eNose breathprints as a surrogate biomarker for classifying asthma patients by atopy

Mahmoud I. Abdel-Aziz, MSc, Paul Brinkman, MSc, Susanne J.H. Vijverberg, PhD, Anne H. Neerincx, PhD, Rianne de Vries, MSc, Yennece W.F. Dagelet, John H. Riley, PhD, Simone Hashimoto, MD, PhD, Kian Fan Chung, MD, DSc, Ratko Djukanovic, MD, PhD, Louise J. Fleming, MD, Clare S. Murray, MD, Urs Frey, MD, PhD, Andrew Bush, MD, FRCP, FRCPCH, Florian Singer, MD, PhD, Gunilla Hedlin, MD, PhD, Graham Roberts, MD, PhD, Sven-Erik Dahlén, MD, PhD, Ian M. Adcock, PhD, Stephen J. Fowler, MD, PhD, Karen Knipping, MSc, Peter J. Sterk, MD, PhD, Aletta D. Kraneveld, PhD, Anke H. Maitland-van der Zee, PharmD, PhD, on behalf of the U-BIOPRED Study Group and the Amsterdam UMC Breath Research Group

PII: S0091-6749(20)30808-3

DOI: https://doi.org/10.1016/j.jaci.2020.05.038

Reference: YMAI 14609

To appear in: Journal of Allergy and Clinical Immunology

Received Date: 15 January 2020

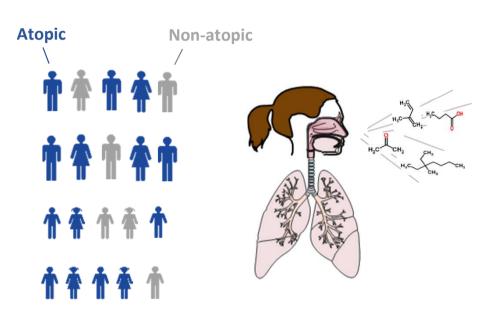
Revised Date: 30 April 2020 Accepted Date: 5 May 2020

Please cite this article as: Abdel-Aziz MI, Brinkman P, Vijverberg SJH, Neerincx AH, de Vries R, Dagelet YWF, Riley JH, Hashimoto S, Chung KF, Djukanovic R, Fleming LJ, Murray CS, Frey U, Bush A, Singer F, Hedlin G, Roberts G, Dahlén S-E, Adcock IM, Fowler SJ, Knipping K, Sterk PJ, Kraneveld AD, Maitland-van der Zee AH, on behalf of the U-BIOPRED Study Group and the Amsterdam UMC Breath Research Group, eNose breathprints as a surrogate biomarker for classifying asthma patients by atopy, *Journal of Allergy and Clinical Immunology* (2020), doi: https://doi.org/10.1016/j.jaci.2020.05.038.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

 $\ \, \odot$ 2020 Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology.

eNose breath prints as a surrogate biomarker for classifying asthma patients by atopy



Offline eNose platform

Real-time SpiroNose

4 asthma cohorts

- BreathCloud
- U-BIOPRED adults
- U-BIOPRED paediatrics
- PACMAN2

Measure patterns of volatile organic compounds mixtures in exhaled air

eNose technology

Machine learning (2 training + 2 validation sets)

eNose accurately classifies atopy

1 eNose breathprints as a surrogate biomarker for classifying asthma patients by atopy

- 2 Mahmoud I. Abdel-Aziz MSc^{1,2}, Paul Brinkman MSc¹, Susanne J. H. Vijverberg PhD^{1,3}, Anne H. Neerincx
- 3 PhD¹, Rianne de Vries MSc^{1,4}, Yennece W.F. Dagelet¹, John H. Riley PhD⁵, Simone Hashimoto MD, PhD^{1,6},
- 4 Kian Fan Chung MD, DSc⁷, Ratko Djukanovic MD, PhD⁸, Louise J. Fleming MD⁷, Clare S. Murray MD⁹, Urs
- 5 Frey MD, PhD¹⁰, Andrew Bush MD, FRCP, FRCPCH⁷, Florian Singer MD, PhD¹¹, Gunilla Hedlin MD, PhD^{12,13},
- 6 Graham Roberts MD, PhD⁸, Sven-Erik Dahlén MD, PhD¹⁴, Ian M Adcock PhD⁷, Stephen J. Fowler MD,
- 7 PhD⁹, Karen Knipping MSc^{15,16}, Peter J. Sterk MD, PhD¹, Aletta D. Kraneveld PhD^{16,17}, Anke H. Maitland-
- 8 van der Zee PharmD, PhD^{1,3,6}, on behalf of the U-BIOPRED Study Group and the Amsterdam UMC Breath
- 9 Research Group.
- 10 1 Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The
- 11 Netherlands
- 12 2 Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
- 13 3 Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical
- 14 Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands.
- 4 Breathomix B.V., Reeuwijk, the Netherlands.
- 16 5 Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom.
- 17 6 Department of Paediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC,
- 18 Amsterdam, The Netherlands.
- 19 7 National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS
- 20 Trust, London, United Kingdom.
- 21 8 NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and
- 22 Human Development and Health, University of Southampton, Southampton, United Kingdom.
- 23 9 Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of
- 24 Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science
- 25 Centre and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust,
- 26 Manchester, United Kingdom.
- 27 10 University Children's Hospital Basel, University of Basel, Basel, Switzerland.
- 28 11 University Children's Hospital Bern, Bern, Switzerland.
- 29 12 Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
- 30 13 Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
- 31 14 Centre for Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm,
- 32 Sweden
- 33 15 Danone Nutricia Research, Utrecht, the Netherlands.
- 34 16 Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science,
- 35 Utrecht University, Utrecht, the Netherlands.
- 36 17 Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht,
- 37 the Netherlands.

38

40	Corresponding author details:
41	Prof. Dr. Anke-Hilse Maitland-van der Zee
42	Department of Respiratory Medicine and Department of Paediatric Respiratory Medicine,
43	Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
44	e-mail: a.h.maitland@amsterdamumc.nl, Telephone: +31 (0) 20 5668137
45	
46	Word count of the abstract: 249
47	Word count of the manuscript: approximately 3,469 without abstract, tables, figures, discloses
48	and references.
49	Number of Figures: 10 (1 as a graphical abstract, 5 in the main body of the manuscript and 4 as a
50	supplementary information)
51	Number of Tables: 10 (1 in the main body of the manuscript and 9 as a supplementary
52	information)

Number of references: 49

Funding:

- U-BIOPRED has received funding from the Innovative Medicines Initiative (IMI) Joint
 Undertaking under grant agreement no. 115010, resources of which are composed of financial
 contributions from the European Union's Seventh Framework Programme (FP7/2007–2013) and
 European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in-kind
 contributions (www.imi.europa.eu). PACMAN study was funded by an unrestricted GSK grant.
- 60 BreathCloud was sponsored by the public charity Dutch Vriendenloterij. The salary of MIA was
- sponsored by Egyptian Government PhD Research Scholarships.

