω,m).

This is essentially the Fourier transform (w.r.t. u) of the wavepacket on H+
L . Hence if this

wavepacket is compactly supported in u, or decays sufficiently rapidly as u→ ±∞ then Z

will be analytic in a neighbourhood of the real ω axis, as assumed above.

In summary, we have defined a solution throughout regions I and II that arises from a

wavepacket with profile Z on H+
L , a wavepacket with profile X on H−R and a source with

profile X̃ at IR. We have shown that this solution is continuous at H+
R. For suitable initial

data, it is actually smooth there. To show this, we require that the data on H+
L ∪ H

−
R is

smooth at the bifurcation surface B (as will be the case for data compactly supported in

u). Then the resulting solution will be smooth throughout regions I and II. We need to

show that this smooth solution is the same as our solution. Well-posedness of the initial-

boundary value problem implies that the smooth solution will agree with our solution in
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region I (as it has the same data) and therefore reduces to (3.30) on H+
R. Well-posedness of

the characteristic value problem implies that the data on H+
L ∪H

+
R uniquely determines the

solution throughout region II. Since our solution has the same data as the smooth solution,

they must be the same in region II, which concludes the argument.

We will now investigate the behaviour of our solution at the Cauchy horizon. We are

mainly interested in the “right” component of the Cauchy horizon, CH+
R for the reason

discussed in section 2.1. We use equations (3.13) to write the solution in region II as

Φ(x) = Φout(x) + Φin(x) , (3.34)

where

Φout(x) ≡
∑
m

∫
dω
[
Z(ω,m)A(ω,m) + Z̃(ω,m)B̃(ω,m)

]
Φout,−(ω,m;x) , (3.35a)

Φin(x) ≡
∑
m

∫
dω
[
Z(ω,m)B(ω,m) + Z̃(ω,m)Ã(ω,m)

]
Φin,−(ω,m;x) . (3.35b)

Φout is smooth (i.e. “outgoing”) at CH+
R and Φin is smooth (i.e. “ingoing”) at CH+

L . We

need to be careful when we split Φ into these two parts. This is because examining the

expressions (3.14) for A(ω,m) etc we find that all of these scattering coefficients have poles

on the real axis at ω = mΩ−, i.e., at c = 1. However, when the solution is written in the

form (3.32), no such poles appear because Φout,+ and Φin,+ do not have poles on the real

axis, as discussed at the end of section 3.2. Hence these poles appear only when we write

Φout,+ and Φin,+ in terms of Φout,− and Φin,−.

The reason for the appearance of these poles is that the mode solutions Φout,− and

Φin,− become linearly dependent when ω = mΩ−. This is clear from (3.5) which gives

Rout,− = Rin,− when c = 1. To obtain a basis of solutions which is valid for c = 1 we define

(supressing (ω,m))

P− =
1

2
(Rout,− +Rin,−) , Q− =

1

2(c− 1)
(Rout,− −Rin,−) . (3.36)

Note that Q− is non-trivial in the limit c → 1: this gives the second linearly independent

solution of the radial equation. We can now write the + basis in terms of this new − basis:

Rout,+ = CP− +DQ− , Rin,+ = C̃P− + D̃Q− , (3.37)

where the coefficients C, D etc are all analytic at c = 1, i.e., at ω = mΩ−. From (3.13) we

then obtain

A =
C
2

+
D

2(c− 1)
, B =

C
2
− D

2(c− 1)
, (3.38)

and similarly for the quantities with a tilde. We now see the appearance of the poles

at c = 1. They arise simply because the notions of “ingoing” and “outgoing” become

degenerate for ω = mΩ−.

Since the integrand of (3.32) has no poles on the real axis, it follows that the sum of

Φout and Φin can be written as an integral over real ω of an integrand with no poles on
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the real axis. We are free to indent the contour of integration so that it passes just below

ω = mΩ− in the complex ω plane.10 Having done this, we can split the integral into Φout

and Φin as above, with the same contour of integration. The poles now reappear in the

integrands but they no longer lie on the contour of integration.

Since Φout is smooth at CH+
R, any non-smooth behaviour of Φ at CH+

R must arise from

Φin. We can use (3.7) to evaluate Φin near CH+
R using the outgoing Eddington-Finkelstein

coordinates (u, r, φ′′) regular at CH+
R. This gives

Φin =
∑
m

∫
Cm

dω G(ω,m)e−iω(u−u0)+im(φ′′−φ′′0 ) exp

[
i
(ω −mΩ−)

κ−
log z

]
(1 +O(z)) (3.39)

where Cm is the contour of integration just discussed, z is the radial coordinate defined

in (3.1) (z = 0 at CH+
R), and

G(ω,m) ≡ Z(ω,m)B(ω,m) + Z̃(ω,m)Ã(ω,m)

= Z(ω,m)B(ω,m) +
[
X̃(ω,m)T (ω,m) +X(ω,m)R̃(ω,m)

]
Ã(ω,m) (3.40)

where we used (3.31) in the second line.

The Cauchy horizon CH+
R is at z = 0 where log z → −∞. To determine the behaviour

of Φin there we will deform the contour of integration to a line of constant Im(ω) in the

lower half complex ω plane. If we can do this then the integral will decay as z → 0.

The rate of decay, and hence the smoothness of Φin, depends on how far we can push the

contour into the lower half-plane and the contribution from any poles that are crossed when

the contour is deformed. This is determined by the analyticity properties of the quantity

G(ω,m), whose properties we will now investigate.

We start by investigating the scattering coefficients Ã(ω,m) and B(ω,m) appearing in

G(ω,m). Substituting (a, b, c) as given in (3.4) into (3.14) we find

Ã(ω,m) =
iκ−

ω −mΩ−

Γ
(

1− iω−mΩ−
κ−

)
Γ
(

1− iω−mΩ+

κ+

)
Γ
(

∆
2 + iL2

ωL−m
r−−r+

)
Γ
(

1− ∆
2 + iL2

ωL−m
r−−r+

) , (3.41)

B(ω,m) =
iκ−

ω −mΩ−

Γ
(

1− iω−mΩ−
κ−

)
Γ
(

1 + iω−mΩ+

κ+

)
Γ
(

∆
2 + iL2

ωL+m
r−+r+

)
Γ
(

1− ∆
2 + iL2

ωL+m
r−+r+

) . (3.42)

Thus, both Ã(ω,m) and B(ω,m) have a simple pole at ω −mΩ− = 0. This was discussed

above. Both coefficients also have simple poles at ω − mΩ− = −inκ− for n ∈ N =

{1, 2, 3, . . .}. These arise from the first gamma function in the numerators above. Ã(ω,m)

also has simple poles at ω −mΩ+ = −inκ+, and B(ω,m) at ω −mΩ+ = inκ+, for n ∈ N.

These arise from the second gamma function in each numerator.11

10Note that we do this before carrying out the sum over m.
11The location of the complex poles in Ã(ω,m) and B(ω,m) is a consequence of Ã(ω,m) ∝

W [Rin,+, Rout,−] and B(ω,m) ∝W [Rout,+, Rout,−] where W denotes the Wronskian of two solutions. Thus

the poles of Rin,+ and Rout,− discussed at the end of section 3.2 give poles in Ã. Similarly the poles of

Rout,+ and Rout,− give poles in B.
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Simple poles of ↘
Located at ↓ ? Ã(ω,m) B(ω,m) T (ω,m) R̃(ω,m)

ω −mΩ− = 0 yes yes no no

ω −mΩ− = −inκ− (n = 1, 2, · · · ) yes yes no no

ω −mΩ− = +inκ− (n = 1, 2, · · · ) no no no no

ω −mΩ+ = −inκ+ (n = 1, 2, · · · ) yes no no no

ω −mΩ+ = +inκ+ (n = 1, 2, · · · ) no yes no yes

ω = ωp no no yes yes

ω = ωr no no yes yes

Table 1. Location of simple poles of relevant scattering coefficients. The prograde (ωp) and

retrograde (ωr) exterior quasinormal frequencies are given in (3.17).

Now we consider the coefficients T (ω,m) and R̃(ω,m) appearing in (3.40). Insert-

ing (3.4) into (3.16) yields

T (ω,m) =
Γ
(

∆
2 − i

L
2
ωL−m
r+−r−

)
Γ
(

∆
2 − i

L
2
ωL+m
r++r−

)
Γ
(

1− iω−mΩ+

κ+

)
Γ(∆− 1)

,

R̃(ω,m) = −
Γ
(

1 + iω−mΩ+

κ+

)
Γ
(

1− iω−mΩ+

κ+

) Γ
(

∆
2 − i

L
2
ωL−m
r+−r−

)
Γ
(

∆
2 − i

L
2
ωL+m
r++r−

)
Γ
(

∆
2 + iL2

ωL−m
r+−r−

)
Γ
(

∆
2 + iL2

ωL+m
r++r−

) . (3.43)

T (ω,m) has simple poles at the exterior quasinormal mode frequencies ω = ωp and ω = ωr

given in (3.17). This is not a surprise: as explained in section 3.3, T (ω,m) = ∞ is the

condition that defines the quasinormal frequencies. R̃(ω,m) also has simple poles at ω =

ωp, ωr and has additional simple poles in the upper half-plane at ω−mΩ+ = inκ+, n ∈ N.12

We also note that both T (ω,m) and R̃(ω,m) have zeroes at ω −mΩ+ = −inκ+, n ∈ N.

Table 1 summarizes the location of the poles of Ã(ω,m), B(ω,m), T (ω,m) and

R̃(ω,m).

We now have enough information to determine the analyticity of G(ω,m) defined

in (3.40). We are interested only in its behaviour in the lower half plane since this is

where we want to deform our contour of integration. For simplicity, we will start by as-

suming that the wavepackets on H+
L and H−R are compactly supported functions of u and

the wavepacket on IR is compactly supported in t. This implies that their Fourier trans-

forms are entire functions of ω, which implies that Z, X and X̃ are entire functions of ω.

Hence any singularities of G must arise from singularities of B, T Ã or R̃Ã. We will discuss

these three objects in turn.

B has a pole at ω = mΩ−. This was discussed above, and we have explained why we

can choose our contour of integration to pass below this pole. Hence it does not affect our

12One can show that R̃(ω,m) = −W [Rout,+,Rvev,∞]

W [Rin,+,Rvev,∞]
. Thus, R̃(ω,m) inherites the poles of Rout,+ and it

also has poles when W [Rin,+, Rvev,∞] = 0, i.e., at the location of the exterior quasinormal frequencies.
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freedom to deform the contour into the lower half-plane. The only poles of B in the lower

half-plane lie at ω −mΩ− = −inκ− for n ∈ N.

T Ã has poles arising from T and from Ã. Ã has a pole at ω = mΩ− but this is

irrelevant for the reason just discussed. It also has poles at ω −mΩ− = −inκ± for n ∈ N.

However, T has a zero at ω − mΩ− = −inκ+ and so only the poles at ω − mΩ− =

−inκ− lead to poles in T Ã. T has poles at ω = ωp, ωr. We now exploit the remarkable

coincidence (3.24). Since ωp = ωin-out,1, it follows from the definition of the “in-out”

interior quasinormal modes that Ã has a zero at ω = ωp. So the pole in T at ω = ωp does

not give rise to a pole in T Ã. No such cancellation occurs for the pole at at ω = ωr. So

we conclude that the poles of T Ã in the lower half-plane are located at ω = ωr and at

ω −mΩ− = −inκ−, n ∈ N.

R̃Ã has poles arising from R̃ and from Ã. The latter have just been discussed. As

above, the pole of Ã at ω−mΩ− = −inκ+ is cancelled by a zero of R̃ at this location. Hence

the only poles of Ã that give rise to poles in R̃Ã are those located at ω −mΩ− = −inκ−.

The only poles of R̃ in the lower half-plane are those at ω = ωp, ωr. As above, the

coincidence (3.24) implies that the poles at ω = ωp correspond to zeroes of Ã and hence

do not give rise to a pole in R̃Ã. So we conclude that the poles of R̃Ã in the lower

half-plane are located at the same places as the poles of T Ã, i.e., at ω = ωr and at

ω −mΩ− = −inκ−, n ∈ N.

In summary, for compactly supported initial data, G is analytic in the lower half-plane

except for simple poles at ω = ωr and at ω −mΩ− = −inκ−, n ∈ N. We emphasize once

again that the remarkable coincidence (3.24) implies that there are no poles at ω = ωp.

Let $m be the frequency of the slowest decaying retrogade quasinormal mode with

angular dependence eimφ. From (3.17) we have

$mL = −m− i(r+ + r−)∆

L
. (3.44)

We define the “retrograde spectral gap”

αr = −Im($m) =
(r+ + r−)∆

L2
. (3.45)

We now deform the contour of integration Cm in (3.39) into a new contour C defined as

the straight line Im(ω) = −αr − ε (see figure 4), i.e., we push the contour just beyond the

pole at ω = $m.13 In doing this, we pick up a contribution from the pole at $m. We also

pick up contributions from any poles with ω−mΩ− = −inκ− that lie between Cm and C.

