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A report by Wendy A. Warr (wendy@warr.com) on a three-day residential meeting organized
by the Dial-a-Molecule, Directed Assembly and AI3SD Networks at the De Vere Tortworth on
March 9-11, 2020.

1 Event Details

Title AI for Reaction Outcome & Synthetic Route Prediction Conference

Organisers AI3 Science Discovery Network+,
Dial-a-Molecule Grand Challenge Network &
Directed Assembly Grand Challenge Network

Dates 09-11/03/2020
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No. Participants 99

Location Tortworth, Wotton Under Edge, GL12 8HH
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Committee

Dr Gill Smith, Dial-a-Molecule Network,
Dr Samantha Kanza, AI3 Science Discovery Network+ &
Mr Martin Elliott, Directed Assembly

Conference Chairs Professor Richard Whitby, Dial-a-Molecule Network,
Professor Jeremy Frey, AI3 Science Discovery Network+ &
Professor Harris Makatsoris, Directed Assembly

2 Welcome and Introduction

Professor Richard Whitby, University of Southampton

The meeting was organized by the Dial-a-Molecule,1,2 Directed Assembly,3 and AI3 Science
Discovery4 Networks. Dial-a-Molecule’s vision is that in 20-40 years, scientists will be able to
deliver any desired molecule within a timeframe useful to the end-user, using safe,
economically viable and sustainable processes. Predicting the outcome of unknown reactions is
a key challenge, and a key problem is lack of data, particularly on “failed” reactions. Synthesis
must become a data-driven discipline. Since 2011 the Dial-a-Molecule Network has organized
many meetings around the themes of collecting better data and using automated reaction
platforms for repeatable and captured procedures. A recent success has been the establishment
of the center for Rapid Online Analysis of Reactions (ROAR) at Imperial College.5

3 Computer-assisted design of complex organic syntheses, 50
years on

Professor Peter Johnson, University of Leeds (talk sponsored by CAS)

The goal of Corey and Wipke’s seminal work on computer-aided organic synthesis, the
foundation for the Logic and Heuristics Applied to Synthetic Analysis (LHASA) program, was
to assist chemists to find complete synthetic routes to target molecules.6 Organic Chemical
Synthesis Simulation (OCSS) preceded LHASA. It used a large PDP10 computer7 that
probably had a fraction of the computer power of today’s smart cell phones.
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In a typical retrosynthetic analysis,8 level one precursors of a target molecule are found, and
then precursors of those precursors are found, and so on, until an available starting material is
identified, at which point the search terminates. In the absence of powerful strategies or
frequent user pruning, the combinatorial nature of this approach prohibits very broad searches
(many alternative reactions) as well as very deep searches (many steps between starting
materials and products). For many systems the retrosynthetic analysis is driven by rules
(“transforms”) describing the scope, limitations, and structure changes associated with a
reaction.

The reaction core provides a description of the essential structural features which must be
present in the product for the transform to be applied; the extended reaction core contains
additional information about individual atoms to make sure it is only applied in the correct
situation. This may include the exclusion of structural features. In LHASA transforms were
hand coded. Throughput was slow and newer advances in synthetic chemistry can invalidate
older rules. Usage of LHASA declined when reaction databases became available.

In the 2000s, Pfizer approached Simbiosys, a Toronto based cheminformatics company, to
develop a retrosynthetic tool “ARChem Route Designer” (later named ChemPlanner). The
aim was to perform rule- and precedent-based retrosynthetic analysis of target molecules back
to readily available materials, and where possible, provide automated generation of
retrosynthetic reaction rules. Other requirements were to provide a comprehensive set of
alternative routes to a given target; allow user guidance and control; and provide literature
examples of the suggested transformations, and direct access to details of starting materials.

In ARChem, rules are extracted from a reaction database, and reaction cores identified from a
reaction file with mapping of the atoms and bonds which were changed, made or broken in the
reaction. The extracted core is extended to include all structural features essential for the
reaction to occur, not those that are just “passengers”. Literature examples of the reaction
type, for example esterification, are clustered together and an esterification rule is generated.
Generalized rules might involve a nucleofuge (NF), that is, a leaving group which carries away
a bonding electron pair. In the completed reaction rule, the generalized NF group is replaced
by the most common group, but it is recognized that many alternative nucleofuges could also
work. This grouping together of similar reactions in a single rule is one of many heuristics
used to reduce the combinatorial explosion.

Extended core perception requires chemistry judgment and knowledge of reaction mechanism.
Examples are classified according to perceived mechanism type. Where different mechanistic
types share a common reaction core, mechanistic type is used as the basis for splitting into
separate rules and to determine which atoms to include in the extended core. An example is
nucleophilic aromatic substitution where the addition-elimination mechanism requires a pi
acceptor group in the ortho or para position, but the mechanism via an organometallic
intermediate does not require an activating group in any position.

In contrast to LHASA, the reaction rules are not defined by chemists, but the rules for
abstracting some of the transforms from reaction databases are. This requires a relatively
small number of meta rules: many reactions, but fewer basic mechanistic types. Manual
curation of rules is also undertaken. The hierarchical view of rules allows trivial variants to be
identified and merged into fewer rules. Key reactions are identified and given higher priority
(fewer examples are required) and minor variants of common reactions are identified and given
lower priority (more examples required). In short, accurate rules require synthetic chemistry
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knowledge. The principle is to automate wherever possible and curate the rule set manually.

The current ARChem search engine uses an unsupervised heuristic search strategy. Search is
exhaustive over a limited number of steps. Rules are invoked according to an “example count”
parameter defined by the user. Only rules based on more examples than the value of the
parameter are used in the search. Rules are weighted in accordance with importance: higher
ratings need fewer examples, as do rules which generate relatively rare moieties. Heuristics to
control the combinatorial explosion include amalgamation of similar reactions, synthetic depth
limit, example count, user guidance, and search termination if a sufficiently cheap starting
material is generated.

Interfering functionality is taken into consideration. Following rule abstraction, compatible
functionality is detected by examining the examples. Moieties in the examples outside the
extended core are listed as compatible. Functional groups not found in the examples will be
identified as “possibly interfering”. Possibly interfering functionality is penalized in scoring
and highlighted to the user. This technology only works well if reactions differing by
mechanism are in separate rules.

Another challenge for retrosynthetic analysis is efficient approaches to navigation of very large
answer sets. Users need to see the best solutions first. A reaction scoring function takes into
account intrinsic reaction score (some reactions are more highly regarded than others), and
reduction of target complexity (the more bonds or rings broken in the retrosynthetic
transformation the better). Disconnections which give larger fragments are preferred. Scoring
minimizes wastage and maximizes starting material coverage. Thoroughly explored chemistry
is given preference (based on example count). The cost of reactants is considered. Parameters
for scoring are not embedded in the code but can be changed by an administrator. Users can
mark bonds to be preserved or broken, or they can run a search oriented on starting material,
by drawing a starting material and target, and mapping the atoms.

Presenting the results is also a challenge: the solutions space could be large, the balance
between viewing full routes and individual steps needs consideration, and there is an
enormous amount of information in various formats to be displayed. Peter showed some
screenshots illustrating the principles of structure-driven viewing, with little text; hybrid
step-by-step and full route display; and presentation of the evidence for the suggested
transformation (literature precedent). In one example the number one ARChem predicted
route was found before the synthesis was actually published.

Further general improvements have been made to the system including regioselectivity in
aromatic electrophilic substitution reactions; sorting of examples based on similarity to the
suggested transformation; route cost calculation; and links for starting materials. Vendor
prices have hyperlinks to the chemical vendor’s web pages, and starting materials found which
are more expensive than a user set limit are not terminators and are subjected to further
retrosynthetic analysis. In similarity sorting, similarity is measured by the presence of as many
of the same functional groups as possible, and by structural similarity in the vicinity of the
reaction core, using a technology more sophisticated than the shell-based similarity found in
many systems.

In 2014, Wiley acquired Simbiosys with a view to integrating ARChem with the ChemInform
database of about 2 million reactions. ARChem gained a new user interface and a new name,
ChemPlanner. In 2017, CAS acquired the right to develop the system in order to integrate it
with their reaction database of over 20 million reactions. In 2019, after major integration and
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development effort, the SciFindern retrosynthesis tool was released. Initially it produced just
multistep “experimental” routes (all steps which exactly matched literature transformations).
At the end of 2019, “predicted” routes (novel routes with a literature precedent for individual
steps) were produced. SciFindern. Retrosynthesis is integrated with other features of
SciFindern. Software engineers at CAS have extensive experience in handling big data, and
that, coupled with CAS’s very powerful hardware results in major gains in speed of certain
operations.

Further enhancements are under development. Continuing improvement in automated rule
generation and curation should lead to a huge reduction in the number of rules, and faster and
deeper searches. Continuing evolution of the scoring function should bring better solutions to
the top. Smarter searches will use only relevant rules and incorporate a variety of synthesis
strategies. The user interface will be further improved. Stereochemistry rules to capture the
huge advances made in enantioselective chemistry in the past few decades will be added soon;
stereochemical match to both CAS reaction sequences and starting materials is already
featured.

The stereochemical perception algorithm9 is based on the analysis of atom coordinates and
the presence of wedged and hashed bonds according to prescribed reference patterns. The
pattern matching approach means that tetrahedral, olefinic, allenic, biaryl atropisomers and
the stereochemistry of various coordination complexes can be located and described by a
single, unified approach. The stereochemical requirements are set using a separate constraints
graph which is solved simultaneously with the edge constraints of a regular graph matching
algorithm. The stereochemical constraints graph can be set to solve for identical, mirror,
epimer, or diastereoisomer match. The procedure is also used for stereochemical match of
available starting materials.

The current approach which involves drawing stereochemical rules means that the algorithms
used to perceive stereochemistry in target molecules can be equally applied to the drawn
rules. Every alternative stereochemical consequence of a given reaction has its own rule. Even
rules which represent stereochemically impossible reactions are included to catch errors in the
reaction databases. In an automated procedure, each rule is matched to the whole original
reaction database to extract examples matching the rule. About 30-35% of the most useful
methods in the Corey-Kürti list10 have been covered so far.

ARChem and its successors are heavily based on multiple heuristics derived from the
experience of human practitioners of synthetic organic chemistry augmented by database
searches. Some of the newer systems rely much less on such heuristics but instead apply
machine learning techniques to the problem. It remains to be seen which approach yields the
most useful results for users over the next decade.

4 Gathering molecules: representations and machine learning
with minimal data

Professor Jonathan Goodman, University of Cambridge

Jonathan began by showing various representations of benzene (Figure 1). The name
“benzene” is pronounceable. The 2D structure of benzene is appealing but has orientation
issues. There are five CAS Registry Numbers (CAS RNs) for benzene, all proprietary.
SMILES11,12 representations can be constructed by humans, and they are somewhat
human-readable, but they are not unique (although various algorithms have been written to
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make them unique). The IUPAC International Chemical Identifier (InChI)13 is canonical (i.e.,
there is a one-to-one correspondence between structure and InChI string). It is constructed by
computer and is readable by very dedicated humans. InChIKey is always the same length, and
it is better than InChI for searching, but it is undecodable.

Figure 1: Benzene.

Another representation is the MDL molfile.14,15 This is a connection table unambiguously
describing the atoms and bonds in the molecule, but it contains much “unnecessary”
information such as coordinates, bond localization, and atom numbering. The fragments
present in a structure can be represented as a sequence of 0s and 1s, where 0 means that the
fragment is not present in the structure and 1 means that it is present in the structure. Each 0
or 1 can be represented as a single bit in a bitstring. These bitstrings are called structure
fingerprints. Fingerprints, of which there are many types,16 are useful for machine learning,
but you cannot go from a fingerprint back to a structure, two different molecules can have the
same fingerprint, and some important features such as stereochemistry are omitted.

Jonathan showed various representations of remdesivir. In numbering the atoms in the
structure for a canonical string such as an InChI it should not matter where you start with
the first atom: there should still be only one InChI for one structure. There is only one InChI
for remdesivir, but it is easy to make mistakes in InChI generation. If the structure on the left
of Figure 2 is “stretched out” to give the structure on the right, a second InChI is generated
because the ChemDraw to InChI conversion considers two centers to be undefined, and the
second section of the InChI, which represents stereochemistry, differs. Only one of the two
InChIs corresponds to remdesivir.

Figure 2: Remdesivir.

The basic molfile for remdesivir has only 2D coordinates. The RDKit default fingerprint is the
same for both structure representations because it does not handle stereochemistry. The
fingerprint has a great many bits set on but the lack of stereochemistry would be unfortunate
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if you were using machine learning to predict toxicity. Encoding structures is challenging but
reactions are even harder to encode.

We are familiar with random pictures and recognizing images of kittens on the Internet;
chemical space is more interesting than a random picture, but not as easy to recognize as a
kitten. A molecule can be represented by a chemical name, a 2D or 3D structure, a molfile, an
InChI, or a SMILES string, but each representation cannot necessarily be converted into
another. A name can be converted to a CAS RN (at a cost), an InChI can be hashed into an
InChIKey, and fingerprints can be made from a molfile or a structure, but an InChIKey
cannot be converted back into an InChI, and fingerprints cannot be converted back into
structures and molfiles. Conformations can be generated from 3D structures.

Reactions are hard to represent. How much detail should be included in a representation, and
which is the more important: searchability or maximum information? Graphical
representation standards for chemical reactions have been prepared for publication by Division
VIII of IUPAC. The Reaction InChI (RInChI)17 extends the idea of the InChI to reactions.
There are also hashed representations (RInChIKeys) suitable for database and web
operations. Jonathan used a reaction producing indigo as an example (Figure 3).

Figure 3: RInChI example.

The next step is to persuade everyone to use RInChIs; Jonathan’s group has used them. The
more information that is available, the easier it will be to use machine learning and AI. AI
needs a consistent way of representing a reaction. Through synthesizing both candidate
diastereoisomers of a model C1-C28 fragment of the potent cytotoxic marine polyketide
hemicalide, Jonathan’s team was able to assign the relative configuration between the C1-C15
and C16-C26 regions.18 By detailed NMR comparisons with the natural product, the relative
stereochemistry between these two 1,6-related stereoclusters is elucidated as 13,18-syn rather
than the previously proposed 13,18-anti relationship. Hemicalide has 21 stereocenters plus
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cis/trans stereochemistry. The Morgan fingerprint may not work here because of the number
of bonds involved.

NMR shielding tensors may be computed with the Gauge-Independent Atomic Orbital
(GIAO) method. Jonathan’s team has applied GIAO NMR shift calculation to the challenging
task of reliably assigning stereochemistry with quantifiable confidence when only one set of
experimental data is available.19 They have compared several approaches for assigning a
probability to each candidate structure and devised a new probability measure, termed DP4.
Recently, Jonathan’s team has reported an improved version of the procedure,20 which can be
downloaded as a Python script and which analyzes output from open-source molecular
modeling programs and commercial packages. The new open-source workflow incorporates a
method for the automatic generation of diastereoisomers using InChI strings. Jonathan thinks
that we ought to be able to synthesize hemicalide.

More recently, Jonathan’s team has also developed a system for automatic processing and
assignment of raw 13C and 1H NMR data, DP4-AI, and has integrated it into the
computational organic molecular structure elucidation workflow.21 Starting from a molecular
structure with undefined stereochemistry, the system allows for completely automated
structure elucidation. It enables high-throughput analyses of databases and large sets of
molecules, which were previously impossible, and paves the way for the discovery of new
structural information through machine learning. This new functionality has been coupled
with an intuitive user interface and is available as open-source software. Jonathan concluded
that the application of AI in chemistry is still in the trough of disillusionment in terms of the
Gartner hype cycle, but it will climb up the slope of enlightenment if we have more and better
data.

5 Introduction to ML and structured matrix methods for
learning outliers

Professor Mahesan Niranjan, University of Southampton

Niranjan first briefly discussed the foundations of machine learning. In an analogy with the
elephant as seen by blind men, Niranjan said that machine learning22,23 is seen in different
ways by different disciplines: statistics, software, optimization, system identification, etc. He
showed equations for function approximator, parameter estimation, prediction, regularization,
modeling uncertainty, probabilistic inference and sequential estimation, expressing machine
learning as data-driven modeling. Here we are trying to solve a classification or regression
problem. Reinforcement learning24,25 is one of three basic machine learning paradigms,
alongside supervised learning and unsupervised learning. The Kalman filter is a widely applied
concept in time series analysis. Particle filters are a set of Monte Carlo algorithms used to
solve filtering problems arising in signal processing and Bayesian statistical inference.

Next, Niranjan looked at some recent developments. Data are not always in the
form{xnyn}Nn=1. They also come in the form of natural language text, sentences and
documents, biological sequences, macromolecular structures, and small molecules as strings
and graphs. In the past we used to extract features from them as a bag of words, fingerprint
features, a bag of trigram (of amino acid) frequencies, and features derived from known
properties. Now we learn distributed continuous representations in word2vec (word embedding
in natural language modeling where discrete words are converted to vectors of real numbers
which contain similarity information), dna2vec, prot2vec, and mol2vec. Vector algebra can be
applied to natural language with word2vec. We set up self-supervised learning to predict a
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symbol from the context. A neural network predicts, for example, the probability of GHI in
the context of ABC DEF *** JKL MNO, where the inputs and targets are trigrams of amino
acids along a protein chain.

The advent of powerful and versatile deep learning frameworks in recent years has made it
possible to implement convolution layers into a deep learning model easily. In a 2D
convolution, you start with a kernel: a small matrix of weights. This kernel “slides” over the
2D input data, performing an elementwise multiplication with the part of the input it is
currently on, and then summing up the results into a single output pixel. A filter is a
collection of kernels. Each filter in a convolution layer produces one and only one output
channel. Filters act as feature extractors. Depth helps: a series of convolutions with repeated
subsampling of, for example, ImageNet,26 with pooling for data reduction at each stage. Yet,
depth makes error propagation difficult because of vanishing gradients in gradient descent.

Gradient descent methods are first-order, iterative, optimization methods. Each iteration
updates an approximate solution to the optimization problem by taking a step in the direction
of the negative of the gradient of the objective function. By choosing the step-size
appropriately, such a method can be made to converge to a local minimum of the objective
function. Gradient descent is used in machine learning by defining a loss function that reflects
the error of the learner on the training set, and then minimizing that function.

One current community-wide trend is to build deeper and deeper networks. During training,
these networks fall foul of an issue known as the vanishing gradient problem. The vanishing
gradient problem manifests itself in these networks because the gradient-based weight updates
derived through the chain rule for differentiation are the products of n small numbers, where
n is the number of layers being backward-propagated through.

A residual neural network (ResNet) is an artificial neural network that uses skip connections,
or shortcuts to jump over some layers. One motivation for skipping over layers is to avoid the
problem of vanishing gradients, by reusing activations from a previous layer until the adjacent
layer learns its weights. WaveNet27 (from Google DeepMind) is an architecture for signal
processing that does stacked dilated convolutions. A regression problem is thus changed into a
classification problem which is much easier to solve. Niranjan noted that among the inference
problems of classification, regression and estimation, classification is the easiest because all we
need to define is a boundary whereas in regression problems, a real valued target has to be
predicted. Density estimation is the hardest of the three because the so called curse of
dimensionality stipulates that the amount of data required grows exponentially with
dimensions to maintain the same accuracy of representing a density.

