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Abstract
We propose two modified Tseng’s extragradient methods (also known as Forward-

Backward-Forward methods) for solving non-Lipschitzian and pseudo-monotone vari-
ational inequalities in real Hilbert spaces. Under mild and standard conditions, we
obtain the weak and strong convergence of the proposed methods. Numerical exam-
ples for illustrating the behavior of the proposed methods are also presented.
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1 Introduction
In this paper, we are interested in the classical variational inequality (VI) [11, 12], which
consists in finding a point x∗ ∈C such that

〈Ax∗,x− x∗〉 ≥ 0 ∀x ∈C, (1)

where C is a nonempty closed convex subset in a real Hilbert space H, and A : H→ H is
a single-valued mapping. We denote (1) by V I(C,A) and its the solution set by Ω, which
is assumed to be non-empty.

Variational inequalities are fundamental in a broad range of mathematical and applied
sciences; the theoretical and algorithmic foundations as well as the applications of vari-
ational inequalities have been extensively studied in the literature and continue to attract
intensive research [10, 18, 19]. For the current state of the art in finite dimensional setting,
see for instance [10] and the extensive list of references therein.

Solution methods solving the variational inequality (1) have been developed exten-
sively in the literature [4, 5, 6, 10, 16, 17, 18, 19, 23, 24, 28, 30, 31, 33, 34]. The simplest
method is the classical projection algorithm, which generates an iterative sequence via

xn+1 = PC(xn−λAxn), ∀n≥ 0, (2)
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where PC denotes the metric projection from H onto C. This method is an extension of the
projected gradient method for solving optimization problems. It is known that the conver-
gence of this projection method only holds under quite restrictive assumptions that A is
L-Lipschitz continuous and α-strongly (pseudo)-monotone and the setpsize λ is chosen

satisfying λ ∈
(

0,
2α

L2

)
[10, 16].

Korpelevich [20] (and also independently Antipin [1]) proposed a double projection
method in Euclidean space, known as the extragradient method for solving VIs when A is
monotone and L-Lipschitz continuous

x0 ∈C,

yn = PC(xn−λAxn),

xn+1 = PC(xn−λAyn),

∀n≥ 0, (3)

where λ ∈
(

0,
1
L

)
. It is well known that the extragradient method can be applied to solve

pseudo-monotone, Lipschitz continuous VIs in finite dimensional spaces [10, 28]. The
weak convergence of this method in infinite dimensional Hilbert spaces was studied in
[7] under an additional assumption that A is sequentially weak-strong continuous, i.e., A
maps a weakly convergent sequence to a strongly convergent sequence. This assump-
tion is rather strong and is not satisfied even for a simple example when A is the identity
operator. In [33], the author has weakened this assumption to sequentially weak-weak
continuity of A.

The extragradient method and its variants require (at least) two projections per itera-
tion. Censor, Gibali and Reich [4, 5, 6] proposed the following scheme, called subgradient
extragradient method {

yn = PC(xn−λF(xn)),

xn+1 = PTn(xn−λF(yn))
∀n≥ 0,

where
Tn = {w ∈ H,〈xn−λF(xn)− yn,w− yn〉 ≤ 0}.

Since the projection onto the half-space Tn can be explicitly calculated [2], the subgradi-
ent extragradient requires only one projection per iteration. This method converges for
pseudo-monotone VIs in finite dimensional Euclidean spaces [6] and monotone VIs in
infinite dimensional Hilbert spaces [4, 5].

An alternative method of the extragradient method is the following remarkable scheme
studied by Tseng [32], which also requires only one projection per iteration{

yn = PC(xn−λF(xn)),

xn+1 = yn +λ (F(xn)−F(yn))
∀n≥ 0.

The weak convergence of Tseng’s extragradient method (also known as the Forward-
Backward-Forward method) for solving monotone Lipschitz continuous VIs was estab-
lished in [32], and is recently studied in [3] for solving pseudo-monotone Lipschitz con-
tinuous VIs under sequentially weak-weak continuity of A.
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The aim of this paper has two folds. We first incorporate the Tseng’s extragradient
method studied in [3, 32] with a suitable linesearch to remove the dependence on the Lip-
schitz continuity modulus of A when choosing stepsize λ . We also weaken the Lipschitz
continuity of A to the uniform continuity. This is crucial when the operator is not Lips-
chitz continuous and/or the Lipschitz modulus is difficult to estimate in advance. Doing
so, we obtain the weak convergence of the iterative sequence. As we are working in in-
finite dimensional Hilbert spaces, the strong convergence is essential. Therefore, in the
second part of the paper, we combine the linesearch method with a Mann-type iteration
step to obtain the strong convergence of the iterative sequence.