Using the residue theorem, the contribution from a pole at ω −mΩ− = −inκ− to (3.39)

has z-dependence zn, which is analytic in z and hence analytic in r. Therefore these poles

give a contribution to (3.39) which vanishes smoothly at z = 0, i.e., vanishes smoothly at

CH+
R, and is therefore irrelevant for strong cosmic censorship.

13More precisely, one considers the integral around a rectangle-shaped contour whose long edges are at

Im(ω) = 0 and Im(ω) = −αr − ε, and whose short edges are at Re(ω) = ±R. One can show that the

contribution from the short edges vanishes as R→∞ using the asymptotic behaviour of Γ(z) for large |z|
and the fact that smoothness of the initial-boundary data implies that X, X̃ and Z decay faster than any

power of R.
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Figure 4. Contours of integration C and Cm in the complex ω plane and the relevant poles: poles

marked in red contribute to the integral and poles marked in black don’t. The pole with smallest

|Im(ω)| on the left is the fundamental retrograde quasinormal mode $m and on the right we show

the poles with ω −mΩ− = −inκ− which only give a smooth contribution at CH+
R.

The non-smooth part of (3.39) arises from the poles at $m and from the integral along

C. Via the residue theorem, the contribution from the poles at $m is

− 2πizβ
∑
m

Gme−i$m(u−u0)eim(φ′′−φ′′0 )z
−im (1+LΩ−)

Lκ− (1 +O(z)), (3.46)

where Gm is the residue of G(ω,m) at ω = $m and

β ≡ αr
κ−

. (3.47)

Substituting in the values of αr and κ− gives equation (1.1) of the Introduction.

Now consider the integral along C. The integrand, and hence the integral, is

O(zβ+ε/κ−). Therefore, as z → 0, the integral along C is subleading compared to the

O(zβ) contribution from the poles. We conclude that the dominant non-smooth contribu-

tion to Φ is given by (3.46).14

Finally, we can address the question of strong cosmic censorship. We see from (3.46)

that, generically, the gradient of the scalar field will diverge at CH+
R if β < 1. Thus β < 1

guarantees that generically the energy-momentum tensor of the scalar field will diverge

at CH+
R. This will cause a large backreaction, and potentially render CH+

R singular, in

agreement with strong cosmic censorship. From equation (1.1) we see that β < 1 if the

black hole is sufficiently far from extremality.

14We could push the contour C further into the lower half-plane and pick up subleading contributions

from subdominant retrograde quasinormal frequencies ωr.
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A stronger version of strong cosmic censorship, due to Christodoulou [34], requires

that, generically, the scalar field should fail to be locally square integrable at CH+
R. This

ensures that, when backreaction is included, the Einstein equation cannot be satisfied, even

in the sense of weak solutions, at CH+
R (see e.g. [15]). From (3.46), the condition for this

is β < 1/2, as in [11, 15]. Again, equation (1.1) shows that this condition is satisfied if the

black hole is sufficiently far from extremality.

Equation (1.1) shows that β diverges in the extremal limit r− → r+. Hence near-

extremal black holes have β > 1. For such black holes, the gradient of scalar field pertur-

bations is bounded at CH+
R and so the energy-momentum tensor of such perturbations is

bounded at CH+
R. Therefore such black holes violate strong cosmic censorship. In fact, for

any given value of k, a sufficiently near-extremal black hole will have β > k, which implies

that the kth derivative of the scalar field is bounded at CH+
R. In other words, scalar field

perturbations can be made arbitrarily differentiable at the Cauchy horizon by taking the

black hole sufficiently close to extremality. So strong cosmic censorship is badly violated.

Our conclusion disagrees with a previous study of classical scalar field perturbations

of the BTZ black hole [26], which concluded that strong cosmic censorship does hold.

Therefore, we should explain where we think the error lies in ref. [26]. We find that

ref. [26] obtains the same expressions for Ã(ω,m), B(ω,m), T (ω,m) and R̃(ω,m) as us.

The coincidence (3.24) is also apparent in the results of [26]. However, the final result,

namely equation (5.14) of ref. [26] for the behaviour near CH+
R, contains a contribution

from a pole at ω = mΩ− as well as from the retrograde quasinormal modes. We explained

above why the poles at ω = mΩ− arise simply from a bad choice of basis, and they do not

lead to non-smooth behaviour at the Cauchy horizon. This subtle point is the reason for

the disagreement with ref. [26].

The significance of the poles at ω = mΩ− is clarified by results of ref. [33], where it

was shown that there is an analogous pole at ω = 0 in the Reissner-Nordström-de Sitter

spacetime (for an uncharged scalar field). However, this pole is absent for the Reissner-

Nordström black hole (i.e. vanishing cosmological constant). Ref. [33] showed that, in the

latter case, the absence of the pole implies that, for finite energy initial data on H+
L ∪H

+
R,

the solution Φ always vanishes at the bifurcation sphere of the Cauchy horizon. But in

the Reissner-Nordström-de Sitter case, the solution Φ is (generically) non-vanishing on

this bifuration sphere. We can see how a similar result for BTZ arises from our discussion

above. Our argument shows that Φin vanishes on CH+
R. Hence the solution at CH+

R is given

by Φout. Early time on CH+
R corresponds to u→∞. In this limit we can evaluate Φout by

displacing the contour of integration Cm into the lower half-plane, as we did above for Φin,

with the result that Φout → 0. The bifurcation surface of the Cauchy horizon corresponds

to late time on CH+
R, i.e., u → −∞. In this limit we can evaluate Φout by deforming Cm

into the upper half-plane. But when we do this we pick up a contribution from the pole

on the real axis at ω = mΩ−. This contribution is proportional to e−imΩ−ueimφ
′′
, which

is proportional to eimφ− in the Kruskal coordinates (U−, V−, φ−) regular at the Cauchy

horizon. So the pole at ω = mΩ− determines the mth Fourier mode of the field at the

bifurcation surface U− = V− = 0.

We assumed above that the initial data on H−R and H+
L as well as the source data on

IR (if present) have compact support. What happens if we relax this condition? Consider
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first the case in which we allow non-compact support of the initial data on H−R and/or

H+
L . We still require that this data decays as u → ±∞ in order that it has a well-defined

Fourier transform. This implies that the initial data vanishes at the bifurcation surface

B. Crucially, we demand that the initial data is smooth at B. This set-up was addressed

in detail in a very similar context in section 2.2 of [12] (where we analysed strong cosmic

censorship in the 4d Reissner-Nordström de Sitter black hole). Our analysis there translates

with only minor changes to the BTZ background so we will not repeat the arguments here.

Ultimately, this analysis shows that allowing smooth data with non-compact support on

H−R, and/or on H+
L does not change the results.

Now consider allowing the source data on IR to have non-compact support, but still

demand that this data decay as t→ ±∞. For, example, let’s assume that the data decays

as e−γκ−t as t→∞, where 0 < γ < 1. This implies that X̃(ω,m) has a pole at ω = −iγκ−,

which leads to a pole in G(ω,m) at the same location. The effect of this additional pole is

to generate a contribution that behaves as zγ near CH+
R. Since γ < 1 this implies that the

gradient of the scalar diverges at CH+
R. The same would be true if we considered a source

with even slower decay e.g. power-law decay. So, unsurprisingly, if we perturb the black

hole by sending in waves from infinity with sufficiently slow decay at late time then the

solution is singular at the Cauchy horizon.15

We emphasize that our conclusion that near-extremal BTZ black holes violate strong

cosmic censorship depends on the coincidence (3.24) between the interior and exterior

quasinormal frequencies. Consider deforming the BTZ metric (2.1) in the black hole interior

by smoothly changing the function f(r) by a small amount in the region r1 ≤ r ≤ r2 with

r− < r1 < r2 < r+. This will not affect the exterior quasinormal frequencies but it

will change the interior quasinormal frequencies so (3.24) will no longer be true. For this

deformed geometry, the poles at ω = ωp will now give a contribution to (3.46) scaling as

zβp where

βp ≡
∆

r+/r− + 1
<

∆

2
. (3.48)

Hence in this deformed geometry, strong cosmic censorship is respected by linear scalar

field perturbations if the scalar field obeys ∆ ≤ 2 (or ∆ ≤ 1 for Christodoulou’s version of

strong cosmic censorship).16

A more interesting way of destroying the coincidence (3.24) is to change the boundary

conditions on the scalar field. For µ2
BF < µ2 < 0 there are more general boundary condi-

tions than the ones used above, corresponding to “multi-trace” deformations in the dual

CFT [35]. Such boundary conditions fix a relation between A and B in (2.21). Consider

a 1-parameter family of boundary conditions, parameterized by ε, which reduces to one of

the standard boundary conditions (corresponding to one of the two possible values of ∆)

when ε = 0. The exterior quasinormal frequencies will now depend on ε but the interior

15This is relevant if the BTZ black hole is obtained as a decoupling limit of a higher-dimensional asymp-

totically flat black hole. In this case, power-law decay on IR could arise from power-law decay in the

asymptotically flat region.
16Of course backreaction of the scalar field will also deform the BTZ geometry, but not in the simple

t-independent manner we have just discussed.
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quasinormal frequencies are unaffected so (3.24) is no longer satisfied. For small ε, the

exterior quasinormal frequencies will be close to those discussed above. It then follows, as

in the previous paragraph, that the non-smooth part of the field near CH+
R will scale as

zβp+... where βp is given by (3.48) and the ellipsis denotes a correction that vanishes as

ε → 0. Since µ2 < 0 implies ∆ < 2, it follows that βp < 1 and so, at least for small ε,

strong cosmic censorship is respected in a theory with such boundary conditions (∆ < 1 is

needed for Christodoulou’s version).

3.6 Non-smooth perturbations

In the above discussion we have always assumed that our perturbation arises from smooth

initial-boundary data. With this condition we have seen that strong cosmic censorship

is badly violated by near-extremal BTZ black holes. This is similar to what happens for

Reissner-Nordström-de Sitter black holes [11, 12]. In the latter case, it has been argued

that strong cosmic censorship can be saved by widening the class of perturbations to allow

perturbations arising from rough (i.e. non-smooth) initial data [24]. Specifically, if one

has initial data with the minimum acceptable level of smoothness (in the sense of Sobolev

spaces) then, generically, the solution at the Cauchy horizon will not have this minimum

acceptable level of smoothness. Refs. [24] proved this using mode solutions with complex

frequency. We will show that the same result holds for the BTZ black hole. The result

relies crucially on equation (2.3).

What follows is a direct translation of our argument in ref. [12] to the BTZ case. In

region I we take the initial-boundary data to vanish, i.e., X = X̃ = 0. It follows that the

solution vanishes throughout region I. In region II we take initial data on H+
L to coincide

with the initial data for the mode solution Φout,+ with frequency ω = ω1 − iγκ+ where

γ > 0. Note that this vanishes as u → ∞, i.e., it vanishes at the bifurcation surface B.17

The resulting solution in region II is simply Φout,+. This vanishes as u→∞ so it vanishes

at H+
R and hence matches continuously to the solution in region I.

Now consider the behaviour of this initial data at B. To do this, we use the Kruskal

coordinates (U+, V+, φ+) which are smooth at B. The characteristic initial surface H+
L∪H

−
R

is the surface V+ = 0. On this surface, for U+ < 0 the initial data vanishes, and for U+ > 0

it is proportional to e−iωu = (U+)iω1/κ++γ . This data is continuous at U+ = 0 but it is not

necessarily smooth there e.g. it is not differentiable there if γ < 1. Similarly, the resulting

solution Φ is continuous but not smooth at H+
R. Nevertheless, since H+

R is a characteristic

(i.e. null) hypersurface, Φ still satisfies its equation of motion on HR, at least in the sense

of weak solutions.

The solution at the Cauchy horizon is now determined by (3.13a):

Φ = AΦout,− + BΦin,− . (3.49)

17The data blows up as u → −∞, i.e., at late time on H+
L . However, one is free to modify the data by

multiplying it by a smooth function that vanishes for u ≤ u1 for some u1 and is equal to 1 for u ≥ u2 > u1.

This modification will not change the resulting solution near the early time portion of CH+
R since this region

does not lie in the domain of dependence of the region where we have modified the data.
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By adjusting ω1 if necessary, we can ensure that ω is not a zero of B. Φout,− is smooth

at CH+
R but Φin,− is not. Hence Φ is not smooth at CH+

R. From (3.7) we see that, in the

outgoing Eddington-Finkelstein coordinates regular at CH+
R, it has radial dependence (for

simplicity we now set m = 0)

ziω/κ− = zδziω1/κ− , (3.50)

where δ = γκ+/κ−. Crucially (2.3) implies that δ < γ so the solution at CH+
R is always

less smooth than the initial data. For example, we can always choose γ > 1 such that

δ < 1. This gives a (weak) solution for which the initial data is C1 but the solution is not

C1 at CH+
R. This behaviour is generic because, given any other solution, one can add to it

a multiple of the solution just constructed.