62 63

64

65

66

67

68

69

70 71

72

73 74

75 76

77

78

79

80

81 82

83

84

85

86 87

88 89

54

Conflicts of interest:

MIA, PB, SJHV, AHN, SH, YWFD, AB, GH, IMA and ADK have no conflicts of interest to disclose. RdV reports personal fees and other from Breathomix, during the conduct of the study. JHR is employed by and owns shares in GlaxoSmithKline. KFC has received honoraria for participating in advisory board meetings of GSK, AstraZeneca, Novartis, Merck, Boehringer Ingelheim and TEVA regarding treatments for asthma and chronic obstructive pulmonary disease and has also been remunerated for speaking engagements. RD reports receiving fees for lectures at symposia organised by Novartis, AstraZeneca and TEVA, consultation for TEVA and Novartis as member of advisory boards, and participation in a scientific discussion about asthma organised by GlaxoSmithKline. RD is a co-founder and current consultant, and has shares in Synairgen, a University of Southampton spin out company. LJF reports grants from Asthma UK and fees for expert consultation and speakers fees from AstraZeneca, GlaxoSmithKline, Novartis, Teva, Bohringer Ingelheim, Respiri and Sanofi paid direct to her institution and outside of the submitted work. CM reports personal fees and other from GSK, personal fees from Novartis, personal fees from Thermo Fisher, other from Boehringer Ingelheim, outside the submitted work. UF reports grants from Swiss National Science Foundation, during the conduct of the study. FS reports personal fees from Vertex, personal fees from Novartis, outside the submitted work. GR reports grants from EU IMI, during the conduct of the study. SED reports personal fees from AstraZeneca, GlaxoSmithKline, Merck & Co, Novartis, Regeneron, Sanofi & Teva, outside the submitted work. SJF reports personal fees and non-financial support from AstraZeneca, grants and personal fees from Boehringer Ingelheim, personal fees from Novartis, personal fees from Teva, personal fees from Chiesi, outside the submitted work. KK is employee of Danone Nutricia Research. PJS reports grants from Public-private Innovative Medicines Initiative (IMI) covered by the European Union (EU) and the European Federation of Pharmaceutical Industries and Associations (EFPIA), during the conduct of the study; other from being scientific advisor and having a formally inconsiderable interest in a start-up company Breathomix BV, outside the submitted work. AHM reports grants and personal fees from Boehringer Ingelheim, grants from

90	Chiesi, personal fees from Astra Zeneca, grants from Vertex, grants and personal fees from GSK,
91	outside the submitted work.

92

93 This article has an online data supplement.

95	Abstract
96	Background
97 98	Electronic noses (eNose) are emerging point-of-care tools that may help in the subphenotyping of chronic respiratory diseases, such as asthma.
99	Objective
100 101	We aimed to investigate whether eNoses can classify atopy in paediatric and adult asthma patients.
102	Methods
103 104 105 106 107 108 109 110 111	Asthmatic/wheezing participants from 4 independent cohorts were included; BreathCloud (n=429), U-BIOPRED adults (n=96), U-BIOPRED paediatrics (n=100), and PACMAN2 (n=30). Atopy was defined as a positive skin prick test (≥3mm) and/or a positive specific IgE (≥0.35kU/L) for common allergens. Exhaled breath profiles were measured using either an integrated eNose platform or the SpiroNose. Data were divided into 2 training and 2 validation sets according to the technology used. Supervised data analysis involved the use of 3 different machine learning algorithms to classify atopic versus non-atopic patients with reporting area under receiver operating characteristic curves (AUCs-ROC) as a measure of model performance. In addition, an unsupervised approach was performed using Bayesian network (BN) to reveal data-driven relationships between eNose volatile organic compounds (VOCs) profiles and asthma characteristics.
114	Results
115 116 117 118 119	Breath profiles of 655 participants (n=601 asthmatics and 54 pre-school wheezing children, 68.2% atopic) were included in this study. Machine learning models utilizing VOCs profiles discriminated between atopic vs non-atopic participants with AUCs-ROC of at least 0.84 and 0.72 in the training and validation sets respectively. The unsupervised approach revealed that breath profiles classifying atopy are not confounded by other patient characteristics.
120	Conclusion
121	eNoses accurately detect atopy in asthmatic and wheezing patients in cohorts with different age

groups, and could be used in asthma phenotyping.

123	key messages:
124 125 126 127 128 129	 Signals of exhaled volatile organic compounds (VOCs) mixtures, measured by electronic noses (eNoses), can adequately classify asthma patients by atopy. This was supported by data from 4 independent asthma cohorts. The eNose may serve as a quick non-invasive tool for asthma phenotyping.
130	Capsule summary:
131 132 133	Signals of exhaled volatile organic compounds (VOCs) mixtures, measured by electronic noses (eNoses), discriminate between atopic and non-atopic asthma patients in cohorts with different age groups. Therefore, eNoses could be used in asthma phenotyping.
134	Keywords:
135	VOCs; eNose; Asthma; Atopy; Discrimination; Machine learning;
136	

137	List of abbreviations:
138	ACQ5: 5-item asthma control questionnaire,
139	ALASSO: Adaptive Least Absolute Shrinkage and Selection Operator
140	AQLQ: asthma quality of life questionnaire
141	AUC-ROC: area under the Receiver Operating Characteristics curve
142	BIC: Bayesian Information Criterion
143	BMI: body mass index
144	BN: Bayesian network
145	DAG: directed acyclic graph
146	eNose: electronic nose
147	FE _{NO} : Fractional exhaled nitric oxide
148	FEV ₁ : forced expiratory volume in 1 second
149	FVC: forced vital capacity
150	GBM: Gradient Boosting Machine
151	ICS: inhaled corticosteroids
152	IgE: immunoglobulin E
153	IMS: ion mobility spectrometry
154	IQR: interquartile range
155	LABA: long acting beta agonist
156	MOS: metal oxide semiconductor
157	OCS: oral corticosteroids
158	PACMAN2: Pharmacogenetics of Asthma medication in Children: Medication with ANti-
159	inflammatory effects 2
160	ppb: part per billion
161	QMBs: quartz crystal microbalances
162	SABA: short acting beta agonist
163	SCIT: subcutaneous immunotherapy
164	SLIT: sublingual immunotherapy
165	sPLS-DA: sparse Partial Least Squares Discriminant Analysis
166	SPT: skin prick test
167	STARD: standards for Reporting Diagnostic Accuracy
168	U-BIOPRED: Unbiased BIOmarkers in PREDiction of respiratory disease outcomes

