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ABSTRACT The recent outbreak of the coronavirus disease 2019 (COVID-19) has rapidly become a
pandemic, which calls for prompt action in identifying suspected cases at an early stage through risk
prediction. To suppress its further spread, we exploit the social relationships between mobile devices in
the Social Internet of Things (SIoT) to help control its propagation by allocating the limited protective
resources to the influential so-called high-degree individuals to stem the tide of precipitated spreading. By
exploiting the so-called differential contact intensity and the infectious rate in susceptible-exposed-infected-
removed (SEIR) epidemic model, the resultant optimization problem can be transformed into the minimum
weight vertex cover (MWVC) problem of graph theory. To solve this problem in a high-dynamic random
network topology, we propose an adaptive scheme by relying on the graph embedding technique during
the state representation and reinforcement learning in the training phase. By relying on a pair of real-life
datasets, the results demonstrate that our scheme can beneficially reduce the epidemiological reproduction
rate of the infection. This technique has the potential of assisting in the early identification of COVID-19
cases.

INDEX TERMS Social Internet of Thing (SIoT), COVID-19, reinforcement learning, graph theory.

I. INTRODUCTION

THE coronavirus disease 2019 (COVID-19) has spread
over 215 countries with the numbers of infected cases

and deaths still increasing. As of the 19th April 2020, a cu-
mulative total of 2,228,455 (154,309) cases (fatalities) were
reported in the world. During this outbreak, every aspect of
our daily lives has been deeply impacted. One of the gravest
challenges is its high human-to-human transmission rate via
droplet inhalation or contact with contaminated surfaces.
Recent studies have demonstrated that asymptomatic patients
are particularly contagious [1], [2], because people tend to
avoid contact with others showing obvious symptoms, but
asymptomatic people cannot be readily identified. Therefore,

early identification of suspected cases and the judicious allo-
cation of limited medical resources is vital [3].

Recently, both ‘big data’ analysis and human social net-
working solutions were proposed for detecting suspected
cases during an epidemic. For example, in [4], the authors
proposed a spatio-temporal model termed as HiRES, which
relies on a risk map for detecting suspected individuals based
on the trajectory of big data and mean-field theory. In [5],
the authors proposed a sentinel node detection strategy for
disease surveillance by relying on social networks. However,
the latency in the associated trajectory and inaccuracy of
social data may render these models somewhat inefficient.
Hence, a deep-routed research-question arises, namely how
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to take advantage of both the real-time social data and
of accurate trajectory data for identifying suspected virus
careers. In [6], the authors proposed the Social Internet of
Things (SIoT) concept, which paves a new way for building
the social relationships among devices without human inter-
vention. Despite the delay in human data feedback, portable
equipment such as smart phones and wearable devices may
be employed for sensing, computation and communications,
while relying on positioning information to perform real-time
symptom recognition, contact tracking and data exchange.
For example, the so-called co-located object relationship
(C-LOR) of the SIoT characterizes the geographic location
similarity of two devices, while the social object relationship
(SOR) quantifies the contact intensity, when the device-
owners are in each others’ proximity, which are useful for
identifying the individuals at risk of infection.

By collecting the data from SIoT, the complex networks
of virus transmission may be viewed as a weighted undi-
rectional graph (WUG), where each vertex represents a
mobile user, each edge indicates the contact between two
users and the vertex weight is related to the probability of
becoming infected. Based on this graph, we will identify
those vertices which may have high impact on other vertices,
corresponding to the influential individuals in a resource-
constrained environment, since the medical resources such
as surgical masks and nucleic acid detection reagents are
scarce. Hence, the optimization objective is to select high-
risk vertices within a limited budget of resources to minimize
the propagation rate of the epidemic. This epidemic propaga-
tion rate minimization problem of identifying the suspected
COVID-19 cases in SIoT may be viewed to be analogous
to the rumor influence minimization problem of identifying
the highly influential nodes in mobile social networks. The
latter can be further transformed into the classic minimum-
weight vertex cover (MWVC) problem of graph theory [7].
Most prior studies resorted to heuristic algorithms or to local
search for solving MWVC problems at an acceptable com-
plexity [8]. However, considering the dynamically evolving
network topology over time, recomputing the solution from
scratch is time-consuming. As an efficient decision-making
technique in dynamic environments, reinforcement learning
has been widely used in the field of wireless communications,
aerospace, power system, etc [9], [10]. In [11], the authors
proposed an adaptive strategy based on graph embedding and
reinforcement learning for solving the associated combina-
torial optimization problem, which inspired us to design an
adaptive identification scheme for highly suspected COVID-
19 cases in response to these topology changes.

