
The Secure Remote Update Protocol
A Specification — Version 2.1

Andrew John Poulter (a.j.poulter@soton.ac.uk)

March 27, 2020

Contents

1 MQTT Topics 2

2 Update Messages 2
2.1 Update Initiate Message . 2
2.2 Update Activate Message . 3

3 Response Message 4

4 Action Message 4

5 Data Message 4

6 Identification Request Message 6

7 Group Messages 7

8 Join Messages 7
8.1 Unmediated Join Messages . 7

8.1.1 Join Request . 7
8.1.2 Join Command . 8

8.2 Human-Mediated Join Messages . 8
8.2.1 Human-Mediated Join Request Message 8
8.2.2 Human-Mediated Join Response Message 9

8.3 Machine-Mediated Join Messages . 10
8.3.1 Observed Join Request Message 10
8.3.2 Observed Join Response Message 10
8.3.3 Observation Request Message . 11

9 Resignation & Termination Messages 12
9.1 Resign Request . 12

1

9.2 Termination Command . 13

10 Deregistration Messages 13
10.1 Deregister Request . 14
10.2 Deregister Command . 14

11 Registration 14
11.1 Registration Requirements . 15
11.2 Example Reference Registration scheme 15

2

1 MQTT Topics

All messages sent using the Secure Remote Update Protocol will be sent using MQTT
topics corresponding to individual devices. When a device connects to the broker within
a SRUP system, it shall be required to subscribe to a topic related to its identity — using
the form SRUP/<DEVICE ID>.

For example if a device has an identity of 747b22fc2a7541d2, then it shall be required
to subscribe to the topic:
SRUP/747b22fc2a7541d2.
In order to signal to a C2 Server that a device wishes to apply to JOIN that server’s

control group — then it will send a message to a topic (reserved for use only for the initial
JOIN REQUEST message) in the form of SRUP/servers/<SERVER ID>/<DEVICE ID>.

For example if the device with an identity of 747b22fc2a7541d2 wishes to send a JOIN

REQUEST to a server with an identity of b9d077e223834cf6: then it will use the MQTT
topic:
SRUP/servers/b9d077e223834cf6/747b22fc2a7541d2.
Upon accepting the JOIN REQUEST the server shall be required to subscribe to the

device’s topic.
All subsequent messages to or from the device shall be sent via the device’s topic.

2 Update Messages

The SRUP Update Messages are provided to initiate and trigger a software update
operation. The Server must begin by sending the INITIATE message to the Device. On
receipt of an INITIATE message the Device must attempt to retrieve the update data
from the specified URL. The Device must then send a SRUP Response message to
the Server to indicate the outcome of the retrieval operation. If the status SRUP_UPATE_

SUCCESS is received the Server may then send an ACTIVATE message to signal that the
Device should apply the retrieved update.

2.1 Update Initiate Message

On receiving an INITIATE message the Device must attempt to retrieve the data from
the specified URL; and compare the digest of this data with the value specified. If the
operation is successful it must send a SRUP Response message (see 3) — with a sta-
tus code of 0x00 (SRUP_UPATE_SUCCESS). If the operation fails it must send a RESPONSE

message with a status code indicating the source of the failure.

• 0xFD (SRUP_UPATE_FAIL_SERVER) should be sent if the server cannot be reached

• 0xFE (SRUP_UPATE_FAIL_FILE) should be used if the server cannot supply the file
specified

3

• 0xFF (SRUP_UPATE_FAIL_DIGEST) should be used if the digest of the retrieved file
does not match the value specified in the INITIATE message

• Optionally 0xFC (SRUP_UPATE_FAIL_HTTP_ERROR) may be sent in place of 0xFD
(SRUP_UPATE_FAIL_SERVER) to indicate that a more detailed HTTP error code is
available

If the 0xFC (SRUP_UPATE_FAIL_DETAILED) status code is sent, the Device must then
send two SRUP Data messages (see Section 5) to communicate the HTTP response
to the Server. The first DATA message must have a Data ID of HTTP_STATUS and contain
the HTTP status code returned by the web-server in the Data field. The second DATA

message must have a Data ID of HTTP_RESPONSE — and the received HTTP response
must be contained within the Data field.