VOCs: volatile organic compounds

1/0	Introduction
171	Describing asthma as extrinsic (atopic) and intrinsic (non-atopic) was an early attempt to classify
172	the disease into subgroups based on sensitization to common aero-allergens. However, asthma
173	is now recognized as a complex, heterogeneous, chronic inflammatory disease comprising
174	different clinical and biological mechanisms other than allergic sensitization (atopy).
175	Nonetheless atopy is one of the most consistent characteristics associated with certain asthma
176177	phenotypes using data-driven methods. ²⁻⁶ This suggests that atopy and its underlying biological pathway may be a driving factor of certain asthma-associated phenotypes and play an
178	important role in the pathophysiology of the disease process. Therefore, atopy (or its associated
179	phenotypes) must be characterized as a marker of disease severity and/or a treatable trait in
180	asthma precision medicine.
181	The diagnosis of atopy is based on allergen-specific IgE measurement and/or skin prick test
182	(SPT) with predefined allergens. While SPT is faster to perform (usually within 15-20 minutes)
183	than in vitro measurement of allergen-specific IgEs, 8 it is relatively invasive and may lead to
184	redness, swelling, itching, bleeding, as well as delayed allergic skin reaction and, in some rare
185	circumstance, anaphylactic reactions. 8-10 Also, it is of limited use in patients with severe
186	dermatological conditions or those taking antihistamine (and several other) medications ⁸ which
187	is common in asthmatics. 11 Conversely, allergen-specific IgE measurements are more costly, and
188	require venepuncture and results are usually not immediately available.8
189	Electronic noses (eNose) are emerging point-of-care tools for diagnosing and phenotyping
190	different respiratory diseases including asthma. 12-14 They are cheap, easy to use and the samples
191	can be collected quickly. They can be used during the doctor's visit with immediate results,
192	which could be beneficial in the clinical decision-making process. eNoses consist of multiple
193	cross-reactive sensors that enable pattern recognition of the complete mixture of volatile
194	organic compounds (VOCs) without identifying their molecular entities, 15, 16 creating unique
195	breath profile for individual subjects. Clustering techniques on eNose breath profiles of both
196	adult and paediatric asthmatics have identified asthma phenotypes with differences in atopy,
197	inflammatory biomarkers and other characteristics. 12, 13, 17
198	In this study, we aimed to investigate whether exhaled breath profiles generated by eNose
199	platforms can discriminate between atopic and non-atopic asthmatics, following the Standards
200	for Reporting Diagnostic Accuracy (STARD) guidelines. 18 We hypothesized that assessment of
201	VOCs in exhaled breath offers a fast and non-invasive diagnostic biomarker for atopic asthma,
202	offering a precision medicine tool by characterizing atopy associated treatable traits in asthma
203	and, hence, directing treatment decisions to the needs of individual patients.

205	Methods
206	Subjects:
207	Adult and paediatric participants from 4 independent asthma cohorts were included in this
208	analysis: Unbiased BIOmarkers in PREDiction of respiratory disease outcomes (U-BIOPRED) adult
209	and paediatric cohorts, 19, 20 BreathCloud asthma cohort 2 and Pharmacogenetics of Asthma
210	medication in Children: Medication with ANti-inflammatory effects 2 (PACMAN2) cohort. ²¹ Most
211	participants had mild-to-moderate or severe asthma, except a subset within the paediatric U-
212	BIOPRED cohort with preschool wheezing (n=54). For a brief summary of the included cohorts,
213	see Table E1. The flow diagram for patient inclusion is shown in Figure 1.
214	Outcome definition:
215	Atopy was defined as a positive SPT defined by a wheal diameter ≥3mm and/or a positive
216	allergen-specific IgE ≥0.35kU/L to a pre- specified allergen listed in Table E2. This list represents
217	the most common allergens encountered at the study recruiting centers. Table E3 shows the
218	main allergen category and the type of the test used to diagnose atopy in each included cohort.
240	
219	Non-invasive exhaled breath measurements:
220	Exhaled VOCs
221	Offline eNose technology was used to measure exhaled breath VOCs in U-BIOPRED and
222	PACMAN2 cohorts, while real-time eNose technology (SpiroNose) was used to measure exhaled
223	VOCs in BreathCloud as described previously in details. 12-14 We have followed standard
224	operating procedures for breath collection using validated instruments. 12-14, 22, 23 The exhaled
225	breath measurement is depicted schematically in Figure 2 and described in more detail in the
226	online supplement.
227	Fractional exhaled nitric oxide (FE _{NO})
228	Fractional exhaled nitric oxide (FE _{NO}) values in parts per billion (ppb) were measured at a
229	constant flow rate of 50 mL/s with a portable analyzer (NIOX Mino System; Aerocrine, Solna,
230	Sweden), according to the American Thoracic Society (ATS)/European Respiratory Society (ERS)
231	recommendations. 24 FE $_{NO}$ measurements were available in a subset of patients in each cohort.

232	Data analysis
233	The general overview of the used data analysis approach is summarized in Figure E1.
234	Supervised analysis with machine learning models
235	In order to investigate the discriminative potential of the eNoses sensors to classify atopic vs
236	non-atopic subjects, we applied a supervised machine learning approach using different
237	machine learning models. ²⁵ The classification performance (high vs low) of the same machine
238	learning model has been reported to vary by dataset/cohort. 26, 27 Building conclusions on a
239	single classification model may be biased and reduce potential validation, hence hindering
240	biomarker discovery. As proof of concept, three different and powerful machine learning
241	techniques modelled on eNose signals were used: sparse Partial Least Squares Discriminant
242	Analysis (sPLS-DA), ²⁸ adaptive least absolute shrinkage and selection operator (Adaptive LASSO)
243	²⁹ and Gradient Boosting Machine (GBM) ³⁰ previously used in metabolomics research. ²⁵⁻²⁷ This is
244	to provide an estimate of the robustness of statistical performance across different models and
245	to evaluate eNose accuracy in classifying atopic asthma patients without bias from "single
246	model selection". The three methods were selected based on the merit of feature reduction
247	(selection) which avoids the risk of model overfitting. For more details see online supplement.
248	Individual cohort classification with internal cross validation
249	For each cohort, atopic and non-atopic participants were classified using the eNose-driven
250	models (sPLS-DA, Adaptive LASSO and GBM). For internal validation, 10-fold cross validation (50
251	repeats for model tuning and prediction estimation) was implemented in each model as
252	recommended. ³¹
253	Classification using training and validation sets in the pooled cohort and the BreathCloud
254	cohort
255	Datasets from the 3 independent cohorts (U-BIOPRED adults, U-BIOPRED paediatrics and
256	PACMAN2) that used the same eNoses platform for offline breath analysis were combined
257	(pooled cohorts) because internal validation alone cannot assess the robustness of the eNoses
258	sensors to detect atopy in independent validation sets. ComBat batch correction ³² was applied
259	on the combined sensors data and normal distributions were assessed using histograms. The
260	pooled dataset was then randomly divided into a training and a validation set using an
261	approximate ratio of 0.75:0.25 as recommend. 12, 31 The latter step was also applied to the
262	BreathCloud cohort using the SpiroNose for real-time breath analysis, resulting in two training
263	sets and two validation sets (Figure 1). The sample size calculation of the training and validation
264	sets, based on the measure of area under the Receiver Operating Characteristics curve (AUC-
265	ROC), is explained in the online supplement. The training datasets were used to train the 3