The rest of the paper is organized as follows. We first recall some basic definitions
and results in Section 2. The weak convergence method and its convergence analysis are
presented in Section 3. Section 4 contains the analysis of the strong convergence method.
In Section 5 we present some elementary numerical experiments which demonstrate the
performances of the proposed methods. Finally, we give some conclusion remarks in the
last section.

2 Preliminaries
Let H be a real Hilbert space and C be a nonempty, closed and convex subset of H.

The weak convergence of {xn}∞
n=1 to x is denoted by xn ⇀ x as n→ ∞, while the strong

convergence of {xn}∞
n=1 to x is written as xn→ x as n→∞. For each x,y,z ∈H and for all

α,β ,γ ∈ [0,1] with α +β + γ = 1, we have

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉; (4)

‖αx+(1−α)y‖2 = α‖x‖2 +(1−α)‖y‖2−α(1−α)‖x− y‖2; (5)

‖αx+βy+ γz‖2 = α‖x‖2 +β‖y‖2 + γ‖z‖2−αβ‖x− y‖2−αγ‖x− z‖2−βγ‖y− z‖2.

Definition 1. Let T : H→ H be an operator.

1. The operator T is called L-Lipschitz continuous with L > 0 if

‖T x−Ty‖ ≤ L‖x− y‖ ∀x,y ∈ H; (6)

if L = 1 then the operator T is called nonexpansive and if L ∈ (0,1), T is called
contraction.

2. The operator T is called monotone if

〈T x−Ty,x− y〉 ≥ 0 ∀x,y ∈ H; (7)

3. The operator T is called pseudo-monotone if

〈T x,y− x〉 ≥ 0 =⇒ 〈Ty,y− x〉 ≥ 0 ∀x,y ∈ H; (8)

4. The operator T is called sequentially weakly continuous if for each se-
quence {xn} we have: {xn} converges weakly to x implies T xn converges weakly
to T x.
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For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx such
that

‖x−PCx‖ ≤ ‖x− y‖ ∀y ∈C.

PC is called the metric projection of H onto C. It is well known that PC is nonexpansive
and the following properties hold.

Lemma 1. ([13]) Let C be a nonempty closed convex subset of a real Hilbert space H.
Given x ∈ H and z ∈C. Then z = PCx⇐⇒ 〈x− z,z− y〉 ≥ 0 ∀y ∈C.

Lemma 2. ([13]) Let C be a closed and convex subset in a real Hilbert space H, x ∈ H.
Then

i) ‖PCx−PCy‖2 ≤ 〈PCx−PCy,x− y〉 ∀y ∈C;
ii) ‖PCx− y‖2 ≤ ‖x− y‖2−‖x−PCx‖2 ∀y ∈C;
iii) 〈(I−PC)x− (I−PC)y,x− y〉 ≥ ‖(I−PC)x− (I−PC)y‖2 ∀y ∈C.

The following Lemmas are useful for the convergence of our proposed methods.

Lemma 3. ([9]) For x ∈ H and α ≥ β > 0 the following inequalities hold.

‖x−PC(x−αAx)‖
α

≤ ‖x−PC(x−βAx)‖
β

,

‖x−PC(x−βAx)‖ ≤ ‖x−PC(x−αAx)‖.

Lemma 4. ([14, 15]) Let H1 and H2 be two real Hilbert spaces. Suppose A : H1→ H2 is
uniformly continuous on bounded subsets of H1 and M is a bounded subset of H1. Then
A(M) (the image of M under A) is bounded.

Lemma 5. [8, Lemma 2.1] Consider the problem V I(C,A) with C being a nonempty,
closed, convex subset of a real Hilbert space H and A : C→ H being pseudo-monotone
and continuous. Then, x∗ is a solution of V I(C,A) if and only if

〈Ax,x− x∗〉 ≥ 0 ∀x ∈C.

Lemma 6. ([26]) Let C be a nonempty set of H and {xn} be a squence in H such that the
following two conditions hold:
i) for every x ∈C, limn→∞ ‖xn− x‖ exists;
ii) every sequential weak cluster point of {xn} is in C.
Then {xn} converges weakly to a point in C.

The next technical lemma is very useful and used by many authors, for example Liu
[21] and Xu [36]. Furthermore, a variant of Lemma 7 has already been used by Reich in
[27].