Full details of the INITIATE message are shown in Table 2.1.

Field Type Notes
Message Type uint8_t 0x01 — SRUP_MESSAGE_TYPE_INITIATE

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

URL char* Variable length
URL Length uint16_t

Digest uint8_t* Variable length
Digest Length uint16_t

Table 2.1: The SRUP UPDATE INITIATE Message

2.2 Update Activate Message

On receiving an ACTIVATE message the Device must apply application or system spe-
cific procedures to apply to update previously received and specified by the TOKEN.
The Device optionally may then send a further RESPONSE message — signalling the
outcome of attempting to apply the update. A STATUS code of 0x10 — SRUP_ACTIVATE_

SUCCESS should be used to signal that the activation was successful; and 0x1F — SRUP_

ACTIVATE_FAIL should be used if the activation failed.
Full details of the INITIATE message are shown in Table 2.2.

4

Field Type Notes
Message Type uint8_t 0x03 — SRUP_MESSAGE_TYPE_ACTIVATE

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Table 2.2: The SRUP UPDATE ACTIVATE Message

3 Response Message

The SRUP Response message is used to signal the outcome of a number of operations
within SRUP. Permissible status values are defined for each operation type which uses
the RESPONSE message.

Full details of the RESPONSE message are shown in Table 3.1.

4 Action Message

The SRUP Action message is used to permit a Server to send an arbitrary command
to a Device. The Action ID field denotes the action that is being requested. These
values are not defined by the protocol — but are application or system defined values.
The recipient may optionally send a RESPONSE message to signal the outcome of the
action (0x20 — SRUP_ACTION_SUCCESS or 0x2F — SRUP_ACTION_FAIL). Actions requiring
parametric data can be communicated to the recipient by first sending one or more Data

messages containing the parameter; before sending the ACTION message. Messages
with an Action ID value unknown to the recipient should be ignored. The recipient
may optionally send a RESPONSE message with a status value of 0x2E — SRUP_ACTION_

UKNOWN. Full details of the DATA message are shown in Table 4.1.

5 Data Message

The SRUP Data message is designed to permit Servers and Devices to exchange ar-
bitrary data. Each message may consist of a simple or complex data type, identified by
means of the Data ID field. Messages with a Data ID value unknown to the recipient
should be ignored. The recipient may send a RESPONSE message with a status value of
0x3F — SRUP_DATA_TYPE_UKNOWN.

Note that although the values that can be taken by the Data ID field are not de-
fined within the protocol, the values HTTP_ERROR & HTTP_RESPONSE are reserved for
use in conjunction with the SRUP_UPATE_FAIL_DETAILED status of the SRUP_RESPONSE