266	models using a 10-fold internal cross validation (50 repeats for model tuning and prediction
267	estimation). The predictive potential of the fitted models was assessed in the validation sets.
268	The performance of the obtained classification/predictive model was evaluated by computing
269	the AUC-ROC and associated model accuracies, specificities and sensitivities. In order to
270	calculate 95% confidence intervals, error estimates were obtained by performing 2000 non-
271	parametric stratified bootstrapped replicates using random sampling with replacement and
272	with the percentile method. 33, 34 Differences in performance between the applied machine
273	learning models were estimated by performing pairwise comparison of the obtained AUCs-ROC
274	using the Venkatraman method ³⁵ (1000 permutations).
275	Sensitivity analysis after exclusion of non-aeroallergens
276	A sensitivity analysis was performed to check whether the discrimination using eNoses would
277	change if patients sensitized with non-aeroallergens (e.g. food, latex, etc.) were excluded.
278	Pairwise comparisons of the AUCs-ROC obtained before and after exclusion of patients with
279	non-aeroallergens sensitization were estimated using the Venkatraman method ³⁵ (1000
280	permutations).
281	Unsupervised investigation of atopy and data-driven potential confounders
282	As exhaled breath is an emerging research field, there is no adequate information in the
283	literature on the possible confounding factors that should be considered or adjusted for.
284	Unsupervised data-driven approaches such as Bayesian Networks (BNs) may provide an
285	opportunity to reveal or select hidden confounders ³⁶ in metabolomics breath research. The
286	BreathCloud dataset was used in this analysis being the largest breath cohort with available
287	information on smoking, diet intake, and their time of food/drink consumption and
288	environmental factors (related to ambient conditions), as well as demographics, spirometry,
289	inflammatory parameters, and asthma medications.
290	Bayesian Network (BN)
291	Unsupervised learning of the BN was performed on the complete BreathCloud dataset. More
292	details are provided in the online supplement. The final network was depicted using Cytoscape ³⁷
293	version 3.7.1 showing the probabilistic relationship between different variables in the form of
294	directed acyclic graph (DAG).

296	Discriminative ability of FE_{NO} to classify atopic and non-atopic asthma
297	A ROC curve was generated to assess the accuracy of FE _{NO} to discriminate atopic from non-
298	atopic asthmatics. Continuous FE _{NO} values (in ppb) pooled from all cohorts (BreathCloud,
299	PACMAN2 and U-BIOPRED cohorts) were used in this analysis. Subsequently, different clinically
300	utilised cut-off values (>20, >35 and >50 ppb) were used to categorize high and low FE _{NO} , to
301	investigate whether these cut-offs would provide better insight than the uncategorized
302	continuous values. These cut-offs were chosen based on previous recommendations. 38, 39 AUCs
303	ROC for classifying atopy with bootstrapped (2000 non-parametric stratified replicates)
304	confidence intervals ^{33, 34} were constructed using each measure (continuous and categorized).
JO-1	were constructed using each measure (continuous and categorized).
305	All analyses were performed using R studio (version 1.2.1335) with R software (version 3.6.1)
306	supported with the following packages; mixOmics, glmnet, gbm, caret, pROC, boot, wiseR,
307	bnlearn.

308	Results:
309 310 311	eNose data from a total of 655 participants (98 school-aged asthmatic children, 54 preschool wheezing children and 503 asthmatic adults) were included in this study (Table 1). The prevalence of atopy was ranging from 63% to 83% within the different cohorts. Most atopic
312	patients (412 out of 447 patients, 92.2%) had sensitization to at least one aeroallergen.
313	Individual cohort classification using exhaled breath profiles with internal cross validation
314	Atopic versus non-atopic asthma patients were classified in the 4 independent cohorts using 3
315	different machine learning models (sPLS-DA, Adaptive LASSO, and GBM) with the representative
316 317	AUCs-ROC shown in Figure 3. For each individual cohort, the obtained AUCs-ROC were at least 0.85.
318	Classification using exhaled breath profiles with training and validation sets in the pooled
319	cohort and the BreathCloud cohort
320	The predictive performance of the trained machine learning models was evaluated in two
321	validation sets showing relatively high AUCs-ROC of at least 0.72 and 0.91 in the pooled cohorts
322	and BreathCloud, respectively as shown in Figure 4 (pooled cohorts) and Figure 5 (BreathCloud).
323	The associated accuracies, specificities and sensitivities and their 95% confidence intervals are
324	also shown (Figure 4, Figure 5 and Table E4). In the pooled cohort, most discriminative signals
325	were derived from the Owlstone Lonestar, while in the BreathCloud cohort, the sensor
326	peak/breath hold ratios (Figure E2) contributed most to the discriminative signal (data not
327	shown). The GBM model performance in the training sets (pooled cohort and BreathCloud) was
328	better than either sPLS-DA or adaptive LASSO models as estimated by higher AUCs-ROC using
329 330	the Venkatraman's test (Table E5). However, this outperformance was eliminated when model predictions were applied on the validation sets.
331	
331	Sensitivity analysis after exclusion of non-aeroallergens
332	The AUCs-ROC obtained after exclusion of patients sensitized with non-aeroallergens were
333	relatively similar to the previous findings in both the training and validation sets (Table E6).
334 335	Venkatraman test showed no significant differences in the AUCs-ROC before and after exclusion of these patients.
336	Data-driven Bayesian Network (BN)
337	Figure E3 shows a DAG of BN that reveals probabilistic associations between SpiroNose sensor
338	signals against different patient characteristics (including atopy) and other factors. The data-
330	driven RN shows no edges connecting the atony-associated VOCs sensor signals and other

340 341	measured characteristics. Other VOCs signals showed connection with eosinophils counts and oral corticosteroid (OCS) use.
342	FE _{NO} in discriminating atopic and non-atopic asthma
343 344 345 346	FE_{NO} was available in a subset of patients within the included cohorts (n=357). Figure E4 shows that FE_{NO} did not accurately discriminate between atopic and non-atopic asthmatics using either the continuous values (AUC-ROC = 0.51) or the categorized estimates (AUCs-ROC=0.52 for FE_{NO} >20 ppb, 0.49 for FE_{NO} >35 ppb and 0.50 for FE_{NO} >50 ppb).