The main contributions of this paper are summarized as
follows:
• By using the dynamic WUG model, we propose a new

network topology of SIoT-aided inter-device social re-
lationship establishment process, which takes into ac-
count the fact that the network structure evolves dynam-
ically throughout the epidemic propagation.

• We conceive the high-risk vertex selection problem rely-
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FIGURE 1: Framework of our proposed scheme for MWVC.

ing on the MWVC framework and propose a risk-aware
adaptive identification algorithm based on joint graph
embedding and reinforcement learning for solving the
MWVC problem in a dynamic topology.

• We conduct simulations based on a pair of realistic
datasets to demonstrate that our proposed scheme is effi-
cient in suppressing the propagation speed in both large-
scale and small-scale scenarios. Besides, we evaluate
our proposed scheme on the Erdos-Renyi social graph
relying on adjustable contact probability to verify the
scalability.

The rest of this paper is outlined as follows. First our sys-
tem model is presented and then our optimization problem is
formulated in Section II. The adaptive scheme for identifying
the suspected cased with high risk is illustrated in Section
III. Simulation results are shown in Section IV, followed by
concluding remarks in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In the absence of global restrictions COVID-19 spreads
without limits since many asymptomatic carriers are conta-
gious. To characterize the spread of COVID-19, we consider
the modified susceptible-exposed-infected-removed (SEIR)
epidemic model, where asymptomatic individuals are based
on [12]. When a susceptible individual comes in contact
with either a symptomatic or asymptomatic individual, the
probability of being exposed is βs or βa, respectively. Fur-
thermore, the probability of those exposed individuals being
symptomatic or asymptomatic is αs or 1 − αs, respectively.
Finally, the probability of being removed from the set through
recovery or death is γ.

Naturally, the rate of propagation is also influenced by con-
tact intensity, as determined by the contact frequency and du-
ration. As shown in Fig. 1, each device can rely on the global
positioning system (GPS), wireless network signaling, hu-
man social networks, radio frequency identification (RFID),
bluetooth, and Wifi to track their owner’s contacts, perform
co-location detection, and establish relationship with other
devices through owner control and relationship management
modules [6]. Then, the collected data will be gathered and
aggregated by mobile vehicles or unmanned aerial vehicles,
and finally delivered to the edge data center for real-time
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data analysis and decision-making. Herein, we mainly focus
on the decision-making process since the data collection and
analysis problems are beyond the scope of this paper and can
be addressed by several existing works [3], [4]. Given a time
span T which is discretized into {1, ..., t, ..., T} time slots,
the average contact intensity between two users i and j can
be denoted as [13]

δi,j(t) =

∑Nc
i,j(t)

x=1 tdx
N c

i,j(t)
, (1)

where N c
i,j(t) represents the total number of contacts before

the time slot t, while tdx is the corresponding contact duration.
Note that even short exposures such as two seconds of
contact are perilous and multiple short contacts do increase
the overall risk of exposure. Furthermore, the weight of each
contact is quantified by Eq. (1), where a short exposure time
corresponds to a low weight.

Given an individual set V (t) = {v1(t), ..., vi(t), ..., vN(t)},
the network topology at time slot t can be abstracted as a
WUG G(t) = (V (t), E(t)), where V (t) denotes the vertex
set, E(t) denotes the edge set, and ωi(t) denotes the vertex
weight, and can be

ωi(t) =

|Ns
i (t)|∑
j=1

βsδi,j(t) +

|Na
i (t)|∑
k=1

βaδi,j(t), (2)

where Ns
i (t) and Na

i (t) represent the symptomatic and
asymptomatic neighbors of vi(t), respectively. Note that the
parameter ωi(t) quantifies the degree of risk. It is worth
mentioning that the corresponding edge eij(t) can only be
inserted into G(t) if the social distance between the pair of
vertices vi(t) and vj(t) in their contact is lower than a certain
threshold. Note that the social distance threshold was initially
three inches as declared by the World Health Organization
(WHO), because the authors of [14] found that people who
kept at least three inches of social distance between them
were able to reduce the infection rate by approximately
82%. As a further result [1], the authors have demonstrated
that two meters of social distance reduced infection rate by
approximately 96%, since this social distance can prevent the
transmission of droplets [14]. Hence here we use the latter
metric as the threshold of social distance.