Another new (or rediscovered) topic Niranjan reviewed is capturing temporal information.
The main difference between a convolutional neural network (CNN) and a recurrent neural
network (RNN) is the ability of an RNN to process temporal information or data that comes
in sequences, such as a sentence. Long short-term memory (LSTM) is an RNN architecture
used in the field of deep learning. Unlike standard feedforward neural networks, LSTM has
feedback connections. It can not only process single data points (such as images), but also
entire sequences of data (such as speech or video).

Regularization is the process of adding information in order to solve an ill-posed problem or to
prevent overfitting. Weight decay is perhaps the most widely-used technique for regularizing
parametric machine learning models. Weight decay is defined as multiplying each weight in
the gradient descent at each epoch by a factor, λ, smaller than one and greater than zero.
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Multitask learning is a subfield of machine learning in which multiple learning tasks are solved
at the same time, while exploiting commonalities and differences across tasks. This can result
in improved learning efficiency and prediction accuracy for the task-specific models, when
compared to training the models separately. Multitask learning works because regularization
induced by requiring an algorithm to perform well on a related task can be superior to
regularization that prevents overfitting by penalizing all complexity uniformly.

Early stopping is a form of regularization used to avoid overfitting when training a learner
with an iterative method, such as gradient descent. Such methods update the learner so as to
make it better fit the training data with each iteration. Up to a point, this improves the
learner’s performance on data outside of the training set. Past that point, however, improving
the learner’s fit to the training data comes at the expense of increased generalization error.
Early stopping rules provide guidance as to how many iterations can be run before the learner
begins to overfit.

Bootstrap aggregating, also called bagging (from bootstrap aggregating), is a machine
learning ensemble meta-algorithm designed to improve the stability and accuracy of machine
learning algorithms. It also reduces variance and helps to avoid overfitting. Bagging is a
special case of the model averaging approach. It is a method for generating multiple versions
of a predictor and using these to get an aggregated predictor. The aggregation averages over
the versions when predicting a numerical outcome and does a plurality vote when predicting a
class. The multiple versions are formed by making bootstrap replicates of the learning set and
using these as new learning sets.28

Not only is overfitting a serious problem in deep neural networks; large networks are also slow
to use, making it difficult to deal with overfitting by combining the predictions of many
different large neural nets at test time. Dropout (a regularization technique patented by
Google) is a technique for addressing this problem. The key idea is to randomly drop units
(along with their connections) from the neural network during training. This prevents units
from co-adapting too much.

A topic particularly close to Niranjan’s heart is cascade learning. His team have reported an
approach, called deep cascade learning, for efficient training of deep neural networks in a
bottom-up fashion using a layered structure.29 Such training of deep networks in a cascade
directly circumvents the vanishing gradient problem by ensuring that the output is always
adjacent to the layer being trained. Niranjan’s team found that that better, domain-specific,
representations are learned in early layers when compared to what is learned in end-to-end
training. They have also shown that such cascade training has significant computational and
memory advantages over end-to-end training, and can be used as a pretraining algorithm to
obtain a better performance.

Belilovsky et al. have produced an alternative to end-to-end training of CNNs that can scale
to ImageNet.30 They used 1-hidden layer learning problems to build deep networks
sequentially, layer by layer, which can inherit properties from shallow networks. Extending
this training methodology to construct individual layers by solving 2-and-3-hidden layer
auxiliary problems, they obtained an 11-layer network that exceeded the performance of other
methods on ImageNet.

Cascade learning is particularly suited to transfer learning, as learning is achieved in a
layerwise fashion, enabling the transfer of selected layers to optimize the quality of transferred
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features. In the domain of human activity recognition, where the consideration of resource
consumption is critical, cascade learning is of particular interest as it has demonstrated the
ability to achieve significant reductions in computational and memory costs with negligible
performance loss. Activity is learned from one setting, and the model is retrained in a
different setting. Early layers learn coarse features; later layers specialize in the source
problem. In a recent publication,31 Niranjan’s team has evaluated the use of cascade learning
and compared it to end-to-end learning in various transfer learning experiments, all applied to
human activity recognition. They found that cascade learning achieves state of the art
performance for transfer learning in comparison to previously published work, improving F1
scores by over 15%. Cascade learning performs similarly to end-to-end learning considering F1
scores, with the additional advantage of requiring fewer parameters.

Another significant development Niranjan reviewed is the autoencoder. An autoencoder is a
type of artificial neural network used to learn efficient data codings in an unsupervised
manner. The aim of an autoencoder is to learn a representation for a set of data, typically for
dimensionality reduction, by training the network to ignore signal noise. Along with the
reduction side, a reconstructing side is learnt, where the autoencoder, trained using
back-propagation tries to generate from the reduced encoding a representation as close as
possible to its original input. A variational autoencoder (VAE) uses a probabilistic model in
the latent space between encoder and decoder. Doersch has published a useful tutorial on the
theory of VAEs.32

Another “trick” is knowledge distillation. Categorical data are variables that contain label
values rather than numeric values. Many machine learning algorithms cannot operate on label
data directly. They require all input variables and output variables to be numeric. This means
that categorical data must be converted to a numerical form. One way of doing this involves
one-hot encoding. One-hot is a group of bits among which the legal combinations of values are
only those with a single high (1) bit and all the others low (0). A big model can learn, but a
small model cannot, so a big model is trained, and outputs posterior probabilities, and then
the small model is trained on the outputs of the big model.

Niranjan’s final hot topic was attention. Recurrent neural networks, long short-term memory,
and gated recurrent neural networks in particular, have been firmly established as state of the
art approaches in sequence modeling and transduction problems such as language modeling
and machine translation. The dominant sequence transduction models are based on complex
recurrent or convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention mechanism. A
new simple network architecture, the Transformer, based solely on attention mechanisms,
dispenses with recurrence and convolutions entirely.33

Finally, Niranjan summarized his interest in outliers in a regression setting and outliers in a
matrix approximation setting, in particular in analyzing biological data. Despite much
dynamical cellular behavior being achieved by accurate regulation of protein concentrations,
mRNA abundances, measured by microarray technology, and more recently by deep
sequencing techniques, are widely used as proxies for protein measurements. Although for
some species and under some conditions, there is good correlation between transcriptome and
proteome level measurements, such correlation is by no means universal due to
post-transcriptional and post-translational regulation, both of which are highly prevalent in
cells.

Niranjan’s team has developed a data-driven machine learning approach to bridging the gap
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between these two levels of high-throughput 'omic measurements, and has deployed the model
in a novel way to uncover mRNA-protein pairs that are candidates for post-translational
regulation.34 The application of feature selection by sparsity inducing regression (l1 norm
regularization) leads to a stable set of features (i.e., mRNA, ribosomal occupancy, ribosome
density, tRNA adaptation index, and codon bias) while achieving a feature reduction from 37
to 5. A linear predictor used with these features is capable of predicting protein
concentrations fairly accurately. Proteins whose concentration cannot be predicted accurately,
taken as outliers with respect to the predictor, were shown to have annotation evidence of
post-translational modification, significantly more than random subsets of similar size. In a
data mining sense, this work also shows a wider point that outliers with respect to a learning
method can carry meaningful information about a problem domain.

6 Applying AI to retrosynthesis in the wilderness

Mikołaj Sacha, Molecule.one

Molecule.one first formulated their hypothesis in October 2018. They asked themselves how
current AI could bring value to retrosynthesis in drug discovery pipelines. Mikołaj explained
their motivation. Ilya Sutskever (co-inventor of the CNN AlexNet, and of AlphaGo and
TensorFlow) said that if you use a lot of good and labeled training data and a big deep neural
network, success is the only possible outcome. ImageNet26 classification error (top 5) has
gradually improved since 2011; ResNet exceeded human performance by 2015, and the CNN
GoogLeNet version 4 was even better in 2016. In 2018, Geirhos et al. demonstrated that the
CNN ResNet-50, having learned a texture-based representation on ImageNet, is able to learn
a shape-based representation instead when trained on a stylized version of ImageNet.35 This
provides a much better fit for human behavioral performance and comes with a number of
other unexpected benefits.

Deep neural networks can fail to generalize to out-of-distribution inputs.36 Thus, a school bus
is recognized as a garbage truck when viewed from underneath, as a punching bag when
viewed toward its roof, and as a snowplow when on its side across a snowy road. Maybe this
lack of deep understanding also applies to retrosynthesis,37 but shallow understanding may be
enough. Markovnikov’s rule states that when an acid such as hydrogen bromide is added to an
asymmetric alkene, the acidic hydrogen attaches itself to the carbon having a greater number
of hydrogen substituents whereas the halide group attaches itself to the carbon atom which
has a greater number of alkyl substituents. The rule was proposed in 1870, and carbocations
were proposed as reaction intermediates in 1900, but it was not until about 1960 that the
structure of carbocations was observed using NMR. Shallow understanding may be enough.

The Molecule.one team hypothesized that while the current incarnation of AI methods gains
shallow understanding of chemistry and works well on some classes of reactions (e.g., popular
reactions), strong, deep neural models that “know when they don’t know” can provide great
value to the industry. As an aside, the team asked themselves why reactions should not be
encoded using rules as in Synthia.38 One reason is that the rules get very complex.

Molecule.one began validation of their hypothesis in March 2019, examining whether they
could expect their models to work well on some subsets of chemistry. To train and evaluate
the models, they used 400,000 reactions from the set scraped by Lowe39 from publicly
available US patents as “true” reactions. They found about 1600 commonly occurring reaction
templates in the dataset. They generated negative samples for each reaction by applying its
template to all other existing matching places in substrates. The models were then evaluated
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by how well they discriminate between the two classes of reactions using the receiver operating
characteristic (ROC) area under curve (AUC) metric. The researchers split the data into
training and test sets by clustering reactions using chemical fingerprints of their substrates.

They tested a few neural network architectures: a model working on a reaction fingerprint, a
Convolutional Neural Network and a few Graph Convolutional Networks (CGNs). In
particular, they tested the Edge Attention Graph Neural Network (EAGCN),40 which they
adapted to chemical reactions. They also enhanced it with a multiheaded self-attention
mechanism. The best model, EAGCN with two attention heads, reached an AUC score of 0.99
compared to 0.95 for the second-best model, EAGCN with a single attention head.

To understand better how well their models generalize, they compared them to a heuristic
developed by a chemist specifically for a popular reaction type (aromatic nitration). The best
model achieved a comparable performance to the expert heuristic (F1 score of 0.81, compared
to 0.82 achieved by the heuristic), despite the fact that the team trained it on a whole dataset
of reactions (including 10,000 nitration examples), while the heuristic was crafted specifically
for this reaction type.41 The expert heuristic was both very time-consuming to construct and
limited in application to a narrow portion of the dataset. Learned models do not have these
limitations.

The team had expected AI models to understand some chemistry but next they had to decide
how to build an AI system that is useful and reliable. The difference in the Molecule.one
approach is a state-of-the-art deep neural discriminator. A discriminator takes its input from a
neural- or template-based generator. In the Molecule.one case, the discriminator (in-scope
filter) distinguishes generator outputs from real reactions. It uses proper negative reactions,
which means that high predictions correspond to high confidence, and vice versa. It helps
users “know when they don’t know”.

For the graph attention network (GAT) in-scope filter, each reaction is represented as a graph
(an imaginary transition structure),42 where atoms are nodes, and bonds are represented as
featurized adjacency matrices. The feature of a bond indicates its existence and type in
substrates and in the product. The team has shown that choosing a proper reaction
representation plays a crucial role in the task of predicting reaction feasibility. They
discovered that the graph representation achieves by far the best results (Figure 4).

Figure 4: Accuracy in top 10 predictions for retrosynthesis.
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A neural generator alone is not used because neural generators can make trivial mistakes. Li
et al. found direct contradictions43 in completing the last sentence in “I love baseball. It’s
awesome. I really dislike. . . ” Some completions were “basketball”, “it”, “the”, and “sports”.
Neural models for reaction generation, such as the Molecular Transformer,44 can also make
trivial mistakes. For instance, the Molecular Transformer often repeats commonly encountered
patterns, such as carbon chains, or simply copies reaction substrates as proposed products.

In October 2019, Molecule.one launched its eponymous product and in 2020 the company is
now working with its first industrial partners. One class of techniques of growing interest for
early-stage drug discovery is de novo molecular generation and optimization. These techniques
can suggest novel molecular structures, but ignorance of synthesizability is a problem.45

Molecule.one can address this challenge. The RDKit46,47 synthesizability score barely
distinguishes targets that have a known synthesis path; Molecule.one’s score gives high
confidence to targets that have a known synthesis path.

Finally, Mikołaj summarized some ongoing work. Molecule Attention Transformer48 (MAT). a
model that Molecule.one collaborated on, augments the attention mechanism in Transformer33

using interatomic distances and the molecular graph structure. Experiments show that MAT
performs competitively on a diverse set of molecular prediction tasks. Most importantly, with
a simple self-supervised pretraining, MAT requires tuning of only a few hyperparameter values
to achieve state-of-the-art performance on downstream tasks. Attention weights learned by
MAT are interpretable from the chemical point of view.

Neural models are often black boxes that cannot assess confidence of their steps. The
Molecule.one team wants to make a model that explains the decisions that it makes. The
Molecule Edit Graph Attention Network (MEGAN) encodes a reaction as a sequence of edits
in the molecule graph. Its neural generator explicitly outputs molecule edits. Using the data
preprocessed by Liu et al.49 it outperforms Graph Logic Network,50 NeuralSym,51 Retrosim,52

and Molecular Transformer.44 We should not expect AI to fully understand chemistry, but we
should expect AI to understand some chemistry. Molecule.one’s approach uses state-of-the-art
models trained to “know when they don’t know”. This approach enables Molecule.one to
deliver real value to their partners.

7 Reproducibility in chemistry

Dr. Mark Warne, DeepMatter

Human interaction to produce chemical products introduces many opportunities for error. It
is estimated that there are more than 500,000 chemists worldwide and 50% of their science is
not reproducible.53 This has a financial impact of $28 billion. Irreproducibility also has a
reputational impact: the chemistry Nobel laureate Francis Arnold recently had to retract a
paper in Science because the work was not reproducible. Machine learning and AI
technologies are held out as a panacea for improving reaction outcomes, but can we rely on
the underlying data if reproducibility is such a big problem? DeepMatter is addressing this
issue with DigitalGlassware,54 a software- and hardware-enabled repository of contextualized,
primary, full time-course data for all reactions, whether successful or unsuccessful. In his talk,
Mark concentrated on a pragmatic approach to improving synthesis prediction integrating
ICSYNTH 55–57 and DigitalGlassware.54 Primary laboratory data from DigitalGlassware can
be used to enrich the historical data that were fed into the transform libraries in ICSYNTH .

Mark gave an example concerning a P38 inhibitor for prevention of exacerbations in chronic
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obstructive pulmonary disease, AZD7624 (see Figure 5). ICSYNTH retrosynthesis searching
suggested a wide range of routes; one of which is based on a two-step transformation from
commercially available starting materials involving a novel Chapman rearrangement. All
precedents for the Chapman rearrangement sourced from InfoChem’s SPRESI58 database are
fairly wide extrapolations but a wider literature search has revealed a heterocyclic Chapman
rearrangement, providing an analogy much closer to the model N-phenylpyrazinone target.
Step 1 was successful in producing an intermediate with a yield equivalent to that expected. A
failed reaction was fed back into ICSYNTH for further optimization. Step 2 is still under
investigation.

Figure 5: Retrosynthesis of AZD7624.

By using DigitalGlassware the researchers were able to study exactly what they had done in each
run of step 1, in terms of tabulated scale, time, temperature, and yield figures, and visualizations
of temperature and analytical parameters over time. The example illustrated how feeding your
data back into DeepMatter’s systems can improve your reaction outcomes.

8 Accurate excited states calculations on near term quantum
computers

Jules Tilly, Rahko

Quantum computing makes use of quantum-mechanical phenomena to perform computation.
These computers use quantum logic gates, with quantum bits or qubits. They can model an
exponentially growing complex system with a linear number of qubits by using quantum
object properties and quantum information theory to reduce computational complexity.
Quantum computers offer the potential to bring parallelism to calculations on a scale that
cannot be matched by classical computers. They have the potential to improve modeling of
chemicals within the next 5-10 years. In particular, calculating excited states is a nontrivial
task with current computational chemistry methods, limiting the complexity of the molecules
that can be studied or the accuracy of the results that can be obtained. Jules presented a
method that could address this issue using quantum computing, and outlined that there are
still many technical challenges to overcome.

He gave a brief introduction to quantum circuits,59 starting with qubit gates and Pauli

14

https://www.spresi.com/
http://www.codeproject.com/Articles/5160469/Quantum-Computation-Primer-Part-2


operators. When considering modeling of a molecular spectrum on a quantum computer, one
should begin by encoding the molecular Hamiltonian in an appropriate format. The
Jordan–Wigner transformation maps the fermionic creation and annihilation operators of the
second quantized Hamiltonian onto spin operators which can be directly observed on a
quantum computer. The ground state is computed using the variational quantum eigensolver
(VQE).60

Jules and his co-workers have proposed a variational quantum machine learning based method
to determine molecular excited states, aimed to be as resilient as possible to the defects of
early noisy, intermediate-scale, quantum (NISQ) computers. They have demonstrated an
implementation for H2 on IBM’s prototype quantum processor (IBMQ) and Rigetti’s quantum
processor. The method, named the Discriminative VQE, is inspired from generative machine
learning and uses a combination of two parameterized quantum circuits, playing a guessing
game to find iteratively the eigenstates of a molecular Hamiltonian.61 Jules outlined his
algorithm using a VQE to constrain the generator in his generator-discriminator quantum
machine learning game. He presented results for H2 on Rigetti and IBMQ computers, and also
simulations for LiH (Figure 6).

Figure 6: Simulations, H2 and LiH.

There are limitations remaining that need to be addressed. The largest QPUs use only about 50
qubits; error rates are too high for deep circuits; and QPUs remain very slow. As far as software
is concerned, limitations include exploding terms in the qubit space Hamiltonian; variance of
output due to the measurements limit; and depth of ansatz to model the molecule. Several other
methods have been suggested for computation of excited states on QPUs but questions remain
regarding their applicability to near term hardware, and scalability to larger systems. Other
methods of interest include quantum equation of motion,62 quantum subspace expansion,63

imaginary time evolution,64 overlap minimization,65 and VQE with symmetry constraints.66
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9 Making sense of predicted routes: the use of data as
evidence for predictions in SciFinder

Paul Peters, CAS

Retrosynthesis in SciFinder67 is based on ChemPlanner, the technology of which is described
in Peter Johnson’s earlier talk. In Phase 1 (“experimental”) of the application (June 2019) the
target molecule had to be in the literature for the planning to work. Phase 2 (December 2019)
introduced “prediction” in which ChemPlanner also suggests reactions with no literature
precedent, even if the target is novel.