More rigorously, one should discuss the loss of smoothness using Sobolev spaces. The

condition for the initial data to belong to the Sobolev space Hk
loc of functions whose first k

derivatives are locally square integrable is γ > k− 1/2. We can always choose γ > k− 1/2

so that δ < k− 1/2, which implies that the solution on a surface of constant u intersecting

CH+
R does not belong to Hk

loc. Thus, generically, initial data in Hk
loc gives a solution that

does not belong to Hk
loc on a surface intersecting the Cauchy horizon. Thus if one decrees

that “acceptable” solutions should belong to Hk
loc for some value of k,18 then, generically,

acceptable initial data evolves to a non-acceptable solution at CH+
R.

Note that this “rough” version of strong cosmic censorship is weaker than the usual

“smooth” version in the sense that the smooth version implies the rough version. We will

discuss this weaker version of strong cosmic censorship further in section 6.

4 Other classical fields

We have argued that, in the Einstein-scalar field system, the BTZ black hole violates the

strong cosmic censorship conjecture (for smooth initial data). One might wonder whether

the conjecture is restored by considering other classical fields. The question then arises:

which fields should one consider?

Consider embedding the BTZ black hole in type IIB supergravity. There are many

known such embeddings (see for instance [36, 37]), with BTZ × S3 × X, where X can

be T4 or K3, being the most well studied examples. We are now interested in studying

fluctuations in the full ten-dimensional supergravity theory. The linearized field equations

can be reduced to equations for fields in the 3d BTZ geometry. As well as scalar fields, one

also obtains massive Chern-Simons gauge fields, Proca fields and Kaluza-Klein gravitons.

(Massless gauge fields can be dualised to scalars, at least classically.) We are thus lead to

investigate classical perturbations of such fields on fixed BTZ black backgrounds.

4.1 Chern-Simons

The equation of motion of Chern-Simons gauge theory is

d ? F +
λ

L
F = 0 , (4.1)

18For example, in the non-linear context, local well-posedness of the initial value problem will only hold

for k ≥ kmin for some kmin. So “acceptable” might mean k = kmin.
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where F is the Maxwell 2-form. Note that the equation of motion implies dF = 0. Define

a gauge-invariant 1-form

Ã ≡ −L
λ
? F . (4.2)

The equation of motion becomes

? dÃ+
λ

L
Ã = 0 . (4.3)

Since the BTZ black hole has an Rt×S1 isometry, we can use Fourier decomposition along

the t and φ directions. We will use the non-coordinate basis

e0 ≡ dt , e1 ≡ dr , and e2 ≡ dφ− Ω dt , (4.4)

in terms of which we can decompose Ã as

Ã = [Ã0(r) e0 + Ã1(r) e1 + Ã2(r) e2]e−iωt+imφ . (4.5)

Our aim is to solve for {Ã0, Ã1, Ã2}. From the first component of (4.3) we find an algebraic

relation amongst the components of Ã of the form

ifrλÃ1(r) + LmÃ0(r) + L(ω −mΩ)Ã2(r) = 0 . (4.6)

We can use this relation to express Ã1 algebraically as a function of Ã0(r) and Ã2(r). The

remaining two equations are first order ordinary differential equations for Ã0(r) and Ã2(r):

r
dÃ0

dr
− Lm

f λ
(ω −mΩ)Ã0 +

[
λ

L
− L

f λ
(ω −mΩ)2 − rdΩ

dr

]
Ã2 = 0 , (4.7a)

f
dÃ2

dr
+
Lm

r λ
(ω −mΩ)Ã2 +

(
Lm2

rλ
+
r λ

L

)
Ã0 = 0 . (4.7b)

We can reduce this system to a single second order equation by defining

R(r) = L Ã0(r) + (ελ − ΩL) Ã2 , (4.8)

where ελ ≡ sgnλ. Using (4.7) it is a relatively simple exercise to show that R(r) obeys

the ODE
1

r

d

dr

(
rf

dR

dr

)
+

[
(ω −mΩ)2

f
− m2

r2
− µ2

]
R = 0 , (4.9)

where

L2µ2 ≡ |λ|(|λ| − 2) . (4.10)

The equation for R is precisely the radial equation for a minimally coupled scalar field

Φ with mass µ propagating on the BTZ black hole background. If we restore the (t, φ)

dependence by defining

Φ = R(r)e−iωt+imφ (4.11)

then equation (4.8) can be written covariantly as

Φ = LkaÃa + ελm
aÃa , (4.12)
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where ka is the Killing field that generates time translations and ma the Killing field that

generates rotations (i.e. k = ∂/∂t and m = ∂/∂φ in (t, r, φ) coordinates). Since k,m are

defined globally, this equation defines Φ globally.

This connection between Ã and Φ will allow us to import results from section 3 once

we have determined the boundary conditions satisfied by Φ. To do this we need to find a

way to reconstruct Ã from Φ. This can be done as follows. From the definition of R in (4.8)

we can extract Ã0 as a function of Ã2 and R. We then use this relation in equations (4.7)

to find an expression for Ã2 and Ã′2 as a function of R and R′. Demanding that Ã′2(R,R′)

follows from taking the derivative of Ã2(R,R′) yields an integrability condition which is

simply (4.9). This procedure yields a first order differential map from R to Ã0 and Ã2, and

thus also to Ã1:

Ã0 = −L
$

{
λ(ελ − ΩL)rfR′ +

[
fλ2 − L(Lω − ελm)(ω −mΩ)

]
R
}
, (4.13a)

Ã1 =
iL2

$

{
(Lω − ελm)R′ − λ

r

[
m− r2

Lf
(ελ − ΩL)(ω −mΩ)

]
R

}
, (4.13b)

Ã2 =
L2

$

{
rλfR′ −

[
m(Lω − ελm)− r2λ2

L2
(ελ − ΩL)

]
R

}
. (4.13c)

where we defined

$ ≡ L2(Lω − ελm)2 + (r+ − ελr−)2λ2 . (4.14)

Now we want to relate R to the components of F , since this will render the discussion of

boundary conditions more transparent. To do this we write

F ≡ [F01(r) e0 ∧ e1 + F02(r) e0 ∧ e2 + F12(r) e1 ∧ e2]e−iωt+imφ . (4.15)

From (4.2), we find F = λ ? Ã/L, and from (4.13) we obtain

F01 =
Lλ

$

{
λfR′ −

[
m(Lω − ελm)

r
− r λ2

L2
(ελ − ΩL)

]
R

}
, (4.16a)

F02 = − iλ
$

{
Lr(Lω − ελm)fR′ − Lλf

[
m− r2

Lf
(ελ − ΩL)(ω −mΩ)

]
R

}
, (4.16b)

F12 =
rλ

$

{
rλ(ελ − ΩL)R′ +

[
λ2 − L

f
(Lω − ελm)(ω −mΩ)

]
R

}
. (4.16c)

To determine the asymptotic behaviour of F , we need to find the asymptotic behaviour

of R first. This can be done via a Frobenius expansion close to the conformal boundary,

where we find

R ≈ H+

r|λ|
[
1 +O(r−2)

]
+

H−

r2−|λ|

[
1 +O(r−2)

]
, (4.17)

where H± are constants. This translates into the following asymptotic decay for the com-
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ponents of F

F01 ≈
|λ|H+

2Lr1+|λ|

[
1 +O(r−2)

]
− 2H−λ

2(ελ − λ)

L$
r|λ|−1

[
1 +O(r−2)

]
, (4.18a)

F02 ≈ −
iH+(ελ Lω +m)

2Lr|λ|
[
1 +O(r−2)

]
+

2iH−λ(ελ − λ)(Lω −m)

L$
r|λ|
[
1 +O(r−2)

]
,

(4.18b)

F12 ≈ −
λH+

2r1+|λ|

[
1 +O(r−2)

]
− 2H−λ

2(ελ − λ)

$
r|λ|−1

[
1 +O(r−2)

]
. (4.18c)

Boundary conditions for Chern-Simons fields were studied in [38]. It was argued that if

0 < |λ| < 1 then both fall-offs H± preserve the local AdS asymptotics and that the re-

quirement that boundary conditions preserve the asymptotic conformal symmetry, implies

either H+ = 0 or H− = 0. It was also shown that the absence of ghosts selects the condition

H− = 0. For |λ| ≥ 1, it is clear that we must also set H− = 0, since the decay associated

with H− is non-normalisable. So for any λ we must set H− = 0. Therefore, the boundary

conditions on F implies that Φ obeys the boundary conditions appropriate to a massive

scalar field with

∆ = |λ|. (4.19)

The final thing we need to study is how regularity of F (or equivalently Ã) is related to

regularity of Φ at the event and Cauchy horizons. From equation (4.12) we see immediately

that smoothness of Ã at a horizon implies smoothness of Φ at that horizon. What about the

converse? Converting to the ingoing Eddington-Finkelstein coordinates (v, r, φ′) defined in

section 2.1 gives19

Ã =

[
Ã0dv +

(
Ã1 −

Ã0

f

)
dr + Ã2

(
dφ′ − Ωdv

)]
e−iωt+imφ. (4.20)

Now take Φ to be a mode solution smooth at H+
R, i.e., the radial function R is Rin,+

defined in section 3.2. Using (4.13) and (3.10) reveals that the above expression for Ã is

also smooth at H+
R.

Similarly, if we work in the coordinates (u, r, φ′′) regular at CH+
R we obtain

Ã =

[
Ã0du+

(
Ã1 +

Ã0

f

)
dr + Ã2

(
dφ′′ − Ωdu

)]
e−iωt+imφ. (4.21)

The generic non-smooth behaviour of the above components at CH+
R can be evaluated by

substituting the generic behaviour of the non-smooth part of Φ given by (3.46) into (4.13)

to obtain the non-smooth part of Ã as

Ãnon−smooth = O((r − r−)β)du+O((r − r−)β−1)dr +O((r − r−)β)
(
dφ′′ − Ωdu

)
(4.22)

where we are using (4.19) in the definition (1.1) of β. From this it follows that Ã, and

hence F , extends continuously to CH+
R if β > 1. Thus the energy-momentum tensor of

19To simplify the exposition, in (4.20) and below we do not rewrite the factor e−iωt+imφ in Eddington-

Finkelstein coordinates.
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the Chern-Simons field is finite at CH+
R if β > 1. Note that this is exactly the same as

the condition for a scalar field to have finite energy momentum tensor at CH+
R. Similarly,

the kth derivative of F extends continuously to CH+
R if β > k+ 1. The energy-momentum

tensor of F is integrable at CH+
R if β > 1/2 thus Christodoulou’s version of strong cosmic

censorship is violated by the Chern-Simons field if β > 1/2. This is exactly the same

condition as for the scalar field.

In summary, we have shown that, as far as strong cosmic censorship is concerned, the

Chern-Simons field behaves exactly as a scalar field with conformal dimension ∆ = |λ|.

4.2 Proca fields

For Proca fields we will reach a similar conclusion, i.e. everything will reduce down to

studying properties of solutions of the Klein-Gordon equation. The difference is that for

the Chern-Simons field, we only had to solve one equation, and for the Proca we will find

two decoupled scalars are needed. This counting makes sense, since we expect to have two

degrees of freedom associated to a three-dimensional massive vector field.

Massive vector bosons obey the equation

∇aFab −
λ2
γ

L2
Aa = 0 , (4.23)

with F = dA and we take λγ > 0. The mass of Aa is λγ/L. This equation manifestly

breaks the gauge symmetry A → A + dχ, because A appears in the associated equations

of motion. Taking a total divergence of the Proca equation, and using the fact that F is

an antisymmetric two-tensor, gives

∇aAa = 0 (4.24)

so that a Lorenz type identity is automatically enforced via (4.23).

Before proceeding let us introduce the following operator that acts on arbitrary

1-forms ω

D(1)
M ω ≡ ?dω +

M

L
ω , (4.25)

where M is a constant to be determined in what follows. It is then a simple exercise to

show that [
D(1)
−M (D(1)

M ω)
]
a

= 2ωa −∇a(∇bωb)−Rabωb −
M2

L2
ωa , (4.26)

which gives exactly (4.23) provided we identify ω = A and M2 = λ2
γ . This means the

Proca equation can be studied by inspecting at the following two systems of coupled first

order equations20 D
(1)
λγ
A = A−λγ

D(1)
−λγA−λγ = 0

, (4.27a)

or D
(1)
−λγA = Aλγ

D(1)
λγ
Aλγ = 0

. (4.27b)

20Note that D(1)
−M and D(1)

M commute.
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Let us focus on the first system. Imagine that, after Fourier decomposition, one has a

non-zero solution of

D(1)
−λγA−λγ = 0 , (4.28)

and its associated quasinormal modes ω−λγ . This solution will then source the first equation

in (4.27a). We will later show that the eigenfrequencies ω−λγ 6= ωλγ . It then follows that

the eigenfrequency solutions of (4.27a) will have the same eigenfrequencies as (4.28), since

D(1)
λγ

is invertible for ω = ω−λγ . This argument assumes that we start with a solution

of (4.28) that is non-zero. If it is zero then A will be annihilated by D(1)
λγ

, which gives the

eigenfrequencies ωλγ . This shows that the eigenfrequencies of the system (4.27a) are ω±λγ .