In a resource-constrained environment, we assume that
the arrival process of medical resources obeys the Poisson
distribution with arrival rate λ. Hence, we have to allocate
these resources to those individuals at high-risk of being
exposed in order to cut off the transmission paths, i.e. to
remove the corresponding edges from G(t). Let I(t), N(t),
R(t), and D(t) denote the number of infected individuals,
all the individuals, all available resource blocks and the
detected individuals, respectively. Here, we assume that a
resource block can only be assigned to a single individual
for detection. Therefore, the optimization problem is that of

minimizing the infection rate (propagation speed), which can
be formulated as

min
D

∑T

t=1

I(t)

N(1)
(3a)

s.t. C1 : D(t) 6 R(t), ∀t ∈ T , (3b)

where (C1) indicates that the number of detected individuals
should be no higher than that of the available resources.
In graph theory, a vertex cover of G(t) is a subset of the
vertex set Vc(t) ⊆ V (t) so that for every edge, at least one
of its endpoints belongs to Vc(t). The MWVC is a vertex
cover having the lowest possible number of vertices and sum
weights. For the convenience of problem transformation, we
turn the edge weights into negative values.

Proposition 1 (Detection Threshold): The MWVC of G(t)
is the minimum number of vertices required for cuttikng off
all the transmission paths (remove all edge) from G(t).

Proof: Considering the definition of MWVC, all edges can
be omitted by removing the edges connected to Vc(t) and
meanwhile the Vc(t) has the minimum size, which concludes
the proposition 1.

Therefore, the problem (3) can be naturally transformed
into a MWVC problem. It is worth mentioning that we
consider the MWVC rather than MVC, because the former
outperforms the latter when the size of minimum vertex cover
exceeds the resources available. Next, we will investigate
how to select higher-risk vertices from a MWVC.

III. ADAPTIVE IDENTIFICATION SCHEME

In this section, we propose an adaptive identification scheme,
which incrementally identifies the high-risk vertices instead
of identifying all of them at once. More specifically, the adap-
tive identification process is divided into several rounds. In
each round, our scheme can dynamically block the epidemic
propagation based on a snapshot of the current network
topology. Upon considering the case of R(t) ≤ Vc(t) at
time slot t, selecting any R(t) vertices from the set of Vc(t)
for detection will lead to different results. Given a limited
budget, we should grant different priorities according to the
associated hazard levels, which can be quantified by the
vertex weight.

Since we have to dynamically find MWVC in the face of
evolving network topologies obeying different graph struc-
tures, we first utilize the graph embedding process, in which
each vertex can be represented by a m-dimensional vector
paving the way for the learning phase. This is because
reinforcement learning is more efficient when processing
low-dimensional vectors than graphs. Similar to [11], we
capitalize on the deep learning architecture termed as Struc-
ture2Vec [15] for graph embedding, which computes a m-
dimensional feature embedding µvi for each vertex vi. Ini-
tially, we set µvi(t) = 0 and the update strategy can be
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formulated as [11]

µvi(t+ 1) =

relu(θ1xvi + θ2
∑

vj∈NBi(t)

µvj (t) + θ3
∑

vj∈NBi(t)

relu(θ4ωij(t))),

(4)

where the neighbor set NBi(t) is equivalent to Ns
i (t) ∪

Na
i (t), ’relu’ represents the rectified linear unit, i.e., relu(·) =

max(0, ·), xvi is a binary variable, which indicates, whether
the state is being selected or not, θ1 ∼ θ4 are model
parameters, and ωij(t) represents the edge weight in graph
embedding, which is determined by the structural similarity
(structural distance ) fij(t), i.e., ωij(t) = e−fij(t). Note
that fij(t) can be calculated by dynamic time warping
(DTW) [15].

