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Abstract—The degradation of speech arising from additive
background noise and reverberation affects the performance
of important speech applications such as telecommunications,
hearing aids, voice-controlled systems and robot audition. In
this work, we focus on dereverberation. It is shown that
the parameterized polynomial matrix eigenvalue decomposition
(PEVD)-based speech enhancement algorithm exploits the lack
of correlation between speech and the late reflections to enhance
the speech component associated with the direct path and early
reflections. The algorithm’s performance is evaluated using sim-
ulations involving measured acoustic impulse responses and noise
from the ACE corpus. The simulations and informal listening ex-
amples have indicated that the PEVD-based algorithm performs
dereverberation over a range of SNRs without introducing any
noticeable processing artefacts.

Index Terms—Dereverberation, polynomial matrix eigenvalue
decomposition, convolutive noise, broadband signal processing,
microphone array.

I. INTRODUCTION

The processing of degraded speech remains challenging for
many applications such as telecommunications, hearing aids,
voice-controlled systems and robot audition [1], [2]. The
main causes of degradation are additive background noise and
reverberation arising from multi-path reflections in an enclosed
space [3]. Even without background noise, reverberation re-
sults in temporal smearing of the anechoic speech signal. This
structural corruption of the original speech signal can degrade
speech intelligibility in real-world situations.

To reduce the impact of reverberation and improve the
performance in these applications, several dereverberation ap-
proaches have been proposed [4]. These can be classified into
acoustic channel equalization, homomorphic transformation-
based and speech enhancement methods including those based
on linear prediction coding (LPC). In the channel equalization
approaches, the acoustic channel is first blindly estimated
using system identification [5]–[8]. This is followed by the
design of inverse filter(s), such as [9] for a single-channel
system and [10] for a multi-channel system based on the multi-
channel inverse theorem (MINT), or matched filter(s) in [11],
which are then used for equalization.
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In homomorphic methods, the reverberant signal is trans-
formed into the cepstrum domain where the anechoic speech
and reverberant components can be separated by liftering [12],
[13]. Performance of this approach has been shown to be
limited [14].

Speech enhancement approaches include synthesis-based
methods that use the LPC residual to generate the estimated
clean speech signal [15], [16]. These methods are usually
limited to mildly reverberant signals in order to avoid introduc-
ing artefacts [14]. Single-channel filtering-based enhancement
methods for dereverberation include spectral subtraction [17]
and harmonic filtering [18]. When multiple microphones are
available, array processing techniques [3], [19], the generalised
weighted prediction error (GWPE) dereverberation filter [20],
the multi-channel Wiener filter (MWF) [21], [22] and the
multi-channel Karhunen-Loève transform (KLT) [23], [24],
may be used in conjunction with post-filtering enhancement
techniques [25].

In [26], [27], a polynomial matrix eigenvalue decomposition
(PEVD)-based speech enhancement algorithm has been shown
capable of achieving noise reduction without introducing arte-
facts into the enhanced speech signal. This approach uses a
polynomial covariance matrix formulation that can simultane-
ously model the spatial, temporal and spectral correlations of
multi-channel signals. PEVD-based algorithms [28]–[31] then
perform the enhancement.

In [27], we demonstrated the performance of the PEVD
approach focused on noise reduction in a speech enhancement
task. In this work, the focus is now on dereverberation. The
PEVD-based algorithm [27] is presented for dereverberation
and evaluated through simulations using the full set of room
impulse responses in the ACE corpus [32], under both noise-
less and noisy conditions. The noiseless condition, which was
not investigated in [27], provides interesting insights into the
dereverberation analysis.