According to user surveys, the main value of the application is that it leads to strategies and
reaction steps users would not have otherwise considered, it exposes chemistry they were not
familiar with, and it allows them to be more innovative. It supports tasks such as identifying
alternatives to known routes, brain storming, finding synthetic routes for novel molecules, and
validating developed routes.

The main requirements of an idea generator are quality of results, diversity of solutions,
thorough coverage of known chemistry, tight linkage between predictions and experimental
evidence, flexibility in guiding the search, options to filter and sort solutions, and ease of use.
The quality of the results depends on rule generation, and advanced chemical perception,
which facilitates generalizations.

The retrosynthesis plan provides links to starting materials which are commercially available;
the target and precursors are given a letter (A, B, C, D. . . ) and the synthetic availability is
shown by an icon under the structure. Each subroute is designated by an Erlenmeyer flask,
red in experimental planning and green in predictive planning. The user can select a subroute
and work on it. In experimental planning, evidence is supplied in the form of reactions in the
CAS database. Many filters can be applied. Nonparticipating functional groups is a recently
added option. In predictive planning, evidence is in the form of rules.

Once a target has been entered, two sets of options are offered to the user. The first is
synthetic depth (1-4), and the type of rules used; the second (optional) is selection of a bond
that must be broken, or must remain unchanged. The rules used may be common, uncommon
(including common), or rare (including common and uncommon).

Chemists are excited about the technology. Organic chemists are a critical but supportive
audience and are very forthcoming in providing feedback and guidance. They appreciate when
limitations of the technology (e.g., stereoselectivity and regioselectivity, chemical interference,
and identifying the “best” solutions) are openly discussed. They are interested in more options
to influence the search, better navigation and pruning options, and integration of proprietary
data.

Retrosynthesis in SciFinder is comprehensive, rich and accurate; it uses the most current data;
it is versatile and easy to use; it is a facet of a complete discovery experience; and it is
continuously updated and improved.
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10 What is the importance of false reactions for efficient
data-driven retrosynthetic analysis?

Dr. Quentin Perron, Iktos

Iktos were inspired by the synthesis planning methodology reported by Marwin Segler and
co-workers68 (see Marwin’s talk later in this report). Four steps are involved: identification of
bond disconnections, application of the rules, reaction prediction, and Monte Carlo tree search
(MCTS). Iktos concentrate on the third step: finding out if a proposed reaction will work.
Since there is no database of failed reactions, a dataset of reactions which do not work has to
be created. A “false reaction” has the same reagents as a “true” one but a different product
(thanks to application of different templates). Multiple identical templates, regioselectivity,
and incompatible functions can all cause a reaction to fail.

An in-scope filter can score the templates to help decide which of them should be applied.
Unfortunately, the in-scope filter is not very efficient: it is built on very noisy data and false
reactions can actually be true reactions. A probability threshold has to be selected to
implement the filtration, and sometimes interesting disconnections can be discarded. Forward
prediction44 also cannot solve these problems.

Prediction is hard because of a lack of high quality data. Stoichiometry, reaction conditions,
by-products, chirality, and other facts are not documented well enough. Failed reactions are
not published. There are many “one reactant” reactions. Important parts of chemistry
knowledge (e.g., functional group reactivity and incompatibility) are in books, not in reaction
databases.

Building on the work of Waller’s team,68 Iktos scientists have built their own software,
Spaya,69 based on the Pistachio dataset70 from NextMove Software, and Mcule compound
sourcing71 for commercial compounds. They have developed an efficient, proprietary, in-scope
filter focusing on only very unlikely disconnections. Spaya is a free application online. Users
enter a SMILES for a target and can select nonpreferred disconnections. Spaya displays a
ranked list of synthetic routes: a user can pick the most relevant ones and analyze them step
by step. Each retrosynthesis in Spaya ends with commercially available building blocks. The
user can save the retrosynthesis results or place an order for the starting materials.

AI technology is highly valuable and powerful, but still far from solving all the challenges. At
the end of the day what matters is the ranking. Iktos is counting on the chemistry community
to help improve this ranking.

11 Combining artificial intelligence with structured high
quality data in chemistry: delivering outstanding
predictive chemistry applications

Dr. Abhinav Kumar, Elsevier

The drug design cycle leads to optimized candidates but necessitates both in-house and
published knowledge and data. At each step of the cycle, predictive applications built on
published and in-house data with machine-learning algorithms play a more and more
important role. One such predictive application is the Reaxys-PAI Predictive Retrosynthesis
tool,72 developed in collaboration with Mark Waller and Marwin Segler,68 which combines
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Reaxys content with AI and machine learning technologies. This tool is extending syntheses of
small organic molecules into predictive modeling of previously unpublished synthetic pathways
and synthetic feasibility of virtual compounds. It is not reliant on manual encoding of rules.
Users can integrate their own customized building blocks or proprietary reaction data. The
system solves retrosyntheses for more than twice as many molecules, 30 times faster than
traditional computer-aided methods.

The tool has been tested rigorously by the world’s leading pharmaceutical and chemical
companies and has been demonstrated to provide scientifically robust, diverse and innovative
synthetic route suggestions. It is a valuable tool which is easy and intuitive to use and
supports the needs of the business and researchers by being a very good assistant and idea
generator. The predictive retrosynthesis solution has been trained on both positive and
negative reactions data and solves synthesis design questions for novel molecules with direct
links to experimental reactions available in Reaxys.

The development of this tool further underscores the importance of having good quality data
and sufficient data to build predictive applications. As Kevin Poskitt from SAP73 said,
“Artificial intelligence without data intelligence is artificial”. Researchers need high-quality
published data; high-quality experimental in-house data (ideally with failed reactions);
methods and tools to ingest, normalize, clean, merge and filter published data (e.g., Reaxys)
and in-house data; and a scalable platform to process the data. Elsevier’s answer to the
challenge is the Entellect Reaction Workbench Platform.

12 Intelligence from data: towards prediction in
organometallic catalysis

Dr. Natalie Fey, University of Bristol

The use of data for homogeneous catalysis opens up opportunities to select the “best”
synthetic route, by making better use of resources; breaking “cultural attachments” to routes;
finding new approaches; and knowing when to stop. Chemists can broaden their toolkit and
explore new chemistry; deepen their understanding; and combine experiment and computation
to work toward prediction. Using computers, chemists can optimize geometries, calculate
energies, generate spectra, build and test models, test mechanistic ideas, analyze data, store
results, repeat and automate processes, and inform synthesis. What they cannot do is consider
everything that happens in a reaction vessel, prove a mechanism definitively, extrapolate,
predict reliably (yet), truly design compounds, and replace synthesis.

Natalie has reviewed74 how descriptors calculated from molecular structures have been used to
map different areas of chemical space. She focused on organometallic catalysis, but also
touched on other areas where similar approaches have been used, with a view to assessing the
extent to which chemical space has been explored.

While truly rational design of new catalysts remains out of reach, detailed mechanistic
information from both experiment and computation can be combined successfully with
suitable parameters75 characterizing catalysts and substrates to predict outcomes and guide
screening. The computational inputs to this process rely on large databases of parameters
characterizing ligand and complex properties in a range of different environments.76–78 Such
maps of catalyst space can be combined with experimental or calculated response data,76 as
well as large-scale data analysis.

18

https://www.digitalistmag.com/cio-knowledge/2019/05/23/artificial-intelligence-without-data-intelligence-is-artificial-06198533


Ligands stored in ligand knowledge bases (LKBs) can be used to tune complex properties.
The ligands are characterized by size and electronics,75,79 and their properties are mapped, in
order to derive structure-property relationships. It has to be asked whether two dimensions
are sufficient80 and whether the knowledge derived from one ligand type is transferable to
other ligand types. In her talk Natalie concentrated mainly on P-donor ligands. The use of
individual descriptors of P-donor ligands received a considerable boost with the publication of
Tolman’s seminal review.81 Further work was carried out by Fernandez,80 and by Cundari,
Rothenberg, Sigman, Paton, Jensen and others, summarized in a recent review.75

LKB-PP77,82,83 was developed for P,P and P,N donor ligands. It uses 28 descriptors which are
quite highly correlated. Projection methods reduce the number of variables (dimensions) by
transformation of the original variables, and optimally represent distances between objects.
Principal component analysis (PCA) describes the variation of the data in terms of
uncorrelated variables. In the initial work77,82 the P,P space was not sampled well.

Later, Jesús Jover, a postdoctoral research associate working with Natalie at the time, carried
out a computational exploration of the effect of systematic variation of backbones and
substituents on the properties of bidentate, cis-chelating P,P donor ligands.84 The parameters
used were the same as reported for LKB-PP but calculation protocols were streamlined.
Analysis of the resulting LKB-PPscreen database with PCA captured the effects of changing
backbones and substituents on ligand properties and illustrated how these are complementary
variables for these ligands. While backbone variation is routinely employed in ligand synthesis
to modify catalyst properties, only a limited subset of substituents is commonly accessed.
Jesús and Natalie highlighted substituents which are likely to generate new ligand properties,
of interest for the design and improved sampling of bidentate ligands.

The ligand knowledge base for monodentate P-donor ligands (LKB-P) can be linked with the
likely mechanism of reaction, in terms of the relative importance of steric and electronic
effects.74,76,85 Claire McMullin, a former Ph.D. student at Bristol, addressed this challenge
using data published by Stauffer and Hartwig.86 It was found that good amination catalysts
may favor monoligated palladium. Bristol’s LKB team, involving Natalie, Guy Orpen, Guy
Lloyd-Jones, Jeremy Harvey and others, have found that there is a hotspot of large and
electron-rich ligands (Figure 7, unpublished work). Dr. Ben Swallow, a former postdoctoral
research assistant at Bristol, has tried more sophisticated models and different sampling sizes,
but it proved easiest to predict mediocre catalysts.

Figure 7: LKB-P. Hotspot of large and electron-rich ligands.
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In summary, Natalie’s descriptors show chemically intuitive relationships and can map
chemical space computationally. Donors and backbones contribute to bidentate ligand
properties. Good amination catalysts may favor monoligated palladium and large and
electron-rich ligands, but it is easiest to predict mediocre catalysts. Thus, the descriptors can
quantify similarity and can be used in experimental design. The variables can be combined for
better tuning. Alternative catalysts can be suggested, but better data and suitable statistical
models are needed if the catalysts are to be better than mediocre. So, Natalie’s team
continues to work on large-scale computational prediction of reactivity.

The Bristol Reactivity in Catalysis Knowledgebase (BRiCK) aims to discover new
applications for known catalysts, by a systematic study of catalytic cycles. Phase 1 will be the
study of substrate effects on barriers, phase 2 modification of the metal and ligands in the
catalyst, and phase 3 experimental testing. After repetition of these activities, it is hoped
that, eventually, reactivity descriptors will be identified.

Natalie outlined some work being carried out by Derek Durand (Figure 8).87 Catalytic cycles
are inherently multivariate. Mechanistic manifolds can be mapped out: Natalie showed the
energy barriers for oxidative addition (two barriers), migratory insertion (MI) and reductive
elimination for U = ethene and B3PW91-D3/6-31G(d,p)/LACV3P* / PCM (solvent =
methanol).

Figure 8: Catalytic cycle.

She then showed bar charts for ∆∆G data for each key step (oxidative addition, migratory
insertion, reductive elimination) in the case of U = ethane and X-Y = H-H, H-SiH3, H-CH3,
H-C6H5, F-CH3, H-NH2, and Me-OMe. These showed that oxidative addition can be a killer
for electron-rich substrates (F-CH3, H-NH2, and Me-OMe); migratory insertion is not the
biggest problem; and the elimination step may be a concern in some cases (e.g., Me-OMe). H2
and H-SiR3 look promising. The screen can be expanded to other options for U.

These virtual screening experiments show that reactivity descriptors based on such
fundamental steps should be feasible. They can be mapped computationally (“computers do
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not get bored”). They are the foundation on which to explore substrate and catalyst
modification. Since migratory insertion proceeds with reasonable barriers, it is not a problem,
but it can be monitored. The elimination step may be a concern for some substrates; this
problem must be balanced with optimizing oxidative addition. Experimental (“wet
chemistry”) work on H-SiR3 compounds is starting soon. Varying the other substrate (U)
presents opportunities for exploring relationships.

Rather than pursuing a purely computational solution of in silico catalyst design and
evaluation, an iterative process of mechanistic study, data analysis, prediction and
experimentation can accommodate complicated mechanistic manifolds and lead to useful
predictions for the discovery and design of suitable catalysts. Natalie concluded by
emphasizing the importance of data, both for use in maps, models and screening (design and
optimization), and for use in mapping reactivity and moving toward prediction.

13 Chemistry ontologies and artificial intelligence

Dr. Colin Batchelor, Royal Society of Chemistry

The Royal Society of Chemistry (RSC) was an early adopter of ontologies for annotating
entities in text mining. The RSC text mining team were contributors to the open biomedical
ontologies ChEBI,88 Gene Ontology,89 and Sequence Ontology.90 They have developed
ontologies and made them available under open licenses. They were involved in the Open
PHACTS project,91 and they have published papers on the specifics of text mining in
chemistry.

Thomas Hofweber in the Stanford Encyclopedia of Philosophy92 defines the larger discipline of
ontology as having four parts, but for the purposes of this talk, an ontology is a
machine-readable account of what there is in a given domain and how the things there relate
to other things. The semantic web does not work for chemical reactions; it does not even work
for most molecules. Web Ontology Language (OWL)93 ontologies are based on description
logics (a family of formal knowledge representation languages) and the open-world
assumption. Specifically, the description logics used have the tree-model property, which
means that they are underconstrained and give rise to unintended tree models. Ontologies like
ChEBI therefore do not represent molecules in a way that can be robustly reasoned over.

Consider also reactions. There being a pyrrole ring on the right-hand side of an equation is
necessary for the reaction to be a pyrrole synthesis, but not sufficient. We cannot just define a
cyclization as a reaction where a cyclic compound is formed: the Friedel–Crafts acylation
produces a cyclic compound but is not a cyclization. Without being able to specify the
changes around individual atoms, we cannot robustly classify reactions in OWL.

Ontologies are useful because they provide stable identifiers that can be reused across
applications. They capture tacit knowledge and what is obvious to human beings but not to
computers. They are human-readable definitions in plain text and, for automatic
classification, machine-readable ones. They offer typed relations for systematic
correspondences (e.g., between methods and instruments, and between reactions and
products). The Open Biological and Biomedical Ontology94 (OBO) framework lets you use
other ontologies to help build your own. Ontologies give specifications for synonyms (exact,
broad, narrow, and related) for use in text mining.

The RXNO name reaction ontology95 is a formal ontology of chemical named reactions. It was

21

https://www.ebi.ac.uk/chebi/
http://geneontology.org/
http://www.sequenceontology.org/
http://www.openphactsfoundation.org/
http://www.openphactsfoundation.org/
https://plato.stanford.edu/entries/logic-ontology/
http://www.w3.org/OWL/
http://www.obofoundry.org/
https://github.com/rsc-ontologies/rxno


originally developed at the RSC and is associated with OBO. The RXNO ontology unifies
several previous attempts to systematize chemical reactions including the Merck Index and
the hierarchy of Carey et al.96 The RSC team took three chemists (two organic, one
theoretical) and 100 name reactions, and decided on a principal axis of classification, in this
case the objective of the reaction. They developed an initial flowchart and refined it in batches
of 100 reactions. RSC chose to use a representation of organic reactions based on the intent of
the chemist because reaction mechanisms are difficult to determine and can depend on
reaction conditions, and because there was no point in replicating what can be done with
reaction fingerprints or embeddings (discussed later in this talk).

There are further relations: “protects” connects a protection reaction to a given group;
“deprotects” connects a deprotection reaction to a given group; “has specified product”, “has
specified reactant”, “has catalyst” and “has intermediate” connect reactions to their
participants in different roles; and “achieves planned objective” connects a planned process to
an objective specification. Another RSC reaction ontology is the molecular process ontology95

which contains the underlying molecular processes, for example cyclization, methylation, and
demethylation. There are over 500 classes in RXNO with full human-readable definitions and
varying degrees of axiomatization. The ontology is displayed in an Infobox alongside the
Wikipedia entry for RXNO. The SVG file can be downloaded and reused. RXNO is used in
NextMove Software’s NameRxn97 which allows the recognition and categorization of reactions
from their connection tables.

It has been claimed that ontologies capture tacit knowledge and things that are obvious to
humans but not to computers. To explore this claim, Colin carried out an experiment with
embeddings. An embedding is a mapping of an element of a textual space (a word, a phrase, a
sentence, an entity, a relation, a predicate with or without arguments, an Resource
Description Framework (RDF) triple, an image, etc.) into an element of a (frequently low
dimensional) vectorial space. A word representation is a mathematical object associated with
each word, often a vector. In distributional semantics the hypothesis is that the meaning of a
word can be obtained “from the company it keeps”. In neural networks in natural language
processing, the size of semantic spaces can be reduced with embeddings.

Tamara Polajnar, who works with Colin, hypothesized that word embeddings trained on a
large corpus will contain facts about chemistry that can be tested using an ontology as a
source of truth. Potential tasks are to predict reactants and products, given a reaction; to
make analogies (e.g., “Grignard is to magnesium as Suzuki is to. . . ”) and, given a definition,
to predict what it is the definition of.98 The last was the task Colin’s team pursued.

Colin cautioned that the following results are very preliminary work, with many adjustable
parameters not yet investigated. The researchers used fastText99 to train 100-dimensional
embeddings on the entire PubMed Central corpus and the entire RSC journal corpus, with
two settings: with and without subwords. Chemlistem100 is an RSC application for chemical
named entity recognition with deep neural networks. Colin showed some examples of source
text with chemically aware tokenization.101 He presented some results (Figure 9). The results
without subwords are marginally worse.
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Figure 9: Cosine similarity, nearest neighbors with subwords.

Colin also showed some scatter plots (Figure 10) after dimensionality reduction with
t-distributed Stochastic Neighbor Embedding.102 The points are colored according to
part-of-speech (code from J. Wijffels at GitHub103 is used to assign parts of speech), and the
proper names, which all came from name reactions, clustered together.

Figure 10: Clustering of names.

There are many ways of combining word embeddings to create embeddings for a whole phrase,
some of them very simple.104 In Colin’s study he simply adds the embeddings together, and
then ranks cosine similarity of the name embedding to the definition embedding. The dataset
was RXNO ontology names and definitions, the development set 100 randomly-selected
classes, and the test set 470 others. In the evaluation, AUC was 0.70 with subwords and 0.68
without subwords, compared with 0.53 for tf-idf-BoW. (Term frequency–inverse document
frequency (tf–idf) is a numerical statistic that is intended to reflect how important a word is
to a document in a collection or corpus. Bag of Words (BoW) is an algorithm that counts how
many times a word appears in a document.)