When the computation process of graph embedding is
completed and the representation h(S(t)) of the selected
vertex set S(t) is obtained, we then define the evaluation
function Q̂(h(S(t)), vi,Θ), where Θ is the associated neu-
ral network parameter. When µvi(T ) obtained at the fi-
nal slot, the pooled embedding of the entire graph G =
{G(t)}Tt=1 can be represented as

∑
vi∈S(T ) µvi(T ). In this

way, Q̂(h(S(t)), vi,Θ) can be approximated by

Q̂(h(S(t)), vi,Θ) = θ>5 relu([θ6
∑

vi∈S(T )

µvi(T ), θ7µvi(T )]),

(5)

where [·, ·] denotes the concatenation operator and Θ =
{θj}7j=1.

Next, we will invoke reinforcement learning for determin-
ing the function Q̂(h(S(t)), vi,Θ). In the neural network, the
n-step fitted Q-Learning [11] is invoked to train Θ. We define
the states, actions and rewards in the reinforcement learning
framework as follows:
• States: the selected vertices for detection at slot t, i.e.,
S(t).

• Transition: the state variable xvi .
• Actions: push a new vertex into S(t).
• Rewards: the reward function r(S(t), vi(t)) is defined

as the change in the cost function after taking action
vi and transitioning to a new state S′(t), which can be
expressed as

r(S(t), vi(t)) = −1 + ωi(t). (6)

Note that we set a penalty of −1 for the increment in
vertex number and ωi(t) for the increment in weight to
ensure that we can find a MWVC.

The training phase based on n-step fitted Q-learning is
illustrated in Algorithm 1. Note that the termination criterion
is whether the MWVC is achieved, i.e. whether all edges are
covered, while the sum weights are minimum.

Note that the n-step Q-learning can handle the issue of
delayed rewards during an episode by waiting n steps before
updating the parameters. This fits our scenario quite natu-
rally, where the final objective value is only revealed after

Algorithm 1 Q-Learning based training for MWVC

1: Input: Adjacency matrix of G
2: Output: Parameter Θ
3: Experience replay memoryM is initialized to N
4: for episode l = 1 : L do
5: Initialize the state S(1) to empty set
6: for t = 1 : T do
7: vi(t) =
8: {

randomly selection from V \ S(t), w.p.ε,
arg maxv∈V \S(t) Q̂(h(S(t)), vi,Θ), Otherwise,

9: Push vi(t) into S(t+1), i.e., S(t+1) = S(t)∪vi(t)

10: if t ≥ n then
11: Push tuple (S(t− n), vt−n, Rt−n,t, S(t)) toM
12: Randomly sample batch from B
13: Update Θ by stochastic gradient descent to min-

imize the squared loss (y − Q̂(h(S(t)), vi,Θ))2

for B
14: end if
15: end for
16: end for

the addition of a series of vertices. In this way, the reward
received so far can be used for estimating that in the future
more accurately. Hence, the parameter y in the squared loss
function can be expressed as

y =

n∑
k=1

r(S(t+ k), vi(t+ k)) + γmax
v′

Q̂(h(S(t+ n)), v′,Θ).

(7)

Furthermore, the fitted Q-iteration will rely on experience
replay for updating the Q-function using a batch of samples
instead of updating it sample-by-sample. In this process, the
cumulative rewards Rt−n can be represented by Rt−n,t =∑n−1

k=0 r(S(t−n), vi(t−n)). Based on the above discussion,
our risk-aware adaptive identification (RAI) algorithm can be
summarized in Algorithm 2.

As shown in Fig. 1, when the furst stage of contact tracking
is accomplished, graph embedding is performed to obtain the
“node score" (green bars), which quantifies the degree of risk
from the perspective of graph structure. In the final stage,
reinforcement learning is invoked for solving the MWVC
by considering both the node score and weight. The specific
nodes associated with a high degree of risk are marked in red.