Lemma 7. Let {an} be sequence of nonnegative real numbers such that:

an+1 ≤ (1−αn)an +αnbn,

where {αn} ⊂ (0,1) and {bn} is a sequence such that
a) ∑

∞
n=0 αn = ∞;

b) limsupn→∞ bn ≤ 0.
Then limn→∞ an = 0.
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3 Weak Convergence Method
Through this section, we make the following conditions on V I(C,A):

Condition 1. The feasible set C of V I(C,A) is a nonempty, closed, and convex subset of
the real Hilbert space H.

Condition 2. The operator A : H → H is a pseudo-monotone, sequentially weakly con-
tinuous on C, and uniformly continuous on bounded subsets of H.

Condition 3. The solution set of V I(C,A) is nonempty, that is Ω 6= /0.

We are now in the position to present our first method.

Algorithm 1.

Initialization: Given γ > 0, l ∈ (0,1),µ ∈ (0,1). Let x1 ∈C be arbitrary

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:

Step 1. Compute
yn = PC(xn−λnAxn)

where λn := γlmn and mn is the smallest non-negative integer m satisfying

γlm‖Axn−Ayn‖ ≤ µ‖xn− yn‖. (9)

If xn = yn or Ayn = 0 then Stop, yn is a solution of VI(C,A). Otherwise
Step 2. Compute

xn+1 = yn−λn(Ayn−Axn).

Set n := n+1 and go to Step 1.

We start the convergence analysis by proving that (9) terminates after finite steps.

Lemma 8. Assume that Conditions 1–3 hold. Then the Armijo-line search rule (9) is well
defined. In addition, we have λn ≤ γ.

Proof. If xn ∈ Ω then xn = PC(xn− γAxn), therefore (9) holds with m = 0. If xn /∈ Ω and
assume the contrary that for all m we have

γlm‖Axn−APC(xn− γlmAxn)‖> µ‖xn−PC(xn− γlmAxn)‖. (10)

This implies that

‖Axn−APC(xn− γlmAxn)‖> µ
‖xn−PC(xn− γlmAxn)‖

γlm . (11)

We consider two possibilities of xn. First, if xn ∈C, then since PC ans A are continuous,
we have limm→∞ ‖xn−PC(xn−γlmAxn)‖= 0. From the uniform continuity of the operator
A on bounded subsets of H it implies that

lim
m→∞
‖Axn−APC(xn− γlmAxn)‖= 0. (12)
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Combining (11) and (12) we get

lim
m→∞

‖xn−PC(xn− γlmAxn)‖
γlm = 0. (13)

Setting zm = PC(xn− γlmAxn) we have

〈zm− xn + γlmAxn,x− zm〉 ≥ 0 ∀x ∈C.

This implies that

〈zm− xn

γlm ,x− zm〉+ 〈Axn,x− zm〉 ≥ 0 ∀x ∈C. (14)

Taking the limit m→ ∞ in (14) and using (13) we obtain

〈Axn,x− xn〉 ≥ 0 ∀x ∈C,

which implies that xn ∈Ω. This is a contradiction. Now, if xn /∈C, then we have

lim
m→∞
‖xn−PC(xn− γlmAxn)‖= ‖xn−PCxn‖> 0. (15)

and
lim

m→∞
γlm‖Axn−APC(xn− γlmAxn)‖= 0. (16)

Combining (10), (15) and (16) we get a contradiction.

Remark 1. 1. In the proof of Lemma 8 we do not need the pseudo-monotonicity of A.

2. Note that if xn = yn then xn is a solution of V I(C,A). Indeed, we have 0 < λn ≤ γ ,
which together with Lemma 3 we get

0 =
‖xn− yn‖

λn
=
‖xn−PC(xn−λnAxn)‖

λn
≥ ‖xn−PC(xn− γAxn)‖

γ
.

This implies that xn is a solution of V I(C,A).

The following Lemma states that the sequence {xn} is Fejér monotone with respect to
the solution set Ω.