5

Field Type Notes
Message Type uint8_t 0x02 — SRUP_MESSAGE_TYPE_RESPONSE

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Status uint8_t

Values:
0x00 — SRUP_UPATE_SUCCESS

0x10 — SRUP_ACTIVATE_SUCCESS

0x1F — SRUP_ACTIVATE_FAIL

0x20 — SRUP_ACTION_SUCCESS

0x2E — SRUP_ACTION_UKNOWN

0x2F — SRUP_ACTION_FAIL

0x3F — SRUP_DATA_TYPE_UKNOWN

0x40 — SRUP_GROUP_ADD_SUCCESS

0x41 — SRUP_GROUP_DEL_SUCCESS

0x4C — SRUP_GROUP_DEL_INVALID

0x4D — SRUP_GROUP_DEL_FAIL

0x4E — SRUP_GROUP_ADD_FAIL_LIMIT

0x4F — SRUP_GROUP_ADD_FAIL

0x50 — SRUP_JOIN_SUCCESS

0x5E — SRUP_JOIN_REFUSED

0x5F — SRUP_JOIN_FAIL

0x60 — SRUP_OBSERVED_JOIN_VALID

0x6E — SRUP_OBSERVED_JOIN_INVALID

0x6F — SRUP_OBSERVED_JOIN_FAIL

0x70 — SRUP_RESIGN_SUCCESS

0x7F — SRUP_RESIGN_FAIL

0x80 — SRUP_DEREGISTER_SUCCESS

0x8F — SRUP_DEREGISTER_FAIL

0xFC — SRUP_UPATE_FAIL_HTTP_ERROR

0xFD — SRUP_UPATE_FAIL_SERVER

0xFE — SRUP_UPATE_FAIL_FILE

0xFF — SRUP_UPATE_FAIL_DIGEST

Table 3.1: The SURP RESPONSE Message

message. (See Section 2.2); and IDENTIFICATION_RESPONSE is reserved for use in
connection with the Identification Request message (See Section 6).

Full details of the DATA message are shown in Table 5.1.

6

Field Type Notes
Message Type uint8_t 0x04 — SRUP_MESSAGE_TYPE_ACTION

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Action ID uint8_t* Variable length
Action ID Length uint16_t

Table 4.1: The SRUP ACTION Message

Field Type Notes
Message Type uint8_t 0x05 — SRUP_MESSAGE_TYPE_DATA

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Data ID uint8_t* Variable length
Data ID Length uint16_t

Data uint8_t* Variable length
Data Length uint16_t

Table 5.1: The SRUP DATA Message

6 Identification Request Message

There is a requirement for an operator of a device to be able to query that device to
identify settings or parameters in use on that device. Whilst the details of these would be
application specific, examples might include the specific version or build of the software
running on the device, specific hardware version or other details, etc. The Identify
Request Message is a message type used to initiate the exchange of Identification
information. On receiving the message, the recipient must reply with an DATA message
(see Section 5) with the Data ID field containing IDENTIFICATION_RESPONSE; and the
identification information contained within the Data field.

Full details of the IDENTIFICATION_REQUEST message are shown in Table 6.1.

7

Field Type Notes
Message Type uint8_t 0x06 — SRUP_MESSAGE_TYPE_ID_REQUEST

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Table 6.1: The SRUP IDENTIFY REQUEST Message

7 Group Messages

The previous version of the SRUP specification, described a series of “group” messages
to be used in conjunction with the concept of communications groups (enabling a server
to send communications to multiple devices directly).

However due to the requirements to enable secure MQTT messaging (MQTT over
TLS) — this has been removed. This eliminates the requirement for a non-standard
MQTT broker application to support dynamic access-control lists. C2 Servers may still
implement their own virtual groups: but all communication with devices is on a per-
device level using a topic corresponding to the device in question.

8 Join Messages

The Join Message family is used to negotiate Devices joining the control of (and thus
becoming subordinate to) a specified C2 Server. A number of different message types
are specified in order to provide unmediated Joining; and both human-mediated, &
machine-mediated Joining.

8.1 Unmediated Join Messages

8.1.1 Join Request

A Device may send a Join Request message to a given Server requesting to subordi-
nate itself to that Server. Note that unlike other SRUP messages sent from a Device
this message must be sent on the MQTT Topic associated with the Server’s identity
(since, by definition, the Server is not yet subscribed to the Device’s topic).

On receiving a Join Request message the Server must either accepting the Join —
or refuse it.

If accepting it must attempt to subscribe to a topic associated with the Sender ID of
the JOIN REQUEST message, and send a RESPONSE message with the Status set to 0x50

— SRUP_JOIN_SUCCESS if successful; or a 0x5F — SRUP_JOIN_FAIL if the subscribe fails.

8

If refusing the request the Server must send a RESPONSE message with the Status set
to 0x5E — SRUP_JOIN_REFUSED.

Full details of the UNMEDIATED JOIN REQUEST message are shown in Table 8.1.

