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Abstract14

The drought-pluvial seesaw – defined as the phenomenon of pluvials (wet spells) fol-15

lowing droughts (dry spells) – magnifies the impact of individual pluvial and drought16

events, yet has not been systematically evaluated, especially at the global scale. We ap-17

ply an event coincidence analysis to explore the aggregated seesaw behavior based on land18

surface model simulations for the past seven decades (1950-2016). We find that glob-19

ally, about 5.9% and 7.6% of the land surface has experienced statistically significant20

(p < 0.10) drought-pluvial seesaw behavior during the boreal spring-summer and fall-21

winter, with an average 11.1% and 11.4% of all droughts being followed by pluvials in the22

following season, respectively. Although this global frequency pattern is modest and co-23

herent changes cannot be detected at the sub-continental scale, local hotspots of drought-24

pluvial seesaw have become more frequent than either droughts or pluvials alone in the25

last three decades, albeit with a small percentage of area coverage.26
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Plain Language Summary27

Droughts and pluvials (also referred to as large-scale and long-term dry and wet spells)28

have profound impacts on a wide range of sectors, including water, agriculture and food29

security, energy production, infrastructure, and ecosystem health. There have been numer-30

ous studies investigating the changing behavior of droughts and pluvials and their soci-31

etal impact, yet they are generally treated separately. The intersection between the two,32

especially the rapid transition from drought to pluvial (we call this the “drought-pluvial33

seesaw”), deserves more attention as it can lead to greater impact than the sum of each in-34

dividual type of event because of the potential increase in vulnerability of populations and35

ecosystems. For example, the 2017 winter pluvials in California contributed to widespread36

floods, which occurred on the back of the state’s multi-year (2011-2016) drought and put37

additional strains on the state’s multiple water dependent sectors. In this study, we investi-38

gate how often droughts have been followed by pluvials in the past seven decades through39

a novel yet mathematically simple approach. We find that about 11 percent of droughts40

have been followed by at least one pluvial in the following season, although over a small41

percentage of the global land surface. Importantly, the swing from drought to pluvial has42

become more frequent in the past 30 years in some parts of the world, which may indi-43

cate greater variability in weather with climate change. Our approach could have practical44

value as it can inform policy-makers and local stakeholders on the often overlooked but45

important risk of coincident drought and pluvial, and therefore more effective water and46

agricultural management and adaptation plans.47
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1 Introduction48

Weather extremes have been listed as one of the top three global risks for the past49

six years (2014-2019) [World Economic Forum, 2019], among which floods and droughts50

are the most common and impactful natural hazards globally. Severe floods are mainly51

triggered by persistent and widespread wet spells (also referred to as pluvials), either in52

the form of heavy precipitation events and/or through high antecedent soil moisture con-53

ditions [e.g., Sivapalan et al., 2005]. Droughts are on the other end of the hydrological54

spectrum, usually linked to prolonged periods of low precipitation and/or dry soils. Such55

wet and dry events can have large impacts on agriculture and food security, water avail-56

ability, energy production and natural ecosystems [e.g., Gleick, 1993; Sheffield and Wood,57

2011; He et al., 2019]. Globally, drought and flood losses have increased tenfold over the58

second half of the 20th century, to US$596 billion in the early 21st century (2000-2017)59

[EM-DAT, 2018]. A recent study [UNISDR, 2015] finds that, during 1995-2015, for all60

weather-related disasters, droughts account for 26% and affect 1.1 billion people. Pluvial61

events, in the form of floods, affect 2.3 billion people and account for 56% of disasters.62

Although a growing body of research based on climate model projections has documented63

that anthropogenic climate change will increase the frequency and magnitude for pluvials64

[e.g., Field, 2012; Fischer et al., 2013; Duffy et al., 2015; Martin, 2018; Zhan et al., 2020]65

and droughts [e.g., Sheffield and Wood, 2008a; Orlowsky and Seneviratne, 2013; Martin,66

2018], albeit with prominent regional variability, historical evidence does not show con-67

sistent changes for pluvials [e.g., Kangas and Brown, 2007; Liu and Allan, 2013; Greve68

et al., 2014; Lehmann et al., 2015, 2018] and droughts [e.g., Sheffield and Wood, 2008b;69

Sheffield et al., 2012; Dai, 2013; Trenberth et al., 2014] owing to the lack of observations,70

use of different metrics, as well as uncertainties from model simulations related to model71

structure and parameterization schemes.72

Although droughts (or dry spells) and pluvials (or wet spells) are generally treated73

separately, there are good reasons to analyze their co-occurrence and mechanisms, and74

manage and mitigate their impacts concurrently for a number of reasons. Firstly, changes75

in frequency and intensity of droughts and pluvials are inherently interconnected and gov-76

erned by the same underlying hydrological processes and atmospheric dynamics, which77

may lead to higher hydroclimatic variability with response to a warming climate [Tren-78

berth, 1999; Trenberth et al., 2003; Giorgi et al., 2011]. Moreover, there are many recent79

examples of coincidental flood (manifested or induced by pluvial conditions) and drought80
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events that highlight the compounded impacts of events that follow each other, and are81

suggestive of the expectation of a more variable climate under climate change. For in-82

stance, California recently suffered a multi-year (2011-2016) intense drought [Diffenbaugh83

et al., 2015; He et al., 2017], which caused severe environmental issues (e.g., groundwa-84

ter depletion, wildfires, tree mortality) and economic losses [e.g., Howitt et al., 2014]. On85

the heels of this prolonged drought, the state was hit by large-scale pluvial events with ex-86

treme precipitation transported from atmospheric rivers. These led to severe flooding in87

February 2017, which triggered a state emergency and an evacuation of 188,000 residents88

downstream of the Oroville Dam (California’s second largest reservoir) due to its spillway89

failure [NOAA National Centers for Environmental Information, 2018]. In September 2015,90

there was a fast transition from drought to pluvial flooding within one week over South91

Carolina because of the deep tropical moisture connection to Hurricane Joaquin, which92

brought a once-in-a-thousand-years flood and erased the prevailing drought conditions that93

had lasted from May to September in 2015. This drought-pluvial seesaw also happened94

in the southeast U.S., where Texas experienced its worst drought in recorded history from95

2010 until May 2015, which was suddenly ended by a heavy precipitation event. How-96

ever, this widespread pluvial event caused flash floods, compounded the impacts of the97

five-year drought which has already changed the landscape and vegetation distribution sig-98

nificantly. The dramatic swing from severe droughts to devastating pluvials (and floods) as99

shown above poses a substantial risk for water management practices, especially for reser-100

voir operation, as there exists a trade-off between short-term flood-control and long-term101

water-storage imperatives to satisfy water demand. In developing regions, the transition102

from drought to pluvial is arguably more impactful because of the compounding effects103

on population vulnerability. Although pluvials can sometimes alleviate drought conditions,104

they can have a significant effect on already impacted and more vulnerable populations if105

pluvials lead to severe floods [e.g., King-Okumu et al., 2018].106

Diagnosing the coincidence of droughts and pluvials in a changing environment [see107

Lins and Slack, 1999; Sheffield and Wood, 2007; Milly et al., 2008; Giorgi et al., 2011;108

Collet et al., 2018] is, therefore, important for fully characterizing their impacts on water-109

related sectors and understanding potential adaptation strategies, such as designing more110

effective reservoir operation rules or agricultural planning. There is growing evidence that111

recent warming is leading to more extreme events in general [Peterson et al., 2013] and112

that pluvial and drought episodes may be linked. For example, pluvial conditions are often113
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the reason for recovery of drought conditions, such as in the southeast U.S., where tropi-114

cal cyclones play a major role in drought recovery and alleviation [e.g., Kam et al., 2013;115

Maxwell et al., 2012, 2013]. In the Pacific Northwest U.S., 60-74% of persistent droughts116

are terminated by atmospheric rivers [Dettinger, 2013], and these pluvial events could help117

boost hydropower production. Antecedent conditions (i.e., soil moisture and snowpack118

conditions) can be related to changing flood risk [Sivapalan et al., 2005], which can also119

drive drought persistence through reductions in recycled precipitation [e.g., Dominguez120

et al., 2009]. At larger scales, pluvials and droughts are often linked because a shift in121

circulation drives pluvial conditions in one region while causing drought conditions in a122

neighboring region. For example, weakening in the East Asian summer monsoon is re-123

sponsible for the spatial drought-pluvial seesaw in China, with the North and Northeast124

experiencing persistent and severe droughts while the Yangtze River basin in the South125

undergoes extreme precipitation events [Ding et al., 2008]. Such seesaw oscillations have126

been observed spatially across the Atlantic Ocean, where pluvial flooding in the Ama-127

zon tends to coincide with Congo droughts and vice versa [Eltahir et al., 2004]. Other128

examples include the pluvial episode in Texas and drought episode in the southeast U.S. in129

2006, which were driven by a persistent shift in moisture sources from the Gulf of Mexico130

[Dong et al., 2011]. At local scales, the transition between droughts and pluvials is re-131

lated to hydrological persistence, which is controlled by land-atmosphere coupling through132

the complex partitioning of surface fluxes [e.g., Ferguson and Wood, 2011; Roundy et al.,133