The results suggest that embeddings do not capture everything: there is still a need for
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ontologies. Ontologies for chemical reactions are some way from being fully automated. They
can serve as a gold standard for evaluating statistical methods in natural language processing.
Colin has shown that there is a framework to assess quantitatively what ontologies have to
offer.

14 UDM: a community-driven data format for the exchange of
comprehensive reaction information

Dr. Jarek Tomczak, Pistoia Alliance

The mission of the Pistoia Alliance is to lower barriers to R&D innovation, enabling the
development and incubation of integrated healthcare solutions. It is a not-for-profit
organization established in 2008, founded by AstraZeneca, GSK, Novartis and Pfizer. It has
more than 150 members, including 14 of the top 20 pharmaceutical companies, leading
technology suppliers, and institutes, consultancies, publishers, and start-ups. The alliance
currently has 10 ongoing projects and several communities. Jarek spoke about one of the
alliance’s projects.

The first reaction databases were developed in the early 1980s, and electronic laboratory
notebooks have been in use in chemistry for almost 20 years, but we still do not have a
well-defined way of capturing and exchanging information about chemical reactions, and we
rely on imprecise or vendor-specific data formats. Without a common language and structure
shared by all users to describe experiments or predictions, data integration is unnecessarily
expensive, and large amounts of published data have not been readily available for processing
or analysis. The Unified Data Model (UDM)105 project delivers a solution to this problem.

The origin of the UDM was a Roche project (in 2012-2013) to integrate in-house chemistry
data into Elsevier’s Reaxys database. The project was further developed by Roche and
Elsevier, with contributions from other pharmaceutical companies, as a data transfer format
for chemical reactions from a variety of ELNs into Reaxys. The originators provided the UDM
XML file format to the Pistoia Alliance and are committed to working together to make it
more generic and to extend it to other experiment types. Founders were BIOVIA, Elsevier,
GSK, Novartis, and Roche. Bristol-Myers Squibb joined in 2020.

The Pistoia Alliance UDM is a collective effort of vendors and life science organizations to
create an open, extendable, and freely available reference model and data format for exchange
of experimental information about compound synthesis and testing. In an ideal world,
scientists would not have to interconvert files whenever one system has to talk to another one.

In the UDM, reactions are represented by the following entities:

• Reaction diagram (with optional atom-atom-mapping)
• Molecular properties
• Reactant, product, catalyst, solvent, reagent properties
• Conditions
• Analytical data
• Preparation section
• Scientists
• Literature and patent reference
• Reaction outcome
• Reaction scale
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• Reaction classes
• Semantic annotations
• Comments
• Vendor data.

The RDfile106 is a de facto standard data format for chemical reactions. RDfile implies 7-bit
ASCII content whereas XML uses the 8-bit Unicode Transformation Format (UTF-8), a
variable width character encoding capable of encoding all the valid code points in Unicode
using one to four one-byte (8-bit) code units. Unfortunately UTF-8 is old-fashioned and not
fully specified.

For UDM, RDfile is converted to XML. In the RDfile there is a tacit naming convention to
represent a hierarchical data model ($DTYPE RXN:VARIATION(1):CONDITIONS(1):
TEMP) and there are multiple, not necessarily compatible data hierarchies. An explicit data
model is defined using an XML schema. In an RDfile there is no type control or validation of
values of individual data field values ($DTYPE RXN:VARIATIONS(1):REACTANTS(1):
EQUIVALENTS) whereas XML has strong typing and controlled vocabularies. An RDfile has
a single representation of molecular structures (as molfiles) and reaction diagrams (rxnfiles),
whereas in XML, multiple representations are allowed: molfile and rxnfile, InChI and RInChI,
SMILES and Reaction SMILES, CDXML (the XML analogue of the binary CDX file type
used by PerkinElmer’s ChemDraw), and Wiswesser Line Notation. Validation, processing and
conversion of RDfiles require dedicated tools or libraries whereas standard XML technologies
provide a large part of the data processing operations: XML Schema (XSD) validation, XPath
queries, and Extensible Stylesheet Language Transformations (XSLT).

Nevertheless, XML is not perfect. It has no understanding of chemistry; the XML schema has
limitations; there are very few up-to-date implementations; and XML is too verbose. As an
illustration Jarek showed how heavy MathML is when compared with TeX. He also showed a
simplified UDM data model (Figure 11).

Figure 11: Simplified UDM data model.

UDM files can be downloaded from GitHub.107 They comprise the UDM XML schema and
vocabularies, sample datasets (currently 1000 reactions from Reaxys and 10,000 reactions
from InfoChem’s SPRESI), a license document, Python scripts to convert a SPRESI RDfile to
the UDM, a glossary of key UDM terms, and a change log file. Version 6.0 was released in
February 2020. Plans for further enhancements in 2020 include more sample datasets; reaction
pathways; health and safety data; a possible ontology representation compatible with Basic
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Formal Ontology (BFO),108 and a Shapes Constraint Language (SHACL) model (a W3C
language for validating RDF graphs against a set of conditions); and a UDM toolkit.

15 Retrosynthesis via machine learning

Dr. Marwin Segler, Benevolent.ai

Marwin listed three ways of designing new drug candidates: enumeration via building blocks
and virtual reactions,109 fragment spaces,110 and de novo design.111 Marwin uses de novo
design and synthesis planning. De novo design can be thought of as the reverse of quantitative
structure-activity relationships (QSAR) and virtual screening:112 rather than analyze a set of
compounds by means of its properties, you take a drug profile and predict a set of compounds
to match it. You can learn to generate molecules with neural networks. Gomez-Bombarelli et
al.113 used Bayesian optimization and VAE (for VAE, see Niranjan’s talk in this report).
Marwin and his co-workers114 used transfer learning and reinforcement learning. These
approaches have had an impact in the pharmaceutical industry.115–119

After you have generated new molecules you want to know how to make them. One approach
combines neural generative models and reaction prediction.120 Here the generative model
proposes a bag of initial reactants (selected from a pool of commercially-available molecules)
and uses a reaction model to predict how they react together to generate new molecules. The
generative model not only generates molecules, but also a synthesis route using available
reactants. The reaction predictor used by Marwin and his co-workers is the Molecular
Transformer44 of Schwaller et al. Learning a way to decode to (and encode from) a bag of
reactants, uses a parameterized encoder and decoder, and optimization in the latent space of a
Wasserstein auto-encoder.

Another option for evaluating synthesizability is computer-aided synthesis planning
(CASP).121 Chemists are mainly using database search for CASP. This is the equivalent of
using a hard copy road atlas instead of GPS navigation. Chemists could change their way of
working in future. Synthesis planning is both an art and a science. It requires knowledge,
experience, and creativity. Even experts are not perfect: Corey himself admitted this.122

Moreover, not every molecule is synthesizable yet.

Games such as chess and Go are also an art. Recently, Silver et al.123–125 showed that deep
reinforcement learning coupled with Monte Carlo Tree Search could be used to train programs
to learn how to play games by self-play, where the computer plays millions of games against
itself in simulation. They only require specification of the game rules, which provide an exact
simulator of the (game) environment. With this setup, they were able to create a program
(AlphaZero) that won against the strongest grandmasters in Go, and beat the strongest
known Go, Chess, and Shogi engines.

In most real-world domains, however, interactions with the environment are very expensive,
and the rules of the environment are too complex to specify. Therefore you cannot learn and
plan online. Robert Robinson solved the problem of synthesizing tropinone by recursively
breaking the synthesis into simpler problems. A retrosynthesis reaction scheme, used in
synthesis planning, is the reverse of a synthesis scheme. CASP can be measured and
improved51 by computational benchmarks, on which the chemist can give feedback, before
conducting a synthesis in the laboratory. Computational benchmarks are fast to apply;
synthesis in the laboratory is more accurate. If you can measure performance, you can
improve performance, but benchmarks have been absent in the past. CASP challenges are to
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get the rules of chemistry into the machine; to prioritize the rules; to filter out infeasible
reactions; and efficient search.

George Vléduts126 was the first to suggest the representation of a reaction as a single graph;
Corey and Wipke6 later attempted to write down all chemical knowledge in a logical form.
Unfortunately, in such systems rules have to be entered by hand;127–129 there are reactivity
conflicts; selectivity has to be explicitly encoded; purification, solubility, and stability are not
taken into account; and there is no inherent ranking mechanism. It is not easy to decide on
the correct rule to apply. Chemical knowledge grows exponentially, and doubles every decade.
Manual coding of rules has been tried for 60 years and it does not work: expert systems do
not work at scale.

So, Marwin and Mark Waller’s team had the idea of combining rules with machine learning:
learning transformation rules from data; learning to prioritize the rules; learning to predict
reactions; and implementing modern, efficient search.68,121,130 Machine learning provides a
rigorous metrics framework. A seq2seq algorithm such as the Molecular Transformer44

“translates” from products to reactants but does not generalize outside the training data,
needs to learn from a small number of examples per rule, and needs to translate to the top k
solutions correctly. Marwin compared rules-based methods with machine learning methods
(Table 1).

Data-efficient Robust to noise Generalizes

Purely Symbolic Yes No Yes

Purely neural No Yes No

Neural-symbolic Yes Yes Yes

Table 1: Rules versus machine learning.

The 11 million reactions in Reaxys contain the data of our entire discipline. From these
reactions Marwin and his colleagues learned 301,671 rules, with a minimum of three examples
per rule. Successful reactions contain implicit knowledge. Only the reaction center is included
in these rules. Other methods of automatic extraction of rules have been reported.57,131,132

In the retrosynthesis procedure used by Marwin’s team,51 the target molecule was described
by ECFP4 descriptors which were input to a deep highway neural network.133,134 The most
probable rules were output, and they were applied to the retrosynthesis of the target in
question. Machine learning not only predicts the transformation rules, but it also allows the
tolerated molecular context to be learned. The model was trained on 3.5 million reactions.
Reactions reported in 2014 or earlier were used to build the graph and reactions reported in
2015-2017 were used to test the model. This sort of time-splitting of training and test sets has
been recommended by Sheridan.135

Reaction prediction can be used to filter out infeasible reactions. Marwin and his co-workers
have proposed a model that mimics chemical reasoning, and formalizes reaction prediction as
finding missing links in a knowledge graph.136 Since there are so few failed reactions in the
literature, the researchers have devised their own set of failed reactions.136 The reactions are
represented by reaction fingerprints: see also the work of Schneider’s team on reaction
fingerprints137 and Gillet’s team on reaction vectors.138 Coley et al. have also devised a way of
eliminating “false positives”.52 Marwin’s in-scope filter had an ROC AUC of 0.986 for the
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neural network and a false positive rate of 1.5%. The score output correlates with LUMO
energies and Hammett parameters. The neural symbolic procedure for rule selection and
reaction prediction is summarized in (Figure 12).

Figure 12: Rule selection and reaction prediction.

Finally, there is the challenge of efficient search. In heuristic best first search (BFS) a strong
heuristic function is used to score the nodes in the retrosynthesis tree. Unfortunately, chemists
disagree about good solutions, synthesis is solved only at the end, and molecular complexity
needs to be tactically increased, for example by introducing protecting groups. In a search
algorithm, we care mainly about the state we start with, synthesis is solved and able to be
scored only at the end after decomposition into building blocks, and the value function needs
to be computed online, since it is dependent on the building blocks (although it is also
possible to learn a value function).

In MCTS,139,140 approximate action values are calculated by random Monte Carlo simulation
(an agent picks transforms randomly until the end of the synthesis) and these approximated
values are used to build the search tree. The method is not dependent on a strong heuristic
and can deal with very high branching factors. A quantitative analysis of three methods for
500 random molecules is presented in Table 2.

Method Scoring Percentage solved Time per molecule

BFS Heuristics129 56 422

BFS Neural net 84 39

MCTS Neural net 95 13

Table 2: Quantitative analysis of search methods.

For a qualitative analysis, a “chemical Turing test” was carried out by 45 Ph.D. chemists at
Shanghai and Münster Universities (Figure 13).68 In this double-blind A/B test, chemists on
average considered the computer-generated routes as preferable to reported literature routes.
(A/B testing is a way to compare two versions of a single variable, typically by testing a
subject’s response to variant A against variant B, and determining which of the two variants is
more effective.)
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Figure 13: Double-blind AB testing of MCTS-derived routes against literature and BFS routes.

There are some unsolved challenges. It is unclear how to integrate conditions in the search.
Chemists have not decided what they mean by failed reactions. There is no quantitative
stereoselectivity and yield prediction yet. The system does not work well yet for natural
products, the best models may not have been found yet, and the system cannot invent novel
reactions, although that problem is semisolved.136

In future, the computer will only get better. Two new models have been published
recently.50,141 Chess engines have made chess players much stronger; CASP will make organic
chemists much stronger. How will molecular design change if we can confidently order more
uncommon molecules? Will we ever overcome trial and error?

16 From mechanisms to reaction selectivity

Professor Per-Ola Norrby, AstraZeneca

Forward reaction prediction has wide applications, from general scoring of retrosynthesis
pathways to selection of appropriate reaction conditions. In drug discovery, many compounds
are made, time is of the essence, yield is less important than in process development,
impurities are removed by column, there is a low amount of waste, and reactions are safe on a
small scale. Prediction needs to be fast and amenable to automation. In process chemistry,
one compound is being made, it takes months or years to develop routes, the yield must be
optimized, impurities are to be avoided, the chemistry must be sustainable, and safety is
paramount. Therefore, prediction must be accurate, and must provide knowledge for
optimizing the yield.

AstraZeneca is developing a platform for data mining coupled with machine learning and AI
to exploit in developing robust, scalable chemical processes for drug development. It is
believed that the integration of process-focused reactivity data and machine learning will drive
the development of novel predictive process models.142 Retrosynthesis by machine learning
handles chemical logic and literature precedents; the reverse, forward prediction, answers
questions such as how reaction conditions will affect chemoselectivity, regioselectivity, and
enantioselectivity.

Stereogenic centers are ubiquitous in pharmaceutical compounds so asymmetric catalysis is an
important subject. It is not easy to predict how a catalyst will influence selectivity.
Optimizing an organometallic catalyst is an iterative process involving virtual screening of a
chiral ligand library, reaction screening based on conditions and additives, and optimization of
costs and properties.
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Reaction selectivity prediction using quantum chemical methods is well established but the
accuracy:cost ratio is not favorable, especially when multiple pathways must be considered.
Per-Ola and his colleagues have therefore explored several alternatives with improved
accuracy or lowered cost, still within a strong mechanistic framework and using density
functional theory (DFT) as an essential component.

One way to model catalyst stereoselectivity is QSAR, or, in particular, quantitative structure
selectivity relationships.143 Multivariate linear regression methods are versatile, statistical
tools for predicting and understanding the roles of catalysts and substrates and act as a useful
complement to complex transition state calculations, with a substantially lower computational
cost.

A second method is based on quantum mechanics (QM): DFT-based screening. The
stereoselectivity of most organocatalytic reactions hinges on the balance of both favorable and
unfavorable noncovalent interactions in the stereocontrolling transition state. Wheeler et al.144

have reviewed attempts to understand the role of noncovalent interactions in organocatalyzed
reactions and to develop new computational tools for organocatalyst design.

A third method is Quantum to Molecular Mechanics (Q2MM).145–147 The accurate
computational prediction of stereoselectivity in enantioselective catalysis requires adequate
conformational sampling of the selectivity-determining transition state, but it has to be fast
enough to compete with experimental screening techniques if it is to be useful for the
synthetic chemist. Although electronic structure calculations are accurate and general, they
are too slow to allow for sampling or fast screening of ligand libraries.

The combined requirements can be fulfilled by using appropriately fitted transition state force
fields (TSFFs) that represent the transition state as a minimum and allow fast Monte Carlo
conformational searches. Quantum-guided molecular mechanics (Q2MM) is an automated
force field parametrization method that generates accurate, reaction-specific TSFFs by fitting
the functional form of an arbitrary force field using only electronic structure calculations, by
minimization of an objective function. After validation of the TSFF by comparison to
electronic structure results for a test set and available experimental data, the stereoselectivity
of a reaction can be calculated by summation over the Boltzmann-averaged relative energies of
the conformations leading to the different stereoisomers.

Per-Ola’s team has applied the Q2MM method to perform virtual ligand screens on a range of
transition metal-catalyzed reactions Correlation coefficients of 0.8-0.9 between calculated and
experimental enantioselectivity values are typical for a wide range of substrate-ligand
combinations, and suitable ligands can be predicted for a given substrate with about 80%
accuracy. Although the generation of a TSFF requires an initial effort and will therefore be
most useful for widely used reactions that require frequent screening campaigns, the method
allows for a rapid virtual screen of large ligand libraries to focus experimental efforts on the
most promising substrate-ligand combinations.

The method has been implemented in a web-based virtual screening workflow at AstraZeneca.
CatVS is an automated tool for the virtual screening of substrate and ligand libraries for
asymmetric catalysis within hours. Per-Ola’s team has demonstrated predictive computational
ligand selection in the virtual ligand screen of a library of diphosphine ligands for the
rhodium-catalyzed asymmetric hydrogenation of enamides. Subsequent experimental testing
verified that the most selective substrate-ligand combinations are successfully identified by the
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virtual screen.148

Finally, Per-Ola discussed a hybrid machine learning and mechanistic model. Machine
learning allows machines to learn from data, with continuous self-improvement, but “big data”
is required. A mechanistic model uses a detailed reaction mechanism and direct calculation of
selectivity, and no data may be needed. A hybrid model has a strong framework from theory,
biased with knowledge, and trained with minimal data. Per-Ola’s team is testing three
different approaches: machine learning models using quantum mechanical (QM) descriptors;
augmenting experimental data with QM-generated data; and a hybrid model to compensate,
with machine learning, for low-level QM systematic errors (see the following talk by Kjell
Jorner). Per-Ola gave a diagram (Figure 14) showing the pros and cons of the modeling
approaches for selectivity.

Figure 14: Modeling approaches compared.

Per-Ola’s team have applied the hybrid machine learning and mechanistic approach to
selectivity in C-H functionalization. In the early stages of the drug discovery process,
thousands of compounds are synthesized. Recently, late stage functionalization has become
increasingly prominent since these reactions selectively functionalize C-H bonds, allowing
chemists to produce analogues quickly. Classical electrophilic aromatic halogenations are a
powerful type of reaction in the late stage functionalization toolkit. The introduction of an
electrophile in a regioselective manner on a druglike molecule is a challenging task. Per-Ola’s
team have reported a machine learning model able to predict the reactive site of an
electrophilic aromatic substitution with an accuracy of 93%. The model takes as input a
SMILES of a compound and uses six quantum mechanics descriptors to identify its reactive
sites. On an external validation set, 90% of all molecules were correctly predicted.149,150 These
results are encouraging for the hybrid model.