Field Type Notes
Message Type uint8_t 0x09 — SRUP_MESSAGE_TYPE_JOIN_REQ

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Table 8.1: The SRUP UNMEDIATED JOIN REQUEST Message

8.1.2 Join Command

A Server may send a Join Command to a Device: such as in the scenario where the
user initiates the Join process by providing the Server with the identity of the Device
directly via the Server’s user-interface.

On receiving a Join Command message the Device must signal acceptance of this
operation by sending a RESPONSE message with the Status set to 0x41 — SRUP_GROUP_

DEL_SUCCESS. Since the Server controls to which Devices it sends through the use of
the MQTT topic no further action is required by the Device. Optionally the Device may
decline the command (subject to system specific implementation) — which may be
signalled via a RESPONSE message with the Status set to 0x5E — SRUP_JOIN_REFUSED.
Note that the Device must respond. The Server must be prepared not to receive a
response (such as may be the case if the Device in question is off-line): in which case
it should assume that the Join has failed.

Full details of the UNMEDIATED JOIN COMMAND message are shown in Table 8.2.

8.2 Human-Mediated Join Messages

8.2.1 Human-Mediated Join Request Message

If the Server requires additional confirmation of the identity of the Device before accept-
ing the Join, then a human-mediated Join operation can be used. In this scenario the
Device initiates the process by sending a Human-Mediated Join Request Message to
the Server. (Note as described in Section 8.1.1 the Device must send this message us-
ing the MQTT topic corresponding to the Server’s identity). On receiving this message
the Server must then send a Mediated Join Response message to the Device. (See
Section 8.2.2).

Full details of the HUMAN-MEDIATED JOIN REQUEST message are shown in Table 8.3.

9

Field Type Notes
Message Type uint8_t 0x0A — SRUP_MESSAGE_TYPE_JOIN_COMMAND

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

UUID uint64_t

Device ID for device to that is being
instructed to become subordinate to the
C2 Server

Table 8.2: The SRUP UNMEDIATED JOIN COMMAND Message

Field Type Notes
Message Type uint8_t 0x0B — SRUP_MESSAGE_TYPE_HM_JOIN_REQ

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Table 8.3: The SRUP HUMAN-MEDIATED JOIN REQUEST Message

8.2.2 Human-Mediated Join Response Message

The Human-Mediated Join Response Message consists of an encrypted random con-
firmation value sent to the Device (and separately by the C2 system to the user — e.g.
over a HTTPS web connection) which can be used by the Device to prove to the human
observer that the physical Device presenting the information corresponds to the Device
that’s requesting the Join operation within SRUP.

In order to practically implement this, the Server must generate a 128-bit random
confirmation value, which is then encrypted using the intended recipient’s public key
(using RSA) and then this value is then sent within the Human-Mediated Join Response
Message. The mechanism for the human observer to check the confirmation value, and
then accept / reject is not specified within SRUP.

Full details of the HUMAN-MEDIATED JOIN RESPONSE message are shown in Table 8.4.

10

Field Type Notes
Message Type uint8_t 0x0C — SRUP_MESSAGE_TYPE_HM_JOIN_RESP

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Encrypted Conf. uint8_t*

Length will be RSA key-length / 8
e.g. 256 bytes for a 2048-bit key.
Unencrypted confirmation value is 128-bits
implemented as uint8_t[8]

Conf. Length uint16_t

Table 8.4: The SRUP HUMAN-MEDIATED JOIN RESPONSE Message

8.3 Machine-Mediated Join Messages

In scenarios where no human-observer may be present a machine-mediated version of
the Join process is provided. This process requires a trusted third-party (already subor-
dinate to the C2 Server) to take the place of the human observer — with the observation
taking-place over a short-range point-to-point communication channel outside of SRUP.
The protocol does not specify the mechanism for this observation to take place.