2013; Santanello Jr et al., 2017]. For instance, wet/dry soils can trigger convective precipi-134

tation via positive/negative land-atmosphere feedbacks [e.g., Eltahir and Bras, 1996; Taylor135

et al., 2011, 2012; Guillod et al., 2015].136

Nevertheless, studies focused on improving our understanding or even providing137

basic quantification of transitions between droughts and pluvials (also can be dubbed as138

“weather whiplash”, Loecke et al. [2017]; Swain et al. [2018]) is lacking. The few stud-139

ies that do exist are either event-based [Seager et al., 2012; Parry et al., 2013] or limited140

to regional-scales [Dong et al., 2011; Wang et al., 2017; Swain et al., 2018] or focusing141

on future global warming scenarios [Madakumbura et al., 2019]. A global holistic pic-142

ture from the historical perspective is not available, which is due to: (1) lack of reliable143

datasets with long-term records, as well as a global coverage to derive robust statistical re-144

lationships; and (2) lack of novel and effective statistical models to better characterize the145

(lagged) coincidence between droughts and pluvials. The former can be solved via the use146
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of large-scale hydrological modeling, which is now mature enough to provide reasonable147

estimates of the large-scale terrestrial water cycle. Satellite-gauge combined estimates of148

precipitation and other meteorological variables are available to drive these models for149

multiple decades that are needed to provide robust statistics [He et al., 2020]. The lat-150

ter can be addressed through the recent development of event-based coincidence analysis151

(ECA, Donges et al. [2016]; Siegmund et al. [2017]), which accounts for both the instanta-152

neous and lagged response between climatic events, such as droughts and pluvials.153

The main objective of this study is to develop a comprehensive understanding of the154

drought to pluvial transition (or lagged coincidence), globally over the past seven decades.155

This can help improve hydrological predictability and risk assessment, and therefore make156

disaster preparedness and risk management more effective. Given that empirical evidence,157

basic theory (e.g., Clausius-Clapeyron), and climate model projections suggest that plu-158

vial and drought risk are increasing and will continue to do so in the future, we attempt to159

examine the inter-relationship between droughts and pluvials, including the geographical160

hotspots of the seesaw between them and whether this is becoming more prevalent. This161

is the first global study to quantify this, and not only shed light on the underlying mecha-162

nisms of the pluvial-drought cycle but also provide useful information to increase society’s163

resilience to future swings between droughts and pluvials.164

2 Materials and Methods165

2.1 Drought and Pluvial Identification166

We focus on large-scale and long-term drought and pluvial events (equivalent to167

large-scale and long-term dry and wet spells), as these events usually have larger impacts168

on water, agriculture, and energy sectors compared to those small scale events, and there-169

fore deserve special attention. We consider two standardized metrics, which allow com-170

parisons over time and space, as proxies of drought and pluvial conditions from both the171

meteorological and agricultural perspectives. The first one is the Standardized Precipita-172

tion Index over a one-month period (SPI1, McKee et al. [1993]), which is calculated using173

precipitation from an updated and extended version (V3) of the Princeton Global Forc-174

ings (PGF, Sheffield et al. [2006]; He et al. [2020]), from 1948 to 2016 at 0.25◦ spatial175

resolution. Calculation of SPI involves two steps. The first step is to fit a Gamma distribu-176

tion to the monthly precipitation time series at each grid cell, separately for each month of177
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the year. The second step is to transform the cumulative probability of the fitted Gamma178

distribution to a standard normal distribution (with mean zero and variance one). For ob-179

served precipitation at a given time scale, SPI is calculated as the number of standard de-180

viations away from the median precipitation with negative and positive values represent-181

ing precipitation deficit and surplus, respectively. We define meteorological drought at a182

grid cell if the monthly SPI1 is below the threshold of -1.0 [Svoboda et al., 2012]. Simi-183

larly, large-scale pluvials are defined if the SPI1 exceeds 1.0. The other index is the soil184

moisture percentile proposed by Sheffield et al. [2004], which is derived from a global off-185

line simulation of Variable Infiltration Capacity (VIC) land surface hydrological model186

[Liang et al., 1994, 1996; Cherkauer et al., 2003] forced by the PGFV3. We average the187

simulated daily soil moisture from the VIC model to a monthly time scale and calculate188

the soil moisture percentile at each grid after fitting an empirical distribution separately189

to each month. Previous versions of VIC simulations have been analyzed in terms of190

drought by Sheffield and Wood [2007, 2008b] and Sheffield et al. [2009]. The latest version191

of the simulation analyzed here uses updated soil parameters based on the SoilGrids1km192

database of soil types and profiles [Hengl et al., 2014], coupled with recently developed193

pedotransfer functions [Tóth et al., 2015] to estimate model parameters such as saturated194

conductivity and soil water holding capacities. These are combined with VIC-specific pa-195

rameter values that were previously calibrated to river discharge measurements from a set196

of global river basins and evaluated against available in situ and remote sensing hydrolog-197

ical measurements, including soil moisture networks, satellite derived snow cover, water198

storage and evapotranspiration [Sheffield and Wood, 2007; Pan et al., 2012]. We define an199

area in drought if the monthly soil moisture percentile is below a chosen threshold. The200

threshold value used to define a deficit is subjective as it depends on the impacted sec-201

tor. As the objective is to examine drought-pluvial concurrently, it is necessary to ensure202

that both extremes have the same long-term occurrence rate. We therefore use the 16th203

percentile as the threshold to identify the soil moisture drought, as this has the same cu-204

mulative probability as the SPI1-based drought threshold (SPI1<-1.0 is equivalent to the205

16th percentile). In a similar manner, pluvial events can be measured by the surplus soil206

moisture above the 84th percentile.207
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2.2 Event Coincidence Analysis208

We apply a novel yet conceptually simple method, called event coincidence analysis

(ECA, Donges et al. [2016]; Siegmund et al. [2017]), to investigate the statistical interde-

pendency between droughts and pluvials (see Figure 1). ECA can not only quantify the

number of simultaneous occurrences of two extreme events (i.e., pluvials and droughts in

this study), it also allows the consideration of lagged (through the time lag parameter τ)

and time-uncertain (through the window size parameter ∆T) responses between them. In

the case of the drought-pluvial seesaw (defined as the transition from drought to pluvial),

ECA can calculate how frequently droughts are followed by pluvials with a mutual delay

(τ) given a certain temporal window (∆T) through the calculation of the so-called trigger

coincidence rate rD⇒P:

rD⇒P(∆T, τ) =
1

ND

ND∑
j=1
Θ

[ NP∑
i=1

1[0,∆T ]((tPi − τ) − tDj )
]

where Θ is the Heaviside function:

Θ(x) :=


1 x > 0

0 x ≤ 0
,

and 1[0,∆T ](·) is the indicator function of the selected window [0,∆T]:

1[0,∆T ](x) :=


1 if x ∈ [0,∆T]

0 if x < [0,∆T]
.

tPi and tDj represent the pluvial and drought timing with total number of events NP and209

ND, respectively. Here, we chose τ = 3, as this represents a typical (i.e., seasonal) scale210

at which the large-scale hydrological conditions veer from deficit to surplus, which is crit-211

ical for long-term water resources management, for example. To further quantify the ro-212

bustness of the statistical interrelationship between droughts and pluvials, we conduct an213

analytical significance test based on the assumption of a Poisson process with the null214

hypothesis that the lagged coincidence between droughts and pluvials is randomly dis-215

tributed (see details in Text S1). The Poisson process-based significance test is applied to216

each land pixel (at 0.25◦ spatial resolution) using monthly time series of drought and plu-217

vial indices (see Section 2.1) extracted from that pixel. We calculate the significance level218