347	Discussion:
348	To our knowledge, this is the first study to investigate the ability of eNose technology to detect
349	atopy in asthmatic patients across different age groups. Using a composite of benchmarking
350	supervised and unsupervised analysis techniques on different eNose platforms from 4
351	independent cohorts, we have shown that different eNoses can appropriately discriminate
352	between atopic versus non-atopic asthmatics. Importantly, we show that observations made
353	using offline eNose technology are replicated with the real-time SpiroNose technology where
354	sensors are place in line with standard equipment for spirometry.
355	By testing the eNose technology separately in individual cohorts, a highly discriminative signal
356	between atopic versus non-atopic asthma patients was observed as indicated by the different
357	cross-validated machine learning models showing an AUCs-ROC ≥0.85. The eNose VOCs profiles
358	distinguished both groups when the data of three cohorts using the same eNoses platform for
359	exhaled breath analyses (U-BIOPRED adult, U-BIOPRED paediatric and PACMAN2 cohorts) were
360	pooled, which suggests generalizability of eNoses that probably capture certain distinct VOCs
361	associated with atopy. However, there was a slight decrease in performance of the models in
362	both the training and validation sets of the pooled cohorts as compared to the performance in
363	the individual cohorts, with AUCs-ROC of at least 0.84 and 0.72, respectively. This may be
364	related to differences in study populations in respect of age and asthma-associated
365	characteristics and, possibly, different eNoses batch versions within subjects of the pooled
366	cohorts, which may introduce more diverse VOCs patterns (more noise). However,
367	discrimination was possible despite these variations. These factors may also explain, in part,
368	why the BreathCloud cohort had higher performance of the models compared with the pooled
369	cohorts in both the training and validation sets with AUCs-ROC of at least 0.93 and 0.91,
370	respectively. Another important factor that may explain the higher performance within
371	BreathCloud, is the real-time capability to capture the VOCs compared with the offline approach
372	of the eNoses platform within the pooled cohort. The latter might be subject to some
373	contaminant VOCs and/or VOCs loss during transportation from the Tedlar bags and Tenax
374	tubes. ⁴⁰ Furthermore, the larger sample size in the BreathCloud study (twice as big as the
375	pooled cohorts) meant more statistical power and, therefore, better training of the machine
376	learning models.
377	The GBM model outperformed both sPLS-DA and adaptive LASSO in the training sets which
378	might indicate an overfitting issue of the GBM model; however, no difference in performance
379	was observed in the validation sets, suggesting comparable statistical performance across
380	different machine learning models. This may indicate robustness of eNose-technology in
381	classifying atopic asthma patients despite using different machine learning models.

382 383 384 385 386 387 388	Studies investigating the relationship between exhaled VOCs and atopic asthma are scarce. In a previous study, VOCs profile captured by Cyranose C320 showed only a trend (p=.07) for classification between atopic versus non-atopic childhood asthmatics. ⁴¹ This study only included a small sample size of children with asthma (n=31), which may have led to lack of statistical power. In addition, in our study the Owlstone Lonestar is a major driver of the signal that is responsible for discrimination in contrast to the the Cyranose C320 which was also included in our study.
389 390 391 392 393 394	The atopy discriminating VOCs signals in this study were probably driven by aeroallergens as most included atopic patients were sensitized by at least one aeroallergen. This was supported by a sensitivity analysis in which non-aeroallergens sensitized patients were excluded, showing similar findings. Yet, this warrants further investigation to explore whether the VOCs signals detected are related to the underlying pathophysiology locally (in the lung) or systemically or both.
395 396 397 398 399 400 401 402	FE_{NO} >20 ppb has been reported to be associated with atopy in 1199 children aged 13 to 15 years from Peru, showing an AUC-ROC of 0.65 in non-asthmatics (n=1110) and an AUC-ROC of 0.82 in asthmatics (n=89). Our analysis showed that the eNose technology provided higher AUCs-ROC in the included paediatric cohorts (\geq 0.85 in the U-BIOPRED paediatric and \geq 0.97 in PACMAN2 cohorts) provides better accuracy in detecting atopy. In addition, in our study, FE_{NO} did not accurately discriminate between atopic and not-atopic asthmatics (AUC-ROC=0.52), indicating a limited accuracy of FE_{NO} in detecting atopy as compared to eNose technology in a broad age-range multinational cohort.
403 404 405 406 407 408 409 410 411	The Bayesian Network (BN) revealed the unsupervised data-driven relationship between the SpiroNose data points and all other measured characteristics. From the DAG network, we identified no clear relationship between exhaled breath profiles associated with atopy and other measured variables, suggesting the profiles predicting atopy are not be confounded by other measured factors in the BreathCloud cohort. In addition, the BN also showed relationships between VOCs signals (from different sensors) and eosinophil counts and OCS use, as previously reported findings. ^{12, 13, 42} However, BNs do not prove causality between variables, and can only be used for probabilistic reasoning. Therefore, the association between atopy and exhaled breath sensors signals is a probabilistic estimation and further research to investigate possible confounders is still required.
413 414 415 416 417	This study has multiple strengths. First, we used 4 independent asthma cohorts to validate the findings that showed a relative steadiness of the atopy classification potential. Second, the utilization of different eNoses platforms covering both offline and real time measurement of exhaled breath may serve as a sign of the generalizability of the eNose technology to detect atopy in asthma patients. Third, the followed benchmarking analysis strategy in this study is

418 coupling both supervised and unsupervised approaches to further support findings. Finally, we 419 used 3 different powerful machine learning techniques to provide an indication of the 420 robustness of statistical performance across the tested models. 421 However, this study has also limitations. First, eNose technology in general does not allow for 422 identification of individual VOCs but are based on cross-reactive sensor arrays that allow for powerful VOCs signal pattern recognition which does not hamper the clinical application of 423 424 eNose technology. Identifying individual discriminating VOCs in future studies, by e.g. mass 425 spectrometry techniques, will help to get more insight on the underlying pathophysiological pathways. Second, we only investigated exhaled breath profiles and its relation to atopy at a 426 single time point. In one study, diurnal variations in the VOCs profiles of atopic moderate 427 asthmatics were observed. 43 Therefore, assessment of the temporal stability of atopy-428 discriminative signature is required. Third, a large percentage of the included subjects were 429 430 white Caucasians, hence, this demands broader investigation in other ethnicities to assess generalisability. Fourth, validation should be ideally performed by training a model on a cohort 431 and then validate the findings on a different cohort. This was not feasible in the current study as 432 433 we used two different eNose technologies (offline versus real-time measurement), which make direct validation of the findings impossible due to different sets of sensors from the two 434 435 technologies. In addition, due to the limited sample sizes in datasets of offline eNoses platform, pooling the data was essential to achieve the statistical power necessary for appropriate 436 training and validation of the models. Fifth, this study was not meant to provide a 437 438 comprehensive comparison on the performance of different machine learning models, but rather to provide an estimation of statistical robustness as a proof of concept. Whether other 439 440 models will provide different outcomes merits further investigation. Finally, we did not 441 investigate differences in the allergen specific VOCs signals and whether it would differ according to the numbers of sensitized allergens, time course of atopy and/or levels of specific 442 IgE or wheal size. A previous study have shown that these atopy-associated outcome measures 443 could identify subphenotypes within children.⁴⁴ 444 SPT or allergen-specific IgE measurements remain the gold standard for diagnosing atopy and 445 446 offer details regarding the allergen to which the patient is sensitized. The eNose at this time 447 point cannot be considered as alternative, however, it may offer a very quick (in minutes) noninvasive screening tool in situations where the standard methods cannot be used, such as in 448 449 patients with dermatological conditions, taking interfering medications and/or with low acceptability to skin testing or blood withdrawal (e.g. children). 450 451 By detecting atopy, in addition to its potential to perceive changes in inflammatory biomarkers such as eosinophils and neutrophils or oral corticosteroid use, 12, 13 the eNose may help to 452 identify asthma phenotypes and asthma-associated treatable traits. 45 Therefore, it can serve as 453