8.3.1 Observed Join Request Message

The Device must first identify details of the C2 Server and the Observer outside of the
protocol. Once this has been done, the Device must send a Observed Join Request
Message to the Server. (Note as described in Section 8.1.1 the Device must send this
message using the MQTT topic corresponding to the Server’s identity).

The Observed Join Request Message contains the identity of the Observer node in
the Observer ID field.

On receiving a valid Observed Join Request message the Server must then send
an Observed Join Response message back to the Device, and a Observation Request
message to the Observer Node. (See Sections 8.3.2 & 8.3.3).

Full details of the OBSERVED JOIN REQUEST message are shown in Table 8.5.

8.3.2 Observed Join Response Message

The Observed Join Response message is identical in content to the Human-Mediated
Join Response Message (Section 8.2.1); however it is included as a discrete message

11

Field Type Notes
Message Type uint8_t 0x0D — SRUP_MESSAGE_TYPE_OBS_JOIN_REQ

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Observer ID uint64_t

Table 8.5: The SRUP OBSERVED JOIN REQUEST Message

type to simplify the implementation of systems in which both human- and machine-
mediated join operations may occur.

Upon receiving a Observed Join Response Message a Device must transmit the
unencrypted Confirmation value to the observer externally to the protocol.

Full details of the OBSERVED JOIN RESPONSE message are shown in Table 8.6.

Field Type Notes
Message Type uint8_t 0x0E — SRUP_MESSAGE_TYPE_OBS_JOIN_RESP

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Encrypted Conf. uint8_t*

Length will be RSA key-length / 8
e.g. 256 bytes for a 2048-bit key.
Unencrypted confirmation value is 128-bits
implemented as uint8_t[8]

Conf. Length uint16_t

Table 8.6: The SRUP OBSERVED JOIN RESPONSE Message

8.3.3 Observation Request Message

The Observation Request Message is used to communicate the Confirmation value to
the Observer node. The format is similar to the OBSERVED JOIN RESPONSE Message
(Section 8.3.2) — though the Confirmation value is encrypted using the Observation
Node’s public key. It also contains an additional field — to be used to store the device

12

ID of the joining device. This is required to permit the observer to respond to the C2
Server, as which device it has observed, in the event that multiple observations are
requested within the same time period.

On receiving a OBSERVATION REQUEST message the Observer Node must prepare to
receive the Confirmation value from the Device requesting the Join, externally to the
protocol; and then to compare the received value to the value contained within the
OBSERVATION REQUEST message. The Observer must then send a RESPONSE message
back to the Server to signal the outcome of the comparison. This RESPONSE message
should have a Status of 0x60 — SRUP_OBSERVED_JOIN_VALID if the two values match;
or a Status of 0x6E — SRUP_OBSERVED_JOIN_INVALID if they do not. A Status of 0x6F
— SRUP_OBSERVED_JOIN_FAIL may be used if the operation fails (such as no data is
received by the Observer).

Full details of the OBSERVATION REQUEST message are shown in Table 8.6.

Field Type Notes
Message Type uint8_t 0x0F — SRUP_MESSAGE_TYPE_OBSERVE_REQ

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Joining Device ID uint64_t

Encrypted Conf. uint8_t*

Length will be RSA key-length / 8
e.g. 256 bytes for a 2048-bit key.
Unencrypted confirmation value is 128-bits
implemented as uint8_t[8]

Conf. Length uint16_t

Table 8.7: The SRUP OBSERVATION REQUEST Message

9 Resignation & Termination Messages

In order to remove a Device from the control of a Server, SRUP provides Resignation &
Termination message types.

9.1 Resign Request

If a Device wishes to resign from the control of Server is may send a Resign Request
Message to the Server. Upon receiving a RESIGN REQUEST message the Server may
either accept or reject the request; and then it must send a RESPONSE message —

13

with a Status of 0x70 — SRUP_RESIGN_SUCCESS, or 0x7F — SRUP_RESIGN_FAIL if the
resignation request is not accepted.

Full details of the RESIGN REQUEST message are shown in Table 9.1.