(p-value) for each pixel to assess whether the estimated seesaw occurrence rate is statisti-219

cally significant or not. We also perform a comprehensive sensitivity analysis (see details220

in Section 4) to examine how the absolute value of the drought-pluvial seesaw frequency221
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varies with different choices of drought/pluvial metrics (whether it is precipitation-based222

or soil moisture-based) and the setting of ECA (e.g., window size and time lag parame-223

ters).224

Window size �T
<latexit sha1_base64="PlEi6MxmZnkcNhGVpYauD1vYw/g=">AAAB73icdVDJSgNBEO2JW4xb1KOXxiB4GmaiJDkG9eAxQjZIhtDTqUma9Cx21wgh5Ce8eFDEq7/jzb+xswiuDwoe71VRVc9PpNDoOO9WZmV1bX0ju5nb2t7Z3cvvHzR1nCoODR7LWLV9pkGKCBooUEI7UcBCX0LLH13O/NYdKC3iqI7jBLyQDSIRCM7QSO3uFUhktN7LFxz7rFQpFcv0N3FtZ44CWaLWy791+zFPQ4iQS6Z1x3US9CZMoeASprluqiFhfMQG0DE0YiFobzK/d0pPjNKnQaxMRUjn6teJCQu1Hoe+6QwZDvVPbyb+5XVSDCreRERJihDxxaIglRRjOnue9oUCjnJsCONKmFspHzLFOJqIciaEz0/p/6RZtF3Hdm/OC9WLZRxZckSOySlxSZlUyTWpkQbhRJJ78kierFvrwXq2XhatGWs5c0i+wXr9AOncj+Q=</latexit><latexit sha1_base64="PlEi6MxmZnkcNhGVpYauD1vYw/g=">AAAB73icdVDJSgNBEO2JW4xb1KOXxiB4GmaiJDkG9eAxQjZIhtDTqUma9Cx21wgh5Ce8eFDEq7/jzb+xswiuDwoe71VRVc9PpNDoOO9WZmV1bX0ju5nb2t7Z3cvvHzR1nCoODR7LWLV9pkGKCBooUEI7UcBCX0LLH13O/NYdKC3iqI7jBLyQDSIRCM7QSO3uFUhktN7LFxz7rFQpFcv0N3FtZ44CWaLWy791+zFPQ4iQS6Z1x3US9CZMoeASprluqiFhfMQG0DE0YiFobzK/d0pPjNKnQaxMRUjn6teJCQu1Hoe+6QwZDvVPbyb+5XVSDCreRERJihDxxaIglRRjOnue9oUCjnJsCONKmFspHzLFOJqIciaEz0/p/6RZtF3Hdm/OC9WLZRxZckSOySlxSZlUyTWpkQbhRJJ78kierFvrwXq2XhatGWs5c0i+wXr9AOncj+Q=</latexit><latexit sha1_base64="PlEi6MxmZnkcNhGVpYauD1vYw/g=">AAAB73icdVDJSgNBEO2JW4xb1KOXxiB4GmaiJDkG9eAxQjZIhtDTqUma9Cx21wgh5Ce8eFDEq7/jzb+xswiuDwoe71VRVc9PpNDoOO9WZmV1bX0ju5nb2t7Z3cvvHzR1nCoODR7LWLV9pkGKCBooUEI7UcBCX0LLH13O/NYdKC3iqI7jBLyQDSIRCM7QSO3uFUhktN7LFxz7rFQpFcv0N3FtZ44CWaLWy791+zFPQ4iQS6Z1x3US9CZMoeASprluqiFhfMQG0DE0YiFobzK/d0pPjNKnQaxMRUjn6teJCQu1Hoe+6QwZDvVPbyb+5XVSDCreRERJihDxxaIglRRjOnue9oUCjnJsCONKmFspHzLFOJqIciaEz0/p/6RZtF3Hdm/OC9WLZRxZckSOySlxSZlUyTWpkQbhRJJ78kierFvrwXq2XhatGWs5c0i+wXr9AOncj+Q=</latexit><latexit sha1_base64="PlEi6MxmZnkcNhGVpYauD1vYw/g=">AAAB73icdVDJSgNBEO2JW4xb1KOXxiB4GmaiJDkG9eAxQjZIhtDTqUma9Cx21wgh5Ce8eFDEq7/jzb+xswiuDwoe71VRVc9PpNDoOO9WZmV1bX0ju5nb2t7Z3cvvHzR1nCoODR7LWLV9pkGKCBooUEI7UcBCX0LLH13O/NYdKC3iqI7jBLyQDSIRCM7QSO3uFUhktN7LFxz7rFQpFcv0N3FtZ44CWaLWy791+zFPQ4iQS6Z1x3US9CZMoeASprluqiFhfMQG0DE0YiFobzK/d0pPjNKnQaxMRUjn6teJCQu1Hoe+6QwZDvVPbyb+5XVSDCreRERJihDxxaIglRRjOnue9oUCjnJsCONKmFspHzLFOJqIciaEz0/p/6RZtF3Hdm/OC9WLZRxZckSOySlxSZlUyTWpkQbhRJJ78kierFvrwXq2XhatGWs5c0i+wXr9AOncj+Q=</latexit>

Drought index 
(e.g., soil moisture percentile)

Pluvial index 
(e.g., SPI)

Time lag ⌧<latexit sha1_base64="mNg/BYtRCCMOvdm5TkXvEvJ2nfA=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgadmt0vZY9OKxgq2FdinZNNuGJtklmRXK0r/gxYMiXv1D3vw3ZtsKfj4YeLw3w8y8MBHcgOe9O4WV1bX1jeJmaWt7Z3evvH/QMXGqKWvTWMS6GxLDBFesDRwE6yaaERkKdhtOLnP/9o5pw2N1A9OEBZKMFI84JZBLfSDpoFzx3LNao1at49/Ed705KmiJ1qD81h/GNJVMARXEmJ7vJRBkRAOngs1K/dSwhNAJGbGepYpIZoJsfusMn1hliKNY21KA5+rXiYxIY6YytJ2SwNj89HLxL6+XQtQIMq6SFJiii0VRKjDEOH8cD7lmFMTUEkI1t7diOiaaULDxlGwIn5/i/0mn6vqe61+fV5oXyziK6Agdo1PkozpqoivUQm1E0Rjdo0f05EjnwXl2XhatBWc5c4i+wXn9AKwUjqg=</latexit><latexit sha1_base64="mNg/BYtRCCMOvdm5TkXvEvJ2nfA=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgadmt0vZY9OKxgq2FdinZNNuGJtklmRXK0r/gxYMiXv1D3vw3ZtsKfj4YeLw3w8y8MBHcgOe9O4WV1bX1jeJmaWt7Z3evvH/QMXGqKWvTWMS6GxLDBFesDRwE6yaaERkKdhtOLnP/9o5pw2N1A9OEBZKMFI84JZBLfSDpoFzx3LNao1at49/Ed705KmiJ1qD81h/GNJVMARXEmJ7vJRBkRAOngs1K/dSwhNAJGbGepYpIZoJsfusMn1hliKNY21KA5+rXiYxIY6YytJ2SwNj89HLxL6+XQtQIMq6SFJiii0VRKjDEOH8cD7lmFMTUEkI1t7diOiaaULDxlGwIn5/i/0mn6vqe61+fV5oXyziK6Agdo1PkozpqoivUQm1E0Rjdo0f05EjnwXl2XhatBWc5c4i+wXn9AKwUjqg=</latexit><latexit sha1_base64="mNg/BYtRCCMOvdm5TkXvEvJ2nfA=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgadmt0vZY9OKxgq2FdinZNNuGJtklmRXK0r/gxYMiXv1D3vw3ZtsKfj4YeLw3w8y8MBHcgOe9O4WV1bX1jeJmaWt7Z3evvH/QMXGqKWvTWMS6GxLDBFesDRwE6yaaERkKdhtOLnP/9o5pw2N1A9OEBZKMFI84JZBLfSDpoFzx3LNao1at49/Ed705KmiJ1qD81h/GNJVMARXEmJ7vJRBkRAOngs1K/dSwhNAJGbGepYpIZoJsfusMn1hliKNY21KA5+rXiYxIY6YytJ2SwNj89HLxL6+XQtQIMq6SFJiii0VRKjDEOH8cD7lmFMTUEkI1t7diOiaaULDxlGwIn5/i/0mn6vqe61+fV5oXyziK6Agdo1PkozpqoivUQm1E0Rjdo0f05EjnwXl2XhatBWc5c4i+wXn9AKwUjqg=</latexit><latexit sha1_base64="mNg/BYtRCCMOvdm5TkXvEvJ2nfA=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgadmt0vZY9OKxgq2FdinZNNuGJtklmRXK0r/gxYMiXv1D3vw3ZtsKfj4YeLw3w8y8MBHcgOe9O4WV1bX1jeJmaWt7Z3evvH/QMXGqKWvTWMS6GxLDBFesDRwE6yaaERkKdhtOLnP/9o5pw2N1A9OEBZKMFI84JZBLfSDpoFzx3LNao1at49/Ed705KmiJ1qD81h/GNJVMARXEmJ7vJRBkRAOngs1K/dSwhNAJGbGepYpIZoJsfusMn1hliKNY21KA5+rXiYxIY6YytJ2SwNj89HLxL6+XQtQIMq6SFJiii0VRKjDEOH8cD7lmFMTUEkI1t7diOiaaULDxlGwIn5/i/0mn6vqe61+fV5oXyziK6Agdo1PkozpqoivUQm1E0Rjdo0f05EjnwXl2XhatBWc5c4i+wXn9AKwUjqg=</latexit>
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Figure 1. Schematic of the large-scale drought-pluvial seesaw based on the event coincidence analysis

given the time lag (τ) between the drought occurrence timing (tDj ) and pluvial occurrence timing (tPi ) within a

certain window (∆T). Pluvial/drought events are detected when the corresponding pluvial/drought index (i.e.,

SPI or soil moisture percentile) exceeds/falls below the predefined threshold.
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3 Results229

3.1 Climatology of Drought-Pluvial Seesaw Frequency230

At the global scale, we estimate an averaged seasonal drought-pluvial lagged coin-231

cidence frequency of 11.1% and 11.4% for the boreal spring-summer (April-May-June-232

July-August-September, AMJJAS) and boreal fall-winter (October-November-December-233