Lemma 9. Let {xn} be a sequence generated by Algorithm 1. Then for every p ∈ Ω it
holds

‖xn+1− p‖2 ≤ ‖xn− p‖2− (1−µ
2)‖xn− yn‖2. (17)

Proof. We have

‖xn+1− p‖2 =‖yn−λn(Ayn−Axn)− p‖2

=‖yn− p‖2 +λ
2
n ‖Ayn−Axn‖2−2λn〈yn− p,Ayn−Axn〉

=‖xn− p‖2 +‖xn− yn‖2 +2〈yn− xn,xn− p〉
+λ

2
n ‖Ayn−Axn‖2−2λn〈yn− p,Ayn−Axn〉

=‖xn− p‖2 +‖xn− yn‖2−2〈yn− xn,yn− xn〉+2〈yn− xn,yn− p〉
+λ

2
n ‖Ayn−Axn‖2−2λn〈yn− p,Ayn−Axn〉

=‖xn− p‖2−‖xn− yn‖2 +2〈yn− xn,yn− p〉
+λ

2
n ‖Ayn−Axn‖2−2λn〈yn− p,Ayn−Axn〉. (18)
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Since yn = PC(xn−λnAxn) we obtain

〈yn− xn +λnAxn,yn− p〉 ≤ 0,

or equivalently
〈yn− xn,yn− p〉 ≤ −λn〈Axn,yn− p〉. (19)

From (18) and (19), we get

‖xn+1− p‖2 ≤‖xn− p‖2−‖xn− yn‖2−2λn〈Axn,yn− p〉+λ
2
n ‖Ayn−Axn‖2

−2λn〈yn− p,Ayn−Axn〉
=‖xn− p‖2−‖xn− yn‖2 +λ

2
n ‖Ayn−Axn‖2−2λn〈yn− p,Ayn〉

≤‖xn− p‖2−‖xn− yn‖2 +µ
2‖xn− yn‖2−2λn〈yn− p,Ayn〉

≤‖xn− p‖2− (1−µ
2)‖xn− yn‖2−2λn〈yn− p,Ayn〉. (20)

Since p ∈Ω we have 〈Ap,yn− p〉 ≥ 0, from the pseudo-monotonicity of A we find

〈Ayn,yn− p〉 ≥ 0. (21)

Combining (20) and (21) we obtain

‖xn+1− p‖2 ≤ ‖xn− p‖2− (1−µ
2)‖xn− yn‖2.

From Lemma 9, we have that for every p ∈ Ω, limn→∞ ‖xn− p‖ exists. To obtain the
weak convergence, following Lemma 6, it remains to prove that every weak limit point of
{xn} belongs to Ω.

Lemma 10. Every weak limit point of {xn} is a solution of V I(C,A).

Proof. Let z be a weak limit point of {xn} and let {xnk} be a subsequence of {xn} con-
verges weakly to z. From Lemma 9 we have that {xn} is bounded and

lim
n→∞
‖xn− yn‖= 0.

Therefore, ynk ⇀ z. Since ynk ∈C for all k and C is (weakly) closed we have z ∈C. Since
ynk = PC(xnk−λnkAxnk) it holds

〈xnk−λnkAxnk− ynk ,x− ynk〉 ≤ 0 ∀x ∈C.

or equivalently
1

λnk

〈xnk− ynk ,x− ynk〉 ≤ 〈Axnk ,x− ynk〉 ∀x ∈C.

This implies that

1
λnk

〈xnk− ynk ,x− ynk〉+ 〈Axnk ,ynk− xnk〉 ≤ 〈Axnk ,x− xnk〉 ∀x ∈C. (22)

Now, we show that
liminf

k→∞
〈Axnk ,x− xnk〉 ≥ 0. (23)
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Indeed, let us consider two possible cases. Suppose first that liminfk→∞ λnk > 0. We have
{xnk} is a bounded sequence, A is uniformly continuous on bounded subsets of H. By
Lemma 5, we get that {Axnk} is bounded. Taking k→ ∞ in (22) since ‖xnk − ynk‖ → 0,
we get

liminf
k→∞

〈Axnk ,x− xnk〉 ≥ 0.

Assume now that liminfk→∞ λnk = 0. Setting znk =PC(xnk−λnk .l
−1Axnk), we have λnk l−1 >

λnk . Applying Lemma 3, we obtain

‖xnk− znk‖ ≤
1
l
‖xnk− ynk‖→ 0 as k→ ∞.

Consequently, znk ⇀ z ∈C, this implies that {znk} is bounded. From the uniformly conti-
nuity of the operator A on bounded subsets of H it follows that

‖Axnk−Aznk‖→ 0 as k→ ∞. (24)

By the Armijo line-search rule (9) we must have

λnk .l
−1‖Axnk−APC(xnk−λnk l−1Axnk)‖> µ‖xnk−PC(xnk−λnk l−1Axnk)‖.