17 Reaction prediction in process chemistry with hybrid
mechanistic and machine learning models

Dr. Kjell Jorner, AstraZeneca

Predicting the outcome of reactions in process chemistry with mechanistic models based on
quantum chemistry has advantages over purely knowledge-based approaches. These
advantages include quantitative measures of reactivity, and detailed understanding of the
mechanism, the structural factors controlling reactivity, and the effect of catalysts or reagents.
On the other hand, the applicability of current methods is limited by the sometimes poor
accuracy of DFT and implicit solvent models, and by incomplete treatment of dynamic effects.
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Consequently, chemical accuracy with errors below 1 kcal/mol can be reached only in
fortuitous cases. One way forward could be correcting the computed values using machine
learning with experimental data.

Data-driven methods for reaction prediction, such as IBM RXN,151 learn from large quantities
of data, and represent molecules as text strings or graphs. The chemistry is implicit and the
method is general. Structure and property driven methods need fewer data and use chemical
descriptors (atomic, molecular, and vibrational descriptors for the components of a
palladium-catalyzed Buchwald-Hartwig cross-coupling in work reported by Ahneman et
al.).152 The chemistry is explicit and the method is specialized. Hybrid methods attempt to
combine traditional DFT modeling with structure- and property methods.

To test the hybrid method, Kjell and his co-workers chose to study nucleophilic aromatic
substitution (SNAr). In this reaction, an anionic or neutral nucleophile displaces a leaving
group in a concerted or stepwise mechanism. The reaction is influenced by acid-base catalysis
and solvent effects. Nine percent of all reactions carried out in the pharmaceutical industry
are nucleophilic aromatic substitutions.

Kjell and his co-workers used activation energies from kinetic data to predict absolute
reactivity directly, and chemoselectivity and regioselectivity, from differences in activation
energy, and the effects of a catalyst with explicit acid or base. The Predict SNAr Python
program automates reaction modeling. It extracts reactive species and atoms from a reaction
SMILES, finds structures and energies, calculates quantum-mechanical descriptors, and stores
the results in a database. Some hours are needed to run a reaction model. The problem of
conformational flexibility has been solved by sampling; ionic reactions in the solvent have been
addressed by an implicit and explicit solvation model; but the problem of acid and base
catalysis has not yet been solved by explicit inclusion in the calculation.

Electronic descriptors include (inter alia) local electron attachment energy of the substrate
(soft); average local ionization energy of the nucleophile (soft); surface electrostatic potential
(hard); electrostatic potential at nuclei (hard); and global electrophilicity and nucleophilicity.
Solvent-accessible surface area and the Pint descriptor of dispersion interaction potentials are
steric descriptors. Solvent descriptors cover the environment. Activation energies, bond orders
and charges, and other descriptors represent transition states.

Overall, Gaussian process regression (GPR) with radial basis function (RBF) kernel and
support vector regression with RBF kernel outperformed linear regression and random forest.
In test fold predictions of the energy barrier, for 10-fold cross-validation, GPR performed
significantly better than DFT: mean absolute error (MAE) 0.8, root mean square error
(RMSE) 1.4, and R2 0.86, as opposed to MAE 2.9, RMSE 3.8, and R2 0.11. Kjell next studied
whether transition state descriptors help: MAE, RMSE, and R2 were hardly affected by using
no descriptors from the transition state calculations. A plot of MAE against the number of
reactions showed that about 200 reactions were needed to achieve chemical accuracy (MAE <
1 kcal/mol).

The proof-of-principle model of nucleophilic aromatic substitution can predict absolute
reactivity, and chemoselectivity and regioselectivity, and the effect of solvent and catalysts.
This information can be used by the synthetic chemist to make risk assessment of the steps in
long synthetic routes. It also provides detailed understanding of the mechanism that can be
used together with synthetic and mechanistic experiments to guide development of improved
reaction conditions.
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In future the team aims to finalize modeling and apply it to an external test set; to study the
effects of acid and base catalysis; to extend the work to more reaction classes; and to gather
more kinetic data and make databases from the literature, high-throughput experimentation,
and different solvents and conditions.

18 Automated mining of a database of 9.3 million reactions
from the patent literature, and its application to synthesis
planning

Dr. Roger Sayle, NextMove Software

Pistachio is a reaction dataset interface providing loading, querying, and analytics of chemical
reactions. It builds on and extends existing solutions from NextMove Software to enrich
reaction data and provide query capabilities. The company uses text mining to extract a
database of chemical reactions automatically from the patent literature. The reactions in the
so-called USPTO dataset39 were extracted using an enhanced version of Daniel Lowe’s
reaction extraction code153 with NextMove’s LeadMine being used for chemical entity
recognition. “USPTO” is freely available.39 Pistachio is not free; it is an improved version
with extra features such as advanced entity recognition.

Elsevier’s Reaxys, CAS SciFinder, and InfoChem’s SPRESI are manually curated databases.
USPTO and Pistachio are machine curated. Metrics for evaluating reaction databases include
availability and price; coverage, size, and currency; and quality and annotation.

Roger showed a diagram of the workflow for the construction of Pistachio, and the NextMove
Software involved (Figure 15). Currently Pistachio covers 9,320,005 patents (from 1976 to
2020) mined from the text of U.S. patent applications and grants, and European Patent Office
(EPO) applications and grants, plus U.S. application and grant sketches. The number of
unique patents (i.e., parents) is 2,945,919. At 5.3TB source, this is “big data”.

Figure 15: Pistachio workflow.

NextMove’s CaffeineFix is used to match chemical names against a dictionary or grammar. It
supports very large user dictionaries. NextMove handles an entity dictionary as a directed
acyclic graph (dag). In mathematics, particularly graph theory, and computer science, a dag is
a finite directed graph with no directed cycles. Deterministic finite automaton (DFA)
minimization is the task of transforming a given DFA into an equivalent DFA that has a
minimum number of states. Nitrogen containing heterocycles as minimal DFA include pyrrole,
pyrazole, imidazole, pyridine, pyridazine, pyrimidine, and pyrazine. CaffeineFix is a chemical
spell checker. For example, it corrects di-terf-butyl (4S)-/V-(fert-butoxycarbonyl)-4-{4-[3-
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(tosyloxy)propyl]benzyl}-L-glutamate to di-tert-butyl (4S)-N-(tert-butoxycarbonyl)-4-{4-[3-
(tosyloxy)propyl]benzyl}-L-glutamate.

The BioCreAtIvE V challenge154 evaluated text-mining and extraction systems. Roger showed
a plot of the web service response time to annotate an abstract evaluated for a
chemical-disease relation task. NextMove’s submission to the challenge was many times faster
than its competitors. The company’s efficient rule-based text-mining provides provenance for
annotations and can mine the entire back-archive of U.S. patents in about 24 hours on a single
machine.

Roger listed some advanced entity recognition features of Pistachio. These include
improvements to Name2Structure, and to dictionaries and ontologies. Molecular formulas and
line formulas (e.g., K2CO3, PdCl2(PPh3)2, Pd(P(o-tolyl)3)2, and PdCl2(dppf)-CH2Cl2);
inorganics, organometallics and salts; mixtures and formulations (e.g., 5% 2M methanolic
ammonia/DCM, and 10% H2O2 in water); and apparatus (e.g., a 1L three-necked,
round-bottomed flask) are all handled.

Pistachio re-interprets ChemDraw sketches, correcting systematic errors, extracting extra
semantics, such as structure variation and reaction schemes, and categorizing sketches as
interpretable or not. An example of ChemDraw sketch interpretation is given in Figure 16.
Multiple single-step reaction equations are generated from the sketches of multistep reaction
schemes.

Figure 16: Interpretation of a ChemDraw sketch.

Where there is an identifier for a compound (e.g., “Compound 1”, or “Reference compound
1”, or “Example 1”, or “cmpd 1” or “cpd. #1”), the structure and the identifier need to be
paired up. The identifier may be defined multiple times (e.g., as a sketch and a chemical
name). The identifier and the chemical structure may be in columns in a table. Single
structures are enumerated from the rows in tables of generic (“Markush”) structures.

Additional annotation includes a company ontology (so that Ciba-Geigy is recognized as
Novartis); and calculated yields. Reaction steps and recipes are annotated in accordance with
ANSI/ISA-88, a standard addressing batch process control, and a design philosophy for
describing equipment and procedures.

Using published reaction classification categories,96,155 the contents of one pharmaceutical
ELN may be presented as a pie-chart (Figure 17) of the kinds of transformations it contains.
Reactions in Pistachio are classified into a common subset of the classes defined by Carey et
al.96 and the RSC’s RXNO ontology95 There are 12 super-classes (e.g., code 3, C-C bond
formation (RXNO:0000002)). These contain 84 categories (e.g., 3.5, Pd-catalyzed C-C bond
formation (RXNO:0000316)), and the 84 categories contain about 300 named reaction types
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(e.g., 3.5.3, Negishi coupling (RXNO:0000088)). These require about 2490 SMIRKS-like
transformations. Workers at NextMove and Novartis have published137,156 on this
classification work and its applications.

Figure 17: Reactions in a pharmaceutical industry ELN.

NextMove Software’s NameRxn assigns reactions to over 1150 reaction categories using
transformations. It can guarantee perfect atom-atom mapping. Mapping is an output not an
input. Maximal common substructure mappers struggle with rearrangements. NameRxn
expresses named reactions as SMIRKS strings. Writing SMIRKS is both an art and a science.
The percentage of reactions with product atoms mapped is 71% for Marvin 6.0, 62% for
ChemDraw 12, and nearly 80% by consensus. When those methods are combined with
NameRxn, the numbers rise to over just over 80% for Marvin and ChemDraw, and nearly 90%
by consensus. Roger listed Pistachio’s 10 most popular reactions (Table 3), and the most and
least successful (Table 4). Trends in named reaction and solvent use over the years can also be
studied.

Table 3: Pistachio’s 10 most popular reactions. Table 4: Most and least successful reactions.

Are solvents getting greener? An analysis of the USPTO grants 1976 – 2013 dataset, shows
that the top 10 solvents, water, ethanol, benzene, methanol, tetrahydrofuran,
dichloromethane, dimethylformamide, acetic acid, chloroform, and acetone, in decreasing
order of popularity, were used in 71% of reactions in 1976. In 2013, tetrahydrofuran,
dichloromethane, water, dimethylformamide, methanol, ethyl acetate, ethanol, 1,4-dioxane,
toluene, and acetonitrile were used in 82% of reactions.

Some rare named reactions are:

• Adams decarboxylation
• Angeli-Rimini reaction
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• Aza-Baylis-Hillman reaction
• Boyer reaction
• Buchwald-Fischer indole synthesis
• Castro-Stephens coupling
• Chapman rearrangement
• Chugaev elimination
• Cook-Heilbron thiazole synthesis
• Fischer-Hepp rearrangement
• Fukuyama indole synthesis
• Gasman indole synthesis
• Imine Hosomi-Sakurai reaction
• Koch reaction
• Leuckart reaction
• Liebeskind-Srogl coupling
• Lossen rearrangement
• Ponzio reaction
• Prins reaction
• Reimer-Tiemann carboxylation.

Prediction is much harder than analysis. Consider hurricanes and tornadoes: it is much easier
to follow the path of destruction by locating devastated neighborhoods, than to forecast the
paths of such weather systems in advance. Prediction is also much harder than analysis for
many chemical reactions. A tricky benchmark in regioselectivity is reactions of
2,4,5-trichloropyrimidine. The nature of pyrimidine makes the chloro at the 4-position more
reactive than that at the 2-position which is more reactive than that at the 5-position. Simple
quantum mechanical methods have difficulty discerning this order.

NameRxn can be applied in reaction planning. The top 10 most popular syntheses of cinnamic
acid range from the bromo Heck reaction (272 examples), and the
Horner-Wadsworth-Emmons reaction (268), down to the Stille reaction (2), and olefin
metathesis (1). In nitration, (by refluxing with nitric acid and sulfuric acid), the appearance of
one or more nitro groups indicates a nitration reaction, but predicting where on a nontrivial
organic molecule this functional group appears is a much harder challenge. In this sense,
reaction analysis is much simpler than (either forward or retrosynthetic) synthesis planning.
p-Nitrotoluene has been prepared 96 times by nitration, once by a bromo Suzuki-type
reaction, and once by a chloro Suzuki-type. On the other hand p-nitrobenzoic acid has been
prepared 12 times by nitrile to carboxy, eight times by CO2H-Me deprotection, five times by
CO2H-Et deprotection, once by ester hydrolysis, and only once by nitration.

Pitt et al.157 have generated a complete list of 24,847 small aromatic ring systems. Using a
machine learning approach, they estimated that the number of unpublished, but synthetically
tractable, rings of this type could be over 3000, and the rate of publication of novel examples
could be as low as 5-10 per year. This should provide fresh stimulus to creative organic
chemists by highlighting a small set of apparently simple ring systems that are predicted to be
tractable but, as yet, appear to be unconquered.
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19 The semantic laboratory

Dr. Samantha Kanza, University of Southampton

The Semantic Web is the web of linked data. It is a way to bring context and meaning to data,
and a set of common standards for data representation, integration, and search. The Resource
Description Framework (RDF) is the Semantic Web’s machine-readable linked data format. A
semantic triple is the atomic data entity in the RDF data model. It is a set of three entities
that codifies a statement about semantic data in the form of subject→predicate→object
expression (e.g., “Bob knows John”). An ontology (see also the talk by Colin Batchelor)
defines different concepts within a domain including hierarchies, relationships to other
concepts, and terms used to refer to those concepts. Ontologies are written in OWL93 or RDF
Schema (RDF(S)).158 SPARQL159 is an RDF query language able to retrieve and manipulate
data stored in RDF format. It facilitates search on concepts rather than text.

An affordance is any object that offers, or affords, its user the opportunity to perform an
action. Affordances of the Semantic Web are defining common shared vocabularies for reuse;
making data machine-readable; data linkages; inferencing; semantic search; and unlocking the
potential of AI and machine learning. Common shared vocabularies enable a shared language
to describe scientific data, concepts, and research. Scientific research can be significantly
enhanced by linking datasets together to find undiscovered links, and answer questions that
cannot be addressed with a single data source.160 Description logic can be embedded into
ontologies, enabling machines to “infer” additional information that is not explicitly defined in
the data. For example, if Samantha is allergic to juniper, and gin has botanical juniper, then
we can infer that Samantha is allergic to gin. Semantic search is searching on concepts across
linked datasets. All this unlocks the potential of AI and machine learning because you do not
waste the potential of your algorithms by feeding them garbage. High quality data avoid the
“garbage in, garbage out” problem.

We need semantics at every stage of the scientific research process from planning through to
publication. There is often a disconnection between a scientist’s laboratory, laboratory
notebooks, and electronic data. We need to link these areas together with interoperable data.
Our scientific data and laboratories should be digital, consistent, understandable, searchable,
and linkable. In short, our scientific data and laboratories should be semantic.161

Samantha outlined three current projects: Layered Semantic Laboratory Notebooks,
Semantically Enhanced ELN Data (SEED, a Pistoia Alliance project), and Talk2Lab,162 a
connected “Lab of the Future”. Layered Semantic Laboratory Notebooks was the subject of
Samantha’s Ph.D. thesis.163 The work proposed an ELN environment using a three-layered
approach: a notebook layer consisting of an existing cloud-based notebook;164 a
domain-specific layer with the appropriate knowledge; and a semantic layer that tags and
marks up documents.

In Phase 1 of SEED, Pistoia Alliance members will reach a precompetitive agreement on the
need for open standards and solutions to deliver semantic enrichment to ELNs, enabled by
findable, accessible, interoperable, and reusable (FAIR) data. Overall, SEED aims to link
ontologies into ELNs, to identify and use standard ontologies to describe different types of
data, and annotate experiments semantically; to capture the provenance of data; to develop
an effective application programming interface or open standard to connect to an ELN; and to
link to the Lab of the Future.

37

https://www.w3.org/OWL/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-sparql-query/


Talk2Lab162 is a University of Southampton project integrating smart devices in a laboratory
environment. Users can “Talk to” Alexa to retrieve real time data from their laboratory; use
sensors to monitor temperature, water flow and laser power in a laser laboratory; and get
alerts and warnings through the collaboration hub Slack for out-of-specification readings.

Given the focus of this conference, and to bring home the usefulness of the Semantic Web,
Samantha concluded by saying: “To the well-organized linked dataset, AI is but the next great
adventure”.

20 ASKCOS: data-driven chemical synthesis

Dr. Connor Coley, MIT

The hit-to-lead and lead optimization stages of the small molecule discovery and development
pipeline involve a synthesize-design-test cycle in which hundreds or thousands of compounds
are tested. Each cycle can take weeks or months. The procedures rely on labor-intensive
planning, and synthesis.165 Productivity could be improved by using information more
efficiently (designing better compounds) or obtaining information more quickly (testing more
compounds).166,167 The discovery process involves a balance between the value of information
and the cost of validation. Connor’s talk concerned a reduction in the cost of validation.

In a typical retrosynthesis plan, the input is a product (the target compound), and the output
is reactants (starting materials), intermediates, and conditions (without concentrations and
reaction times). In Connor’s vision for autonomous synthesis, the user inputs a command such
as “make lidocaine for me”, software converts this into instructions for a synthesis robot, and
the output is a sample of lidocaine. How do we use 200 years’ worth of historical reaction data
(journal articles, patents, etc.) to help us rapidly synthesize new molecules? The team at MIT
works on generalizing known chemistry to novel substrates using techniques in machine
learning and artificial intelligence.

The earliest computer-aided synthesis (CASP) programs sought to codify expert chemist
knowledge about what reactions are allowed.168 As an alternative to manual encoding of
allowable transformations, heuristics for algorithmic extraction have been
developed.56,57,68,132,136,169,170 These algorithms build generalized rules from known reaction
examples. They identify the atoms that change connectivity as the reaction center. Different
levels of generalization can then be used to extend that reaction center to include varying
numbers of neighbors using either a fixed distance or heuristics that decide which neighboring
atoms are relevant.

There are additional approaches to computer-aided retrosynthesis that avoid the need for
reaction templates entirely. These include sequence-to-sequence models,49,171 similarity-based
methods,52 and some graph-based methods that to date have been applied only to the
problem of forward prediction.172 Whether or not a chemical reaction can proceed is not
defined by hard decision rules, and Connor’s team has proposed a new approach to
determining when reaction templates should be applied.50

Connor presented a workflow of algorithmic synthesis design (Figure 18).173 There are many
reasons why a reaction recommended by a computer might not succeed: lack of selectivity, the
presence of competing reaction pathways, the reaction requiring a different context, the
reaction being equilibrium-limited, and so on. The workflow of algorithmic synthesis design
should thus include a loop to see if the reaction is feasible (see the top right loop of Figure 18).
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Figure 18: Workflow of algorithmic synthesis design.

An expert approach is to synthesis design is to write down all the rules. The Chematica129

and Synthia programs (see the talk by Hugo Viana at the end of this report) have tens of
thousands of templates manually encoded by expert chemists. Reactivity conflicts encoded by
hand are not scalable and cannot generalize (e.g., “do not use this rule if a peroxide is
present”) outside of the rule set. Connor regards such crafted knowledge approaches as the
“first wave of AI”, while statistical learning approaches are the second wave.