January-February-March, ONDJFM), respectively, during the 1950-2016 period (Figure 2,234

A and B). In other words, about 11% of droughts are followed by pluvials with a three-235

month lag after drought onset for the past seven decades. These frequencies are less than236

(or in specific locations, not equal to) 16%, potentially due to the effects of temporal au-237

tocorrelation. The majority (52.1% for AMJJAS and 55.6% for ONDJFM) of the global238

land surface (excluding Greenland, Antarctic and desert regions with annual rainfall less239

than 100 mm) has coincidence rates between 10% and 20%. 12.9/11.6% of the total land240

surface area has a coincidence rate less than 5% during AMJJAS/ONDJFM, which mainly241
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occurred over Africa. There is a clear shift in these low frequency patterns over South-242

ern Africa during AMJJAS and over the northern Central Africa (i.e., the transition re-243

gion between deserts and tropical rainforests) during ONDJFM, which is potentially due244

to the seasonal movement of the Intertropical Convergence Zone (ITCZ). The climatol-245

ogy of seasonal drought-pluvial seesaw frequency larger than 30% is virtually non-existent246

(0.27/0.15% for AMJJAS/ONDJFM). Furthermore, only 5.9% (of the global land surface)247

of the estimated coincidence rate is locally statistically significant (with the degree of be-248

lief ≥ 90%) during AMJJAS, with spatially organized patterns most prominent outside of249

the tropics, including western territories of Canada, western coast and central part of the250

U.S., southeastern Brazil, northwestern Central Africa (CAF), central Democratic Repub-251

lic of the Congo, the border between Kenya and Somalia, central and northeastern China,252

central and eastern Australia, and western Siberia (Figure 2C). There is a slight increase in253

the percentage of locally statistically significant area (∼7.6%) during ONDJFM with robust254

drought-pluvial seesaw patterns over Alaska, western Canada, northwestern and central255

U.S., central and southern Brazil, western Russia, eastern Europe, southern Central Africa,256

Botswana, Iran, western and southern China (Figure 2D).257

Our findings echo the observed evidence of drought-pluvial seesaw documented266

in previous studies. For instance, over Europe, long-term tree ring data has shown an267

increased volatility (i.e., more rapid shifting) between wet and dry extremes since the268

1960s, which is mainly related to the increased fluctuation of the North Atlantic jet stream269

[Trouet et al., 2018]. The seesaw hotspots detected over the Horn of Africa during AMJ-270

JAS (Figure 2C) are related to abrupt transitions in summer rainfall, which are caused by271

frequent summer monsoon jumps coincident with abrupt circulation changes of the Somali272

jet [Riddle and Cook, 2008]. Over the northern and southern part of the U.S. Great Plains,273

Christian et al. [2015] find that there is about 25% chance that a significant drought year274

is followed by a significant pluvial year, which is similar to our estimated coincidence275

rate, although their estimates are at annual time scale. The seasonal difference in the sta-276

tistically significant clusters over Africa is likely due to the movement of the ITCZ. The277

scattered patterns found in the western U.S. could be related to the occurrence of atmo-278

spheric rivers, which are often associated with drought recovery [Dettinger, 2013], whereas279

over southern China, the eastern summer monsoon could contribute to the drought-pluvial280

seesaw [Ding, 1992; Lau and Yang, 1997; Wu et al., 2006]. The robust statistical interde-281

pendency between droughts and pluvials over the southwestern and central U.S., Australia282
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Figure 2. Frequency of drought-pluvial seesaw for the period 1950-2016. Maps show the lagged trigger

coincidence rate, indicating how frequent droughts are followed by pluvials with a 3-month lag for the boreal

spring-summer (AMJJAS) (A) and boreal fall-winter (ONDJFM) (B), and whether the rates are locally sta-

tistically significant based on different levels (90, 95, 99 and 99.9 percent) of significance (C and D). (E) The

10 sub-continental regions (with acronyms for brevity) used to summarize the regional statistics, covering the

global land surface excluding Greenland, Antarctica and extremely dry regions with annual rainfall less than

100 mm (E). Ridgeline plots (F) showing the grid cell distributions of locally significant coincidence rates

during AMJJAS and ONDJFM for each sub-region with its mean and coefficient of variation (CV).
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and southern Amazon is in line with previous studies [e.g., Fu, 2015]. Particularly over283

the southern Amazon, there has been increased evidence of lengthening dryness, accompa-284
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nying more frequent wet seasons [e.g., Debortoli et al., 2015; Agudelo et al., 2019], which285

result in more frequent seesaw events because of the increased intra-annual variability of286

the monsoon systems. Although the exact cause is still not clear, previous studies suggest287

that there could be multifaced mechanisms responsible for this, either due to recently in-288

tensified large-scale Walker and Hadley circulation patterns [e.g., Badger and Dirmeyer,289

2016; Agudelo et al., 2019] or because of reduced local-scale moisture recycling due to290

deforestation-induced land cover changes [e.g., Fu and Li, 2004; Yin et al., 2014].291

To verify the robustness of the estimated seesaw frequency at different spatially ag-292

gregated levels (e.g., country, sub-continent), we conduct field significance tests follow-293

ing the false discovery rate (FDR) approach [Benjamini and Hochberg, 1995] to account294

for the potential multiplicity issue [Wilks, 2006, 2016; Ferguson and Mocko, 2017]. We295

find that field significant see-saw frequency cannot be detected at most sub-continents,296

although isolated hot spots still emerge at the local scale within each region. The only297

exception is found over NNA, where 10% of the locally significant (p < 0.1) pixels are298

also field significant (at the p < 0.1 global field significant level) during ONDJFM. How-299

ever, at the country level, we find that a small percentage of total pixels within the country300

start to pass field significance tests at p < 0.1 global field significant level, for instance,301

over the Democratic Republic of Congo, Kenya and Myanmar during AMJJAS, and over302

Canada, Brazil, Democratic Republic of Congo, Botswana, Iran and China during OND-303

JFM. These results reiterate previous findings that field significance tests can be influenced304

by the spatial inhomogeneities due to the geographic configuration (e.g., domain size and305

boundary) [Libertino et al., 2019]. We further compare the differences for the two periods306

(Figure 2F) for the 10 sub-continent regions (Figure 2E). The spatial distribution reveals307

that the AMJJAS seesaw generally has higher mean values than the ONDJFM seesaw for308

most regions (except for SAF, OCE, and SSA), and higher spatial variability (based on309

the CV) except OCE. For SAF and SNA, there is a clear shift of the distribution, which is310

also manifested in the spatial pattern (Figure 2A and B) as the rainfall band moves, from311

summer to winter.312

3.2 Epochal Changes in Drought, Pluvial and Seesaw Frequencies313

We next calculate the frequency ratios of drought, pluvial and drought-pluvial see-314

saw during AMJJAS (Figure 3 and 4) and ONDJFM (Figure S1 and S2 in the supplemen-315

tary information) to reflect any long-term hydrological changes. The frequency ratio is316
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defined as the ratio of the event frequency in the last 30 years (1987-2016) to that in the317

first 30-year period (1950-1979). Globally, the changing frequency for droughts (Figure318

3A and S1A) and pluvials (Figure 3B and S1B) is more organized and spatially coher-319

ent compared to that for drought-pluvial seesaw (Figure 3C and S1C). During AMJJAS, a320

prominent spatial cluster with increased drought frequency is found over southwestern and321

southeastern U.S., Colombia, Brazil, western Europe, majority of Africa, India, western322

Russia, northeast China and eastern Australia (up to five times more frequent for particular323

pixels). The percentage area with increased drought frequency decreases slightly during324

ONDJFM compared to AMJJAS, but in general, the area of increased drought frequency325

is still larger than that of decreased frequency for both AMJJAS and ONDJFM (Figure 3A326

and S1A). These spatial hotspots are consistent with previous drought exposure [Dilley327

et al., 2005] and frequency analysis based on long-term historical records of precipitation328

[e.g., Dai, 2013; Spinoni et al., 2014], Palmer Drought Severity Index (PDSI) [e.g., Dai,329

2013] and modeled soil moisture [e.g., Sheffield and Wood, 2008b]. Among the 10 sub-330

continental regions, the probability that droughts become more frequent during AMJJAS331

in recent decades (Figure 4A) is evidenced for more than half of the NAS (58.4%), CAF332

(58.6%), and SAS (52.6%). The increased drought frequency is even more widespread333

over SAF (66.4%), although the percentage area decreases slightly during ONDJFM (Fig-334

ure S2A). Over NAS, 10.7/11.1% of the total land surface area even exhibits frequency335

ratios of > 3 during AMJJAS/ONDJFM.336

Different from droughts, regions experiencing increased pluvial frequency during337

AMJJAS in recent decades arise over a large spatial extent of central and eastern U.S.,338

northwestern Amazon (AMZ), southern South America (SSA), Europe, Russia, and the339

western part of Southern Asia (SAS), especially over the Tibetan region (Figure 3B). Sim-340

ilar spatial patterns are found over most of these regions during ONDJFM, with increased341

pluvial frequency more pronounced over Europe, western Russia, the Sahel and western342