It thus suffices to study solutions of the following equation

D(1)
M AM = 0 (4.29)

where M = ±λγ . This latter equation has precisely the same form as (4.3) if we make the

substitution λ→ ±λγ . This means that our analysis of the Chern-Simons gauge field can

be employed in this section mutatis mutandis. In particular, this implies that the analysis

of the Proca field should reduce to the study of two scalar fields.

In particular, after decomposing w.r.t. the basis (4.4)

AM = [AM0 (r)e0 +AM1 (r)e1 +AM2 (r)e2]e−iωt+mφ (4.30)

we find that the whole system can be studied by inspecting the following scalar

ΦM
γ = LkaAMa −maAMa . (4.31)

As expected, ΦM
γ obeys a Klein-Gordon equation for a massive scalar field, if we identify

the mass term as

µ2
γ =

M(M − 2)

L2
. (4.32)

That is to say, the radial part of ΦM
γ will satisfy the same equation as R in eq. (4.9), if we

replace µ2 with µ2
γ .

We now return to the thorny issue of boundary conditions, which should be imposed

on AM directly and not on ΦM
γ . This means we need to find a way to express AM as a

function of ΦM
γ and its first radial derivative (ΦM

γ )′. This is something we have done in

our previous section, so we just quote the final results written in terms of M instead of λ

(and set ελ = 1)

AM0 = −L
$

{
Mrf(1 + LΩ)(ΦM

γ )′ +
[
M2f − L(ωL+m)(ω −mΩ)

]
ΦM

}
, (4.33a)

AM1 =
iL2

$

{
(ωL+m)(ΦM

γ )′ +
M

r

[
m+

r2

L

1 + LΩ

f
(ω −mΩ)

]
ΦM

}
, (4.33b)

AM2 = −L
2

$

{
Mrf(ΦM

γ )′ +

[
m(ωL+m) +

r2

L2
(1 + LΩ)M2

]
ΦM

}
. (4.33c)

This means that for a given ΦM
γ we can uniquely reconstruct AM . To proceed further, we

need to analyse the asymptotic behaviour of ΦM
γ and see how it translates to the asymptotic

– 32 –



J
H
E
P
1
2
(
2
0
1
9
)
0
9
7

behaviour of AM . Since ΦM
γ obeys a Klein-Gordon equation, we can readily write down

its boundary expansion based on our previous sections. We will first investigate the case

with M = λγ , in which case we find

Φ
λγ
γ =

r→+∞

H̃
λγ
+

rλγ

[
1 +O(r−2)

]
+

H̃
λγ
−

r2−λγ

[
1 +O(r−2)

]
, (4.34)

where H̃
λγ
± are constants of integration that parametrise each of the decays.

For M = −λγ we find

Φ
−λγ
γ =

r→+∞
H̃
−λγ
+ rλγ

[
1 +O(r−2)

]
+
H̃
−λγ
−

r2+λγ

[
1 +O(r−2)

]
, (4.35)

where H̃
−λγ
± are constants of integration that parametrise each of the decays.

These decays for ΦM
γ induce the corresponding decay on the physical fields. For in-

stance, for the time component of AM we find

A
λγ
0 =

r→+∞

H̃
λγ
+

2Lrλγ

[
1 +O(r−2)

]
+

2λγ(1− λγ)H̃
λγ
−

L[L2(ωL+m)2 +M2(r+ + r−)2]
rλγ

[
1 +O(r−2)

]
(4.36a)

and

A
−λγ
0 =

r→+∞
−

2λγ(1 + λγ)H̃
−λγ
−

L[L2(ωL+m)2 +M2(r++r−)2]rλγ

[
1 +O(r−2)

]
+
H̃
−λγ
+

2L
rλγ

[
1 +O(r−2)

]
,

(4.36b)

which agree with the scaling dimensions reported in [22, 38]. We shall be interested in

boundary conditions that preserve conformal invariance near the conformal boundary. This

requires that either H̃
±λγ
− or H̃

±λγ
+ vanish [22, 38] for 0 < λγ < 1. Furthermore, the absence

of ghosts dictates that H̃
∓λγ
± = 0 [38]. For λγ ≥ 1 we are forced to choose H̃

∓λγ
± = 0. Either

of these conditions lead to standard boundary conditions for ΦM
γ of the form we discussed in

section 2.1, provided we identify the dimensions of our two scalar fields as ∆ = {λγ , 2+λγ}.
The analysis of regularity of the Proca field at the various horizons proceeds anal-

ogously to the Chern-Simons case. In particular, smoothness of the Proca field im-

plies smoothness of the two scalar fields ΦM
γ . Conversely, one can use the generic be-

haviour (3.46) of the non-smooth part of a solution ΦM
γ near CH+

R to determine the be-

haviour of the Proca field there, exactly as in the Chern-Simons case. The result is that, in

coordinates regular at CH+
R, the components of the non-smooth part of the Proca field A

behave just as those of the Chern-Simons field Ã given in equation (4.22). Here we define β

using the smaller value of ∆, i.e., we set ∆ = λγ in (1.1), since this gives the least smooth

behaviour.

We see that the condition for the Proca field to extend continuously to CH+
R is β > 1.

Note that the energy-momentum tensor of A involves derivatives of A only in the form

F = dA. Since the r derivative of Ar does not appear in F , it follows from (4.22) that

all components of the non-smooth part of F are O((r − r−)β−1) at CH+
R. Hence β > 1

guarantees that both A and F extend continuously to CH+
R and hence that the energy-

momentum tensor of the Proca field is finite at CH+
R. Christodoulou’s version of strong

cosmic censorship is violated by the Proca field if β > 1/2.
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4.3 Kaluza-Klein gravitons

The case of Kaluza-Klein gravitons is slightly more complicated, but fortunately we can

use some existing technology (see for instance [39]). The equation we want to solve takes

the following form

2hab + 2Racbdh
cd −

λ2
g

L2
hab = 0 , (4.37)

together with the consistency conditions

∇ahab = 0 and gabhab = 0 . (4.38)

Just as before we introduce an operator D(2)
M which acts on hab as follows

(D(2)
M h)ab = εacd∇chdb +

M

L
hab . (4.39)

Let us imagine for a moment that we impose

(D(2)
M h)ab = 0 (4.40)

on our perturbations. Then, by taking the trace we automatically get h = 0 and by

taking its divergence we also obtain ∇ahab = 0. This means the consistency conditions

are automatically satisfied. All we need to do is to show that this operator can be used to

write the second order equations of motion eq. (4.37). To do that, we look at the following

simple identity

(D(2)
−MD

(2)
M h)ab = 2hab −∇a∇chcb +

3−M2

L2
hab −

h

L2
gab . (4.41)

If we recall that BTZ is a three dimensional constant curvature spacetime, we can identify

eq. (4.41) with eq. (4.37) provided M = ±
√

1 + λ2
g. Since [D(2)

M ,D(2)
−M ] = 0, we can find

all solutions of eq. (4.37) by considering solutions of eq. (4.40) with M = ±
√

1 + λ2
g. The

advantage of solving eq. (4.40) is immense, since it is already written in a first order form.

Just as in our previous sections, we take advantage of the fact that BTZ possesses

a stationary Killing vector field ∂/∂t and an axisymmetric Killing field ∂/∂φ to Fourier

decompose our perturbations with respect to t and φ using the basis (4.4)

hMabdx
adxb = e−iωt+imφ

[
hM00(r)(e0)2 + 2hM01(r)e0e1 + 2hM02(r)e0e2

+ hM11(r)(e1)2 + 2hM12(r)e1e2 + hM22(r)(e2)2
]
, (4.42)

where the index M = ±
√

1 + λ2
g.

From (4.40) we can express {hM01 , h
M
02 , h

M
12 , h

M
11} as algebraic functions of hM00 and hM22 .

The remaining two equations are first order in hM00 and hM22 . These equations are too

lengthy to be presented here, and are not very illuminating. Nevertheless, if we consider

the combination

ΦM
g = −L2kahMabk

b +mahMabm
b (4.43)
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it obeys a simple radial Klein-Gordon equation with the same form as (4.9) if we substitute

µ2 by

µ2
g =

M2 − 1

L2
=
λ2
g

L2
. (4.44)

Just as in the previous cases, we can determine all the metric perturbations as a

function of ΦM
γ . Again, the expressions are too lengthy to be presented here, but the

procedure is very similar to the one detailed in the previous sections. Next, one studies

the behaviour of ΦM
γ near the conformal boundary. It is a simple exercise to show that

ΦM
g =

r→+∞

J̃M
r1+M

[
1 +O(r−2)

]
+ J̃−Mr

M−1
[
1 +O(r−2)

]
. (4.45)

The asymptotic expansion for ΦM
g maps onto the following asymptotic behaviour for hab

h00 = − J̃M (1−M)M

L2[(1−M)2(r+ − r−)2 + L2(ωL−m)2]rM−1

[
1 +O(r−2)

]
+ (M → −M) ,

(4.46a)

h01 =
iLJ̃M (ωL−m)M

[(1−M)2(r+ − r−)2 + L2(ωL−m)2]rM+2

[
1 +O(r−2)

]
+ (M → −M) , (4.46b)

h02 =
J̃M (1−M)M

L[(1−M)2(r+ − r−)2 + L2(ωL−m)2]rM−1

[
1 +O(r−2)

]
+ (M → −M) , (4.46c)

h11 = − J̃ML
2[(1−M)(r+ − r−)2 + L2(ωL−m)2]

[(1−M)2(r+ − r−)2 + L2(ωL−m)2]rM+5

[
1 +O(r−2)

]
+ (M → −M) , (4.46d)

h12 = − iJ̃ML
2(ωL−m)M

[(1−M)2(r+ − r−)2 + L2(ωL−m)2]rM+2

[
1 +O(r−2)

]
+ (M → −M) , (4.46e)

h22 = − J̃M (1−M)M

[(1−M)2(r+ − r−)2 + L2(ωL−m)2]rM−1

[
1 +O(r−2)

]
+ (M → −M) . (4.46f)

We are interested in boundary conditions that preserve the action of the conformal

group near the conformal boundary [40]. These correspond to either setting J̃M = 0 or

J̃−M = 0. Demanding normalizability further sets J̃M = 0 for M = −
√

1 + λ2
g or J̃−M = 0

for M =
√

1 + λ2
g [40]. These boundary conditions, in turn, translate into scalar type

boundary conditions for ΦM
g of the exact form we studied in section 2.1, provided we

identify ∆ = 1 + M for positive M and ∆ = 2 −M for negative values of M . Thus the

equation of motion for Kaluza-Klein gravitons can be reduced to the equations of motion

of two scalar fields, with conformal dimensions ∆ = {1 +
√

1 + λ2
g, 2 +

√
1 + λ2

g}.
As before, smoothness of hab at H+

R implies smoothness of the scalar fields there, and

vice versa. Substituting the generic non-smooth behaviour (3.46) of a scalar field at CH+
R

into the equations giving the components of hab in terms of ΦM
g , one can determine the

behaviour at CH+
R of the non-smooth part of hab. The result is that, in the coordinates

(u, r, φ′′) regular at CH+
R, the least smooth component is hrr = O((r − r−)β−2) where β

is defined by (1.1) with ∆ = 1 +
√

1 + λ2
g. Hence β > 2 ensures that the field extends

continuously to CH+
R. Once again, the field can be made arbitrarily differentiable at CH+

R

by taking the black hole sufficiently close to extremality.
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5 Quantum field theory calculation

5.1 Introduction

We have shown that classical linear perturbations are arbitrarily smooth near the Cauchy

horizon of a near-extremal BTZ black hole. Since classical perturbations do not enforce

strong cosmic censorship we will now investigate whether quantum effects do so. Does the

backreaction of quantum fields render the Cauchy horizon singular?

In this section we will calculate 〈0|Tab|0〉, the renormalized expectation value of the

energy-momentum tensor of a free scalar field (of arbitrary mass) in the Hartle-Hawking

state in the BTZ geometry. We will show that, for a near-extremal black hole, 〈0|Tab|0〉
is finite at the Cauchy horizon. Hence vacuum polarization does not rescue strong cos-

mic censorship.

This result contradicts statements in the literature that 〈0|Tab|0〉 always diverges at

the Cauchy horizon of a BTZ black hole. These statements are based on a calculation

of 〈0|Tab|0〉 by Steif [27]. So we will start by explaining why Steif’s calculation does not

demonstrate that 〈0|Tab|0〉 diverges at the Cauchy horizon.