II. SIGNAL MODEL AND PROBLEM FORMULATION

In [27], the noisy and reverberant signal, xm(n), at the m-th
microphone for discrete-time sample n = 0, 1, . . . , N − 1, is

xm(n) = hTms0(n) + vm(n) (1)

= h̃Tm,dps0(n) + h̃Tm,ers0(n) + h̃Tm,lrs0(n) + vm(n)

= s̃m(n) + ṽm(n), m = 1, 2, . . . ,M, (2)



where hm = [hm,0, hm,1, . . . , hm,J ]T is the m-th acoustic
channel, which is modelled as a J-th order finite impulse
response filter and decomposed into the direct path, h̃m,dp,
early reflections, h̃m,er, and the late reflections, h̃m,lr [3],
s0(n) = [s0(n), s0(n − 1), . . . , s0(n − J)]T is the anechoic
speech signal, vm(n) is additive noise and [·]T denotes the
transpose operator. The noise signals are assumed to be zero-
mean, not perfectly coherent with each other and uncorre-
lated with the source signal [23]. Furthermore, exploiting the
lack of correlation between the late reflections and anechoic
speech signal gives s̃m(n) = h̃Tm,dps0(n) + h̃Tm,ers0(n) and
ṽm(n) = h̃Tm,lrs0(n)+vm(n), which are the speech and noise
components respectively.

The array output from M microphones can be written as
x(n) = [x1(n), . . . , xM (n)]T , with s̃(n), v(n) and ṽ(n)
similarly defined. In [27], the goal is to retrieve s̃(n) from
x(n). Here, the goal is to recover the anechoic speech, s0(n),
possibly including additive noise, from x(n).

III. PEVD-BASED SPEECH ENHANCEMENT

A. Formulation of Polynomial Matrices
Broadband speech signals received by microphone arrays
exhibit space, time and frequency correlations. Because the
different frequency components in speech are affected by
different phase shifts and each phase shift requires specific
temporal alignment, the correlations across different sensors
and at different time lags need to be considered. This is
computed using the space-time covariance matrix [27]

Rxx(τ) = E{x(n)xT (n− τ)}, (3)

where the (p, q)th element, rpq(τ) = E{xp(n)xq(n − τ)}, is
the cross-correlation between sensor p and q. Concatenating
the covariance matrix, Rxx(τ), for all choices of τ ∈ {−N +
1, . . . , N − 1}, results in a tensor of dimension M ×M ×
(2N − 1). Furthermore, because speech signals are typically
processed in the short-time Fourier transform (STFT) domain,
in order to capture the spectral correlations, the covariance
needs to be further expanded to a M ×M × (2N − 1) ×K
tensor, where K is the number of frequency bins in the STFT.

A more compact representation of the speech signals, which
captures the space, time and frequency correlations, can be
obtained by using the z-transform rather than the STFT. The
z-transform of (3) is a para-Hermitian polynomial matrix [28]

Rxx(z) =

∞∑
τ=−∞

Rxx(τ)z−τ . (4)

This polynomial matrix is a matrix with polynomial elements
or, equivalently, a polynomial with matrix coefficients.

B. Polynomial Matrix Eigenvalue Decomposition
The PEVD of a para-Hermitian polynomial matrix [28] is

Rxx(z) ≈ UP (z)Λ(z)U(z), (5)

where the rows of U(z) are the eigenvectors and the diagonal
elements of Λ(z) are the eigenvalues, and [·]P is the para-
Hermitian operator such that UP

` (z) = UH
` (z−1). The PEVD

can be computed using an iterative algorithm [28]–[31] based
on similarity transforms involving L polynomial matrices,
U(z) = UL(z). . .U1(z).

At the `-th iteration, the PEVD algorithm first searches
for the largest off-diagonal element if it exceeds a predefined
threshold, δ. U `(z) is then constructed using delay polynomial
matrices and unitary matrices, which are designed to zero out
the off-diagonal elements on the plane of z0, and applied to
the entire polynomial matrix. To keep the polynomial order
compact, a fraction of the total Frobenius-norm squared, µ,
is truncated as detailed in [28]. After L iterations, Rxx(z) is
approximately diagonalized according to

Λ(z) ≈ U(z)Rxx(z)UP (z) = U(z)E{x(z)xP (z)}UP (z),

where x(z) is the z-transform of x(n) based on (4). The
zeroing unitary matrix computed at each iteration can take
the form of a Givens rotation in second-order sequential
best rotation (SBR2) [28], a Householder-like optimisation
procedure as in [29], a combination of Householder reflection
and Givens rotation matrices in [31] or an eigenvector matrix
in the sequential matrix diagonalization (SMD) algorithm [30].