Australia. We also observe that for regions with increased pluvial frequency, the magni-343

tude of frequency ratios is generally smaller than that for droughts, indicating that pluvials344

occur less frequently than droughts in recent decades, which is also consistent with the re-345

duced spread of the regional distribution of pluvial frequency ratios (Figure 4B and S2B).346

In other words, regions with increased pluvial frequency have less spatial variability than347

that for droughts. Similar findings have been reported by previous global [van der Schrier348

et al., 2013] and regional studies focusing on the U.S. [Kangas and Brown, 2007], Amazon349
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[Marengo and Espinoza, 2016], India [Singh and Ranade, 2010], and Europe [Zolina et al.,350

2013], albeit with different observational records and metrics. Regional statistics (Figure351

4B) show that recent decades have experienced an increased probability of pluvials dur-352

ing AMJJAS for nearly two-thirds of SNA (66.6%), more than half of NAS (52.6%), EUR353

(62.2%), SSA (61.1%) and NNA (59.6%). During ONDJFM, the percentage area with354

increased pluvial frequency increases substantially over SAF (15.7%) and OCE (48.9%)355

compared to AMJJAS (4.1% and 16.7%, respectively).356

Compared with droughts and pluvials, we find less organized spatial structures for357

the increased seesaw frequency but with much higher ratios (Figure 3C and S1C), sug-358

gesting that the seasonal seesaw from droughts to pluvials has become more frequent in359

the recent three decades than either droughts or pluvials alone, albeit the small percent-360

age coverage. The tendency toward more frequent seesaw is more apparent during AMJ-361

JAS (Figure 3C) than ONDJFM (Figure S1C), especially over the sub-tropics and mid-362

latitudes, which is also revealed from the left-skewed regional distributions (Figure 4C and363

S2C) with longer tails. We note an increased seesaw frequency during AMJJAS for more364

than half of the NAS (51.8%), ERU (50.1%), and NNA (54.0%). The elevated seesaw365

frequency during the recent period is particularly high with a threefold increase for more366

than 10% coverage of NAS, EUR and NNA for both periods. During ONDJFM, nearly367

one-fifth of the total data points in NNA (17.3%) exhibit ratios of > 3 (Figure S2C),368

which are mainly concentrated over the central U.S. (Figure S1C).369

3.3 Regional Multi-Decadal Variability of Drought, Pluvial and Seesaw Frequen-376

cies377

Results in the previous section only consider the two end members of the whole378

study period. As a complement to the spatial patterns, in this section, we quantify the379

temporal dynamics using a 30-year moving window (1950-1979 through 1987-2016) to380

capture the multi-decadal variability. We estimate regional trends based on the non-parametric,381

pre-whitening Mann-Kendall test [Yue et al., 2002], which is robust and can effectively re-382

duce the influence of autocorrelation. Regional trend tests for AMJJAS (Figure 5) and383

ONDJFM (Figure S3) suggest that overall there is little change in the seesaw frequency384

with a few exceptions mostly over NAS, SAS, SAF and OCE. The shading spanning the385

25 and 75 percentiles of the regional event frequency indicates that seesaws have the largest386

spatial variability especially over tropical and Southern hemisphere regions (e.g., CAF,387
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Figure 3. Maps showing relative changes of drought (A), pluvial (B) and seesaw (C) frequency in the re-

cent 30 years (1987-2016) compared to the first 30 years (1950-1979) during AMJJAS. The relative changes

are represented by frequency ratios, with values larger than 1 indicating events occurring more frequently in

the recent period.
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AMZ, SSA, SAF), followed by droughts, and pluvial frequency has the least spatial vari-388

ability. Comparison across different regions reveals that SNA and EUR generally have the389
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Figure 4. Ridgeline plots showing the grid cell distributions of frequency ratios for drought (A), pluvial

(B), and seesaw (C) events over the 10 sub-regions.
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375

highest seesaw frequency, whereas Africa has the lowest seesaw frequency (SAF during390

AMJJAS and CAF during ONDJFM). A few regions (e.g., AMZ, SSA, SAF) show an op-391

posite trend before and after the 1970s, which might be related to the shift in the warm392

phase of the El Niño Southern Oscillation (ENSO) and the coincidence with increased393

global mean temperature [Dai et al., 1998].394

We find that the changing variability of the seesaw behavior is more complex than395

the changing variability for each individual type of event. The potential that more/less see-396

saw behavior will accompany increased/decreased drought and (or) pluvial frequency typi-397

cally does not hold. For instance, during AMJJAS over the AMZ, even though we observe398

robust declining trends for both drought (-0.02% yr−1, p < 0.01) and pluvial frequency399

(-0.01% yr−1, p < 0.01), but because the magnitude is small, no robust trend is identified400

for the seesaw frequency (Figure 5). Similar declining trends in drought and pluvial fre-401

quencies are also found over OCE. But with a higher magnitude, this could translate to a402

decreasing trend of seesaw occurrence. In contrast, albeit that no robust trends are found403

for either droughts or pluvials over SAS during AMJJAS and SNA during ONDJFM, in-404

creasing trends of seesaw frequency are detected for both regions, although with different405

degrees of significance (p < 0.01 for SAS and p < 0.1 for SNA). In another case, only406

one end of the hydroclimate spectrum (i.e., either pluvial or drought, but not both) experi-407
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ences a robust trend, but the trend in seesaw is still statistically significant. This happens408

over SSA during AMJJAS, where robust increasing trends are only detected for pluvials409

(0.06% yr−1, p < 0.1) and seesaw (0.04% yr−1, p < 0.05). A similar trait is shared by410

SAF during AMJJAS, but with robust declining trends for both events. This also happens411

in Asia (NAS and SAS) during ONDJFM, where a robust trend of seesaw frequency is412

accompanied by a robust trend of pluvial frequency, but is essentially zero over NAS for413

both pluvial (-0.001% yr−1, p < 0.05) and seesaw (-0.003% yr−1, p < 0.05). In con-414

trast, the robust and substantial changing trends of seesaw frequency over AMZ (-0.10%415

yr−1, p < 0.01) and OCE (0.13% yr−1, p < 0.01) during ONDJFM are concomitant with416

the robust trend of drought frequency. Only few regions experience robust trends for all417

three types of events. This includes NAS and OCE during AMJJAS, with the former hav-418

ing more pronounced increases in drought occurrence (0.11% yr−1, p < 0.01), whereas419

the latter has more pronounced decreases in pluvial occurrence (-0.08% yr−1, p < 0.01)420

compared to the other two events. During ONDJFM, we observe a positive trend of see-421

saw occurrence (0.06% yr−1, p < 0.01) over EUR, which coincides with the negative trend422

of drought occurrence (-0.11% yr−1, p < 0.01) and positive trend of pluvial occurrence423

(0.08% yr−1, p < 0.01). There has been a decreasing trend of the seesaw from droughts424

to pluvials over SAF (-0.04% yr−1, p < 0.05), mainly due to the negative trend of pluvial425

occurrence (-0.12% yr−1, p < 0.01), albeit with increased occurrence of droughts towards426

the more recent period (0.03% yr−1, p < 0.01).427
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Mean and 25-75% spread of drought frequency

Mean and 25-75% spread of pluvial frequency

Mean and 25-75% spread of seesaw

Figure 5. Temporal dynamics of the drought (top panel), pluvial (middle panel) and seesaw (bottom panel)

frequencies calculated from a 30-year moving window with thick lines showing the areal means and shaded

areas spanning the 25th and 75th percentiles of grid cell values for each region for drought (orange), pluvial

(blue) and seesaw (green). Each panel has a cluster of 10 grey lines, which show the ensemble of the regional

averaged frequencies for the 10 sub-continents. Upward/Downward arrow in each panel indicates that there is

a statistically significant increasing/decreasing trend based on different levels of significance (represented by

different numbers of stars).
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4 Discussion and Conclusions435

Droughts and pluvials have been widely studied, yet their interrelationship (the tran-436

sition from one type to the other) has not been systematically examined, especially at the437

global scale from the historical perspective. Using event coincidence analysis we find that438

globally, about 5.9% and 7.6% of the land surface has experienced statistically signifi-439

cant (p < 0.10) drought-pluvial seesaw during the boreal spring-summer (AMJJAS) and440

fall-winter (ONDJFM), with an averaged 11.1% and 11.4% of all droughts being followed441

by pluvials in the next season, respectively. Although the overall percentage area of see-442

saw occurrence is small, we identify regional hotspots, mainly in the mid-latitude regions,443

which have experienced an increase in the frequency of droughts, pluvials and drought-444

pluvial seesaw in the historical period.445

It should be noted that the estimated probability of lagged concurrent droughts and446

pluvials depends on the settings of the proposed framework, including the definition of447

drought and pluvial events related to the threshold (e.g., high vs low) and choice of met-448

rics (e.g., whether they are precipitation-based or soil moisture-based), the pre-defined449

time lag (which determines the rapidness of event transition) and the selected temporal450

window size (which characterizes the uncertain timing of event occurrence). Researchers451

should therefore tailor the proposed framework to a specific sector and impact related set-452

ting. From the disaster management point of view, the time lag parameter τ indicates how453

fast societies can respond to and prepare for the rapid transition from droughts to pluvials,454

whereas the coincidence interval ∆T can be related to models’ forecast skill, for instance,455

the uncertain onset of extreme events. Sensitivity analysis (Figure S4, S5, S6) reveals that456

regional averaged drought-pluvial coincidence rate is more sensitive to the uncertainty of457

event timing (as represented by ∆T) compared to the delay between events (as represented458

by τ). This highlights the importance of reducing uncertainties in the predicted onset of459

extremes, which is still challenging especially at seasonal and even longer timescales [Hao460

et al., 2018]. In fact, the increased coincidence rates with larger window size is not sur-461

prising, as a larger window tends to cover more events, which inevitably increases the462

lagged concurrency of droughts and pluvials. Using precipitation-based indices for both463

droughts and pluvials identification (Figure S5) yields similar results compared to the464

combination of soil moisture-based droughts and precipitation-based pluvials (Figure S4).465