That is,
1
µ
‖Axnk−Aznk‖>

‖xnk− znk‖
λnk l−1 . (25)

Combining (24) and (25) we obtain

lim
k→∞

‖xnk− znk‖
λnk l−1 = 0.

Furthermore, we have from the definition of znk that

〈xnk−λnk l−1Axnk− znk ,x− znk〉 ≤ 0 ∀x ∈C.

This implies that

1
λnk l−1 〈xnk− znk ,x− znk〉+ 〈Axnk ,znk− xnk〉 ≤ 〈Axnk ,x− xnk〉 ∀x ∈C. (26)

Taking the limit k→ ∞ in (26) we get

liminf
k→∞

〈Axnk ,x− xnk〉 ≥ 0.

Therefore, the inequality (23) is proved.
On the other hand, we have

〈Aynk ,x− ynk〉= 〈Aynk−Axnk ,x− xnk〉+ 〈Axnk ,x− xnk〉+ 〈Aynk ,xnk− ynk〉. (27)

From limk→∞ ‖xnk− ynk‖= 0 and the uniformly continuity of A we get

lim
k→∞
‖Axnk−Aynk‖= 0 (28)
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which, together with (23) and (27) implies that

liminf
k→∞

〈Aynk ,x− ynk〉 ≥ 0. (29)

Next, we show that z ∈ Ω. We choose a sequence {εk} of positive numbers decreasing
and tending to 0. We can construct a strictly increasing sequence {Nk} of positive integers
such that

〈Ayn j ,x− yn j〉+ εk ≥ 0 ∀ j ≥ Nk, (30)

where the existence of Nk follows from (29). Furthermore, for each k setting

vNk =
AyNk

‖AyNk‖2 ,

we have 〈AyNk ,vNk〉= 1. We deduce from (30) that for each k

〈AyNk ,x+ εkvNk− yNk〉 ≥ 0.

From the fact that A is pseudo-monotone on H, we get

〈A(x+ εkvNk),x+ εkvNk− yNk〉 ≥ 0.

This implies that

〈Ax,x− yNk〉 ≥ 〈Ax−A(x+ εkvNk),x+ εkvNk− yNk〉− εk〈Ax,vNk〉. (31)

We show that limk→∞ εkvNk = 0. Indeed, since xnk ⇀ z and limk→∞ ‖xnk − ynk‖ = 0, we
obtain yNk ⇀ z as k→ ∞. Since A is sequentially weakly continuous on bounded subset
of H, {Aynk} converges weakly to Az. We have that Az 6= 0 (otherwise, z is a solution).
Since the norm mapping is sequentially weakly lower semicontinuous, we have

0 < ‖Az‖ ≤ liminf
k→∞

‖Aynk‖.

Since {yNk} ⊂ {ynk} and εk→ 0 as k→ ∞, we obtain

0≤ limsup
k→∞

‖εkvNk‖= limsup
k→∞

(
εk

‖Aynk‖

)
≤ limsupk→∞ εk

liminfk→∞ ‖Aynk‖
= 0,

which implies that limk→∞ εkvNk = 0. Letting k→ ∞, the right hand side of (31) tends to
zero since A is uniformly continuous, {xNk} is bounded and limk→∞ εkvNk = 0. Thus, we
get

liminf
k→∞

〈Ax,x− yNk〉 ≥ 0.

Hence, for all x ∈C we have

〈Ax,x− z〉= lim
k→∞
〈Ax,x− yNk〉= liminf

k→∞
〈Ax,x− yNk〉 ≥ 0.

By Lemma 5 we obtain z ∈Ω and the proof is complete.

Remark 2. As remarked in [3, 33], when the operator A is monotone, it is not necessary
to impose the sequential weak-weak continuity on A.

Combining Lemma 9 and Lemma 10 with Lemma 6 we obtain the weak convergence
of Algorithm 1.

Theorem 1. The sequence {xn} generated by Algorithm 1 converges weakly to a solution
of V I(C,A).
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4 Strong Convergence Method
In this section, we introduce our second method which is a combination of Tseng’s ex-
tragradient method with Mann type method [25]. Through out this section, in addition to
conditions 1-3 in Section 3 we also need the following condition.

Condition 4. Let {αn},{βn} be two real sequences in (0,1) such that {βn} ⊂ (a,1−αn)
for some a > 0 and

lim
n→∞

αn = 0,
∞

∑
n=1

αn = ∞.

The proposed algorithm is of the following form:

Algorithm 2.