C. PEVD-based Algorithm for Dereverberation

Using (3) and (4), the z-transform of the space-time covariance
matrix for the microphone array output is

Rxx(z) = Rs̃s̃(z) + Rṽṽ(z), (6)

where the z-transform of the speech and noise space-time
covariance matrices are Rs̃s̃(z) and Rṽṽ(z) respectively. As-
suming stationarity within each processing frame, in practice,
(3) is usually estimated using N samples per frame based on

R̂xx(τ) ≈ 1

N

N−1∑
n=0

x(n)xT (n− τ). (7)

Furthermore, (4) can be approximated using

R̃xx(z) ≈
W∑

τ=−W
Rxx(τ)z−τ , (8)

where W is the truncation window which reflects the extent of
temporal correlation of the speech signals. Hence, both N and
W are parameters for the proposed algorithm. Consequently,
the PEVD of (6) gives

Rxx(z) ≈
[
UP
s̃ (z) UP

ṽ (z)
] [ Λs̃(z) 0

0 Λṽ(z)

] [
U s̃(z)
U ṽ(z)

]
,

where {.}s̃ and {.}ṽ represent the orthogonal signal and
noise subspace components. The speech subspace comprises
anechoic speech convolved with the direct path and early
reflections while the noise subspace contains ambient noise
and late reflections associated with the reverberant channel.

The eigenvector polynomial matrix, U(z), can also be
interpreted as a filterbank for x(z) so y(z) = U(z)x(z)
performs decorrelation such that [28]

E{y(z)yP (z)} = E{U(z)x(z)xP (z)UP (z)} ≈ Λ(z). (9)



Because PEVD algorithms sort Λ(z) in descending order,
dereverberation is achieved by combining components in the
signal subspace and nulling components in the noise subspace.
The PEVD-based algorithm is summarized in Algorithm 1.

Algorithm 1 PEVD-based algorithm [27] for dereverberation.
Inputs: x(n) ∈ RM , N,W, δ, µ, L.

R̃xx(τ)← E{x(n)xT (n− τ)} // see (7)
R̃xx(z)← Z{Rxx(τ)} // see (8)
U(z),Λ(z)← PEVD {R̃xx(z), δ, µ, L} // use any PEVD
algorithm [28]–[31]
x(z)← x(n) // see (4)
y(z)← U(z)x(z) // speech dereverberation
return y(z).

IV. SIMULATIONS AND RESULTS

A. Experiment Setup

To evaluate the proposed approach, anechoic speech signals,
sampled at 16 kHz, from the TIMIT corpus [33] are used with
the noise and room impulse response measurements from the
3-channel mobile recordings in the ACE corpus [32].

To highlight the dereverberation performance, an experi-
ment without background noise for all rooms is conducted for
200 speech signals. For the simulations involving background
noise, 50 trials are conducted. In each trial, sentences from
a randomly selected speaker are concatenated to a signal
length between 8 to 10 s. The anechoic speech signal is
convolved with the impulse response at each microphone
channel before being corrupted by additive noise using [34].
The noise conditions include fan and babble noise at -5 dB,
0 dB, 5 dB and 20 dB signal to noise ratio (SNR).

The PEVD parameters, chosen following [26]–[28], are δ =√
N1/3× 10−2 where N1 is the square of the trace-norm of

Rxx(0), µ = 10−3 and L = 500. In the experiments, N =
W = 1600 samples are used. With this parameter selection,
correlations to within 100 ms, which are assumed to include
the direct-path and early reflections components, are captured
and used by the algorithm.