Field Type Notes
Message Type uint8_t 0x10 — SRUP_MESSAGE_TYPE_RESIGN_REQ

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Table 9.1: The RESIGN REQUEST Message

9.2 Termination Command

A Server may send a Termination Command message to any subordinate Device to
instruct it that it is no-longer subject to control by the Server. On receiving a Termination
Command message the Device may optionally send a RESPONSE message — with a
Status of 0x70 — SRUP_RESIGN_SUCCESS to the Server (via the MQTT topic associated
with the Server’s identity. The Server must not send any further messages to the Device
without another Join operation (see Section 8) first taking place.

Full details of the TERMINATION COMMAND message are shown in Table 9.2.

Field Type Notes
Message Type uint8_t 0x11 — SRUP_MESSAGE_TYPE_TERMINATE_COM

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Table 9.2: The TERMINATION COMMAND Message

10 Deregistration Messages

Devices may be permanently removed from the system via a Deregistration message.
Deregistration causes the the Device’s public key to be deleted from the System. De-

14

vices should also remove the Server public keys that they hold, upon notification of
deregistration.

10.1 Deregister Request

A Device wishing to be permanently deregistered from a given system my send a
Deregister Request message to any Server to which it is subordinate. The Server
must then send a final RESPONSE message to the Device with a status of 0x80 — SRUP_

DEREGISTER_SUCCESS; or in the event that the Deregistration cannot be processed, a
status of 0x8F — SRUP_DEREGISTER_FAIL may be sent. This should be used exception-
ally however as Deregistration requests should always be honoured unless they cannot
be processed. The Device must participate in Registration (see Section 11) and Join
(Section 8) operations before it is able to receive further SRUP messages.

Full details of the DEREGISTER REQUEST message are shown in Table 9.2.

Field Type Notes
Message Type uint8_t 0x12 — SRUP_MESSAGE_TYPE_DEREGISTER_REG

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Table 10.1: The DEREGISTER REQUEST Message

10.2 Deregister Command

A Server may send a Deregister Command message to any subordinate Device to
instruct it that it is no-longer Registered within the system and that it’s access have
been revoked. A Device receiving a Deregister Command should not attempt to send
any further SRUP messages — and it should disconnect from the MQTT Broker being
used for SRUP messages. Full details of the DEREGISTER COMMAND message are shown
in Table 10.2.

11 Registration

The process of a Device performing initial Registration to facilitate registration of the
Device’s public key is performed entirely outside of the SRUP protocol. An explanation
of the process is included for completeness — and an outline of a reference implemen-
tation is described.

15

Field Type Notes
Message Type uint8_t 0x13 — SRUP_MESSAGE_TYPE_DEREGISTER_COM

Version uint8_t

Sequence ID uint64_t

Signature uint8_t* Variable length
Signature Length uint16_t

Token uint8_t* Variable length
Token Length uint16_t

Sender ID uint64_t

Table 10.2: The DEREGISTER COMMAND Message

11.1 Registration Requirements

SRUP requires that key exchange has taken place before the first Join operation takes
place. It is therefore assumed that the Device will already have a copy of the public
key for any Server that it wishes to communicate with (or for any which would wish to
communicate with it); and that all Server’s have a copy of the public key for any Devices
that they will communicate.

11.2 Example Reference Registration scheme

It is expected that implementations will use an HTTPS web API running over TLS. Us-
ing this approach the Device would send its Identity and public key to the web-server
via a HTTPS POST request (together with any additional system implementation spe-
cific information required); and receive a response from the web-service containing the
address of the MQTT broker & the Server public key (or a HTTPS URL from which the
key or keys may be retrieved — e.g. by using a GET request against an end-point corre-
sponding to the Server ID; though again this is on an implementation-specific basis).

Once registration is complete — the C2 server(s) need to receive a copy of the keys.
Similarly a mechanism should be provided for a Server (on receiving a Deregister Re-
quest (See Section 10.1) to propagate the removal of the key to all other Servers.

16