However, there is a significant decrease in the magnitude of regional coincidence rate but466

amplified regional differences, if droughts and pluvials are both identified using soil mois-467
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ture percentile (Figure S6). These sensitivity results highlight the complicated dynamics468

that can introduce a disconnect between precipitation-based and land surface water-based469

representations of dryness and wetness via the propagation through the hydrological cycle.470

Explaining these patterns from a physical standpoint is difficult, given that the mech-471

anisms for individual types of events are complex, let alone the intertwined relationship472

between the two. An understanding of the drought-pluvial seesaw is therefore difficult to473

identify, especially at the global scale; the transition from drought to pluvial is likely case474

dependent, and influenced not only by climate variability but potentially also by climate475

change, and therefore difficult to disentangle. Nevertheless, a critical question is whether476

the identified historic changes in drought-pluvial seesaw frequency in the regional hotspots477

are due to climate change and therefore a sign of potential further changes in the future.478

Numerous studies have demonstrated that with a warming climate, drought risk/frequency479

could be elevated due to increased evapotranspiration induced by increased temperature480

[e.g., Sheffield and Wood, 2008a; Zhan et al., 2020]. At the same time, the probability of481

extreme rainfall events is expected to increase, as the atmosphere can hold more moisture482

from the increased evapotranspiration, which can contribute to increased pluvial risk [e.g.,483

Zhan et al., 2020]. On top of these overall trends, warming-induced changes in global cli-484

mate variability, such as El Niño/La Niña [e.g., Yu et al., 2017; Fasullo et al., 2018], or485

Artic sea ice [e.g., Francis et al., 2017; Coumou et al., 2018] can bring more year-to-year486

variability or persistence in weather patterns, substantially influencing regional precipi-487

tation and temperature anomalies. Direct human interventions could further exacerbate488

drought risk (due to increased human water consumption through irrigation and groundwa-489

ter pumping, Wada et al. [2013]; He et al. [2017]) and pluvial-induced flood risk (due to490

land use changes including urbanization [e.g., Yang et al., 2013] and agricultural practices491

[e.g., Villarini and Strong, 2014], as well as levee and dam construction as demonstrated492

by Munoz et al. [2018] at the local scale). Therefore, it remains to be seen to what extent493

future seesaw frequency will respond to anthropogenic forcing, internal atmospheric pro-494

cesses as well as human interventions.495

Droughts, pluvials and their rapid transitions are inevitable, but fatalities, infrastruc-496

ture failure and economic losses are not. The regional hotspots we identified, such as in497

Africa, generally have high vulnerability to pluvials and droughts, which can be exacer-498

bated when there is a rapid transition between events, with an already impacted popula-499

tion being even more vulnerable to a subsequent hazard. The framework developed in this500
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study could therefore be of practical value to inform policy-makers and local stakehold-501

ers on the potential risks and therefore more effective water and agricultural management502

policies and robust mitigation plans.503

–22–

©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to Geophysical Research Letters

Acknowledgements504

This material was based upon work supported by NOAA grant NA14OAR4310218 and the505

Princeton Environmental Institute at Princeton University through the Mary and Randall506

Hack ’69 Research Fund. The latest Princeton Global Forcing (PGF) datasets, VIC land507

surface model simulations and derived drought indices are available at:508

http://hydrology.princeton.edu/data/hexg/GDFC/. Details can be found in He509

et al. [2020].510

–23–

©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to Geophysical Research Letters

References511

Agudelo, J., P. A. Arias, S. C. Vieira, and J. A. Martínez (2019), Influence of longer dry512

seasons in the Southern Amazon on patterns of water vapor transport over northern513

South America and the Caribbean, Climate Dynamics, 52, 2647–2665.514

Badger, A. M., and P. A. Dirmeyer (2016), Remote tropical and sub-tropical responses to515

Amazon deforestation, Climate Dynamics, 46, 3057–3066.516

Benjamini, Y., and Y. Hochberg (1995), Controlling the false discovery rate: A practical517

and powerful approach to multiple testing, Journal of the royal statistical society. Series518

B (Methodological), pp. 289–300.519

Cherkauer, K. A., L. C. Bowling, and D. P. Lettenmaier (2003), Variable infiltration ca-520

pacity cold land process model updates, Global and Planetary Change, 38(1-2), 151–521

159.522

Christian, J., K. Christian, and J. B. Basara (2015), Drought and pluvial dipole events523

within the great plains of the United States, Journal of Applied Meteorology and Cli-524

matology, 54(9), 1886–1898.525

Collet, L., S. Harrigan, C. Prudhomme, G. Formetta, and L. Beevers (2018), Future hot-526

spots for hydro-hazards in Great Britain: A probabilistic assessment, Hydrology and527

Earth System Sciences, 22(10), 5387–5401.528

Coumou, D., G. Di Capua, S. Vavrus, L. Wang, and S. Wang (2018), The influence of529

Arctic amplification on mid-latitude summer circulation, Nature communications, 9(1),530

2959.531

Dai, A. (2013), Increasing drought under global warming in observations and models, Na-532

ture Climate Change, 3(1), 52–58.533

Dai, A., K. E. Trenberth, and T. R. Karl (1998), Global variations in droughts and wet534

spells: 1900–1995, Geophysical Research Letters, 25(17), 3367–3370.535

Debortoli, N. S., V. Dubreuil, B. Funatsu, F. Delahaye, C. H. De Oliveira, S. Rodrigues-536

Filho, C. H. Saito, and R. Fetter (2015), Rainfall patterns in the Southern Amazon: A537

chronological perspective (1971–2010), Climatic Change, 132(2), 251–264.538

Dettinger, M. D. (2013), Atmospheric rivers as drought busters on the US West Coast,539

Journal of Hydrometeorology, 14(6), 1721–1732.540

Diffenbaugh, N. S., D. L. Swain, and D. Touma (2015), Anthropogenic warming has in-541

creased drought risk in California, Proceedings of the National Academy of Sciences,542

–24–

©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to Geophysical Research Letters

112(13), 3931–3936.543

Dilley, M., R. S. Chen, U. Deichmann, A. L. Lerner-Lam, and M. Arnold (2005), Natural544

disaster hotspots: A global risk analysis, The World Bank.545

Ding, Y. (1992), Summer monsoon rainfalls in China, Journal of the Meteorological Soci-546

ety of Japan. Ser. II, 70(1B), 373–396.547

Ding, Y., Z. Wang, and Y. Sun (2008), Inter-decadal variation of the summer precipita-548

tion in East China and its association with decreasing Asian summer monsoon. Part I:549

Observed evidences, International Journal of Climatology, 28(9), 1139–1161.550

Dominguez, F., J. C. Villegas, and D. D. Breshears (2009), Spatial extent of the North551

American Monsoon: Increased cross-regional linkages via atmospheric pathways, Geo-552

physical Research Letters, 36(7).553

Dong, X., B. Xi, A. Kennedy, Z. Feng, J. K. Entin, P. R. Houser, R. A. Schiffer,554

T. L’Ecuyer, W. S. Olson, K.-l. Hsu, et al. (2011), Investigation of the 2006 drought555

and 2007 flood extremes at the Southern Great Plains through an integrative analysis of556

observations, Journal of Geophysical Research: Atmospheres, 116(D3).557

Donges, J., C.-F. Schleussner, J. Siegmund, and R. Donner (2016), Event coincidence558

analysis for quantifying statistical interrelationships between event time series, The Eu-559

ropean Physical Journal Special Topics, 225(3), 471–487.560

Duffy, P. B., P. Brando, G. P. Asner, and C. B. Field (2015), Projections of future meteo-561

rological drought and wet periods in the Amazon, Proceedings of the National Academy562

of Sciences, 112(43), 13,172–13,177.563

Eltahir, E. A., and R. L. Bras (1996), Precipitation recycling, Reviews of Geophysics,564

34(3), 367–378.565

Eltahir, E. A., B. Loux, T. K. Yamana, and A. Bomblies (2004), A see-saw oscillation566

between the Amazon and Congo basins, Geophysical Research Letters, 31(23).567

EM-DAT (2018), The International Disaster Database, https://www.emdat.be/, accessed:568