IV. SIMULATION RESULTS
In this section, we first evaluate our proposed scheme on the
Erdos-Renyi social graph [16] relying on adjustable contact
probability (edge insertion probability) and then on a pair
of real-world datasets [12], [17]. The data in [12] collected
from a primary school was used for evaluating our proposed
scheme on a small-scale dynamic network and that in [17]
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Algorithm 2 Risk-aware adaptive identification (RAI)

1: Input: Adjacency matrix of current snapshot of G, i.e.,
G(t), available resource R(t)

2: Output: A set of vertices Vc(t) at risk of being infected
3: Initialize the state S(t) to empty set
4: Each vertex in G(t) is embeded into a m-dimensional

vector using Eq. (4) and (5)
5: Search for the MWVC S(t) using the Algorithm 1
6: if |S(t)| > R(t) then
7: Select R(t) vertices from S(t) as Vc(t) based on the

ascending order of their weights
8: else
9: D(t)← S(t)

10: end if

collected from a museum was used for characterizing our
proposed scheme on a large-scale dynamic network. In the
dataset [17], 410 vertices are connected by 17,298 edges and
the time span of 1 hour is discretized into 8 time slots. By
contrast, in [12], 242 vertices are connected by 125,773 edges
and the time span of 1 hour is discretized into 18 time slots.

In the learning phase, we set the batch size to 64, embed-
ding dimension size to 64, the number of iterations to 5, n to
5, ε to 0.05, training size to 10000, and the learning rate to
0.0001 based on [11]. For the SEIR model, we set the βs to
0.8, βa to 0.4, αs to 0.7, and γ to 0.3 based on the current
data analysis about COVID-19 [4]. The initial number of
randomly infected individuals is 0.2N , where N represents
the number of all vertices in the initial stage. The arrival
rate of resources ranges from 0 to 0.05 per second. Note that
the vertices corresponding to the removed individuals will be
removed from the current snapshot.

To comprehensively characterize our proposed scheme,
we further compare RAI to four benchmarks: 1) degree
centrality (to measure the risk of being infected by neigh-
bors) selects D(t) vertices with highest degree in the current
snapshot [18], 2) betweenness centrality (to measure the risk
of being infected on a large scale) can be calculated by

CB(v) =
∑

u 6=s6=v∈V (t)

Ns,u(v)

Ns,u
. (7)

where Ns,u denotes the number of shortest paths connecting
s and v, and Ns,u(v) denotes those shortest paths passing
through v [18], 3) closeness centrality (measure the risk of
being infected on a small scale) can be calculated by

Cc(v) =
|V (t)| − 1∑
u 6=v∈V (t) du,v

, (8)

where du,v denotes the length of shortest paths connecting
u and v [18], and 4) Q-learning based greedy algorithm for
MVC (abbreviated as “GreedyMVC") [11], which approxi-
mates the set of MVC nodes of the input graph by greedily
selecting the uncovered edge having the maximum sum of
degrees of its endpoints. Then we protect k nodes from this
unordered MVC set.
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on dataset [12].

To verify the scalability and efficiency of our proposed
scheme, we have conducted simulations relying on the classic
Erdos-Renyi social graph, which is representative of most of
the popular graph structures associated with varying contact
probability. Fig. 2 shows the infection rate vs. contact prob-
ability, when the arrival rate of resources is set to 0.04 per
second and the number of vertices is set to 100. The contact
duration obeys the normal distribution associated with the
expectation of 30s and standard deviation of 5s. The number
of contacts obeys a Poisson distribution and the arrival rate is
randomly chosen from {1, 2, 3} per time slot. The time span
of 1 hour is discretized into 10 time slots. We can observe that
our proposed RAI always outperforms other methods upon
increasing the contact probability. Compared to the scenario
of “without detection", our proposed scheme achieves ap-
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on dataset [17].

proximately 43% infection rate reduction, when the contact
probability is set to 0.8, which demonstrates the efficiency
of early detection of highly suspected cases. Furthermore,
since the degree and closeness centralities always select those
specific vertices which are close to each other in the crowded
parts of the graph, they exhibit a higher propagation rate than
that of betweenness centrality (selecting the vertices which
are in most of the multi-hop neighbor sets of other vertices)
when the graph becomes dense, i.e., the number of edges
becomes high.