Steif considered a conformally coupled scalar field obeying “transparent” boundary

conditions. He obtained an expression for 〈0|Tab|0〉 expressed as an infinite sum. When

analytically continued to r < r−, the nth term in the sum diverges at r = rn < r− with

rn → r− as n→∞. Steif concluded that 〈0|Tab|0〉 diverges on surfaces r = rn lying behind

the Cauchy horizon, which accumulate at the Cauchy horizon as n→∞. This is the basis

of claims in the literature that Steif showed that 〈0|Tab|0〉 diverges on the Cauchy horizon.

Such claims are incorrect for at least two reasons.

First, the calculation just described assumes that the quantity 〈0|Tab|0〉 is well-defined

for r < r−. But this is not the case. We know how to define quantum field theory in globally

hyperbolic spacetimes. So quantum field theory is well-defined in the region r > r− of the

BTZ spacetime.21 But there is no unambiguous way of extending quantum field theory

into the region r < r−. Any attempt to do so will be plagued by ambiguities that are at

least as bad as those of the classical theory. So 〈0|Tab|0〉 is simply not defined for r < r−.

Hence the above calculation is a purely formal manipulation devoid of physical content.

Second, even if we did know how to define quantum field theory in the region r < r−,

the results would depend on the spacetime geometry in r < r−. But, as we emphasized in

section 2.1, the classical geometry in this region is not unique! There are infinitely many

ways of extending the BTZ spacetime smoothly, as a solution of Einstein’s equation, into

the region r < r−. A calculation along the lines described above would have to show that

similar divergences occur for any such extension.

Since 〈0|Tab|0〉 is well-defined only for r > r−, we need to consider the limiting be-

haviour of 〈0|Tab(x)|0〉 as x approaches the Cauchy horizon from outside. We will consider

the quantum theory of a massive scalar field, obeying standard boundary conditions, in

the BTZ geometry. We will show that, for a near-extremal black hole, 〈0|Tab(x)|0〉 remains

21Strictly speaking, this region is not globally hyperbolic because it is asymptotically AdS but of course

this is dealt with in the usual way by imposing boundary conditions at infinity.
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bounded as r → r−. In fact we will show that this quantity extends continuously to the

Cauchy horizon of a near-extremal black hole.22 Here “near-extremal” means

β > 1 , (5.1)

where β is given by (1.1). Surprisingly, this is the same as the condition for classical pertur-

bations to be C1, and hence to have finite energy momentum tensor, at the Cauchy horizon.

We conclude that, for near-extremal black holes, 〈0|Tab|0〉 is finite at the Cauchy horizon.

Thus backreaction of vacuum polarization does not rescue strong cosmic censorship.

Our result disagrees with a recent claim that such backreaction always renders the

Cauchy horizon singular [41, 42]. This claim is based on a study of a conformally coupled

field obeying transparent boundary conditions, i.e., the case studied by Steif. The result

of refs. [41, 42] appears to be a consequence of using Steif’s results for 〈0|Tab|0〉 in the

region r < r−. However, as we explained above, one cannot trust Steif’s results in this

region. A calculation of backreaction at the Cauchy horizon should use only the behaviour

of 〈0|Tab|0〉 in the region r > r− and, for a near-extremal black hole, this is finite as r → r−
so backreaction will not render the Cauchy horizon singular.23

5.2 Hadamard regularization

Consider the quantum theory of a real scalar field with action∫
d4x
√
−g
(
−1

2
∇aΦ∇aΦ−

1

2
µ2Φ2

)
. (5.2)

We will employ Hadamard regularization (see e.g. [43] for a review) to define 〈0|Tab(x)|0〉
and 〈0|Φ(x)2|0〉 where |0〉 is the Hartle-Hawking state.

We start from the symmetrized 2-point function in a general state |ψ〉

G(1)(x, x′) = 〈ψ|Φ(x)Φ(x′) + Φ(x′)Φ(x)|ψ〉. (5.3)

This quantity diverges as x′ → x. We regulate this divergence by defining

G(1)
reg(x, x′) = G(1)(x, x′)− 2H(x, x′) , (5.4)

where the Hadamard parametrix H(x, x′) captures the state-independent short-distance

behaviour of G(1). In a three dimensional spacetime it takes the form [44]

H(x, x′) =
1

4
√

2π[σ(x, x′) + iε]1/2

∞∑
n=0

Un(x, x′)σ(x, x′)n , (5.5)

22Steif also stated this in a parenthetical remark but without mentioning the near-extremal condition.
23The authors of refs. [41, 42] argue that it might be possible to define quantum field theory in the

region r < r− by imposing boundary conditions at the timelike singularity of the (analytically extended)

BTZ solution. However, it is not clear whether this is possible, and whether there is a choice of boundary

conditions that would lead to Steif’s result. Furthermore, it begs the question of which boundary conditions

to impose at the singularity: much of the physical motivation for the cosmic censorship conjectures stems

from the fact that we don’t know what happens at a singularity.
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where 2σ(x, x′) is the square of the geodesic distance between x and x′ (which is well-defined

when x, x′ are nearby) and the coefficients Un are determined recursively by demanding

that the above expression solves the equation of motion. These coefficients depend only

on the spacetime geometry. In an Einstein spacetime (Rab = (1/3)Rgab), the first few

are [44]24

U0 = 1 +
1

18
Rσ +O(σ2) , U1 = µ2 − 1

6
R+O(σ) . (5.6)

We now define the renormalized expectation value of Φ2 by taking the coincident limit

of G
(1)
reg(x, x′):

〈ψ|Φ(x)2|ψ〉 ≡ lim
x′→x

1

2
G(1)

reg(x, x′) . (5.7)

Similarly we define the renormalized expectation value of Tab via point-splitting [43] as

〈ψ|Tab(x)|ψ〉 ≡ lim
x′→x

Tab(x, x′)
1

2
G(1)

reg(x, x′) , (5.8)

where [44]

Tab = gb
c′∇a∇c′ −

1

2
gabg

cd′∇c∇d′ −
1

2
µ2gab (5.9)

and ga
b′ is the operator that parallelly transports covectors from x′ to x.

The above renormalization scheme gives results consistent with Wald’s axioms [45]

for defining 〈ψ|Tab|ψ〉 in a general state |ψ〉. Any other scheme for defining 〈ψ|Tab|ψ〉
consistently with these axioms gives a result that differs from the above only by a tensor

that is identically conserved and a function only of the local geometry [45]. Since the BTZ

spacetime is locally isometric to AdS3, the only such tensor in our case is a multiple of the

metric. Hence, any prescription for defining 〈ψ|Tab|ψ〉 that is consistent with Wald’s axioms

will, in the BTZ spacetime, differ from the prescription described above by a constant,

state-independent, multiple of the metric. Clearly this small ambiguity does not affect the

question of whether or not 〈ψ|Tab|ψ〉 diverges at the Cauchy horizon.

A similar scheme-dependence occurs in the definition of 〈ψ|Φ(x)2|ψ〉. In this case, the

ambiguity amounts to the freedom to add a term of the form c1R + c2µ
2 where c1 and

c2 are state-independent constants [46]. In our case, this amounts to the freedom to shift

〈ψ|Φ(x)2|ψ〉 by a constant.

5.3 Calculation for BTZ

In our case the difficult step in the above calculation reduces to calculating G(1)(x, x′) for

the Hartle-Hawking state |0〉 in the BTZ geometry. Fortunately this has already been done

in ref. [47]. This reference calculated the Feynman propagator

− iGF (x, x′) ≡ 〈0|T (Φ(x)Φ(x′))|0〉 , (5.10)

where T denotes time-ordering. Recall the result [48]

− iGF (x, x′) = − i
2

[
GA(x, x′) +GR(x, x′)

]
+

1

2
G(1)(x, x′) , (5.11)

24Here we have used the relation gabσ,aσ,b = 2σ [44].
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where GA and GR are the advanced and retarded Green functions. This implies that if x′

is spacelike separated from x then

1

2
G(1)(x, x′) = −iGF (x, x′) , spacelike separation. (5.12)

ref. [47] calculated GF using the method of images. The result is

− iGF (x, x′) =

∞∑
n=−∞

f(zn) , (5.13)

where

f(zn) =
1

4πL
(z2
n − 1)−1/2

[
zn + (z2

n − 1)1/2
](1−∆)

, (5.14)

∆ is the conformal dimension defined in section 2.225 and, when x, x′ are both in region I,

zn is defined by

zn − iε =
1

r2
+ − r2

−

[√
r2 − r2

−

√
r′2 − r2

− cosh

(
r−
L2
δt− r+

L
δφn

)
−
√
r2 − r2

+

√
r′2 − r2

+ cosh

(
r+

L2
δt− r−

L
δφn

)]
(5.15)

where

δt = t− t′ , δφn = φ− φ′ + 2πn . (5.16)

To extend the above result into region II we convert to the coordinates (U+, V+, φ+) defined

in section 2.1 with the result

zn − iε =
1

r2
+ − r2

−

{√
r2 − r2

−

√
r′2 − r2

− cosh

(
r+

L
δφ+n

)
(5.17)

+
1

2
G+(r)G+(r′)

[
U ′+V+ exp

(
− r−

L
δφ+n

)
+ U+V

′
+ exp

(
r−
L
δφ+n

)]}
.

Here,

δφ+n = δφ+ + 2πn = φ+ − φ′+ + 2πn , (5.18)

r(U+, V+) (and r(U ′+, V
′

+)) is defined by (2.9) and

G+(r) ≡

√
r2 − r2

+

F+(r)
, (5.19)

where F+ is defined in (2.5). Note that G+(r) is real and analytic for r > r−.

We will perform point-splitting in a spacelike direction so that G(1) is determined

by (5.12). To renormalize GF we need to subtract the Hadamard parametrix. The effect of

this subtraction is to eliminate the non-analytic terms in −iGF that have the form of σ−1/2

times a smooth function of the coordinates. So we just need to identify this non-analytic

part of −iGF and discard it.

25For the range of µ for which two choices of ∆ are possible, this result applies for both choices.
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Note that for coincident points (in either region) we have, from (5.17)

zn(x, x) = z̄n(r) ≡
r2 − r2

−
r2

+ − r2
−

[
cosh

(
2πnr+

L

)
− cosh

(
2πnr−
L

)]
+ cosh

(
2πnr−
L

)
. (5.20)

Since r > r− we have zn(x, x) > 1 for n 6= 0. However z0(x, x) = 1. It follows that the

divergence (for coincident points) in (5.13) must arise from the n = 0 term, as in [27].

This term is just the Feynman propagator for global AdS3 (with the other terms in the

sum arising from this one via the method of images). It follows that, for x′ near to x, z0

must be a function of σ (since this is the case in AdS3). Of course the AdS3 propagator

will exhibit the Hadamard non-analytic (in σ) behaviour when x′ is close to x. Since this

behaviour depends only on the local geometry, it is the same in BTZ and in AdS3. Hence

all of the non-analytic behaviour of GF must arise from the n = 0 term. Expanding this

term around z0 = 1 gives

f(z0) =
1

4πL
√

2(z0 − 1)
+

1−∆

4πL
+

3− 8∆ + 4∆2

16πL

√
z0 − 1

2

− ∆(∆− 1)(∆− 2)

12πL
(z0 − 1) +O

(
(z0 − 1)3/2

)
. (5.21)

Matching this to the Hadamard parametrix gives z0 − 1 = (σ/L2)(1 + a1σ + a2σ
2 + . . .)

for certain coefficients ai.
26 Hence the non-analytic (in σ) part of the above expression is

simply the part that is non-analytic in z0 − 1. So to perform Hadamard renormalization

we simply discard the terms that are non-analytic in z0 − 1. Since we ultimately want

to take the limit of coincident points after taking at most two derivatives, we only need

to retain the analytic terms up to order (z0 − 1). In other words, to perform Hadamard

renormalization we can take (for spacelike separation)

1

2
G(1)

reg(x, x′) =
1−∆

4πL
− ∆(∆− 1)(∆− 2)

12πL
(z0 − 1) +

∞∑
n=1

[f(zn) + f(z−n)] . (5.22)

Note that zn is not smooth as x′ → x: it approaches the limit (5.20) but there are subleading

terms behaving as powers of σ1/2. However, these terms cancel out in the combination

f(zn) + f(z−n). (This is easy to see if one performs the point-splitting in the φ+ direction

which gives σ1/2 ≈ rδφ+/
√

2 and n→ −n has the same effect as δφ+ → −δφ+.) This had

to be the case because, as discussed above, the non-analytic behaviour arises only from the

n = 0 term.