There are three core tasks in the workflow of algorithmic synthesis design (Figure 18):
proposing a reaction, proposing the reaction conditions, and predicting the reaction outcome.
In the first step, the input is a product and reactants are output. In the second, reactants and
product are input and conditions are the output. In the third, reactants and conditions are
input and a product is the output.

In retrosynthetic search the size of the candidate tree grows exponentially with the number of
reaction steps. The search can be guided along promising branches by value functions (to
determine which chemical is the most simple) and action policies (to determine which
template is most useful). Training can be a regression task or a classification task. Kishimoto
et al. have used Monte Carlo tree search (also used by Segler et al.68) and depth-first
proof-number (DFPN) search in retrosynthetic analysis.174

Connor and his co-workers have addressed the search problem using deep reinforcement
learning175 to identify policies that make (near) optimal reaction choices during each step of
retrosynthetic planning according to a user-defined cost metric. Using a simulated experience,
they train a neural network to estimate the expected synthesis cost or value of any given
molecule based on a representation of its molecular structure. They have shown that learned
policies based on this value network can outperform a heuristic approach that favors
symmetric disconnections when synthesizing unfamiliar molecules from available starting
materials using the fewest number of reactions. The reinforcement learning agent explores
transformations that are “feasible” according to the environment it explores, namely, simple
template rules. Action policy pretraining improves rare template usage.176 Training an
“applicability” network that predicts whether a template pattern will match improves the
accuracy of the “relevance” network that also predicts strategy (especially for small datasets).

The second core task is condition recommendation. Reaction conditions are necessary for
experimental implementation; they can change the outcome of the reaction, qualitatively and
quantitatively. The reaction is input as a reaction fingerprint and variables are predicted: in
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this case a continuous variable, temperature, and three discrete variables (reagents, catalysts,
and solvents). Full condition combinations are too sparse to train on, but relatively few
species are actually used: restricting the system to 803 catalysts, 2247 reagents, and 232
solvents excludes only 5% of reactions. Nielsen et al. have reported an alternative approach to
reaction condition recommendation, aiming to predict from a substrate to one of a few bases,
one of a few reagents, and so on.177

Reaction conditions are highly intercorrelated. The correlation among solvents, catalysts,
reagents, and temperature was captured through a classifier chain of five classification tasks
and one regression task. Gao et al. reported a neural-network model to predict the chemical
context and temperature most suitable for any particular organic reaction.178 Trained on
about 10 million examples from Reaxys, the model is able to propose conditions where a close
match to the recorded catalyst, solvent, and reagent is found within the top-10 predictions
69.6% of the time, with top-10 accuracies for individual species reaching 80–90%. Moreover
“wrong” is often reasonable.

While no explicit relationship between chemical species is included in the model, it implicitly
learns the functional similarity of solvents and reagents through training, as it can suggest
similar chemicals for the same reaction. Taking solvent as an example, the similarity
information can be extracted from the neural network, specifically the weight matrix in the
last hidden layer before the final likelihood prediction and softmax activation. If two rows in
the weight matrix are similar, the model will tend to predict similar scores for the
corresponding two solvents. In other words, each solvent can be represented by its
corresponding row from the weight matrix. This representation contains information about
how it is used in different reactions and can be used to characterize functional similarity,
implicitly averaged over all training reactions. This is analogous to the word embedding in
natural language modeling where discrete words are converted to vectors of real numbers
which contain similarity information (word2vec).

The third core task is outcome prediction. In addition to evaluating the likelihood of a
reaction’s success during synthesis planning, trying to predict reaction outcomes can be useful
in automating the analysis of high-throughput mass spectrometry data, and in assisting in
impurity identification in combination with structural elucidation. The problem is that there
are many input-output pairs, but it is not known how to write an exact function to relate
them. Researchers have access only to what was published (i.e., positive examples), and there
is little variation in reported reaction yields.

Connor and his colleagues initially took a reaction template-based approach to this
problem.169 They adopted a data augmentation strategy where the “true” recorded example is
supplemented with many “false” alternatives. In the first stage, the researchers applied a
library of forward synthetic templates to define which products could be produced based on
the initial reactants. The recorded product of a reaction in the database is the “true” product
that the model learns to predict, while the chemically plausible alternative products generated
via templates are the “false” products which were not reported in the literature. A model can
then be trained to identify the “true” product as a multiway classification or ranking problem.
A neural network learns the relative likelihoods of the products. In a 5-fold cross-validation,
the trained model assigns the major product rank 1 in 71.8% of cases, rank ¬3 in 86.7% of
cases, and rank ¬5 in 90.8% of cases. The method is thus very promising, but an accuracy of
about 70% leaves room for improvement; coverage is incomplete because predictions cannot be
made outside of the template scope; and the method is not fast enough because template
application is a CPU bottleneck.
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So the problem was reformulated as predicting graph edits (which bonds are broken, which
are formed).172 By training on hundreds of thousands of reaction precedents covering a broad
range of reaction types from the patent literature, a graph-convolutional neural model makes
informed predictions of chemical reactivity. The model predicts the major product correctly
over 85% of the time, requiring around 100 ms per example, a significantly higher accuracy
than achieved by previous machine learning approaches.

Starting from an attributed graph representation of molecules, the researchers iteratively
update feature vectors describing each atom by incorporating neighboring atoms’ information.
After multiple iterations of this embedding, a local feature vector is calculated for each atom,
based on its updated representation and those of its neighbors. To account for the effects of
disconnected atoms such as reagents, a global attention mechanism produces a context vector
for each atom as a learned, weighted combination of all other atoms’ local features. Finally, a
combination of local features and context vectors is used to predict the likelihood of bond
changes for each pair of atoms.

The new model achieves expert-level performance. Connor and his co-workers asked 11 human
participants to write the likely major products for 80 reaction examples from the test set. The
80 questions were divided into eight categories of 10 randomly-selected questions, each based
on the rarity of the reaction template that could have been used to recover the true outcome.
Only one chemist achieved a significantly better performance than the model; two chemists
were approximately as successful. Related work has been reported.179–181

In the graph convolution process, attention scores indicate how strongly an atom’s perceived
reactivity depends on every other atom. Connor presented some examples of reactions
analyzed and visualized through the global attention mechanism. For each reaction example,
he selected one atom, highlighted in green, and colored all other atoms by the attention score
(highlighted in blue), where a darker color indicates a stronger influence. The true reaction
partner has strongest attention.

Thomas Struble and others working with Connor have also tried to learn selectivity for
aromatic C-H functionalization.182 Given empirical data on reaction yields, they aimed to
learn site selectivity without presupposing any one mechanism. Historically, prediction of site
selectivity for aromatic C-H bonds has focused on electrophilic aromatic substitution reactions
where the mechanism is known. Struble et al.182 have reported a generalizable approach to
prediction of site selectivity that is accomplished using a graph-convolutional neural network
(a Weisfeiler-Lehman network) for the multitask prediction of 123 C-H functionalization tasks.
In an 80:10:10 training:validation:testing pseudotime split of about 58,000 aromatic C-H
functionalization reactions from the Reaxys database, the model achieves a mean reciprocal
rank of 92%. Once trained, inference requires approximately 200 ms per compound to provide
quantitative likelihood scores for each task. In comparison, the RegioSQM183 approach
achieves a mean reciprocal rank of about 89% and takes many days rather than seconds.

The work of Connor’s team and other researchers is enabling rapid ideation of full synthetic
pathways. Software and hardware can now be brought together.184 Millions of previously
published reactions inform the computational design of synthetic routes, and expert-refined
chemical recipe files (CRFs) are run on a robotic flow chemistry platform for scalable,
reproducible synthesis. Suggested routes partially populate CRFs, which require additional
details from chemist users to define residence times, stoichiometries, and concentrations that
are compatible with continuous flow. To execute these syntheses, a robotic arm assembles
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modular process units (reactors and separators) into a continuous flow path according to the
desired process configuration defined in the CRF.

This paradigm of flow chemistry development was demonstrated for a suite of 15 medicinally
relevant small molecules. In another example, PRN1008 was a first-time disclosure from the
ACS national meeting in spring 2018; a 13-step synthesis of this was produced in 60 seconds.
This was not necessarily the shortest, cheapest, or highest-yielding pathway but was just one
of many possible pathways for a chemist to review. A pathway was found in 6 seconds for the
new disclosure BMS-986195, and in 15 seconds for LY3104607.

Connor’s work is relevant to molecular generation. There is a trend to move away from
precomputing numerical representations of molecules in order to predict physicochemical
properties, and to move toward learning the properties113 from structures. One class of
techniques of growing interest for early-stage drug discovery is de novo molecular generation
and optimization. These techniques can suggest novel molecular structures intended to
maximize a multiobjective function, for example, suitability as a therapeutic against a
particular target. It is now possible to check if the new molecules are synthesizable before
passing the suggestions on to a synthetic chemist.45,120,185

The MIT team has hosted a number of computational tools to assist in synthetic planning and
other aspects of organic chemistry in the Automated System for Knowledge-based,
Continuous Organic Synthesis (ASKCOS).186 Models can be built to describe patterns of
chemical reactivity with relevance to synthesis planning and it is possible to learn to define
areas of synthetically accessible chemical space. Chemists are actually using these tools and
find value, but access to data is needed to drive algorithm development, and many, many
challenges still remain.

21 Integrating AI with robust automated chemistry: AI-driven
route design and automated reaction and route validation

Dr. Mario Latendresse, SRI Biosciences

SynFini is an automated, multistep synthesis platform (Figure 19) from virtual molecule to
product. It allows rapid route design, validation and optimization in hours or days rather than
weeks or months. Its high-fidelity digital synthesis drives efficiency, reproducibility, and
transferability. Integrated “design, make, test” cycles bring AI and automation into one
platform.

Figure 19: SynFini web portal.
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SynRoute for retrospective route design is the most complete component in the SynFini web
portal (Figure 19). It uses a database of 17 million known reactions chosen from Reaxys, and
proposes new reactions based on robust transformations. It designs multistep routes in
minutes. The concept behind it was, firstly, to mimic the design process of a synthetic chemist
to generate synthetic strategies using literature chemistry and reaction transformations, by
combining AI (new reactions from known transformations) with results reported in reaction
databases to produce synthetic routes. Secondly, the system had to prioritize the “best”
synthetic strategies based on cost, likelihood of success, and ease of implementation.

To incorporate machine learning into route discovery, Mario and his colleagues created and
trained classifiers for each transformation from the medicinal chemist’s toolbox (MCT).155

The goal was to predict whether a computer-generated reaction is workable. During a route
search, all applicable MCT transformations are used to create new reactions. The ML
classifier is applied to each computer-generated reaction and only reactions classified as
“workable” are used in the search. The machine learning classifier reduces the exponential
complexity of the search challenge and produces routes that have higher confidence overall.

Positive examples are defined as all reactions from Reaxys with a yield of greater than 20%.
Negative examples are defined as reactions from Reaxys, with a yield of greater than 20%,
where the reactants are applicable, but the reported product is from a different reaction type.
The performance of a multilayer perceptron (MLP) was compared with that for random forest
machine learning classifiers. One criterion was accuracy. Accuracy = (TP + TN) /
(TP+FP+FN+TN), where TP = true positive, TN = true negative, FP = false positive, and
FN = false negative. The average accuracy for MLP is 94.5% and for random forest is 89.5%.

Generating reactions and fast searching of routes uses a vectorized Dijkstra-like algorithm, as
follows. Starting from the target compound, apply reaction transformations to generate
reactions. Keep only the generated reactions with predicted likelihood of good “yield”, based
on machine learning classifiers. Repeat a maximum of t times until a connection to known
compounds in Reaxys is found. Search for multiple k diversified routes based on optimality
conditions and other restrictions.

The searches incorporate minimization of the combined costs of starting materials, solvents,
reagents, and reaction implementation, while maximizing the overall yield of products to find
routes that are efficient and cost-effective. All compounds and reactions connected to the
target compound are tagged. A priority queue is then initiated with reactions that can
proceed from feedstock: reactions can only proceed if all reactants are feedstock, and the
reaction cost is calculated as the sum of feedstock divided by yield (when available). The
reaction with minimum cost and process is considered the active reaction, and the next
reaction is then processed: it is added to the priority queue and the procedure is repeated for
each following reaction in turn, until the target is reached. The speed of the algorithm does
not directly depend on the length of the route but on the number of reactions visited. The
performance is almost linear on k, the number of top optimal cost routes found.

As an example, Mario showed the top route returned for imatinib, using 50,000 new reactions
and the reaction classifiers: a three-step synthesis that involves one step from Reaxys and two
generated new reactions. SynRoute recommends conditions for computer-generated reactions
based on statistical analysis of reaction data.

Mario and his co-workers also downloaded all drugs from the FDA website and filtered them
to get only single ingredient drugs, with a molecular weight of less than 1,500 Da, excluding
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gases and salts. They then searched for routes for all these drugs using, firstly Reaxys
reactions alone and secondly Reaxys reactions plus computer-generated reactions.
Ninety-three percent of the compounds were synthesizable in 5 steps or less. The majority of
compounds with no routes found even with MCTs were large natural product compounds.
The average search times for routes using MCTs were from 30.6 seconds for three-step
syntheses up to 66.9 seconds for routes with 15 steps.

SynJet (Figure 20), for reaction screening and optimization, performs synthesis on a µg to mg
scale. A customized inkjet dispenses about 1rxn/sec for a 10 µL reaction. There is highly
parallel screening for varied conditions including continuous variables: (temperature, time,
stoichiometry, pressure, and pH) and categoric variables (reagent, solvent, and substrate). In
reaction building block screening, online analysis with direct analysis in real time mass
spectrometry (DART MS) takes 5 seconds per reaction. Offline analysis with HPLC/MS takes
120 seconds per reaction. SynJet is coupled with SynRoute: results from multistep reactions
augment the chemical database. It maps well to flow processes. A standard
design-of-experiment (DoE) driven optimization process would normally take 1-2 weeks; with
SynJet it takes less than a day.

Figure 20: SynJet.

The AutoSyn automated bench chemistry platform (Figure 21) is a miniaturized, flow chemistry
plant with integrated analytics. The “cityscape” in the figure is the miniaturized chemical plant.
Automated synthesis includes start-up, operation, and shut-down. The apparatus carries out
multistep synthesis on a mg-gm scale. It features the ability to switch between two targets in
less than 2 hours, using valves to select the flow path. Characterization is both in-line and
on-line. A “subway map” on the cityscape maps synthetic routes on the baseline configuration.
The number of pathways possible is 3888 including different residence times.

44



Figure 21: AutoSyn.

The SynChem database stores digitally captured and highly reproducible transformations.
Twenty-two of the MCT transformations have validated examples on AutoSyn. The database
includes successes and failures, and optimization data. Reactions are added to the SynRoute
reaction database for more efficient route design.

SynFini was validated by multistep synthesis of target compounds on AutoSyn, with
integrated separation and analysis, producing new synthetic routes to 22 known drugs. There
were from two to five steps per route. (The current capacity of the cityscape configuration is
about seven steps.) It typically takes less than two weeks to validate a preliminary route.
Increasingly complex, chiral routes, longer syntheses, and convergent methods are then carried
out. Crude purity is greater than 80%. Purified purity is greater than 95% across all routes.
Examples of routes from SynRoute that have been performed on automated chemistry
platforms demonstrate the potential for a continuously improving, data-driven synthetic
planning platform.

22 A nondeterministic Chemputer for running chemical
programs

Professor Lee Cronin, University of Glasgow

Research in the Cronin Group187 is motivated by the fascination for complex chemical
systems, and the desire to construct complex functional molecular architectures that are not
based on biologically derived building blocks. Lee showed a short video of some of the work
done by his team (“Making Stuff with a Matter Operating System”) and went on to describe
the history and context of the “Chemputer”.

What does chemical space look like? How can we define and then search the space? How does
complexity arise? De novo target identification and studying complexity depend on defining
and searching the space. The labor involved in synthesizing big molecules creates a bottleneck
that the Chemputer can remove.188 The aim is to automate boring, routine processes and
improve search efficiency. Lee’s group are trying to navigate through the vastness of chemical
space using the Chemputer, and are studying how this technique can be used not only to find
promising cures for diseases, but also to understand the transition from chemistry to biology,
and how to create artificial life in the lab.

Applying robotic technologies along with artificial intelligence-based approaches to chemistry
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requires a holistic approach to chemical synthesis design and execution. Lee’s team has
outlined a universal approach to this problem, chemputing, which exploits the concept of the
Chemputer.189 The Chemputer refers to a modular system for chemistry that can understand
the representation of a practice of chemical synthesis that then informs the programming and
automation required for its practical realization. Using this foundation to construct
closed-loop robotic chemical search engines, they can generate new discoveries that may be
verified, optimized, and repeated entirely automatically. The robots can perform chemical
reactions and analyses much faster than can be done manually. This leads to a road map
whereby molecules can be discovered, optimized, and made on demand from a digital code.

A few well-defined areas such as polypeptide and oligonucleotide chemistry have automated
chemical synthesis but laboratory-scale and discovery-scale syntheses have remained
predominantly a manual process. Recent advances in areas such as flow chemistry,
oligosaccharide synthesis, and iterative cross-coupling are expanding the number of
compounds synthesized by automated methods, but there is no universal and interoperable
standard that allows the automation of chemical synthesis more generally.

In developing the Chemputer platform,190 Lee’s team wanted to build on 200 years of
chemical literature, and the experience of thousands of bench chemists, in a way that would
lead to a standardization embodied in a codified standard recipe for molecular synthesis. For
this to be possible, it was essential that the approach mirror the way the bench chemist works.
Lee’s team therefore used the round-bottomed flask as the primary reactor for batch
synthesis. A relatively small array of equipment was assembled to accomplish a wide variety of
different syntheses, and the abstraction of chemical synthesis encompasses the four stages:
reaction, workup, isolation, and purification (see a video188 on the Glasgow website). With
these four modules, it was possible to automate the synthesis of the pharmaceutical
compounds diphenhydramine hydrochloride, rufinamide, and sildenafil without human
interaction, in yields comparable to those achieved in traditional manual syntheses.

The standardized format for reporting a chemical synthesis procedure, coupled with an
abstraction and formalism linking the synthesis to physical operations of an automated
robotic platform, yields a universal approach to a chemical programming language. The
architecture and abstraction form the Chemputer. Chemify191 is a project dedicated to this
new era of chemical synthesis driven using a universal language developed to make molecules
more accessible, cheaply and safely, as well as reducing labor and expanding chemical space in
terms of the number of molecules that can be made. Instructions on how to build a
Chemputer and code for syntheses that have been successfully performed on Chemify
platforms are available on the website. A video of the equipment191 is also available. A 12-step
convergent synthesis in a Chemputer has been demonstrated, with automated diazirine
coupling, cleavage, precipitation, and filtration.