The proposed PEVD method is compared against the multi-
channel subspace (MCSUB) method [23] and the Oracle MWF
(OMWF), which uses complete prior knowledge of the clean
dry speech and is based on the concatenation of a minimum
variance distortionless response (MVDR) followed by a single-
channel Wiener filter [25]. We also compared with the diagonal
matrix method in GWPE using the published parameters [20].

B. Performance Evaluation Metrics

The most direct objective measure of dereverberation is direct-
to-reverberant ratio (DRR) but the modified impulse responses
after dereverberation cannot be precisely determined. Instead,
the normalised signal to reverberant ratio (NSRR), which is
a signal-based measure and is shown to be equivalent to
DRR under certain conditions [35], and the Bark spectral dis-
tortion (BSD) are used. Frequency-weighted segmental SNR
(FwSegSNR) [36] is also included to measure deviation from

TABLE I
DEREVERBERATION PERFORMANCE OF A NOISELESS, REVERBERANT

EXAMPLE IN LECTURE ROOM 2.

Algorithm ∆NSRR ∆BSD ∆FwSegSNR ∆PESQ
GWPE 0.68 dB -0.25 dB 1.46 dB 0.70

MCSUB -3.20 dB 0.28 dB 1.47 dB 0.01
OMWF 0.10 dB 0.04 dB 1.46 dB 0.16
PEVD 1.01 dB -0.10 dB 1.47 dB 0.11
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Fig. 1. Zoom-in spectrograms of clean speech, noisy and processed signals
and residue using GWPE and PEVD for no noise example in Lecture Room 2.

the dry clean speech, especially under the noiseless condition.
Perceptual evaluation of speech quality (PESQ) [37] is also
used to account for artefacts introduced by the processing.

The metrics are computed before and after processing using
the proposed approach and benchmark algorithms, and the
differences are denoted using ∆. The algorithms demonstrate
an improvement when (i) ∆NSRR is positive which indicates
the strengthening of the direct-path relative to the reverberant
component, (ii) ∆BSD is negative which indicates reduction
in spectral distortions, (iii) ∆FwSegSNR is positive which
indicates noise reduction or reverberation suppression and (iv)
∆PESQ is positive which shows better speech quality.

C. Results and Discussions

Fig. 1 shows the results for a single reverberant speech exam-
ple in the absence of background noise in Lecture Room 2.
The spectrograms in Fig. 1 indicate that both GWPE and
PEVD are able to suppress reverberation while retaining the
overall speech structure. However, GWPE seems to have
applied a more aggressive suppression which results in a
cleaner spectrogram plot. This is supported by Table I where



GWPE indicates lower spectral distortion with ∆BSD of
−0.25 dB compared to −0.10 dB using PEVD. To under-
stand the effects of the algorithms, the difference between
the reverberant signal and the processed signal is computed
and the spectrogram of the subtracted signal is also plotted.
Fig. 1 shows that the GWPE heavily suppresses most of
the earlier but not the later components. PEVD, on the
other hand, provided a gentler dereverberation overall as
indicated by the greater smearing in the subtracted signal and
larger ∆NSRR. Furthermore, listening examples, provided on
https://www.commsp.ee.ic.ac.uk/%7esap/pevddrb/, have indi-
cated similar observations as the spectrograms.

Fig. 2 shows that, without noise, PEVD gives the greatest
improvement in ∆NSRR in all rooms. This is followed by
GWPE. In terms of ∆BSD and ∆FwSegSNR, GWPE has
the best improvement followed by PEVD. Both OMWF and
MCSUB, on the other hand, degrade NSRR, BSD and usually
FwSegSNR as well. For ∆PESQ, GWPE offers the greatest
improvement, followed by PEVD and OMWF with compara-
ble performance and MCSUB which degrades the score.

With background babble noise or fan noise as shown in
Fig. 3 and Fig. 4 respectively, PEVD outperforms all algo-
rithms in terms of ∆NSRR over the entire range of SNRs in
both rooms. This is followed by GWPE which offers a slight
gain, OMWF and MCSUB that usually degrades NSRR.