In Fig. 3 and Fig. 4, we study the impact of early detection
based on two different real-world datasets. As clearly seen
from these two figures, the proposed RAI scheme always
outperforms the other methods upon increasing the arrival
rate of resources for both datasets. In the small-scale sce-
nario, the dominant form of infection is direct person-to-
person transmission (one-hop transmission), while in the
large-scale scenario, the cross infection (multi-hop transmis-
sion) becomes dominant. When the resources are very scarce,
say for an arrival rate below 0.02 per second, the degree
centrality method outperforms the “GreedyMVC", because
the degree centrality represents the degree of risk better
within a limited budget. Upon increasing the arrival rate,
the “GreedyMVC" performs better, because it can cut off
more transmission paths within a certain budget. Note that
the performance achieved by closeness centrality is better
than that of betweenness centrality based on the dataset
[12], but based worse on [17]. This is because the closeness
centrality is efficient in small-scale scenarios (the selected
vertices rapidly infect their one-hop neighbors) while the
betweenness centrality is efficient in large-scale scenarios
(the selected vertices can infect more multi-hop neighbors).

Finally, we discuss some characteristics inferred from the
simulation and experimental results. Although the COVID-
19 datasets are not available, Fig. 2 readily justifies that the

proposed method outperforms the graph-theoretic methods
for diverse graph structures. This is because the control
efficiency is only related to the graph structures determined
by the densities of the vertices and edges, plus the vertex
weight. On one hand, the graph embedding is eminently
suitable for extracting the centrality features of different
graph structures. On the other hand, by solving the MWVC,
the vertex weight is also considered. Since the traditional
graph-theoretic based methods only consider the centrality
feature, our proposed method would outperform the graph-
theoretic based methods, regardless of the specific nature of
the dataset.

Secondly, we justify the employment of reinforcement
learning. Generally, traditional techniques of solving the
graph optimization problem cam be classified into three
main categories: exact algorithms, approximate algorithms
and heuristic algorithms [11]. The exact algorithms perform
well for small-scale scenarios, but their complexity tends to
become prohibitive for large-scale scenarios. The approxi-
mate algorithms tend to have realistic complexity, but fail
to provide sufficiently strong optimality guarantees. Finally,
the heuristic algorithms tend to be efficient, but lack of
theoretical guarantees. However, all three types of algorithms
may only adapt to partial graph structures and thus their
performance may be degraded in dynamically time-varying
environments. Fortunately, this problem can be solved by re-
inforcement learning. It was demosntrated by extensive sim-
ulations in [11] that reinforcement learning based algorithms
are capable of performing well in continuously envolving
graph structures. Although different real datasets correspond
to different scenarios, the graph structures inferred can typi-
cally be handled by relying on the Erdos-Renyi social graph.
Futhermore, the reward function and other parameters are
also influenced by the specific graph structures. As for the
reward function, we carefully take into account the specific
number of vertices and the vertex weight, which allows us to
satisfy both the “minimum-weight" and “minimum set cover"
conditions. Hence, the reward function used in the paper is
suitable for the MWVC problem in the context of different
graph structures. For other learning related parameters, the
authors of [11] have indeed justified that this setting is suit-
able for most graph structures and thus we do not discuss this
issue in detail. In conclusion, our proposed scheme exhibits
excellent scalability and it is expected to perform well for
diverse datasets, including COVID-19 datasets.

V. CONCLUSION
In this paper, we have studied how to exploit the social rela-
tionships between mobile devices in SIoT to help control the
infection rate by the early identification of suspected COVID-
19 cases. Then, we transformed the optimization problem
into a MWVC problem and proposed a RAI algorithm for
solving this problem for a dynamic network topology. By
relying on a pair of realistic datasets, we demonstrate that
our scheme substantially reduces the epidemic infection rate
compared to the benchmarks in both large-scale and small-
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scale scenarios. In conclusion, the proposed technique is
eminently suitable for disease control and prevention by
relying on the early identification of COVID-19 cases. At the
time of writing no COVID-19 dataset is available concerning
the accurate contact history of a crowd and their subsequent
health conditions, but no doubt, real-life datasets will soon
be available. This contribution may however assist both
governments and other decision-making authorities in their
decision making. In our future research we will use more data
sources to verify and revise this early identification scheme
at an increased accuracy.
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