In addition to its synthesis modules, the Chemputer has sensors for real time feedback for pH,
spectral data, conductivity, computer vision, chromatography, and thermal and acoustic
imaging. It is currently possible to operate pumps and valves live using the application; other
device controllers have been written, but need testing and debugging. Remote control is
particularly useful for hazardous procedures. The sensor system connected to the Chemputer
Schlenk line control system is controlled by ethernet cable which means that the system can
also do optimization of the chemputing process.

Research into the Chemputer has received funding of about 20 million pounds sterling from
the Defense Advanced Research Projects Agency (DARPA), the United Kingdom and the
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European Union, over five years, and more than 50 organizations are interested in it. Beta
versions have been built outside of Glasgow, for example by GSK and BAM192 in Berlin.
Using the Chemputer (at Glasgow University), and exploring chemical space using statistical
methods (at Arizona State University), two teams have won a challenge prize for innovative
solutions to pain, and opioid use disorder and overdose.193 The aim of the Chemputer
paradigm is not to replace the chemist but to do as much manual bench chemistry as possible
robotically. This will allow teams to share code, discovery and optimization data, and give
teams access to new molecules quickly ensuring quality and reproducibility. Lee therefore now
wants feedback on the 100 top molecules that are really annoying to make. He plans to get
people to work together to make the Chemputer code for those molecules and validate them.
This project is called Chemify100.

The Chemputer paradigm and chemputing is now opening a new window on drug discovery.
Only 200 million molecules are known, but 10100 could possibly be synthesized in up to 10
steps. Discovery is limited by the number of steps; machine learning, and using artificial
intelligence systems in general, is hard without a standard way of generating the data, and
this is one of the key things that Chemputers can do. Intelligent automated chemistry
platforms for discovery orientated tasks need to be able to cope with the unknown, which is a
profoundly hard problem. Henson et al. have described how recent advances in the design and
application of algorithms, coupled with the increased amount of chemical data available, and
automation and control systems may allow more productive chemical research and the
development of chemical robots able to target discovery.194

Lee’s team have reported an organic synthesis robot that can perform chemical reactions and
analysis faster than they can be performed manually, as well as predict the reactivity of
possible reagent combinations after conducting a small number of experiments, thus effectively
navigating chemical reaction space.195 By using machine learning for decision making, enabled
by binary encoding of the chemical inputs, the reactions can be assessed in real time using
NMR and IR spectroscopy. The machine learning system was able to predict the reactivity of
about 1000 reaction combinations with accuracy greater than 80 percent after considering the
outcomes of slightly over 10 percent of the dataset. This approach was also used to calculate
the reactivity of published datasets. Further, by using real-time data from the robot, these
predictions were followed up manually by a chemist, leading to the discovery of four reactions.

Lee presented the autonomous “Chemputer Discovery Machine”: closed loop reactivity
discovery with a process language. Liquid handling and automated analysis connect to
continuous reactivity assessment for a reagent dataset, after which chemical space modeling
can be carried out, before the loop is closed and liquid handling and automated analysis are
repeated. Lee thinks that a good use of convolutional neural networks is to estimate reactivity.
The chemical code, or Chemical Markup Language (XDL), can be used to constrain inputs,
and the loop can be closed. This is reaction discovery beyond using rules found in the organic
chemistry literature. This is because new heuristics are discovered, and rules can be applied in
the conventional way.

Finally Lee outlined a chemical search engine for the origin of life (OOL): a transition from
chemistry to biology, to create artificial life in the laboratory (see Figure 22). A new approach
to finding and targeting molecules is the “messy (primordial) soups” bottom-up approach, as
opposed to the targeted synthesis top-down approach. Organic chemists are “creationists”,
but LIFE is an evolutionary approach.
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Figure 22: A photograph of the OOL-Chemputer aimed at searching chemical soups for
complex molecules that can go on to establish an evolvable chemical system.

In object assembly theory, complex molecules are impossible without LIFE. With object
assembly theory, molecules are identified as biosignatures. Lee’s team has reported a new type
of complexity measure, called “Assembly Complexity”, (and as applied to chemistry,
“Molecular Assembly Complexity”), that allows them not only to find a threshold to the
abiotic-biotic divide, but also to demonstrate a probabilistic approach based on object
abundance and complexity which can be used to unambiguously assign complex objects as
biosignatures.196,197 They hope that this approach will not only open up the search for
biosignatures beyond the Earth, but also allow them to explore the Earth for new types of
biology, and to determine when a complex chemical system discovered in the laboratory could
be considered alive.

23 Data-driven exploration of the catalytic reductive
amination reaction

Dr. Benjamin Deadman, Imperial College – ROAR

Over a century of synthesis has yielded a vast library of reactions but there is a pressing need
for more comprehensive datasets which include negative results, multiple time-point reaction
data, and interoperable synthesis procedures. The center for Rapid Online Analysis of
Reactions (ROAR) at Imperial College5 is a new facility which brings together
high-throughput (HT) batch and flow reactor platforms, in situ analytic technologies, and
automation expertise to enable data-centric research in synthesis. ROAR is a facility not a
research unit; it exists to support the research projects of others. Usage of the facility is
currently subsidized for academic research on the condition that the results are made available
on an open access data repository after an embargo period. Some commercial usage of the
facility, without a requirement to make the data open access, is possible for a fee.

Ben presented an exploration of the catalytic reductive amination reaction using the ROAR
facility. Reductive amination is an important reaction for many industries.198–201 It is a simple
reaction with multiple variables which can be optimized. In the ROAR approach, HT robotic
batch reactor platforms are used to screen a range of heterogeneous catalysts for activity and
selectivity.

There is a need to perform kinetic studies of pressurized reactions but a technical challenge is
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sampling pressurized reactions in a controlled manner without venting the reactor. The
solution is the Unchained Labs Optimization Sampling Reactor (OSR) unit which has
antechamber system for sampling under pressure. The eight-reactor OSR unit enables
scientists to screen a broad experimental space with precise and independent pressure and
temperature control for each reactor.

In a time-points study of the reaction in Figure 23, it was found that conversion and yield of
the target secondary amine reached a maximum after about 30 minutes, and then the yield
fell away over time. Temperature optimization of the first step showed that this is a fast
reaction (greater than 95% conversion in 5 minutes), and low temperatures (25 ◦C to 40 ◦C)
hinder product decomposition.

Figure 23: Reductive amination.

Substrate screening (varying the aldehyde or ketone and the amine) was carried out on an
Unchained Labs Deck Screening Pressure Reactor (DSPR). The DSPR allows up to 48
reactions to be performed in parallel with a common pressurized gas in the headspace. Ben
presented the results of the substrate screening array, with color coding to categorize the
combinations of carbonyl compounds and amines as low-, medium-, and high-yielding for the
target amine. The team are continuing to develop this screening technique as a tool for
mapping out the reaction space for this particular class of reductive aminations.

Ben discussed some of the aspects of planning HT reactions which ROAR have found to be
particularly important. In their typical planning for a HT process they will always consider
the analysis first, since a robust analysis method is essential to obtaining quality data. What
is the minimum sampling volume required for the intended analysis method(s)? What state
(liquid, biphasic etc.) will the reaction be in when sampling takes place? Another concern is
the chemical sources: in which order to add them, and in which state, their solubility, and the
preparation of any stock solutions. After that, what is the minimum dispense volume and
weight? Is the reaction reproducible at the intended scales, and across the plate?

The reductive amination reaction is the first system to be studied comprehensively in ROAR,
but these techniques will be applied more widely in the ambition to develop quality datasets
for other chemical transformations, including negative results, multiple time-point reaction
data, and interoperable synthesis procedures.

49



24 Machine-assisted flow chemistry for organic synthesis

Dr. Christopher A. Hone, Research Center Pharmaceutical Engineering (RCPE)

Chris works within the Center for Continuous Flow Synthesis and Processing (CC FLOW) at
RCPE. RCPE is a nonprofit spin-out company from the universities in Graz, Austria. In his
talk, Chris summarized efforts in his laboratory to use automation and computational
methods for the development of flow chemistry processes. RCPE’s modular flow platform for
real-time control of the synthesis of active pharmaceutical ingredients using model-based
strategies is shown in Figure 24.

Figure 24: Modular flow platform.

RCPE used the Ehrfeld Mikrotechnik Modular MicroReaction System and the Lonza FlowPlate
microreactor. In particular, Chris discussed the coupling of the modular flow platform with real-
time analysis by IR and NMR, and online UPLC, for the efficient optimization of a multistep
organometallic transformation without the need for human intervention.202 The case study
concerned alpha- functionalization of carbonyl compounds via lithium enolate intermediates
Figure 25. This is hazardous chemistry, involving an exothermic reaction. It is also challenging
because of solid formation and sensitivity to moisture.

Figure 25: Analytical strategy for lithium enolate reaction.

The team rapidly generated experimental data (17 iterations in under 2 hours) to access
information on the different chemical species at multiple points within the reactor and to
generate process understanding. The optimized continuous flow conditions were demonstrated
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in a scale-out experiment with in-process monitoring to afford the desired product in 70%
isolated yield with a throughput of 4.2 g h−1.

Chris presented a further case study involving the generation of process models for an aerobic
oxidation operating within a segmented flow regime.203 Continuous flow reactors have
facilitated safer and more efficient utilization of O2, whilst enabling protocols to be scalable.
Chris studied the aerobic oxidation of diphenyl sulfide to diphenyl sulfoxide. The model-based
experimentation process involved the following steps: perform experiments; perform
experiments and simulations important for scalability (pulse experiments, mass transfer,
calorimetry); recreate the experiment in silico; estimate kinetic parameters; simulate, optimize
and design in silico batch and continuous processing; validate the experiment; optimize and
scale up. The process models generated were underpinned with a residence time distribution
(RTD) study and computational fluid dynamics (CFD) simulation. gPROMS
FormulatedProducts204 software was used for the in silico modeling to identify the optimal
operating conditions.

25 Encoding solvents and product outcomes to improve
reaction prediction systems

Dr. Ella M. Gale, University of Bristol

Ella is in the technology-enhanced chemical synthesis center for doctoral training at Bristol
(TECS-CDT). Students are taught Python, supervised and nonsupervised learning, etc. and
then they have access to a ChemSpeed automated synthesis robot to optimize reactions.
Synthetic outcomes are hugely dependent on the conditions used, like the choice of solvent or
temperature, but most retrosynthetic algorithms do not encode this information into the input
data. The output data are usually encoded in a binary way, as to whether a particular desired
output chemical is present or not.

Ella has worked on expanding the complexity of both input and output data to make these
algorithms more practically useful. Categorical data are variables that contain label values
rather than numeric values; for example a solvent label may be “water” or “ethanol”.
Categorical data can be converted into numerical data by integer encoding (each label is
assigned a number) and one-hot encoding. One-hot encoding is a vector representation where
all the elements of the vector are 0 except one, which has 1 as its value. Ella inputs the
solvents with a one-hot code referring to a database of around 600 popular and commercially
relevant solvents, and temperature is input as being within ranges. The reaction output
products are coded in a trinary way: the value 2 if the product is present, and is either the
top-most reported product or in a high enough yield to be synthetically useful, 1 if the
product is present but in a low yield, and 0 if the product is naively possible but not seen in
the laboratory.

Other types of solvent data include a formula (SMILES in this case), and “bag-of-words’ style
nonhierarchical descriptors of functional groups and molecule types (from Marcus Johns).
This new chemical group database has 167 parameters, for example, alkane, ketone, sulfide,
and aromatic. There are also physicochemical descriptors: out of 634 solvents,2 286 were used,
with more than 24 parameters, including boiling point, molar volume, surface tension, and
Catalan,205 Laurence206 and Hansen’s solvent parameters.207 Finally there is principal
components analysis (PCA) of physicochemical values.2 Ella has done previous work208

searching such databases of solvent properties.
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In earlier work, Gao et al.178 have developed a neural-network model to predict the
catalyst(s), solvent(s), and reagent(s), and the temperature most suitable for any particular
organic reaction. The model is able to propose conditions where a close match to the recorded
catalyst, solvent, and reagent is found within the top-10 predictions 69.6% of the time, with
top-10 accuracies for individual species reaching 80–90%. The researchers also demonstrated
that the model implicitly learns a continuous numerical embedding of solvent and reagent
species that captures their functional similarity.

While no explicit relationship between chemical species is included in the model, it implicitly
learns the functional similarity of solvents and reagents through training, as it can suggest
similar chemicals for the same reaction. Taking solvent as an example, the similarity
information can be extracted from the neural network, specifically the weight matrix in the
last hidden layer before the final likelihood prediction and softmax activation. If two rows in
the weight matrix are similar, the model will tend to predict similar scores for the
corresponding two solvents. In other words, each solvent can be represented by its
corresponding row from the weight matrix. Gao and his co-workers178 refer to this as “solvent
embedding”. To visualize the embedding of solvents, the top 50 solvents with the highest
frequency in the dataset of 232 were selected, and labeled manually into four types: nonpolar,
polar nonprotic, protic, and halogenated.

Ella investigated this solvent embedding reaction space to see which solvent data embedding it
is closest too (because if she found which data the neural network is learning from reaction
space, she could just give that data to the network). She investigated the latent space
encoding of data (Figure 26).

Figure 26: Latent space encoding of data.

The data types input were physicochemical data (pCh), comprising 24 parameters for 287
solvents, PCA of pCh, and one-hot (control). Derived latent space encoding types were
PCA-auto-PCA, pCh-auto-pCh, fg-auto-fg, and 1-hot-auto-1-hot (control). These
abbreviations refer to the data put into the autoencoder and the output. Thus
“PCA-auto-PCA” means PCA input and output. “Fg” is “functional group” (from the dataset
mentioned earlier). The abbreviation “1-hot-auto-1-hot” means running an autoencoder on
1-hot data. This is the control as it contains no information about the solvents. The four
chemical type labels of Gao et al. were used but were not used in the autoencoder.

Now Ella looked for clusters in 2D projections. In the first experiment, t-distributed stochastic
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neighbor embedding (t-SNE), multi-dimensional scaling (MDS), and isomap (ISO) were used
for dimensionality reduction. With t-SNE every scatter plot looked much the same. MDS and
ISO are preferred to t-SNE as they try to preserve a real distance. MDS tries to preserve the
distance, and ISO tries to preserve the geodesic distance between the points, and so Ella used
them to check that there was not a real cluster in the data.

In a second experiment, Ella used a new ClusterFlow algorithm, which carries out
semisupervised clustering of multidimensional data into hypercuboids, using labels. She
clustered the 50 solvents and the four labels of Gao et al. in 300-dimensional space, with the
results shown in Table 5.

Table 5: Clustering of solvents.

Key to Table 5:

• No. Dims = number of dimensions of the latent variables (i.e., the lengths of the latent
variable vectors)

• Top layer = the number of clusters at the top layer of the hierarchical cluster
• Depth = depth of the hierarchical cluster
• Cluster no. = the number of clusters in the hierarchical cluster. (The clustering algorithm

makes clusters of clusters until it has assigned all the points to a correctly labeled cluster.)
• % in pure cluster = the number of points that were assigned to a cluster which contained

points with only one label
• Paper = the results from the actual data in Gao et al.’s paper
• PCh = clustering just the original physicochemical properties
• PCA of PCh = clustering the first four principal components of a principal component

transform of the physicochemical data
• Auto-3 PCh = clustering of the latent variables of a three-layer autoencoder trained on

the physicochemical properties
• Auto-4 PCh =clustering of the latent variables of a four-layer autoencoder trained on the

physicochemical properties
• Auto-3 cg = clustering of the latent variables of a three-layer autoencoder trained on the

functional group labels
• Similar arch (1-hot) = clustering of the latent variables trained on 1-hot using an

architecture of the same size and shape as in Gao et al. paper (control as 1-hot is
completely random)

• 1-hot only = clustering of 1-hot labels (a control as 1-hot is completely random, so any
clusters seen are illusionary)

53



As the control experiment clusters matched those seen in the Gao paper, it seems that Gao et
al. did not really find clustering in their solvent embedding. The human eye is easily tricked
and sees patterns everywhere, which is why it is important to do the control experiments.
From all this work Ella’s team finds that the solvent properties are not really needed for the
retrosynthesis algorithms.

Thus, Ella concluded that specific solvents do not matter for retrosynthesis (with the proviso
that the solvent must dissolve the reactants and products). Solvent selection and optimization
is best done as a separate task, so it will be taught to the students as a separate step. The
output from Ella’s expanded retrosynthesis algorithms can be used as a guide to the inputs to
DoE programs on the ChemSpeed robot, allowing for the fast optimization of reaction
conditions. Moreover, since the physicochemical properties of the solvents in the database are
known, this information can be used to search for greener and cheaper alternatives to test.

26 Evolutionary computing strategies and feedback control for
directed execution and optimization of chemical reactions

Professor Harris Makatsoris, King’s College, London

The evolution of a chemical system towards a desired property within a fitness landscape is a
very attractive strategy for reaction optimization experimentally. It allows efficient exploration
within complex parameter spaces that may contain multiple maxima or minima but without
any detailed knowledge of the structure of the space. Unlike other approaches, it does not
impose a requirement to collect information necessary to calculate gradients. Experimental
design approaches that have been recently reported have demonstrated good performance, but
they employ search strategies along a single steepest ascent or descent pathway with some
cases requiring gradient calculation. This prevents them from discovering better designs
within complex spaces since they get trapped very quickly within a particular region of the
space, because they explore around only a single extremum. In contrast, evolutionary
approaches avoid this as they sample points from across the whole search space. Furthermore,
evolutionary strategies are robust and resilient to experimental and measurement errors and
can be applied in manual or fully automated experimental scenarios.

A different search space requires rapid and efficient execution, and directed control.
Centillion209–213 is an innovative approach that meets these requirements. It is a new flow
chemistry system of precision-engineered modules that when connected, enable chemical,
biochemical, and bioprocessing companies to create productive and sustainable continuous
processes to occur in the laboratory and at production scale. With these, the control of fluids
in innovative ways is possible allowing repeatable, productive, and sustainable product
manufacture. The mission of Centillion Technology Ltd. is to digitize this experience, liberate
creativity, and change how industry develops and scales materials.

Harris and his co-workers have developed a thermoacoustic heat engine (TAHE),214 a type of
prime mover that converts thermal power to acoustic power. Although the geometry of the
TAHE is simple, the behavior of the engine is complex with over 30 design parameters that
affect the performance of the device; therefore, designing such a device remains a significant
challenge. The researchers have reported a methodology using reinforcement learning (RL) for
the design and optimization of a TAHE.215 It is eventually hoped that with increased
understanding of the design problem, in terms of the RL framework, it will be possible to
ultimately create an autonomous RL agent for the design and optimization of complex TAHEs
with minimal predefined conditions and restrictions. Harris envisions this as a move toward
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totally automated optimization (Figure 27).

Figure 27: Toward totally automated optimization.

Flow chemistry is inherently scalable, in terms of intensification, and precise control of the
factors that influence a process, allowing repeatable and operator-independent production.
There is a minimal mixture inventory and equipment footprint. Flow chemistry is scalable,
repeatable and transferable with model support.