454	a tool in asthma precision medicine approaches. Managing atopic asthma may require different
455	steps from environmental avoidance of allergens ⁴⁶ to symptomatic control with add-on
456	therapies such as antihistamines or antihistamine/leukotriene antagonists combinations. ⁴⁷ In
457	addition, more targeted therapies, such as allergen-specific subcutaneous immunotherapy
458	(SCIT) in patients with stable asthma, 48 sublingual immunotherapy (SLIT) and anti-IgE
459	monoclonal antibody omalizumab, ⁴⁹ can be directed to the atopic asthma patients. The use of
460	eNose may, thus, help the non-invasive and quick tailoring of these interventions to the need of
461	each individual patient.
462	In conclusion, the eNose technology can accurately and robustly classify asthma patients by
463	atopic status. Coupling supervised and unsupervised machine learning approaches reveals that
464	the associations between exhaled breath and atopy and our results were generalizable. The
465	present findings suggest that exhaled breath analysis by eNose allows meaningful phenotyping
466	of asthma patients and may, therefore, be used in personalized asthma clinical decisions.
467	
468	Acknowledgement:
469	We would like to acknowledge the help of biostatistician Aruna Bansal, PhD.

References:

- 471 1. Rackemann FM. A working classification of asthma. Am J Med 1947; 3:601-6.
- 472 2. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identification of asthma 473 phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care 474 Med 2010; 181:315-23.
- 3. Schatz M, Hsu JW, Zeiger RS, Chen W, Dorenbaum A, Chipps BE, et al. Phenotypes determined by cluster analysis in severe or difficult-to-treat asthma. J Allergy Clin Immunol 2014; 133:1549-56.
- 477 4. Weinmayr G, Keller F, Kleiner A, du Prel JB, Garcia-Marcos L, Batlles-Garrido J, et al. Asthma 478 phenotypes identified by latent class analysis in the ISAAC phase II Spain study. Clin Exp Allergy 479 2013; 43:223-32.
- Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 2008; 178:218-24.
- 482 6. Lefaudeux D, De Meulder B, Loza MJ, Peffer N, Rowe A, Baribaud F, et al. U-BIOPRED clinical 483 adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol 2017; 139:1797-484 807.
- 485 7. Ali FR. Does this patient have atopic asthma? Clin Med (Lond) 2011; 11:376-80.
- 486 8. Heinzerling L, Mari A, Bergmann KC, Bresciani M, Burbach G, Darsow U, et al. The skin prick test -487 European standards. Clin Transl Allergy 2013; 3:3.
- Sellaturay P, Nasser S, Ewan P. The incidence and features of systemic reactions to skin prick tests. Ann Allergy Asthma Immunol 2015; 115:229-33.
- 490 10. Norrman G, Falth-Magnusson K. Adverse reactions to skin prick testing in children prevalence 491 and possible risk factors. Pediatr Allergy Immunol 2009; 20:273-8.
- 492 11. Silverberg JI, Hanifin JM. Adult eczema prevalence and associations with asthma and other 493 health and demographic factors: a US population-based study. J Allergy Clin Immunol 2013; 494 132:1132-8.
- de Vries R, Dagelet YWF, Spoor P, Snoey E, Jak PMC, Brinkman P, et al. Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label. Eur Respir J 2018; 51.
- 498 13. Brinkman P, Wagener AH, Hekking PP, Bansal AT, Maitland-van der Zee AH, Wang Y, et al.
 499 Identification and prospective stability of electronic nose (eNose)-derived inflammatory
 500 phenotypes in patients with severe asthma. J Allergy Clin Immunol 2019; 143:1811-20.e7.
- de Vries R, Muller M, van der Noort V, Theelen WSME, Schouten RD, Hummelink K, et al.
 Prediction of response to anti-PD-1 therapy in patients with non-small-cell lung cancer by electronic nose analysis of exhaled breath. Ann Oncol 2019.
- 504 15. Wilson AD. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites 2015; 5:140-63.
- Boots AW, Bos LD, van der Schee MP, van Schooten FJ, Sterk PJ. Exhaled Molecular
 Fingerprinting in Diagnosis and Monitoring: Validating Volatile Promises. Trends Mol Med 2015;
 21:633-44.
- Brinkman P, Hashimoto S, Fleming LJ, Hedlin G, Knobel H, Vink TJ, et al. Unbiased clustering of
 children with asthma or pre-school wheeze using the U-BIOPRED electronic nose platform.
 European Respiratory Journal 2014; 44:431.
- 512 18. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015; 351:h5527.
- Shaw DE, Sousa AR, Fowler SJ, Fleming LJ, Roberts G, Corfield J, et al. Clinical and inflammatory
 characteristics of the European U-BIOPRED adult severe asthma cohort. Eur Respir J 2015;
 46:1308-21.