2018-10-20.569

Fasullo, J., B. Otto-Bliesner, and S. Stevenson (2018), ENSO’s changing influence on tem-570

perature, precipitation, and wildfire in a warming climate, Geophysical Research Letters,571

45, 9216–9225.572

Ferguson, C. R., and D. M. Mocko (2017), Diagnosing an artificial trend in NLDAS-2573

afternoon precipitation, Journal of Hydrometeorology, 18(4), 1051–1070.574

–25–

©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to Geophysical Research Letters

Ferguson, C. R., and E. F. Wood (2011), Observed land–atmosphere coupling from satel-575

lite remote sensing and reanalysis, Journal of Hydrometeorology, 12(6), 1221–1254.576

Field, C. B. (2012), Managing the risks of extreme events and disasters to advance climate577

change adaptation: Special report of the intergovernmental panel on climate change,578

Cambridge University Press.579

Fischer, E. M., U. Beyerle, and R. Knutti (2013), Robust spatially aggregated projections580

of climate extremes, Nature Climate Change, 3(12), 1033–1038.581

Francis, J. A., S. J. Vavrus, and J. Cohen (2017), Amplified Arctic warming and mid-582

latitude weather: New perspectives on emerging connections, Wiley Interdisciplinary583

Reviews: Climate Change, 8(5), e474.584

Fu, R. (2015), Global warming-accelerated drying in the tropics, Proceedings of the Na-585

tional Academy of Sciences, 112(12), 3593–3594.586

Fu, R., and W. Li (2004), The influence of the land surface on the transition from dry to587

wet season in Amazonia, Theoretical and Applied Climatology, 78(1-3), 97–110.588

Giorgi, F., E.-S. Im, E. Coppola, N. Diffenbaugh, X. Gao, L. Mariotti, and Y. Shi (2011),589

Higher hydroclimatic intensity with global warming, Journal of Climate, 24(20), 5309–590

5324.591

Gleick, P. H. (1993), Water in crisis: A guide to the worlds fresh water resources, Oxford592

University Press, New York.593

Greve, P., B. Orlowsky, B. Mueller, J. Sheffield, M. Reichstein, and S. I. Seneviratne594

(2014), Global assessment of trends in wetting and drying over land, Nature Geo-595

science, 7(10), 716–721.596

Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne (2015),597

Reconciling spatial and temporal soil moisture effects on afternoon rainfall, Nature com-598

munications, 6, 6443.599

Hao, Z., V. P. Singh, and Y. Xia (2018), Seasonal drought prediction: Advances, chal-600

lenges, and future prospects, Reviews of Geophysics, 56(1), 108–141.601

He, X., Y. Wada, N. Wanders, and J. Sheffield (2017), Intensification of hydrological602

drought in California by human water management, Geophysical Research Letters, 44(4),603

1777–1785, doi:10.1002/2016GL071665.604

He, X., L. Estes, M. Konar, D. Tian, D. Anghileri, K. Baylis, T. P. Evans, and J. Sheffield605

(2019), Integrated approaches to understanding and reducing drought impact on food606

security across scales, Current Opinion in Environmental Sustainability, 40, 43–54.607

–26–

©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to Geophysical Research Letters

He, X., M. Pan, Z. Wei, E. F. Wood, and J. Sheffield (2020), A global drought and flood608

catalogue from 1950 to 2016, Bulletin of the American Meteorological Society, doi:10.609

1175/BAMS-D-18-0269.1.610

Hengl, T., J. M. de Jesus, R. A. MacMillan, N. H. Batjes, G. B. Heuvelink, E. Ribeiro,611

A. Samuel-Rosa, B. Kempen, J. G. Leenaars, M. G. Walsh, et al. (2014), SoilGrids1km612

– global soil information based on automated mapping, PLoS One, 9(8), e105,992.613

Howitt, R., J. Medellín-Azuara, D. MacEwan, J. Lund, and D. Sumner (2014), Economic614

analysis of the 2014 drought for California agriculture, Center for Watershed Sciences,615

University of California, Davis.616

Kam, J., J. Sheffield, X. Yuan, and E. F. Wood (2013), The influence of Atlantic tropical617

cyclones on drought over the eastern United States (1980–2007), Journal of Climate,618

26(10), 3067–3086.619

Kangas, R. S., and T. J. Brown (2007), Characteristics of US drought and pluvials from620

a high-resolution spatial dataset, International Journal of Climatology: A Journal of the621

Royal Meteorological Society, 27(10), 1303–1325.622

King-Okumu, C., B. Jillo, J. Kinyanjui, and I. Jarso (2018), Devolving water governance623

in the Kenyan Arid Lands: From top-down drought and flood emergency response to624

locally driven water resource development planning, International Journal of Water Re-625

sources Development, 34(4), 675–697.626

Lau, K., and S. Yang (1997), Climatology and interannual variability of the Southeast627

Asian summer monsoon, Advances in Atmospheric Sciences, 14(2), 141–162.628

Lehmann, J., D. Coumou, and K. Frieler (2015), Increased record-breaking precipitation629

events under global warming, Climatic Change, 132(4), 501–515.630

Lehmann, J., F. Mempel, and D. Coumou (2018), Increased occurrence of record-wet and631

record-dry months reflect changes in mean rainfall, Geophysical Research Letters, 45,632

doi:10.1029/2018GL079439.633

Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges (1994), A simple hydrologi-634

cally based model of land surface water and energy fluxes for general circulation mod-635

els, Journal of Geophysical Research: Atmospheres, 99(D7), 14,415–14,428.636

Liang, X., E. F. Wood, and D. P. Lettenmaier (1996), Surface soil moisture parameteriza-637

tion of the VIC-2L model: Evaluation and modification, Global and Planetary Change,638

13(1-4), 195–206.639

–27–

©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to Geophysical Research Letters

Libertino, A., D. Ganora, and P. Claps (2019), Evidence for increasing rainfall extremes640

remains elusive at large spatial scales: The case of Italy, Geophysical Research Letters,641

46, 1–10.642

Lins, H. F., and J. R. Slack (1999), Streamflow trends in the United States, Geophysical643

research letters, 26(2), 227–230.644

Liu, C., and R. P. Allan (2013), Observed and simulated precipitation responses in wet645

and dry regions 1850–2100, Environmental Research Letters, 8(3), 034,002.646

Loecke, T. D., A. J. Burgin, D. A. Riveros-Iregui, A. S. Ward, S. A. Thomas, C. A. Davis,647

and M. A. S. Clair (2017), Weather whiplash in agricultural regions drives deterioration648

of water quality, Biogeochemistry, 133(1), 7–15.649

Madakumbura, G. D., H. Kim, N. Utsumi, H. Shiogama, E. M. Fischer, Ø. Seland, J. F.650

Scinocca, D. M. Mitchell, Y. Hirabayashi, and T. Oki (2019), Event-to-event intensifi-651

cation of the hydrologic cycle from 1.5 ◦C to a 2 ◦C warmer world, Scientific Reports,652

9(1), 3483.653

Marengo, J. A., and J. Espinoza (2016), Extreme seasonal droughts and floods in Ama-654

zonia: Causes, trends and impacts, International Journal of Climatology, 36(3), 1033–655

1050.656

Martin, E. (2018), Future projections of global pluvial and drought event characteristics,657

Geophysical Research Letters, 45(21), 11–913.658

Maxwell, J. T., P. T. Soulé, J. T. Ortegren, and P. A. Knapp (2012), Drought-busting trop-659

ical cyclones in the southeastern Atlantic United States: 1950–2008, Annals of the Asso-660

ciation of American Geographers, 102(2), 259–275.661

Maxwell, J. T., J. T. Ortegren, P. A. Knapp, and P. T. Soulé (2013), Tropical cyclones and662

drought amelioration in the Gulf and southeastern coastal United States, Journal of Cli-663

mate, 26(21), 8440–8452.664

McKee, T. B., N. J. Doesken, J. Kleist, et al. (1993), The relationship of drought fre-665

quency and duration to time scales, in Proceedings of the 8th Conference on Applied666

Climatology, vol. 17, pp. 179–183, American Meteorological Society Boston, MA.667

Milly, P., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Letten-668

maier, and R. J. Stouffer (2008), Stationarity is dead: Whither water management?, Sci-669

ence, 319(5863), 573–574.670

Munoz, S. E., L. Giosan, M. D. Therrell, J. W. Remo, Z. Shen, R. M. Sullivan,671

C. Wiman, M. O’Donnell, and J. P. Donnelly (2018), Climatic control of Mississippi672

–28–

©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to Geophysical Research Letters

River flood hazard amplified by river engineering, Nature, 556(7699), 95–98.673

NOAA National Centers for Environmental Information (2018), U.S. Billion-Dollar674

Weather and Climate Disasters (2018), https://www.ncdc.noaa.gov/billions/, accessed:675