DoE and response surface methodology (RSM) are popular techniques developed by the
automotive industry. RSM leads to a model that can be used with optimization approaches,216

but it is based on Taylor Series approximation of a function in a local region, and needs
screening experiments first to identify the region. It applies local search.

Harris took as an example the synthesis of [Fe(Htrz)2(trz)](BF4): a precipitation reaction with
particle engineering opportunities.217 Batch synthesis of this compound is by combination of
two solutions Fe(BF4)2 and triazole (Htrz) at room temperature. This results in a range of
particle sizes. Synthesis in flow format yielded a narrow particle size distribution compared to
batch. Mixing and RTD control lead to different morphologies. Control of the process is
critical for obtaining particles with narrow particle size distribution, especially as scale
increases. Harris showed scanning electron microscope results for targeted particle property
optimization and scale-up with a model based approach, proving the advantages of Centillion.

For local optimization, the Nelder-Mead218 method is a heuristic technique, which uses a
“geometrical shape” called a simplex as a template that proceeds within a region, descending
or ascending towards a local best fit. At every iteration, it proceeds to reshape or move this
simplex, one vertex at a time. It aims to improve the best value by adjusting the template.
Initial screening and defining the template is the starting point. The approach entails
changing over time one or more “traits” (e.g. process parameter space) in a population of
options by mutating and reproducing those available and selecting those that not only
enhance the fitness of the population by some selected measure (“dialed” property) but also
remain in successive generations (survive changes).

Evolutionary algorithms have many advantages. They are capable of operating in
unstructured spaces with large or even undefined number of parameters; are easy to develop;
are robust and suitable for hardware in the loop; and are stable in the presence of noise in a
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fitness value. Global search avoids getting trapped in local regions.

Harris’s team is combining approaches. In the top layer, an evolutionary algorithm samples
the space, assesses fitness, and controls selection. In the bottom Layer, heuristic local search
explores the space in detail by anticipating the next best move. Automated technique
platforms rely on feedback mechanisms that require the integration of process analytical tools
and methodologies to preprocess the data from observables before determining the next
experimental design of the next iteration. Harris demonstrated the application of these
techniques with the use of a fully automated flow system.

As an example, he took the oxidation of epinephrine (Figure 28). His team optimized the
metastable trihydroxyindole or the final product, (oxidized trihydroxyindole), with synthesis
on demand using evolutionary algorithms. Epinephrine and the final oxidized trihydroxyindole
product are nonfluorescent. The trihydroxyindole intermediate is fluorescent. The team
maximized fluorescence to obtain the intermediate or eliminated fluorescence to obtain the
final product, using self-optimization within Centillion to obtain the conditions.

Figure 28: Oxidation of epinephrine.

Another example concerned gold nanoparticles in segmented flow. Harris outlined the
spectroscopic regression model used for spectral feature extraction in online monitoring. A key
recent application is the development of smart microreactor technology for enzymatic
reactions for the future manufacture of vaccines. Harris’s team is involved in the Engineering
and Physical Sciences Research Council (EPSRC) Vaccines Manufacturing Hub (“Factory in a
Box”), working on rapid process design and scale-up for RNA vaccines.

27 Computational design via metal-driven self-assembly: from
molecular building blocks to emerging functional materials

Professor Fernanda Duarte, University of Oxford

Current computational methods enable chemists to interrogate chemical processes at the
molecular level. Despite these advances, several challenges remain when exploring unusual
reactivity or targeting novel catalysts. Among them are the accurate description of both
electronic and energetic properties; the efficient modeling of structurally dynamic systems;
and the efficient evaluation of novel catalysts.

56



Self-assembled coordination cages based on organic ligands and a variety of transition metal
cations have emerged as promising supramolecular materials thanks to their applicability in
fields such as drug delivery, molecular recognition and catalysis. Guest molecules can reside
within these cavities and much of the interest in these systems is derived from these
fascinating host-guest interactions.219–223 Back in 1998, Sanders224 wondered why among the
outpouring of new supramolecular arrays there are so few effective catalysts. The question
could still be asked today. Examples include cyclodextrins,225 a resorcin[4]arene-based
capsule,226 tetrahedral assemblies of stoichiometry M4L6 such as [Ga4L6]12- capsules,227–229

and Pd2L4 metallocages.230

Computational modeling of metal-driven self-assembly has been carried out with both
quantum mechanics (DFT) and molecular mechanics (molecular dynamics, MD). Fernanda
believes that to get meaningful answers you must use both. Fernanda has worked with Paul
Lusby’s group in Edinburgh on Pd2L4 catalysis.230–232

The Diels-Alder reaction is a cornerstone of synthesis, yet nature does not use catalysts for
intermolecular [4+2] cycloadditions. Attempts to create artificial “Diels-Alderases” have also
met with limited success, plagued by product inhibition. Using a simple Pd2L4 capsule
(Figure 29A), Marti-Centelles et al.231 have shown Diels-Alder catalysis that combines
efficient turnover alongside enzyme-like hallmarks. This includes excellent activity (kcat/kuncat
> 103), selective transition-state stabilization comparable to the most proficient Diels-Alder
catalytic antibodies, and control over regioselectivity and chemoselectivity that would
otherwise be difficult to achieve using small-molecule catalysts. Unlike other catalytic
approaches that use synthetic capsules, this method is not defined by entropic effects; instead
multiple H-bonding interactions modulate reactivity, reminiscent of enzymatic action.

A B

Figure 29: Pd2L4 capsule binding.

Three approaches have been taken to force field parameters for molecular dynamics simulations:
the soft-sphere model,233–235 the bonded model,236–238 and the dummy model (Figure 30).239–242

The cationic dummy atom approach provides a powerful nonbonded description for a range of
alkaline-earth and transition-metal centers, capturing both structural and electrostatic effects.
Duarte et al.239 have refined existing literature parameters for some metals and shown that they
are easily transferable to any force field that describes nonbonded interactions using Coulomb
and Lennard-Jones potentials. They provide a valuable resource for the molecular simulation
community, as they extend the range of metal ions that can be studied using classical approaches,
while also providing a starting point for subsequent parametrization of new metal centers.
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Figure 30: Modeling metal-ligand interactions.

Employing the dummy model approach239,243 in combination with classical MD techniques,
Fernanda’s team studied the flexibility of the Pd2L4 cage. They showed that a simple and
efficient DFT-based methodology, informed by explicitly solvated molecular dynamics and
coupled cluster calculations, is sufficient to reproduce experimental guest binding affinities
accurately (Figure 29B) and identify the catalytic Diels-Alder proficiencies (>80% accuracy)
of two homologous Pd2L4 metallocages with a variety of substrates.230 This analysis revealed
how subtle structural differences in the cage framework affect binding and catalysis. These
effects manifest in a smaller distortion and more favorable interaction energy for the catalytic
cage compared to the inactive structure.

In summary, in this study of the effect of noncovalent interactions and flexibility on
biomimetic catalysis, electronic activation is observed for both cages, but significant distortion
energy hinders catalysis. Note that Sanders224 concluded: “I have suggested that the fear of
entropy has taken supramolecular chemists too far in the direction of rigidity and
preorganization, and that the future may lie in more flexible systems that rely on noncovalent
interactions to impose order on three-dimensional structure.”

The Duarte group has applied their self-assembly design approach in an open source tool,244

cgbind,245 to generate and analyze metallocage structures. While related tools exist for COF
and MOFs,246–249 no similar tool is currently available for metallocages. The cgbind tool is
still under development and is currently employed for the discovery of new catalytic palladium
metallocages.

Finally, the group has also developed a computational tool to automatize the exploration of
reaction profiles, autodE.250 In contrast to available open-ended search approaches,251–256

autodE combines graph theory and chemical knowledge in order to reduce the size of the
chemical space required for sampling. Currently, it allows the full generation of reaction
energy profiles from 2D representation of the reactants and products only.

AutodE has been applied to explore basic reactions in chemistry, including substitution,
addition, elimination and cyclisation. To applicability of autodE to handle more complex
scenarios has been demonstrated by exploring the reaction mechanism leading to the
formation of the metabolite (+)-brevianamide. This molecule has been for the first time
synthesized by chemical means by Lawrence and coworkers.257 AutodE predicted the correct
selectivity employing only 2D information extracted from ChemDraw.

Fernanda’s group aims to combine these tools for the development of inverse design
approaches in organic and supramolecular catalysis. Fernanda concluded that there is much to
be learned from small systems, including increasing complexity, datasets, and transferability.
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28 Predictive models for assessing conditions of
hydrogenation reactions

Dr. Timur Madzhidov, Kazan Federal University

Retrosynthesis of a target molecule depends on finding a strategy (a pathway of synthetic
procedures leading to the compound), finding suitable conditions to perform every reaction,
and determining the reliability of the pathway, in terms of yield, purity etc.258 One of the key
challenges in the development of a synthesis strategy is the selection of optimal reaction
conditions that provide the necessary regioselectivity and stereoselectivity, together with a
high yield of the target reagent.177,178,259,260 Prediction of optimal conditions using machine
learning is a difficult task which is complicated by the absence of negative results, a possibility
that the reaction can be carried out under several sets of conditions, and the false negatives
uncertainty (if a predicted condition does not coincide with an experimental one it does not
generally mean that the prediction is wrong). These problems are solved by ranking the
predicted conditions.

Timur and his co-workers focused on hydrogenation reactions which are widely used in
synthetic chemistry. The reaction yield varies as a function of the catalyst, solvent, pressure,
and temperature. About 234,000 hydrogenation reactions were downloaded from Reaxys via
the Reaxys API. Structures and conditions were then standardized. Out of 143,000 catalyst,
reagent, and solvent names, 9024 of the most popular ones were standardized to 2371
standard names which fully covered 84% of reactions. The 233,905 reactions were reduced to
50,916 with known temperature and pressure, and 38,739 of those had a catalyst involved.
The test set included 3692 reactions with reactants and products unseen in the training set.

Conditions were represented by a 40-bit vector: three bits for low, medium, or high
temperature, three bits for low, medium, or high pressure; three bits for presence of acid, base,
or catalytic poison; and 31 bits for the presence of catalyst. Each reaction was represented by
a condensed graph or reaction (CGR)261 handled by CGRtools,262 a Python library for
processing molecules, reactions, and CGRs.263 A reaction can be encoded by a descriptor
vector which can be used in data analysis or in structure-reactivity modeling. The descriptors
are in silico design and data analysis (ISIDA) substructural fragments.264

Timur and his co-workers developed two neural network models. The first one, the likelihood
ranking model, used ISIDA descriptors as input to the network, and ranked the top k
predicted reaction conditions according to their applicability to a particular transformation.
For comparison, the researchers also used a nearest neighbors approach and a null model
(Figure 31). The precision of the likelihood ranking model for k = 10 was 85%, compared with
81% for the nearest neighbors approach, and 68% for the null model.
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Figure 31: Null model.

A comparison with the model of Gao et al.178 was also carried out (Figure 32). The comparison
is not entirely fair for a number of reasons. The proportion of conditions without catalyst in
the training dataset from the paper by Gao et al. is 87.3%. The model from that paper tends
to predict the absence of any catalyst (33.5% of predictions). There is no standardization,
so the names of catalysts are not unique. Only 18 conditions are considered, not all possible
combinations. To make the comparison fairer, Timur and his co-workers tried a model much
modified from that of Gao et al.,178 using a neural network for each of the four sets of descriptors
in turn. This recurrent prediction model is much better but is no improvement on the likelihood
ranking model.

Figure 32: Test set predictions, with pressure not taken into account.

The likelihood ranking model was validated experimentally. The reactant 1 in Figure 33 could
give rise to compounds 2 and 3 among many others. The predicted conditions “t = 30◦C; p
= 1 atm; Pt/C” gave compound 2 in 100% yield; “t = 30◦C; p = 1 atm; Pt/C + acid” gave
compound 2 in 42% yield and compound 3 in 58% yield. Two more concurrent reactions were
also used for external validation.
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Figure 33: Compounds in experimental validation.

Timur drew the following conclusions. Condition prediction is a ranking problem. Data quality
and problem-adapted modeling perform better than wide-scope (at least on this example).
Simple models behave no worse than a more complex (and slower) one. Experimental validation
of the likelihood ranking model on flow reactors supported the validity of the model. This model
performs best but it could be applied only if the set of possible conditions is finite.

29 Retrosynthetic software for practicing chemists: novel and
efficient in silico pathway design validated at the bench

Dr. Hugo Viana, Merck Millipore

Synthia265 (developed under the name “Chematica”) is retrosynthesis software that augments
the chemist’s expertise. It combines the powers of network theory, advanced computing, and
chemical knowledge to help chemists identify viable pathways, and successfully synthesize
target molecules, based on a chemist’s unique style, quickly and economically. The
development of Chematica37,129,266,267 was led by Bartosz Grzybowski. In 2017, the software
and database were purchased by Merck KGaA.

The manual process of deciding how to make a compound is a bottleneck in drug discovery.
There are many challenges. Humans cannot remember every reaction. Established routes may
not be reproducible. The chemist may not be able to design a path. Failure can happen at any
step. Finding common building blocks may fail.

Synthia saves money because all pathways lead back to available building blocks. It essentially
produces a tree with terminal nodes that are chemicals that are available in the laboratory or
that can be bought. Imagine if the tree has 1000 reactions at each stage in a five-step reaction
scheme. No chemist could cope with this challenge manually. There are millions of reactions in
SciFinder and Reaxys: all this information is available, but it is not easy to get in the right
format.

Synthia is unprecedented in that it takes into account complete stereochemistry,
regiochemistry, protection chemistry, and potential reactivity conflicts.38 Instead of relying on
chemical reactions extracted by machine from existing literature precedents, which is both
limiting and chemically faulty, Synthia uses 90,000 reaction rules coded by experts, carefully
considering the indirect effects of the chemical environment (i.e., all the atoms and
substituents present in the molecules which do not participate in the reaction directly), and
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their decisive influence on the applicability of a synthetic move.

Simple machine extraction from the literature does not work: it does not consider the entire
context of the reaction core. Hugo showed examples of the pitfalls of machine extraction of
reactions from the literature, one involving a stereodirecting methoxy group, another involving
acidic protons which will not succeed under basic conditions, and a third involving incorrect
stereochemistry. The Chematica team hand-coded all its rules as SMARTS. One rule might
take several weeks to encode. Hugo showed a rule for the stereoselective condensation of esters
with aldehydes.

Hand-coding allows for very unusual reactions: so-called “black swans”. Hugo gave an example
of a cycloaddition that had appeared in only 128 literature references. He also showed the
facile preparation of syn-1,3-amino alcohols. Synthia concentrates on hand-coded rules that
can account for the entire context of a molecule, including incompatible functional groups,
protecting groups and stereochemistry and regiochemistry, all the while eliminating unfeasible
chemistry. It explores novel and known solutions, eliminates nonviable options, and presents
the user with the most promising pathways to explore. It stops at available starting materials,
and can deal with novel molecules, not just those known in the literature.

Hugo presented a flowchart of how the software works. Synthia takes in SMILES and
SMARTS, first ignores the reaction core, and then looks at the protecting groups needed, and
uses a list of incompatible functional groups. Because the number of choices at each
retrosynthetic step is about 100, the number of possibilities within n steps scales as 100n. To
search such an enormous synthetic space, intelligent algorithms are needed to truncate, and
revert from unpromising “branches”, and channel the searches toward the most efficient and
elegant sequences of steps. Synthia avoids unpromising routes by using numerous heuristics
prohibiting unlikely structural motifs, penalizing reactions that are nonselective, or those that
would have to proceed through very strained intermediates. The searches are then guided
toward the most feasible solutions by scoring functions. The scoring function is driven by the
chemist’s preferences, for example, the number of steps, the cost of starting materials,
protecting group requirements, commercial or known inventory, nontoxic intermediates,
catalysts, and exclusion of certain chemical classes.

It is claimed that Synthia is the first tool to be validated successfully in the laboratory. In a
validation experiment,38 Synthia was used to plan synthetic pathways of eight, structurally
diverse, bioactive and natural products. To investigate whether retrosynthetic software such as
Synthia could “empower” less experienced chemists to perform synthetic work that would
typically be carried out in classic synthetic laboratories, the first four targets were made by
MilliporeSigma chemists, whereas the last four were synthesized by students not experienced
in multistep organic synthesis. Chemists were free to customize search criteria according to
their own “synthetic style” and choose their preferred route.

Hugo presented just two of the syntheses as examples, although all of the eight syntheses were
successful. There was no literature precedent for the synthesis of the second compound,
α-hydroxyetizolam. In the eight-step route proposed by Synthia (overall yield 3.2%), the key
hydroxyethyl side chain was installed at an early stage providing confidence in the route. The
software correctly identified a side product, and the need for protection at one stage was
indicated in the software’s plan (by a blue halo). The time and cost savings were huge (40%
cost savings) compared to the originally proposed route that was considered too risky to
execute. MilliporeSigma has added the finished product to the catalog, and has successfully
used the Synthia route to establish analogues. The objective for Synthia with the sixth
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compound (5β/6β-hydroxylurasidone) was to design an efficient pathway that would avoid the
only known, but patented route. Using Synthia, MilliporeSigma developed an alternative
patent-free pathway, and added the finished product to the catalog. Here the program made a
choice that a chemist might consider“risky”. All in all, the route proved easily scalable to
multigram quantities, and gave an overall yield of about 55%, that is, two and a half times
higher than reported in the patented route.

Synthia is experiencing rapid and diverse global adoption. It saves chemists time, and
augments their expertise. It has become the ally of bench chemists by “learning” chemistry
much like chemists would themselves, and suggesting diverse pathways towards their targets,
thus generating ideas and providing cost-effective routes based on each user’s unique needs.
Synthia will not replace the chemists; it will support them. It is becoming the chemist’s
preferred starting point and it is continually improving with feedback from users.

30 Conclusion

It was remarkable that this meeting took place and was so well attended: the coronavirus
pandemic was already having a major impact worldwide, but this conference was scheduled
immediately before “lockdown” in the United Kingdom. In the end, only three or four
speakers were forced to withdraw (including, sadly, one of the three keynote speakers) and two
speakers presented remotely. Readers who would like to see the full planned program,
exhibitors, abstracts, biographies, posters, and some of the slides presented can find AI React
2020 on the web.268

I would like to thank the organizers most sincerely for inviting me. All of them deserve a big
round of applause for the smooth running of the meeting, and the excellent opportunities for
networking and exchange of opinions. I hate to single anyone out, but I do have to thank
Samantha Kanza in particular for her amazing efficiency and coolness, faced with a mass of
equipment in both Apple and Microsoft environments, coping with sound systems and remote
presentations, and with constant changes to the agenda and slides.

It was a pleasure to attend this meeting and write the official “proceedings”. The breadth of
subject matter was quite fascinating: cheminformatics, retrosynthesis, chemical engineering,
robotics, catalysis, computer science, quantum computers, and much more. This reflects the
wide impact that AI could have on chemistry, “the central science”. The reader may still ask
“How and when?” but the future is clearly exciting.
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