- 517 20. Fleming L, Murray C, Bansal AT, Hashimoto S, Bisgaard H, Bush A, et al. The burden of severe 518 asthma in childhood and adolescence: results from the paediatric U-BIOPRED cohorts. Eur Respir 519 J 2015; 46:1322-33.
- Vijverberg SJ, Koenderman L, van Erp FC, van der Ent CK, Postma DS, Brinkman P, et al.
 Inflammatory phenotypes underlying uncontrolled childhood asthma despite inhaled
 corticosteroid treatment: rationale and design of the PACMAN2 study. BMC Pediatr 2013; 13:94.
- 523 22. de Vries R, Brinkman P, van der Schee MP, Fens N, Dijkers E, Bootsma SK, et al. Integration of
- electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis. J Breath Res 2015; 9:046001.
- 526 23. Ahmed WM, Brinkman P, Weda H, Knobel HH, Xu Y, Nijsen TM, et al. Methodological 527 considerations for large-scale breath analysis studies: lessons from the U-BIOPRED severe 528 asthma project. J Breath Res 2018; 13:016001.
- 529 24. ATS/ERS recommendations for standardized procedures for the online and offline measurement 530 of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med 531 2005; 171:912-30.
- 532 25. Cuperlovic-Culf M. Machine Learning Methods for Analysis of Metabolic Data and Metabolic 533 Pathway Modeling. Metabolites 2018; 8.
- 534 26. Determan Jr CE. Optimal algorithm for metabolomics classification and feature selection varies by dataset. Int J Biol 2015; 7:100.
- 536 27. Bouwmeester R, Martens L, Degroeve S. Comprehensive and Empirical Evaluation of Machine 537 Learning Algorithms for Small Molecule LC Retention Time Prediction. Anal Chem 2019; 91:3694-538 703.
- 539 28. Le Cao KA, Boitard S, Besse P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics 2011; 12:253.
- 541 29. Zou H. The Adaptive Lasso and Its Oracle Properties. J Am Stat Assoc 2006; 101:1418-29.
- 542 30. Friedman JH. Greedy function approximation: A gradient boosting machine. Ann. Statist. 2001; 29:1189-232.
- 544 31. Broadhurst DI, Kell DB. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2006; 2:171-96.
- Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007; 8:118-27.
- 548 33. Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat Med 2000; 19:1141-64.
- Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011; 12:77.
- Venkatraman ES. A permutation test to compare receiver operating characteristic curves. Biometrics 2000; 56:1134-8.
- Haggstrom J. Data-driven confounder selection via Markov and Bayesian networks. Biometrics 2018; 74:389-98.
- 556 37. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software 557 environment for integrated models of biomolecular interaction networks. Genome Res 2003; 558 13:2498-504.
- Romero KM, Robinson CL, Baumann LM, Gilman RH, Hamilton RG, Hansel NN, et al. Role of exhaled nitric oxide as a predictor of atopy. Respir Res 2013; 14:48.
- 561 39. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications.

 563 Am J Respir Crit Care Med 2011; 184:602-15.

564	40.	Neerincx AH, Vijverberg SJH, Bos LDJ, Brinkman P, van der Schee MP, de Vries R, et al.
565		Breathomics from exhaled volatile organic compounds in pediatric asthma. Pediatr Pulmonol
566		2017; 52:1616-27.
567	41.	Fuglsbjerg MG, Rasmussen MA, Hansen KS, Smolinska A, Dallinga JW, van Schooten FJ, et al.
568		Limited clinical value of exhaled volatile organic compound measurements in childhood asthma.
569		ERJ Open Res 2018; 4.
570	42.	Schleich FN, Zanella D, Stefanuto PH, Bessonov K, Smolinska A, Dallinga JW, et al. Exhaled
571		Volatile Organic Compounds Are Able to Discriminate between Neutrophilic and Eosinophilic
572		Asthma. Am J Respir Crit Care Med 2019; 200:444-53.
573	43.	Wilkinson M, Maidstone R, Loudon A, Blaikley J, White IR, Singh D, et al. Circadian rhythm of
574		exhaled biomarkers in health and asthma. Eur Respir J 2019.
575	44.	Hose AJ, Depner M, Illi S, Lau S, Keil T, Wahn U, et al. Latent class analysis reveals clinically
576		relevant atopy phenotypes in 2 birth cohorts. J Allergy Clin Immunol 2017; 139:1935-45.e12.
577	45.	Brinkman P, Zee AM, Wagener AH. Breathomics and treatable traits for chronic airway diseases.
578		Curr Opin Pulm Med 2019; 25:94-100.
579	46.	Gautier C, Charpin D. Environmental triggers and avoidance in the management of asthma. J
580		Asthma Allergy 2017; 10:47-56.
581	47.	Wilson AM. The role of antihistamines in asthma management. Treat Respir Med 2006; 5:149-58
582	48.	Abramson MJ, Puy RM, Weiner JM. Injection allergen immunotherapy for asthma. Cochrane
583		Database Syst Rev 2010:Cd001186.
584	49.	Normansell R, Walker S, Milan SJ, Walters EH, Nair P. Omalizumab for asthma in adults and
585		children. Cochrane Database Syst Rev 2014:Cd003559.
586		
300		
587		

588 Tables:

Table 1: Participant baseline characteristics.

Characteristics	U-BIOPRED adults (n=96)	BreathCloud (n=429)	U-BIOPRED paediatrics (n=100)	PACMAN2 (n=30)
Age (years), median (IQR)	55.0 (43.0- 62.0)	50.0 (34.0- 62.0)	5.0 (4.0-12.8)	11.5 (9.8- 13.6)
Age group				
 Adults (≥18 years) 	96 (100%)	407 (94.9%)	NA	NA
Children (<18 years)	NA	22 (5.1%)	100 (100%)	30 (100%)
Females (%)	54 (56.3%)	252 (58.7%)	36 (35%)	16 (53.3%)
BMI (kg/m²), median (IQR)	26.9 (23.9-	26.9 (23.5-	16.6 (15.4-19.7)	18.3 (17.3-
	32.5)	30.6)		19.7)
BMI (kg/m²) z-score, median (IQR)	1.3 (0.4-2.5)	1.3 (0.4-2.1)	0.3 (-0.4-1.1)	0.1 (-0.6-1.1)
Race (white Caucasian, %)	90 (93.8%)	366 (85.3%)	75 (75%)	30 (100%)
Atopy (%)	70 (72.9%)	289 (67.4%)	63 (63%)	25 (83.3%)
Aeroallergen	63 (65.6%)	266 (62%)	59 (59%)	24 (80%)
Non-aeroallergen	7 (7.3%)	23 (5.4%)	4 (4%)	1 (3.3%)
Current smokers (%)	26 (27.1%)	45 (10.5%)	NA	NA
Patient class		, , ,		
Asthmatic	96 (100%)	429 (100%)	46 (46%)	30 (100%)
Pre-school wheezing	NA	NA ,	54 (54%)	NA ,
FEV ₁ % predicted pre salbutamol,	67.8 (54.8-	86.0 (74.0-	93.9 (82.5-	86.5 (78.0-
median (IQR)	87.6)	100.5)	106.3)	96.5)
FEV ₁ % predicted post salbutamol,	81.3 (64.1-	92.0 (80.0-	101.5 (91.8-	95.0 (83.0-
median (IQR)*	100.0)	101.8)	112.1)	101.0)
FEV ₁ /FVC % predicted pre	75.4 (76.1-	87.0 (75.0-	92.1 (82.6-	94.5 (88.5-
salbutamol, median (IQR)	88.2)	97.0)	100.9)	100.3)
FEV ₁ /FVC % predicted post	80.6 (72.3-	89.0 (78.0-	97.9 (89.3-	98.0 (92.0-
salbutamol, median (IQR)*	94.8)	100.0)	103.4)	104.0)
FE _{NO} in ppb, median (IQR) ^{¶#}	28.0 (14.0-	21.0 (13.0-	30.0 (13.0-59.0)	28.0 (11.0-
	49.0)	39.0)	(n=43)	64.0)
	(n=94)	(n= 192)		(n=28)
FE _{NO} in ppb, median (IQR) ^{¶#}				
 Atopic subjects 	25.0 (13.0-	22.0 (12.5-	35.5 (14.0-	35.0 (14.0-
, ,	41.5)	37.0)	65.78)	68.0)
	(n=69)	(n=133)	(n=38)	(n=23)
 Non-atopic subjects 	34.0 (22.0-	20.0 (13.0-	12.00 (8.50-	11.0 (5.0-
1	77.5)	41.0)	21.0)	17.50)
	(n=25)	(n=59)	(n=5)	(n=5)
ACQ5 score average, median (IQR)	1.8 (0.8-2.8)	1.4 (0.7-2.3)	NA	NA
ACT score average, median (IQR)	NA	NA	18.00 (13.8- 21.0)	18 (9.8-21.3)
P(AQLQ) score average, median (IQR)	5.2 (3.8-5.9)	NA	5.5 (4.0-6.8)	6.0 (5.1-6.5)