5.4 Results for 〈0|Φ(x)2|0〉

From (5.22) we have

〈0|Φ(x)2|0〉 =
1−∆

4πL
+
∞∑
n=1

Fn(r) , (5.23)

26Of course we could also obtain this result from the expression for z0. But it is quicker to match to the

known Hadamard parametrix.
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where

Fn(r) = f(z̄n(r)) + f(z̄−n(r)) (5.24)

and z̄n(r) is defined in (5.20). We need to discuss the convergence of the sum over n. We

have z̄n(r) → ∞ as n → ±∞ for any r ≥ r−. More precisely, for r ≥ r− we can bound

z̄n(r) as

z̄n(r) ≥ cosh

(
2πnr−
L

)
>

1

2
exp

(
2π|n|r−

L

)
. (5.25)

For large positive z we have f(z) < Cz−∆ for some positive constant C. Combining these

bounds, we learn that if r ≥ r− then

0 < Fn(r) < A exp

(
−2πn∆r−

L

)
(5.26)

for some constant A > 0. If r− > 0 and ∆ > 0 then it follows that the sum in (5.23) is

uniformly convergent for r ≥ r−. Hence it defines a function of r that is continuous on

r ≥ r−. This proves that 〈0|Φ(x)2|0〉 (which is defined only for r > r−) is bounded and

extends continuously to r = r−.

The limiting value of 〈0|Φ(x)2|0〉 at the Cauchy horizon, and also the value at the

event horizon, can be expressed in terms of special functions as follows. We first recall the

series definition of the q−digamma function ψq(w):

ψq(w) =
d

dw
log Γq(w) = − log(1− q)− log q

+∞∑
k=0

1

1− q−k−w
, (5.27)

where Γq(w) is the q−gamma function.

Uniform convergence for r ≥ r− implies that the limiting value of 〈0|Φ(x)2|0〉 as r → r−
is given by setting r = r− in each term on the r.h.s. of (5.23), which gives

lim
r→r−

〈0|Φ(x)2|0〉 =
1−∆

4πL
+

1

2πL

+∞∑
n=1

eα(1−∆)nχ

sinh(αnχ)
, (5.28)

where we defined

α ≡ 2πr+/L , and χ ≡ r−/r+ . (5.29)

However, we know that

1

sinh(αnχ)
=

2e−αnχ

1− e−2αnχ
= 2e−αnχ

+∞∑
k=0

e−2kαnχ , (5.30)

so that

lim
r→r−

〈0|Φ(x)2|0〉 =
1−∆

4πL
+

1

πL

+∞∑
n=1

+∞∑
k=0

e−(2k+∆)αnχ =
1−∆

4πL
+

1

πL

+∞∑
k=0

+∞∑
n=1

e−(2k+∆)αnχ

=
1−∆

4πL
+

1

πL

+∞∑
k=0

1

eαχ(∆+2k) − 1
. (5.31)
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The infinite sum appearing in the last line of eq. (5.31) is precisely the one appearing in

the definition of the q−digamma provided we identify q ≡ e−2αχ and w ≡ ∆/2. This gives

the compact expression

lim
r→r−

〈0|Φ(x)2|0〉 =
1−∆

4πL
− 1

2πLαχ

[
log
(
1− e−2αχ

)
+ ψe−2αχ

(
∆

2

)]
. (5.32)

A very similar calculation gives the value of 〈0|Φ(x)2|0〉 at the event horizon. The result

is the same as above with the replacement χ→ 1, yielding

〈0|Φ(x)2|0〉
∣∣
r=r+

=
1−∆

4πL
− 1

2πLα

[
log
(
1− e−2α

)
+ ψe−2α

(
∆

2

)]
. (5.33)

5.5 Analytic results for 〈0|Tab|0〉

Next we consider 〈0|Tab|0〉. Since we are interested in the behaviour of this quantity as we

approach the Cauchy horizon, we need to calculate in coordinates that are regular at the

Cauchy horizon. We will use the Kruskal coordinates (U−, V−, φ−). In region II these are

defined by (2.12). Converting (5.17) to these coordinates gives

zn − iε =
1

r2
+ − r2

−

{√
r2

+ − r2

√
r2

+ − r′2 cosh

(
r−
L
δφ−n

)
(5.34)

+
1

2
G−(r)G−(r′)

[
U−V

′
− exp

(
r+

L
δφ−n

)
+ U ′−V− exp

(
− r+

L
δφ−n

)]}
where

δφ−n = δφ− + 2πn = φ− − φ′− + 2πn, (5.35)

r(U−, V−) is defined by (2.13) and

G−(r) ≡

√
r2 − r2

−
F−(r)

(5.36)

where F− is defined in (2.14). Note that G−(r) is real for r < r+ and smooth at r = r−.

The expression for 〈0|Tab|0〉 obtained from (5.8) contains a term without derivatives.

This term will give a result proportional to 〈0|Φ(x)2|0〉 and so it extends continuously to

the Cauchy horizon. The only terms in 〈0|Tab|0〉 that might diverge at the Cauchy horizon

are those containing derivatives. These terms have the form

lim
x′→x

∂µ∂ν′
1

2
G(1)

reg(x, x′) = lim
x′→x

∂µ∂ν′

{
−∆(∆− 1)(∆− 2)

12πL
(z0 − 1) +

∞∑
n=1

[f(zn) + f(z−n)]

}
.

(5.37)

We have seen above that z0 − 1 ∝ σ, which is a smooth function of x, x′ so the first term

above is finite at r = r−. The potentially dangerous behaviour as r → r− comes from the

sum over n.

The result of term by term differentiation is

lim
x′→x

∂µ∂ν′
1

2
G(1)

reg(x, x′) = −∆(∆− 1)(∆− 2)

12πL
lim
x′→x

∂µ∂ν′z0 +
∞∑
n=1

H(n)
µν (x) , (5.38)
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where

H(n)
µν (x) = f ′(z̄n(r)) lim

x′→x
∂µ∂ν′zn + f ′′(z̄n(r)) lim

x′→x
∂µzn∂ν′zn + (n→ −n) . (5.39)

We need to understand the large n behaviour of H
(n)
µν (x). Recall the bound (5.25). It is

easy to bound the large z behaviour of derivative of f(z):

|f(z)| < Cz−∆ , |f ′(z)| < C ′z−∆−1 , |f ′′(z)| < C ′′z−∆−2 , (5.40)

for constants C,C ′, C ′′. It follows that, for r ≥ r− we have (for positive or negative n)

|f ′(z̄n(r))| < B′ exp

(
−2π|n|(∆ + 1)r−

L

)
, |f ′′(z̄n(r))| < B′′ exp

(
−2π|n|(∆ + 2)r−

L

)
(5.41)

for constants B,B′, B′′. Next we calculate the first and second derivatives of zn. We claim

that the following bounds are satisfied for r− ≤ r ≤ r0 where r− < r0 < r+:

| lim
x′→x

∂U−zn| ≤ c1|V−|eα|n| , | lim
x′→x

∂V−zn| ≤ c1|U−|eα|n| ,

| lim
x′→x

∂φ−zn| ≤ c2e
α|n| , (5.42)

| lim
x′→x

∂U−∂U ′−zn| ≤ d1V
2
−e

α|n| , | lim
x′→x

∂V−∂V ′−zn| ≤ d1U
2
−e

α|n| ,

| lim
x′→x

∂U−∂V ′−zn| ≤ d2e
α|n| ,

| lim
x′→x

∂U−∂φ′−zn| ≤ d3|V−|eα|n| , | lim
x′→x

∂V−∂φ′−zn| ≤ d3|U−|eα|n| ,

| lim
x′→x

∂φ−∂φ′−zn| ≤ d4e
α|n| , (5.43)

where ci and di are positive constants depending only on r± and r0. The proof of these

results is given in the appendix.27 Using these results we obtain

|H(n)
µν (x)| ≤ |U−|σ|V−|τ

[
De(α−2π(∆+1)r−/L)n +D′e(2α−2π(∆+2)r−/L)n

]
(5.44)

where D,D′ are positive constants depending only on r±, r0 and ∆; the constants σ, τ are

defined by σ = 1 for {µν} = {V−, φ−}, σ = 2 for {µν} = {V−, V−} and σ = 0 otherwise;

τ = 1 for {µν} = {U−, φ−}, τ = 2 for {µν} = {U−, U−} and τ = 0 otherwise.

The bound (5.44) implies that the sum over n in (5.38) is uniformly convergent for

r− ≤ r ≤ r0 if we have

α < 2π(∆ + 1)r−/L and 2α < 2π(∆ + 2)r−/L . (5.45)

The latter condition is more restrictive, and this condition can be rearranged to

β > 2 , (5.46)

27Note that the various powers of U− and V− on the r.h.s. of these equations cancel out if one converts to

Eddington-Finkelstein coordinates, leaving expressions that are functions of r alone. This is a consequence

of the fact that the Hartle-Hawking state shares the symmetries of the background.
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where β is defined in (1.1). For any ∆ > 0, this condition can be satisfied by taking r−
close enough to r+, i.e., by taking the black hole close enough to extremality.

We have shown that, for any given ∆ > 0, if the black hole is close enough to extremal-

ity then the sums defining 〈0|Tab|0〉 are uniformly convergent for r− ≤ r ≤ r0. It follows

that the resulting expression for 〈0|Tab|0〉 is continuous on this interval. In particular this

proves that 〈0|Tab|0〉 (which is defined only for r > r−) is bounded for r− < r < r0 and

extends continuously to r = r−, i.e., limr→r−〈0|Tab|0〉 exists. Hence, for a massive scalar

field in a near-extremal BTZ black hole spacetime, the renormalized expectation value of

the energy momentum tensor in the Hartle-Hawking state is finite at the Cauchy horizon.

Let us now discuss the case β ≤ 2 for which the above proof of uniform convergence

on r− ≤ r ≤ r0 no longer holds. In this case we can still prove uniform convergence on any

compact subset of r− < r < r+ as follows. Choose r1 and r0 so that r− < r1 < r0 < r+

and assume r1 ≤ r ≤ r0. Previously we used the lower bound (5.25) for z̄n(r). Since we

are assuming that r1 is strictly greater than r− we now have a stronger bound:

z̄n(r) ≥ C exp(α|n|) , (5.47)

for some positive constant C depending on r±, r0 and r1, with α defined in (5.29). We can

then repeat the steps described above using this stronger bound. The result is to replace

r− with r+ in the exponents of (5.44). So the condition for uniform convergence is given by

replacing r− with r+ on the r.h.s. of (5.45). These inequalities are trivially satisfied because

∆ > 0. Hence we have uniform convergence for r0 ≤ r ≤ r1, i.e., uniform convergence on

any compact subset of r− < r < r+. Hence 〈0|Tab|0〉 is finite for r− < r < r+.28 However,

since we no longer have uniform convergence on a compact set containing r = r− we can

no longer conclude that 〈0|Tab|0〉 will be bounded as r → r−.

5.6 Improving the bound

We have proved that 〈0|Tab|0〉 extends continuously to the Cauchy horizon if β > 2. In

this section we are going to show that this result can be improved to β > 1. To do this

we need to make use of the detailed structure of Tab. This makes the calculations more

difficult so we will not attempt to proceed with the same level of rigour used above, and

the results below were obtained with the use of Mathematica.

We work in co-rotating outgoing coordinates (u, r, φ′′−) defined in terms of the (t, r, φ)

coordinates of section 2.1 as

dt = du+
dr

f
, and dφ = dφ′′− + Ω(r)

dr

f
− Ω− du , (5.48)

in terms of which the BTZ metric reads

ds2 = −f du2 − 2 du dr + r2

(
dφ′′− +

r2 − r2
−

r2
Ω−du

)2

. (5.49)

In these coordinates, CH+
R is at r = r− and H+

L is at r = r+.

28Of course 〈0|Tab|0〉 is always finite at r = r+. This is not apparent from the above analysis because we

used coordinates adapted to the Cauchy horizon that break down at r = r+.
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The expression we want to study takes the form

〈0|Tµν |0〉 = T 0
µν(r) +

+∞∑
n=1

Tnµν(r) , (5.50)

where

T 0
µν(r) = −5(2−∆)(1−∆)∆

24π


α2(1−χ2)(ζ2−χ2)

4π2χ2 −1
α2(ζ2−χ2)

4π2χ

−1 0 0
α2(ζ2−χ2)

4π2χ
0 α2ζ2

4π2

 (5.51)

comes from the the term proportional to (z0 − 1) in (5.22). Here we have defined

ζ ≡ r

r+
, (5.52)

and (α, χ) are given in (5.29). The Tnµν(r) are too cumbersome to be presented here, but

we are only interested in their large n behaviour. For large n, things simplify considerably.

The leading order behaviour is

Tnµν(r) ≈ −
4π∆2

(
1− χ2

)∆
α2

X5
n

(
ζ2 − χ2

)4
[Xχ

n (1− ζ2) +Xn (ζ2 − χ2)]
5+∆

(5.53)

×


α4(1−∆)(1−χ2)(ζ2−χ2)

2

16π4∆χ2 −α2(1−∆)(ζ2−χ2)
4π2∆

α4(1−∆)(ζ2−χ2)
2

16π4∆χ

−α2(1−∆)(ζ2−χ2)
4π2∆

1 α2χ
4π2

α4(1−∆)(ζ2−χ2)
2

16π4∆χ
α2χ
4π2

α4

16π4∆

[
ζ2
(
ζ2 − χ2

)
−
(
ζ4 − χ2

)
∆
]


where we defined Xn ≡ e2πnr+/L. Recall that CH+

R is located at ζ = χ and H+
L at ζ = 1.