Initialization: Given γ > 0, l ∈ (0,1),µ ∈ (0,1). Let x1 ∈C be arbitrary

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:

Step 1. Compute
yn = PC(xn−λnAxn)

where λn := γlmn and mn is the smallest non-negative integer m satisfying

γlm‖Axn−Ayn‖ ≤ µ‖xn− yn‖.

If xn = yn or Ayn = 0 then Stop, yn is a solution of VI(C,A). Otherwise
Step 2. Compute

xn+1 = (1−αn−βn)xn +βn(yn−λn(Ayn−Axn)).

Set n := n+1 and go to Step 1.

Lemma 11. The sequence {xn} generated by Algorithm 2 is bounded.

Proof. Setting zn = yn−λn(Ayn−Axn). Thanks to Lemma 9, for every p ∈Ω we have

‖zn− p‖2 ≤ ‖xn− p‖2− (1−µ
2)‖xn− yn‖2. (32)

This implies that
‖zn− p‖ ≤ ‖xn− p‖. (33)

We have

‖xn+1− p‖= ‖(1−αn−βn)xn +βnzn− p‖
= ‖(1−αn−βn)(xn− p)+βn(zn− p)−αn p‖
≤ ‖(1−αn−βn)(xn− p)+βn(zn− p)‖+αn‖p‖. (34)
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From (33) we obtain

‖(1−αn−βn)(xn− p)+βn(zn− p)‖2

=(1−αn−βn)
2‖xn− p‖2 +2(1−αn−βn)βn〈xn− p,zn− p〉+β

2
n ‖zn− p‖2

≤(1−αn−βn)
2‖xn− p‖2 +2(1−αn−βn)βn‖zn− p‖‖xn− p‖+β

2
n ‖zn− p‖2

≤(1−αn−βn)
2‖xn− p‖2 +2(1−αn−βn)βn‖xn− p‖2 +β

2
n ‖xn− p‖2

=(1−αn)
2‖xn− p‖2.

This implies that

‖(1−αn−βn)(xn− p)+βn(zn− p)‖ ≤ (1−αn)‖xn− p‖. (35)

Combining (34) and (35) we get

‖xn+1− p‖ ≤ (1−αn)‖xn− p‖+αn‖p‖
≤max{‖xn− p‖,‖p‖}
≤ ...≤max{‖x0− p‖,‖p‖}.

i.e., the sequence {xn} is bounded and so is {zn}.

Lemma 12. For every p ∈Ω we have

‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2 +αn[2βn‖xn− zn‖‖xn+1− p‖+2〈p, p− xn+1〉]. (36)

Proof. Using (2) we have

‖xn+1− p‖2 =‖(1−αn−βn)xn +βnzn− p‖2

=‖(1−αn−βn)(xn− p)+βn(zn− p)+αn(−p)‖2

=(1−αn−βn)‖xn− p‖2 +βn‖zn− p‖2 +αn‖p‖2−βn(1−αn−βn)‖xn− zn‖2

−αn(1−αn−βn)‖xn‖2−αnβn‖zn‖2

≤(1−αn−βn)‖xn− p‖2 +βn‖zn− p‖2 +αn‖p‖2, (37)

which, together (32) implies

‖xn+1− p‖2 ≤(1−αn−βn)‖xn− p‖2 +βn‖xn− p‖2−βn(1−µ
2)‖xn− yn‖2 +αn‖p‖2

=(1−αn)‖xn− p‖2−βn(1−µ
2)‖xn− yn‖2 +αn‖p‖2

≤‖xn− p‖2−βn(1−µ
2)‖xn− yn‖2 +αn‖p‖2. (38)

Therefore,

βn(1−µ
2)‖xn− yn‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +αn‖p‖2. (39)

Setting tn = (1−βn)xn +βnzn we obtain

‖tn− p‖=‖(1−βn)(xn− p)+βn(zn− p)‖
≤(1−βn)‖xn− p‖+βn‖zn− p‖
≤(1−βn)‖xn− p‖+βn‖xn− p‖
=‖xn− p‖, (40)
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and
‖tn− xn‖= βn‖xn− zn‖. (41)

Combining (40) and (41) we get

‖xn+1− p‖2 =‖(1−αn−βn)xn +βnzn− p‖2

=‖(1−βn)xn +βnzn−αnxn− p‖2

=‖(1−αn)(tn− p)−αn(xn− tn)−αn p‖2

≤(1−αn)
2‖tn− p‖2−2〈αn(xn− tn)+αn p,xn+1− p〉

=(1−αn)
2‖tn− p‖2 +2αn〈xn− tn, p− xn+1〉+2αn〈p, p− xn+1〉

≤(1−αn)‖tn− p‖2 +2αn‖xn− tn‖‖xn+1− p‖+2αn〈p, p− xn+1〉
≤(1−αn)‖xn− p‖2 +αn[2βn‖xn− zn‖‖xn+1− p‖+2〈p, p− xn+1〉].