Current asthma medication used (%):				
• ICS	96 (100%)	357 (83.2%)	86 (86%)	30 (100%)
• SABA	61 (63.5%)	198 (46.2%)	92 (92%)	24 (80%)
• LABA	78 (81.3%)	307 (71.6%)	52 (52%)	16 (53.3%)
• ocs	38 (39.6%)	58 (13.5%)	6 (6%)	0 (0%)
Short-acting	2 (4.2%)	33 (7.7%)	1 (1%)	0 (0%)
Anticholinergics				
 Long-acting Anticholinergics 	24 (25%)	79 (18.4%)	0 (0%)	0 (0%)
 Leukotriene antagonists 	28 (29.2%)	78 (18.2%)	57 (57%)	2 (6.7%)
Theophylline	13 (13.5%)	2 (0.5%)	2 (2%)	0 (0%)
Antihistamine	9 (9.4%)	96 (22.4%)	9 (9%)	NA

Variables described as n (% of n) unless specified, IQR: interquartile range, BMI: body mass index, FEV₁: forced expiratory volume in 1 second, FVC: forced vital capacity, FE_{NO}: fraction of exhaled nitric oxide, ACQ5: 5-item asthma control questionnaire, P: paediatric, AQLQ: asthma quality of life questionnaire, ICS: inhaled corticosteroids, SABA: short acting beta agonist, LABA: long acting beta agonist, OCS: oral corticosteroids, NA: not applicable which corresponds to either data not measured in this cohort or not applicable regarding the cohort criteria. *In BreathCloud, the personal best measurements were reported for post-bronchodilator forced expiratory volume in 1 second (FEV₁; % predicted) from data of routine clinical practice collected <12 months prior to the study visit. *In BreathCloud, FE_{NO} measurements were reported as corresponding to the latest recorded values in routine clinical practice. *Data were not available for the complete study participant.

601	Figure legends:
602	Graphical abstract
603 604 605 606 607	Figure 1: Flowchart for the included participants from 4 independent asthma cohorts. *eNoses platform is a composite of 4 differently developed eNoses (Cyranose C320, Tor Vergata, Comon Invent, and Owlstone Lonestar). *Inclusion criteria violator: participants that were excluded from the analysis due to violation of the inclusion criteria defined by the U-BIOPRED. *Uncertain atopy diagnosis: patients who do not have confirmed diagnoses for atopy by either skin prick test or allergen-specific IgE.
608 609 610 611 612 613 614 615 616 617 618 619 620	Figure 2: Exhaled breath measurement using the eNoses platform (U-BIOPRED adults, U-BIOPRED paediatrics and PACMAN2) and the SpiroNose (BreathCloud). Upper panel, breath collection and measurement using the eNoses platform in U-BIOPRED adults, U-BIOPRED paediatrics, and PACMAN2 cohorts. Subjects exhaled a single vital capacity volume in a 10 litre Tedlar bag, followed by sampling air on a Tenax thermal desorption tube to capture volatile organic compounds (VOCs). A thermal desorption oven was used for desorption of the VOCs from the tubes and then transferred into a Tedlar bag using a carrier nitrogen gas. Subsequent detection of the signal pattern of VOCs mixture was performed through multiple cross-reactive sensors in a composite eNoses platform. Lower panel, real time collection of the exhaled breath using the SpiroNose in the BreathCloud cohort. Patients were instructed to perform 5 tidal breaths, followed by inspiration of a single vital capacity volume, a breath hold for 5 seconds and then expiration towards residual volume. The sensors' signals are recorded in real time by the SpiroNose and transferred into a cloud environment for further automated analysis. QMBs: quartz crystal microbalances, MOS: metal oxide semiconductor, IMS: ion mobility spectrometry.
621 622 623 624 625	Figure 3: Area under Receiver Operating Characteristics curves (AUCs-ROC) with 95% bootstrapped confidence intervals for 3 different machine learning models classifying atopic versus non-atopic asthma in U-BIOPRED adult, BreathCloud, U-BIOPRED paediatric and PACMAN2 cohorts. GBM: Gradient Boosting Machine, sPLS-DA: sparse Partial Least Squares Discriminant Analysis, ALASSO: is denoting Adaptive LASSO.
626 627 628 629 630 631 632 633	Figure 4: Upper panel, the Area under Receiver Operating Characteristics curves (AUCs-ROC) with 95% bootstrapped confidence intervals for 3 different machine learning models on eNose VOCs breath profiles from the training subset (≈ 75%) of the pooled cohorts with their associated accuracies, specificities and sensitivities (95% confidence interval) are shown. Lower panel, the predictive potential of the trained model was evaluated using a validation subset (≈ 25%) from the pooled cohorts showing relatively high AUCs-ROC with depiction of their associated accuracies, specificities and sensitivities (95% confidence interval). GBM: Gradient Boosting Machine, sPLS-DA: sparse Partial Least Square-discriminant analysis, ALASSO: is denoting Adaptive LASSO.
634 635 636 637 638	Figure 5: Upper panel, the Area under Receiver Operating Characteristics curves (AUCs-ROC) with 95% bootstrapped confidence intervals for 3 different machine learning models on SpiroNose VOCs breath profiles from the training subset (\approx 75%) of the BreathCloud cohort with their associated accuracies, specificities and sensitivities (95% confidence interval) are shown. Lower panel, the predictive potential of the trained model was evaluated using a validation subset (\approx 25%) from the BreathCloud cohort

639	showing relatively high AUCs-ROC with depiction of their associated accuracies, specificities and
640	sensitivities (95% confidence interval). GBM: Gradient Boosting Machine, sPLS-DA: sparse Partial Least
641	Square-discriminant analysis, ALASSO: is denoting Adaptive ALASSO.