2018-08-20.676

Orlowsky, B., and S. I. Seneviratne (2013), Elusive drought: Uncertainty in observed677

trends and short-and long-term CMIP5 projections, Hydrology and Earth System Sci-678

ences, 17(5), 1765–1781.679

Pan, M., A. K. Sahoo, T. J. Troy, R. K. Vinukollu, J. Sheffield, and E. F. Wood (2012),680

Multisource estimation of long-term terrestrial water budget for major global river681

basins, Journal of Climate, 25(9), 3191–3206.682

Parry, S., T. Marsh, and M. Kendon (2013), 2012: From drought to floods in England and683

Wales, Weather, 68(10), 268–274.684

Peterson, T. C., M. P. Hoerling, P. A. Stott, and S. C. Herring (2013), Explaining extreme685

events of 2012 from a climate perspective, Bulletin of the American Meteorological Soci-686

ety, 94(9), S1–S74.687

Riddle, E. E., and K. H. Cook (2008), Abrupt rainfall transitions over the Greater Horn of688

Africa: Observations and regional model simulations, Journal of Geophysical Research:689

Atmospheres, 113(D15).690

Roundy, J. K., C. R. Ferguson, and E. F. Wood (2013), Temporal variability of land–691

atmosphere coupling and its implications for drought over the southeast United States,692

Journal of Hydrometeorology, 14(2), 622–635.693

Santanello Jr, J. A., P. A. Dirmeyer, C. R. Ferguson, K. L. Findell, A. B. Tawfik, A. Berg,694

M. Ek, P. Gentine, B. P. Guillod, C. van Heerwaarden, et al. (2017), Land-atmosphere695

interactions: The LoCo perspective, Bulletin of the American Meteorological Society, pp.696

1253–1272.697

Seager, R., N. Pederson, Y. Kushnir, J. Nakamura, and S. Jurburg (2012), The 1960s698

drought and the subsequent shift to a wetter climate in the Catskill Mountains region699

of the New York City watershed, Journal of Climate, 25(19), 6721–6742.700

Sheffield, J., and E. F. Wood (2007), Characteristics of global and regional drought, 1950–701

2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydro-702

logic cycle, Journal of Geophysical Research: Atmospheres, 112(D17).703

Sheffield, J., and E. F. Wood (2008a), Projected changes in drought occurrence under fu-704

ture global warming from multi-model, multi-scenario, IPCC AR4 simulations, Climate705

–29–

©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to Geophysical Research Letters

Dynamics, 31(1), 79–105.706

Sheffield, J., and E. F. Wood (2008b), Global trends and variability in soil moisture and707

drought characteristics, 1950–2000, from observation-driven simulations of the terres-708

trial hydrologic cycle, Journal of Climate, 21(3), 432–458.709

Sheffield, J., and E. F. Wood (2011), Drought: Past problems and future scenarios, Earth-710

scan, London.711

Sheffield, J., G. Goteti, F. Wen, and E. F. Wood (2004), A simulated soil moisture based712

drought analysis for the United States, Journal of Geophysical Research: Atmospheres,713

109(D24).714

Sheffield, J., G. Goteti, and E. F. Wood (2006), Development of a 50-year high-resolution715

global dataset of meteorological forcings for land surface modeling, Journal of Climate,716

19(13), 3088–3111.717

Sheffield, J., K. Andreadis, E. F. Wood, and D. P. Lettenmaier (2009), Global and conti-718

nental drought in the second half of the twentieth century: Severity-area-duration analy-719

sis and temporal variability of large-scale events, Journal of Climate, 22(8), 1962–1981.720

Sheffield, J., E. F. Wood, and M. L. Roderick (2012), Little change in global drought over721

the past 60 years, Nature, 491(7424), 435–438.722

Siegmund, J. F., N. Siegmund, and R. V. Donner (2017), CoinCalc – A new R package for723

quantifying simultaneities of event series, Computers & Geosciences, 98, 64–72.724

Singh, N., and A. Ranade (2010), The wet and dry spells across India during 1951–2007,725

Journal of Hydrometeorology, 11(1), 26–45.726

Sivapalan, M., G. Blöschl, R. Merz, and D. Gutknecht (2005), Linking flood frequency to727

long-term water balance: Incorporating effects of seasonality, Water Resources Research,728

41(6).729

Spinoni, J., G. Naumann, H. Carrao, P. Barbosa, and J. Vogt (2014), World drought fre-730

quency, duration, and severity for 1951–2010, International Journal of Climatology,731

34(8), 2792–2804.732

Svoboda, M., M. Hayes, and D. Wood (2012), Standardized precipitation index user guide,733

World Meteorological Organization Geneva, Switzerland.734

Swain, D. L., B. Langenbrunner, J. D. Neelin, and A. Hall (2018), Increasing precipitation735

volatility in twenty-first-century California, Nature Climate Change, 8(5), 427–433.736

Taylor, C. M., A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and737

M. De Kauwe (2011), Frequency of Sahelian storm initiation enhanced over mesoscale738

–30–

©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to Geophysical Research Letters

soil-moisture patterns, Nature Geoscience, 4(7), 430–433.739

Taylor, C. M., R. A. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo (2012), After-740

noon rain more likely over drier soils, Nature, 489(7416), 423–426.741

Tóth, B., M. Weynants, A. Nemes, A. Makó, G. Bilas, and G. Tóth (2015), New gener-742

ation of hydraulic pedotransfer functions for Europe, European journal of soil science,743

66(1), 226–238.744

Trenberth, K. E. (1999), Conceptual framework for changes of extremes of the hydrologi-745

cal cycle with climate change, in Weather and Climate Extremes, pp. 327–339, Springer.746

Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons (2003), The changing char-747

acter of precipitation, Bulletin of the American Meteorological Society, 84(9), 1205–748

1218.749

Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and750

J. Sheffield (2014), Global warming and changes in drought, Nature Climate Change,751

4(1), 17–22.752

Trouet, V., F. Babst, and M. Meko (2018), Recent enhanced high-summer North Atlantic753

Jet variability emerges from three-century context, Nature communications, 9(180).754

UNISDR (2015), The human cost of weather related disasters, The UN Office for Disaster755

Risk Reduction.756

van der Schrier, G., J. Barichivich, K. Briffa, and P. Jones (2013), A scPDSI-based global757

data set of dry and wet spells for 1901–2009, Journal of Geophysical Research: Atmo-758

spheres, 118(10), 4025–4048.759

Villarini, G., and A. Strong (2014), Roles of climate and agricultural practices in dis-760

charge changes in an agricultural watershed in Iowa, Agriculture, ecosystems & envi-761

ronment, 188, 204–211.762

Wada, Y., L. P. H. van Beek, N. Wanders, and M. F. P. Bierkens (2013), Human water763

consumption intensifies hydrological drought worldwide, Environmental Research Let-764

ters, 8(3), 034–036.765

Wang, S.-Y. S., J.-H. Yoon, E. Becker, and R. Gillies (2017), California from drought to766

deluge, Nature Climate Change, 7(7), 465–468.767

Wilks, D. (2006), On “field significance" and the false discovery rate, Journal of Applied768

Meteorology and Climatology, 45(9), 1181–1189.769

Wilks, D. S. (2016), “the stippling shows statistically significant grid points”: How re-770

search results are routinely overstated and overinterpreted, and what to do about it, Bul-771

–31–

©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to Geophysical Research Letters

letin of the American Meteorological Society, 97(12), 2263–2273.772

World Economic Forum (2019), The global risks report 2019.773

Wu, Z., J. Li, J. He, and Z. Jiang (2006), Occurrence of droughts and floods during the774

normal summer monsoons in the mid-and lower reaches of the Yangtze River, Geophys-775

ical Research Letters, 33(5).776

Yang, L., J. A. Smith, D. B. Wright, M. L. Baeck, G. Villarini, F. Tian, and H. Hu (2013),777

Urbanization and climate change: An examination of nonstationarities in urban flooding,778

Journal of Hydrometeorology, 14(6), 1791–1809.779

Yin, L., R. Fu, Y.-F. Zhang, P. A. Arias, D. N. Fernando, W. Li, K. Fernandes, and A. R.780

Bowerman (2014), What controls the interannual variation of the wet season onsets over781

the Amazon?, Journal of Geophysical Research: Atmospheres, 119(5), 2314–2328.782

Yu, J.-Y., X. Wang, S. Yang, H. Paek, and M. Chen (2017), The changing El Niño–783

Southern Oscillation and associated climate extremes, Climate Extremes: Patterns and784

Mechanisms, pp. 1–38.785

Yue, S., P. Pilon, B. Phinney, and G. Cavadias (2002), The influence of autocorrelation on786

the ability to detect trend in hydrological series, Hydrological Processes, 16(9), 1807–787

1829.788

Zhan, W., X. He, J. Sheffield, and E. F. Wood (2020), Projected seasonal changes in large-789

scale global precipitation and temperature extremes based on the CMIP5 ensemble,790

Journal of Climate.791

Zolina, O., C. Simmer, K. Belyaev, S. K. Gulev, and P. Koltermann (2013), Changes in792

the duration of European wet and dry spells during the last 60 years, Journal of Cli-793

mate, 26(6), 2022–2047.794

–32–

©2020 American Geophysical Union. All rights reserved.