The region of interest is thus χ ≤ ζ ≤ 1. We now note that the only dependence in n in

the (µ, ν) component is given by a factor of the form

X5
n

(
ζ2 − χ2

)pµν
[Xχ

n (1− ζ2) +Xn (ζ2 − χ2)]
5+∆

, (5.54)

where pµν is symmetric in µ and ν and

prr = prφ′′− = pφ′′−φ′′− = 4 , pur = 5 , and puu = 6. (5.55)

The following series of inequalities let us bound the behaviour of the above terms:

0 ≤
X5
n

(
ζ2 − χ2

)pµν
[Xχ

n (1− ζ2) +Xn (ζ2 − χ2)]
5+∆

≤
Xn

5−pµν
[
Xχ
n

(
1− ζ2

)
+Xn

(
ζ2 − χ2

)]pµν
[Xχ

n (1− ζ2) +Xn (ζ2 − χ2)]
5+∆

=
Xn

5−pµν

[Xχ
n (1− ζ2) +Xn (ζ2 − χ2)]

5+∆−pµν ≤
1

X
χ(5+∆−pµν)+pµν−5
n (1− ζ2)5+∆−pµν

. (5.56)

We will restrict to ζ ∈ [χ, ζ0] where χ < ζ0 < 1 so that the factor of (1 − ζ2) in the

denominator is bounded.29 Equation (5.56) implies that when we sum (5.53) over n, the

29Of course nothing funny happens at ζ = 1 but we would have to bound the terms differently in order

to demonstrate convergence at ζ = 1.
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terms in the sum are uniformly bounded by Ce−αqµνn for some constant C > 0 where

qµν = χ(5 + ∆ − pµν) + pµν − 5. Hence, provided there are no surprises coming from

subleading (in n) corrections to (5.53), the sum in (5.50) converges uniformly for ζ ∈ [χ, ζ0]

if qµν > 0. This condition can be rearranged to

β > 5− pµν . (5.57)

The strongest bound thus follows from the smallest value of pµν which occurs for prr =

prφ′′− = pφ′′−φ′′− = 4, which gives β > 1.

To complete the argument we need to inspect the subleading (in n) correction to (5.53)

to see if more stringent conditions appear. Rather remarkably, that is not the case. All

other terms in the large n expansion not shown in (5.53) are proportional to terms of

the form

Xa
n(ζ2 − χ2)b

[Xχ
n (1− ζ2) +Xn (ζ2 − χ2)]

5+∆
, with a− b− (5 + ∆− b)χ < 0 , provided β > 1

(5.58a)

or

Xa
n

[Xχ
n (1− ζ2) +Xn (ζ2 − χ2)]

5+∆
, with a− (5 + ∆)χ < 0 , provided β > 1 , (5.58b)

where the proportionality coefficients depend on χ, ζ, ∆ and y+ but not on n. Furthermore,

these proportionality coefficients do not vanish when ζ = χ. The first type of term is

precisely of the same form as the leading term appearing in (5.53), and it is easy to show

that, at most, it provides the same bound. The second type of term can also be easily

bounded via

Xa
n

[Xχ
n (1− ζ2) +Xn (ζ2 − χ2)]

5+∆
<

Xa
n

[Xχ
n (1− ζ2)]

5+∆
=

X
a−(5+∆)χ
n

(1− ζ2)5+∆
< C ′eα[a−(5+∆)χ]n .

(5.59)

In summary, we have found that the sum over n appearing in our expression for 〈0|Tµν |0〉
is uniformly convergent for r− ≤ r ≤ r0 (where r− < r0 < r+) when β > 1. Hence, for

β > 1, 〈0|Tab|0〉 extends continuously to CH+
R.

5.7 Numerical results for 〈0|Tab|0〉

We have argued that 〈0|Tab|0〉 extends continuously to CH+
R for β > 1. In this section

we will explore what happens for β ≤ 1. We will evaluate the sum in (5.50) numerically.

Recent results for 〈0|Tab|0〉 for a 4d Reissner-Nordström black hole found that non-trivial

behaviour can arise very close to the Cauchy horizon: (r−r−)/M < 10−175 [49]. Therefore

we need to ensure that our numerics is accurate enough to see features at this scale.

To do this we have written a small Mathematica code that uses extended precision.30

Numerically, we can only sum a certain number of terms in the series, say N . In order to

test the convergence of our numerical results we increase N and see if the outcome of our

30We also used a Fortran code with octuple precision, and the results were unchanged.
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Figure 5. Plot of L3〈0|Trr|0〉 as a function of log10(ζ − χ) computed for ∆ = 1, α = 2π and

β = 3/2. The black dot denotes L3trr.

calculations changes. All the plots generated in this manuscript were done using N = 106,

and convergence was checked by repeating the same calculations with N = 105. The global

error is well under 10−10%. In this section we continue to work in the coordinates (u, r, φ′′−)

of the previous section.

First we use our numerics to confirm the analytical prediction of the previous section.

Let tµν be the result obtained by substituting r = r− into the r.h.s. of (5.50). Our prediction

is that, for β > 1, tµν is finite and limr→r−〈0|Tµν |0〉 = tµν . This is confirmed numerically

in figure 5 where we plot L3〈0|Trr|0〉 as a function of log10(ζ − χ), for ∆ = 1, β = 3/2 and

α = 2π. (Recall that (α, χ) are defined in (5.29).) The plot shows no interesting features

as we approach the Cauchy horizon (ζ = χ). The black dot denotes L3trr. We see that

indeed limr→r−〈0|Trr|0〉 = trr. We have repeated this exercise for many values of ∆ and

β > 1 with similar results.

Next we will investigate the sharpness of the bound β > 1 for 〈0|Tµν |0〉 to extend

continuously to the Cauchy horizon. If β > 1 then limr→r−〈0|Tµν |0〉 = tµν . We now

investigate what happens to tµν if we take β → 1+ with ∆ and α fixed. This is what

we plot on the left panel of figure 6 in a logarithmic scale for ∆ = 2 and α = 2π. This

plot shows that there is a divergence as β → 1+. On the right panel of figure 6 we plot

L3(β − 1) limr→r−〈0|Trr|0〉, which remains finite and non-zero in the limit β → 1+. This

demonstrates that limr→r−〈0|Trr|0〉 diverges as 1/(β−1) as β → 1+. We have checked this

is the case for many values of ∆. So our numerical results indicate that the bound β > 1

is indeed sharp.

Now consider the case β < 1. In all of the many cases we have investigated, we find that

L3〈0|Trr|0〉 diverges as r → r− as 1/(r − r−)1−β , modulated by an oscillatory behaviour

characteristic of discrete self-similarity with logarithm in ζ − χ behaviour. In figure 7 we

plot L3(ζ − χ)1−β〈0|Trr|0〉 as a function of log10(ζ − χ) for ∆ = 1, β = 1/2 and α = 2π.

The plot on the left panel shows the range of ζ that we have probed, and on the right
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Figure 6. Left panel: logarithmic plot of L3trr as a function of β. Right panel: L3(β − 1)trr as a

function of β. Both plots are for ∆ = 2 and α = 2π. The vertical red dashed line marks β = 1.

The plots show that limr→r−〈0|Trr|0〉 diverges as 1/(β − 1) as β → 1+.
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Figure 7. Left panel: plot of (ζ − χ)1−βL3〈0|Trr|0〉 as a function of log10(ζ − χ) showing the

complete range of ζ that we probed. Right panel: plot of (ζ − χ)1−βL3〈0|Trr|0〉 in the range

−200 < log10(ζ − χ) < −180 corresponding to the orange region on the left panel. Both panels are

for ∆ = 1, β = 1/2 and α = 2π.

panel we show a zoom around the region −200 < log10(ζ−χ) < −180 showing the discrete

self-similar behaviour.

For log10(ζ − χ) . −12, the oscillations shown on the right panel can be fitted with

the expression

a0 + b0 cos [Ω0 log10(ζ − χ)− c0] , (5.60)

with a0, b0, c0 and Ω0 all dependent on β, ∆ and α. For instance, for ∆ = 1, β = 1/2 and

α = 2π we obtain

a0 ≈ 0.0387 , b0 ≈ −0.0140 , c0 ≈ 3.5802 , and Ω0 ≈ 3.4534 . (5.61)

It would be interesting to understand analytically the origin of these oscillations.
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This divergence in 〈0|Tab|0〉 will backreact on the metric via the semi-classical Einstein

equation Gab = 8π〈0|Tab|0〉. It is interesting to note that the divergence is integrable and

hence sufficiently mild that the Einstein equation can still be satisfied weakly at the Cauchy

horizon. So, even for β < 1, vacuum polarization does not enforce Christodoulou’s version

of strong cosmic censorship (although, as we have seen, classical perturbations enforce it

for β < 1/2).

In summary, we have shown analytically that 〈0|Tab|0〉 extends continuously to the

Cauchy horizon r = r− if β > 1 and our numerical results show that 〈0|Tab|0〉 diverges as

r → r− for β < 1, where β is defined by (1.1).

5.8 The Hartle-Hawking state is not smooth at the Cauchy horizon

We have seen that, for a near-extremal BTZ black hole, 〈0|Tab|0〉 extends continuously

to the Cauchy horizon. This is similar to what happens for classical perturbations. In

the classical case, a generic perturbation is never smooth at the Cauchy horizon, although

it can be made arbitrarily differentiable there by taking the black hole close enough to

extremality. So one might wonder whether one can see a similar effect in our quantum field

theory calculations for the Hartle-Hawking state. In this section we will show that there

is indeed an analogous effect.

We will say that a state satisfies the Hadamard condition to order N if, in a convex

normal neighbourhood U of any point p, the quantity G
(1)
reg(x, x′) defined by (5.4) is a CN

function on U × U . Consider some smooth extension of the BTZ geometry beyond the

Cauchy horizon and, in this extended geometry, let U be a convex normal neighbourhood

of a point on the Cauchy horizon. Now let V = U ∩ {r ≥ r−}, which is independent of

the choice of extension. If r > r− then the Hartle-Hawking state satisfies the Hadamard

condition for any order N , so G
(1)
reg(x, x′) is smooth for x, x′ ∈ intV. We will say that the

Hartle-Hawking state violates the order N Hadamard condition at the Cauchy horizon if

G
(1)
reg(x, x′) cannot be extended to a CN function for x, x′ ∈ V .

If the Hadamard condition is satisfied to order 2 then 〈0|Tab|0〉 must be finite. Thus

our results above demonstrate that if β < 1 then the Hartle-Hawking state violates the

order 2 Hadamard condition at the Cauchy horizon. We now want to show that, for any

given β, the Hartle-Hawking state violates the order N Hadamard condition at the Cauchy

horizon if N is sufficiently large.

We will restrict attention to a scalar field with ∆ = 1. We will show that if β < N

then the Hartle-Hawking state violates the order N Hadamard condition at the Cauchy

horizon.31 To do this, we will calculate

ZN (r) ≡ 〈0|
{
∂Nr Φ(x),Φ(x)

}
|0〉 ≡ lim

x′→x
∂Nr G

(1)
reg(x, x′) (5.62)

where {, } denotes the anticommutator, and we are using the coordinates (u, r, φ′′) defined

in (2.18), which are smooth at CH+
R. Note that symmetry implies that ZN is a function

31If 1 < β < 2 then the Hartle-Hawking state violates the order 2 Hadamard condition at the Cauchy

horizon but 〈0|Tab|0〉 extends continuously to the Cauchy horizon. Violation of the order 2 Hadamard

condition is a necessary, but not sufficient, condition for 〈0|Tab|0〉 to diverge.
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only of r. A divergence in ZN (r) at r = r− implies that the order N Hadamard condition

is violated at the Cauchy horizon. We will show (numerically) that ZN (r) indeed diverges

as r → r− if β < N .

We will also prove that ZN (r) extends continuously to r = r− if β > N . Hence, for

any given N , ZN (r) is finite at the Cauchy horizon if the black hole is close enough to

extremality. Thus there is a close similarity with our results for classical perturbations.

This result suggests that, for β > N , the Hartle-Hawking state satisfies the order N

Hadamard condition at the Cauchy horizon although we will not attempt to prove that here.