We are now in the position to establish the main results of this section. To this end, we
assume that Algorithm 2 does not terminate at any step n, i.e., it generates an infinite
sequence {xn}.

Theorem 2. Suppose that Algorithm 2 generates an infinite iterative sequence {xn} then
{xn} converges strongly to p ∈Ω, where p = argmin{‖z‖ : z ∈Ω}.

Proof. Since Ω is closed and convex [18], there exists an unique element p ∈Ω such that
p = PΩ(0). We will show that the sequence {‖xn− p‖2} converges to zero by considering
two possible cases on the sequence {‖xn− p‖2}.

Case 1: There exists an n0 ∈N such that ‖xn+1− p‖2 ≤ ‖xn− p‖2 for all n≥ n0. This
implies that limn→∞ ‖xn− p‖2 exists. It implies from Claim 2 that

lim
n→∞
‖xn− yn‖= 0. (42)

We also have

‖zn− xn‖= ‖yn−λn(Ayn−Axn)− xn‖
≤ (1+µ)‖xn− yn‖. (43)

Combining (42) and (43) we get

lim
n→∞
‖zn− xn‖= 0.

Using this we find

‖xn+1− xn‖ ≤ αn‖xn‖+βn‖xn− zn‖→ 0 as n→ ∞.

Since {xn} is bounded we assume that there exists a subsequence {xn j} of {xn} such that
xn j ⇀ q and

limsup
n→∞

〈p, p− xn〉= lim
j→∞
〈p, p− xn j〉= 〈p, p−q〉.

We have xn j ⇀ q and ‖xn− yn‖ → 0, using the same technique as in Lemma 10 we get
q ∈Ω. On the other hand, since p = PΩ0, we obtain

limsup
n→∞

〈p, p− xn〉= 〈p, p−q〉 ≤ 0.
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By ‖xn+1− xn‖→ 0 we get

limsup
n→∞

〈p, p− xn+1〉 ≤ 0.

From Lemma 12 and Lemma 7 we have limn→∞ ‖xn− p‖2 = 0, i.e., xn→ p.
Case 2: Assume that there is no n0 ∈ N such that {‖xn− p‖}∞

n=n0
is monotonically

decreasing. Following the technique in [22] we define Γn = ‖xn− p‖2 for all n≥ 1 and let
τ : N→ N be a mapping defined for all n≥ n0 (for some n0 large enough) by

τ(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1},

i.e. τ(n) is the largest number k in {1, ...,n} such that Γk increases at k = τ(n); note that,
in view of Case 2, this τ(n) is well-defined for all sufficiently large n. From [22], τ is a
non-decreasing sequence such that τ(n)→ ∞ as n→ ∞ and for all n≥ n0

0≤ Γτ(n) ≤ Γτ(n)+1,

0≤ Γn ≤ Γτ(n)+1. (44)

Since βn ≥ a ∀n ∈ N, from (39) we have

a(1−µ
2)‖xτ(n)− yτ(n)‖2 ≤βτ(n)(1−µ

2)‖xτ(n)− yτ(n)‖2

≤‖xτ(n)− p‖2−‖xτ(n)+1− p‖2 +ατ(n)‖p‖2

≤ατ(n)‖p‖2.

Therefore
lim
n→∞
‖xτ(n)− yτ(n)‖= 0. (45)

As proved in the first case, we have

‖xτ(n)+1− xτ(n)‖→ 0

and
limsup

n→∞

〈p, p− xτ(n)+1〉 ≤ 0.

From Lemma 12 and Γτ(n) ≤ Γτ(n)+1 ∀n≥ n0 we have

‖xτ(n)+1− p‖2 ≤(1−ατ(n))‖xτ(n)− p‖2

+ατ(n)[2βτ(n)‖xτ(n)− zτ(n)‖‖xτ(n)+1− p‖+2〈p, p− xτ(n)+1〉]
≤(1−ατ(n))‖xτ(n)+1− p‖2

+ατ(n)[2βτ(n)‖xτ(n)− zτ(n)‖‖xτ(n)+1− p‖+2〈p, p− xτ(n)+1〉].