In terms of ∆BSD, PEVD performs better than the GWPE
at −5 dB SNR babble and fan noise and they have comparable
performance at the other SNRs. This is different from the
noiseless case when GWPE has the best performance. This
suggests some superior noise robustness for PEVD. OMWF
offers some improvement at −5 dB SNR but does not improve
∆BSD at higher SNRs. MCSUB makes the ∆BSD worse in
the presence of background noise in both rooms.

In terms of ∆FwSegSNR, PEVD outperforms all the other
algorithms in both noise types and rooms except for OMWF
when there is babble noise in Lecture Room 2 as shown in
Fig. 3. This is because OMWF uses knowledge of the clean
speech signal whereas PEVD is a completely blind method.
MCSUB offers improvement in ∆FwSegSNR in most cases
except at −5 dB babble noise in Office 1. On the other hand,
the GWPE makes ∆FwSegSNR worse in most cases except
when the babble noise is at −5 dB SNR.

In terms of ∆PESQ, all algorithms perform competitively
with an average improvement of 0.20 when the babble noise
in Fig. 3 and fan noise in Fig. 4 are at −5 dB and 5 dB SNRs.
At 20 dB SNR, GWPE offers the greatest improvement by up
to 0.5 in PESQ scores.

The summary results for comprehensive testing over the
complete ACE corpus are given in Table II and, for the
example of 0 dB babble noise, indicate that PEVD provides
the best dereverberation performance.

V. CONCLUSION

The PEVD-based algorithm designed for dereverberation is
introduced. Simulation results have indicated that the PEVD-
based approach is effective for dereverberation. PEVD out-
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Fig. 2. Box plot for no noise simulation in all ACE corpus rooms.
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Fig. 3. Box plot for babble noise simulation in Lecture Room 2 and Office 1.

PEVD OMWF MCSUB GWPE
-10

-5

0

5

10

PEVD OMWF MCSUB GWPE
-1

-0.5

0

0.5

1

1.5

2

2.5
LR2,-5dB
LR2,5dB
LR2,20dB
O1,-5dB
O1,5dB
O1,20dB

PEVD OMWF MCSUB GWPE

-4

-2

0

2

4

6

8

PEVD OMWF MCSUB GWPE

-0.2

0

0.2

0.4

0.6

Fig. 4. Box plot for fan noise simulation in Lecture Room 2 and Office 1.

https://www.commsp.ee.ic.ac.uk/%7esap/pevddrb/


TABLE II
DEREVERBERATION PERFORMANCE, MEASURED USING MEAN (∆NSRR, ∆BSD), EVALUATED ON THE ACE CORPUS FOR 0 DB BABBLE NOISE.

Room Office 1 Meeting Room 2 Office 2 Meeting Room 1 Lecture Room 1 Building Lobby Lecture Room 2
T60 0.332 s 0.371 s 0.390 s 0.437 s 0.638 s 0.646 s 1.22 s
GWPE 0.31, -0.15 0.71, -0.21 0.35, -0.14 0.53, -0.19 0.2, -0.07 0.26, -0.12 0.33, -0.15
MCSUB -3.09, 0.15 -6.01, 1.30 -2.04, 0.05 -2.65, 0.14 -3.28, 0.10 -4.27, 0.57 -4.72, 0.28
OMWF -0.51, -0.14 -0.41, 0.11 1.53, -0.39 0.51, -0.13 0.32, -0.26 0.88, -0.22 -0.1, -0.25
PEVD 2.37, -0.56 1.68, -0.25 3.94, -0.68 2.85, -0.73 2.41, -0.48 2.02, -0.54 2.85, -0.65

performs other algorithms in ∆NSRR and has comparable
performance with GWPE in ∆BSD over a wide range of
SNRs. The analysis on the noiseless reverberant example
and informal listening examples including noisy cases have
also indicated that the proposed PEVD algorithm provides
consistent suppression of reverberation without introducing
any noticeable artefacts.
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