As mentioned above, we will focus on the case with ∆ = 1, for which G
(1)
reg(x, x′)

simplifies considerably. Assuming x, x′ are spacelike separated, (5.22) gives

1

2
G(1)

reg(x, x′) =
∞∑
n=1

[f(zn) + f(z−n)] , (5.63)

where

f(zn) =
1

4πL

1√
z2
n − 1

, (5.64)

with zn given in eq. (5.15). In the (u, r, φ′′) coordinates we have

zn − iε =
1

r2
+ − r2

−

[
(rr′ − r2

−) cosh ξ+
n − (rr′ − r2

+) cosh ξ−n

− (r − r′)(r+ sinh ξ−n − r− sinh ξ+
n )
]
, (5.65a)

where we defined

ξ±n =
r±
L2

(u− u′)− r±
L

(δφ′′ + 2nπ) . (5.65b)

We now differentiate the series term by term and let x′ → x to obtain

ZN (r) = lim
x′→x

∂N

∂rN
G(1)

reg(x, x′) = 2

∞∑
n=1

[
f (N)(zn)

(
∂zn
∂r

)N
+ f (N)(z−n)

(
∂z−n
∂r

)N]
x′=x

,

(5.66)

where we used the fact that zn is a linear function of r. Now we need to study the

convergence of the series. We have(
∂zn
∂r

)
x′=x

=
1

r2
+ − r2

−
[r cosh(αn)− r− sinh(αn)− r cosh(αnχ) + r+ sinh(αnχ)] (5.67)

with α and χ defined in (5.29). In the region r− ≤ r ≤ r0 for any fixed r0 > r− we have∣∣∣∣(∂zn∂r
)
x′=x

∣∣∣∣ < Ceα|n| (5.68)

for some constant C depending only on r± and r0. With x′ = x we know that zn = z̄n
given by (5.20). Since z̄n →∞ as n→ ±∞ we have

|f (N)(z̄n)| < C ′z̄−(N+1)
n < C ′′e−(N+1)α|n|χ (5.69)
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Figure 8. Left panel: |σN | computed for several values of N . Right panel: |(β −N)σN | as a

function of β computed for several values of N . In both panels, the solid blue curve corresponds to

N = 1, the orange dashed line to N = 2 and the dotted green line to N = 3. Finally, the vertical

lines represent β = 1, 2, 3, from left to right. In all cases we fixed α = 2π.

where the first inequality follows from (5.64) and the second inequality from (5.25). The

constant C ′′ depends only on N , r± and r0. Combining our estimates, we see that (for

x′ = x) the magnitude of the nth term in the sum on the r.h.s. of (5.66) is bounded by

C ′′′e−(N+1)αnχeNαn. Thus the series is uniformly convergent on r− ≤ r ≤ r0 if χ(N + 1) >

N . This is equivalent to β > N (as ∆ = 1). Uniform convergence implies that the

series defines a continous function on r− ≤ r ≤ r0. Hence if β > N then ZN (r) extends

continuously to r = r− as claimed above.

We now investigate numerically what happens as β → N+. We define σN/L
N to be

the result obtained by substituting r = r− into the r.h.s. of (5.66). Uniform convergence

implies that, for β > N , we have

lim
r→r−

LNZN (r) = σN (5.70)

The left panel of figure 8 shows the behaviour, for N = 1, 2, 3, of σN as β → N+ with α

fixed. We see that σN diverges in this limit. From the right panel we see that |(β −N)σN |
remains finite and non-zero in this limit. Hence σN diverges as (β − N)−1 as β → N+

at fixed α. This is very similar to the behaviour exhibited by 〈0|Tab|0〉 as β → 1+ (see

figure 6).

Finally we consider the behaviour of ZN (r) for β < N . Define (recall ζ = r/r+)

ΞN (r) ≡ LN (ζ − χ)N−βZN (r) , ΞN (r) ≡ mean
log10(ζ−χ)<−100

ΞN (r) . (5.71)

We find numerically that, at least near r & r−, ΞN (x) is positive (negative) for even (odd)

N . Figure 9 shows the behaviour of ΞN (r) as r → r− (i.e. ζ → χ) with β = 1/2, α = 2π

and N = 1, 2, 3. From the figure we see that ZN (r) exhibits divergent oscillations as

r → r−. The amplitude of these oscillations diverges as (r − r−)β−N . We have repeated
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Figure 9. Left panel: |ΞN (r)|+N−1, computed for several values of N , as a function of log10(ζ−χ).

The N−1 offset has been added to prevent the curves lying on top of each other. Right panel:∣∣∣ΞN (r)− ΞN (r)
∣∣∣ in the region −190 < log10(ζ − χ) < −185, corresponding to the red band on the

left panel. In both panels, the blue disks corresponds to N = 1, the orange squares to N = 2 and

the green diamonds to N = 3. In all cases we we have α = 2π and β = 1/2.

this calculation for several different values of β, and find similar results. Note that the

period of the oscillations appears to be independent of N and it matches the frequency of

the oscillations seen in 〈0|Tab|0〉 for the same values of β, α (figure 7).

6 Discussion

We have shown that classical linear perturbations of a BTZ black hole can be made arbi-

trarily differentiable at the Cauchy horizon by taking the black hole sufficiently close to

extremality. The high differentiability near extremality suggests that the linear approxi-

mation should be valid, i.e., that nonlinearity will not modify our conclusion that strong

cosmic censorship is violated badly by near-extremal BTZ black holes.

The viewpoint of effective field theory is that classical equations should be supple-

mented by higher derivative terms that arise from “integrating out” high energy degrees

of freedom. So generically one would expect terms in the action involving higher deriva-

tives of the scalar field that we studied in section 3.5. Generically this scalar field is only

finitely differentiable at the Cauchy horizon so we expect that higher-derivative terms with

sufficiently many derivatives will diverge at the Cauchy horizon. One might take this as

an indication that the classical approximation is breaking down at the Cauchy horizon.

However, we are reluctant to reach this conclusion. There are other situations in physics

where one could say the same thing. For example, the formation of a shock in a compress-

ible perfect fluid. In this case, first derivatives of the fields diverge, which is a much worse

loss of smoothness than the one we have been discussing. Nevertheless, one can develop

a theory of shocks without leaving the setting of a perfect fluid. The effect of “higher

derivative corrections”, in this case viscosity, is simply to smooth out the shock without

changing the qualitative predictions of the perfect fluid equations.
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Furthermore, in our case, the number of derivatives that one has to take to see a

divergence can be made arbitrarily large by taking the black hole sufficiently close to

extremality. If 2nd derivatives diverge then one might question the use of the classical

approximation. But it seems far-fetched to object to the classical approximation because

the first 99 derivatives are bounded but the 100th derivative diverges! Having said this,

if the classical approximation is valid when we have non-smooth behaviour at the Cauchy

horizon then, presumably, it should also be valid (physically) to allow non-smooth initial

data. If we do this then, as we have described in section 3.6, there does seem to be a way of

rescuing strong cosmic censorship [24]. So should we allow rough initial data? In the case

of a perfect fluid, starting from smooth data we can form shocks dynamically and so one

is forced to enlarge the class of permissible initial data to include rough data to describe

pre-existing shocks. However, in our case, the lack of smoothness can occur only on the

boundary of the region of predictability and so we are not forced to enlarge the class of

permissible initial data. Therefore it is less clear that rough data is physical.

Our result that, for a near-extremal black hole, 〈0|Tab|0〉 remains finite at the Cauchy

horizon is surprising in view of the result for a conformally coupled scalar in a 2d toy

model [25], for which 〈0|Tab|0〉 always diverges at the Cauchy horizon. In the 4d case, a

recent study [49] found that (for a massless scalar) 〈0|T a
a |0〉 diverges at the Cauchy horizon

of a specific non-extremal Reissner-Nordström black hole and stated that this divergence

is actually present for any non-extremal Reissner-Nordström solution. This differs from

what we find for the BTZ black hole. However, classically, the BTZ black hole exhibits

behaviour more similar to Reissner-Nordström-de Sitter, for which strong cosmic censorship

fails near extremality [11, 12]. In would be interesting to see whether this similarity holds

also for the behaviour of 〈0|Tab|0〉 by extending the analysis of [49] to include a positive

cosmological constant.

Another interesting comparison is with the behaviour of 〈0|Tab|0〉 in the BTZ back-

ground for a strongly coupled, large N , CFT with a holographic dual. This has been cal-

culated in ref. [50], from which we can deduce the behaviour at the Cauchy horizon. The

result is that, to leading order in 1/N , 〈0|Tab|0〉 is finite (indeed smooth) at the Cauchy

horizon of any rotating BTZ black hole. But this is only the leading order behaviour. Our

results suggest that a lack of smoothness (or a divergence) at the Cauchy horizon should

appear at subleading order in the 1/N expansion.

Turning to other possibilities for future work, it would be nice to understand analyti-

cally the behaviour shown in figures 7 and 9. It would be interesting to calculate 〈0|Tab|0〉
in the rotating BTZ geometry for other types of free field, especially fermionic fields. A

much harder calculation would be to go beyond leading order in the semi-classical Einstein

equation and determine the backreaction of quantum fields to second order in ~. This

would probably require computing 〈0|Tab(x)Tcd(y)|0〉 in the BTZ geometry.
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A Bounds on derivatives of zn

In this appendix we will explain the proof of the bounds (5.42) and (5.43). A straightfor-

ward calculation gives

∂V−zn =
1

r2
+ − r2

−
(A.1)

×

{
1

2
Ġ−(r)G−(r′)

[
U−V

′
− exp

(
r+

L
∆φ−n

)
+ U ′−V− exp

(
− r+

L
∆φ−n

)]
∂V−r

+
1

2
G−(r)G−(r′)U ′− exp

(
− r+

L
∆φ−n

)
−
r
√
r2

+ − r′2√
r2

+ − r2
cosh

(
r−
L

∆φ−n

)
∂V−r

}

where Ġ− denotes the derivative of G−. The definition of r(U−, V−) (2.13) gives

∂V−r =
U−

Ḟ−(r)
, (A.2)

where Ḟ− is the derivative of F−. From the definition of G−(r) we obtain

Ġ− =
r

F−G−
−

(r2 − r2
−)Ḟ−

2F 2
−G−

. (A.3)

Using these results, together with (2.13) we obtain

lim
x′→x

∂V−zn =
U−

r2
+ − r2

−

{
r

Ḟ−(r)

[
cosh

(
2πr+n

L

)
− cosh

(
2πr−n

L

)]
−G−(r)2

2
exp

(
2πr+n

L

)}
(A.4)

hence

| lim
x′→x

∂V−zn| ≤
|U−|

r2
+ − r2

−

{
r

|Ḟ−(r)|
cosh

(
2πr+n

L

)
+

1

2
G−(r)2 exp

(
2πr+|n|

L

)}
≤ |U−|
r2

+ − r2
−

(
2r

|Ḟ−(r)|
+
G−(r)2

2

)
exp

(
2πr+|n|

L

)
. (A.5)

From its definition, we see that G−(r) is continuous on the interval [r−, r+] so G−(r)2 is

bounded on this interval. One can show that Ḟ−(r) 6= 0 for r ∈ [r−, r+) and Ḟ−(r) diverges

as r → r+. Hence r/Ḟ−(r) is also bounded on [r−, r+]. This establishes the second equation

in (5.42). The other equations in (5.42) follow similarly.
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Now we consider second derivatives of zn. Taking the V ′− derivative of (A.1) and then

taking the limit x′ → x gives

lim
x′→x

∂V−∂V ′−zn =
U2
−

r2
+ − r2

−

{
r2

Ḟ−(r)2(r2
+ − r2)

cosh

(
2πr−n

L

)
+

1

F−(r)G−(r)2
(A.6)

×
(

r

Ḟ−(r)
− G−(r)2

2

)(
r

Ḟ−(r)
+
G−(r)2

2

)
cosh

(
2πr+n

L

)}
.

To bound this we first use cosh(2πr±n/L) ≤ 2 exp(2πr+|n|/L). We then bound the r-

dependent coefficients as follows. First, using the properties of Ḟ− discussed above, we see

that r2/(Ḟ 2
−(r2

+ − r2)) is bounded on [r−, r0] because r− < r0 < r+. Second, we have

1

G−(r)2

∣∣∣∣ r

Ḟ−(r)
+
G−(r)2

2

∣∣∣∣ < C , (A.7)

for some constant C and r ∈ [r−, r0] using the properties of Ḟ−(r) and the fact that G−(r)

is continuous and non-vanishing on [r−, r0]. Thirdly we have

1

F−(r)

∣∣∣∣ r

Ḟ−(r)
− G−(r)2

2

∣∣∣∣ =
1

F−(r)

∣∣∣∣ r

Ḟ−(r)
−
r2 − r2

−
2F−(r)

∣∣∣∣ < C ′ , (A.8)

for some constant C ′ and r ∈ [r−, r0]. This is because the expression inside the modulus

has a first order zero at r = r− which cancels the corresponding zero of F−(r). Putting all

of this together we obtain the second equation in (5.43).

Similarly, taking the U ′− derivative of (A.1) and then taking the limit x′ → x gives

(after using (2.13))

lim
x′→x

∂V−∂U ′−zn =
1

r2
+ − r2

−

{
1

G−(r)2

(
r

Ḟ−(r)
− G−(r)2

2

)2

cosh

(
2πr+n

L

)
(A.9)

+
r

Ḟ−(r)
exp

(
−2πr+n

L

)
+

r2F−(r)

(r2
+ − r2)Ḟ−(r)2

cosh

(
2πr−n

L

)}
.

Using the arguments above it is easy to show that this satisfies the bound in (5.43) for

r ∈ [r−, r0]. The other equations in (5.43) are obtained similarly, most with slightly

less work.
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