This implies that

‖xτ(n)+1− p‖2 ≤ 2βτ(n)‖xτ(n)− zτ(n)‖‖xτ(n)+1− p‖+2〈p, p− xτ(n)+1〉,

which implies that limsupn→∞ ‖xτ(n)+1− p‖2 ≤ 0, that is limn→∞ ‖xτ(n)+1− p‖= 0. The
conclusion is follows from (44).

Remark 3. Comparing with Theorem 3.1 in [37], Theorem 3.2 in [29] and Theorem 3.2
in [35], Theorem 2 has two major advantages.

1. We weaken the Lipschitz continuity of A to uniform continuity on bounded subsets.

2. We replace the monotonicity by pseudo-monotonicity and sequentially weakly con-
tinuous of A.
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5 Numerical Illustrations
In this section we present some numerical examples illustrating the behavior of our pro-
posed schemes. We consider the classical Hilbert space H = l2 and the V I(C,A) with

C := {x = (x1,x2, ...,xi, ...) ∈ H | |xi| ≤
1
i
, i = 1,2, ...,n, ...}

and

Ax :=
(
‖x‖+ 1

‖x‖+α

)
x,

for some α > 0. It is easy to see that Ω = {0} and moreover, A is pseudo-monotone
on H, uniformly continuous and sequentially weakly continuous on C but not Lipschitz
continuous on H. Indeed, let x,y ∈ H be such that 〈Ax,y− x〉 ≥ 0. This implies that
〈x,y− x〉 ≥ 0. Consequently,

〈Ay,y− x〉=
(
‖x‖+ 1

‖x‖+α

)
〈y,y− x〉

≥
(
‖x‖+ 1

‖x‖+α

)
(〈y,y− x〉−〈x,y− x〉)

=

(
‖x‖+ 1

‖x‖+α

)
‖y− x‖2 ≥ 0.

meaning that A is pseudo-monotone. Moreover, since C is compact, the operator A is
uniformly continuous and sequentially weakly continuous on C. Finally we show that A
is not Lipschitz continuous on H. Assume to the contrary that A is Lipschitz continuous
on H, i.e., there exists L > 0 such that

‖Ax−Ay‖ ≤ L‖x− y‖ ∀x,y ∈ H.

Let x = (L,0, ...,0, ...) and y = (0,0, ...,0, ...) then

‖Ax−Ay‖= ‖Ax‖=
(
‖x‖+ 1

‖x‖+α

)
‖x‖=

(
L+

1
L+α

)
L.

Thus, ‖Ax−Ay| ≤ L‖x− y‖ is equivalent to(
L+

1
L+α

)
L≤ L2,

leading to
1

L+α
≤ 0,

which is a contraction and thus A is not Lipschitz continuous on H. In the following
figure, we present the numerical behavior of Algorithm 1 and Algorithm 2 when α = 1,
H = Rm for different values of m. In this case, the feasible set C is a box

C := {x ∈ Rm | −1
i
≤ xi ≤

1
i
, i = 1,2, ...,m},
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for which we have explicit formula of the projection onto C. We choose γ = 0.1, l =
0.5,µ = 0.8 for both Algorithms and

αn =
1√

n+2
,βn =

1−αn

2
∀n ∈ N,

for Algorithm 2. This choice of parameters implies that (9) is satisfied with mn = 0 for
all iterations. The starting point is chosen as x0 = (1,1, ...1) ∈ Rm. Experiments were
generated with Matlab R2017a on a Linux OS with a 2.39 Ghz processor and 16 GB
of memory. When m = 20, Algorithm 1 provides the solution after 149 iterations and
0.001746 seconds of CPU time, while Algorithm 2 needs 71 iterations and 0.001022 sec-
onds of CPU time. When m = 50, Algorithm 1 provides the solution after 150 iterations
and 0.001784 seconds of CPU time, while Algorithm 2 needs 73 iterations and 0.001191
seconds of CPU time.
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Figure 1: Performance of Algorithm 1 and Algorithm 2 when m = 20 (left) and m = 50
(right).

6 Conclusions
In this paper we proposed two Tseng’s extragradient extensions for solving non-Lipschitzian
pseudo-monotone variational inequalities in real Hilbert spaces. Under suitable and stan-
dard conditions we establish weak and strong convergence theorems of the proposed
schemes. Our results extend and generalize some existing results in the literature and
numerical illustrations demonstrate the behavior and potential applicability of the pro-
posed methods.
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