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Abstract

High-speed compressible turbulent flows typically contain discontinuities and

have been widely modelled using Weighted Essentially Non-Oscillatory (WENO)

schemes due to their high-order accuracy and sharp shock capturing capability. How-

ever, such schemes may damp the small scales of turbulence, and result in inaccurate

solutions in the context of turbulence-resolving simulations. In this connection, the

recently-developed Targeted Essentially Non-Oscillatory (TENO) schemes, includ-

ing adaptive variants, may offer significant improvements. The present study aims

to quantify the potential of these new schemes for a fully-turbulent supersonic flow.

Specifically, DNS of a compressible turbulent channel flow with M = 1.5 and

Re� = 222 is conducted using OpenSBLI, a high-order finite difference CFD frame-

work. This flow configuration is chosen to decouple the effect of flow discontinuities

and turbulence and focus on the capability of the aforementioned high-order schemes

to resolve turbulent structures. The effect of the spatial resolution in different direc-

tions and coarse grid implicit LES are also evaluated against the WALE LES model.

The TENO schemes are found to exhibit significant performance improvements over

the WENO schemes in terms of the accuracy of the statistics and the resolution of the

three-dimensional vortical structures. The 6tℎ order adaptive TENO scheme is found

to produce comparable results to those obtained with non-dissipative 4tℎ and 6tℎ

order central schemes and reference data obtained with spectral methods. Although

the most computationally expensive scheme, it is shown that this adaptive scheme

can produce satisfactory results if used as an implicit LES model.
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1 INTRODUCTION

High-speed compressible turbulent flows play a significant role in a variety of advanced fluid mechanics related applications and
disciplines such as supersonic or hypersonic aerodynamics and combustion, aerospace propulsion, inertial confinement fusion
and astrophysics1,2,3,4,5. Those flows typically contain shockwaves and flow discontinuities, and have been widely modelled
using Weighted Essentially Non-Oscillatory (WENO) schemes6,7 due to their high-order accuracy and sharp shock/discontinuity
capturing capability. However, those schemes, which aim to stabilise the solution by adding numerical dissipation, may damp
some scales of turbulence and as a consequence result in inaccurate solutions in the context of turbulence-resolving simulations,
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unless excessively fine spatial resolutions are used which is not practical for Direct Numerical Simulation (DNS) of complex
flows8. Therefore, it is of great importance to critically evaluate and quantify the ability of such high-order schemes to accurately
predict the wide range of flow structures in compressible turbulent flows.

There are not many studies available in the literature discussing and comparing the performance of modern high-order shock
capturing schemes to resolve compressible turbulence, particularly in wall-bounded flows. Mossi and Sagaut9 were among the
first to investigate the performance of high-order shock capturing schemes for compressible turbulent flows. Specifically, they
performed direct and Large Eddy Simulations (LES) on quasi-incompressible (M = 0.5) and compressible (M = 1.5) turbulent
channel flows (TCFs) using 2nd order central and 3rd order Total Variation Diminishing (TVD) Roe schemes. They reported that
the TVD scheme performed poorly in capturing turbulent structures mainly due to its significant numerical diffusion. Gerolymos
et al.10 used high-order upwind, WENO and mapped WENO11 schemes to conduct DNS of subsonic (M = 0.35) and supersonic
(M = 1.5) turbulent channel flows. It was noticed that very high-order upwind schemes could reproduce results obtained by
pseudospectral schemes, given slightly higher spatial resolutions. However, noticeable numerical diffusion was reported for the
WENO schemes. Gerolymos et al.10 also provided a brief review of some early DNS studies on TCFs using high-order methods.

The performance of the WENO scheme can be improved by using a dynamic balance between an upwind formulation for high
gradient and shock-containing regions and a central formulation in smooth regions such as the method proposed in a bandwidth-
optimised WENO scheme, namely WENO-SOL12. Taieb and Ribert13 used the WENO-SOL scheme to perform DNS and LES
of supersonic channel flows (M = 1.5). The 5tℎ order scheme performed well in the context of DNS. It was also used without
and with Sub-Grid Scale (SGS) models to perform LES of TCFs. Without an SGS model, the WENO-SOL scheme was used
as an Implicit LES (ILES) model and exhibited a satisfactory performance. The performance of the WENO-SOL scheme was
improved when it was combined with a dynamic SGS LES model and produced a very close behaviour to DNS. The worst
performance of the WENO-SOL scheme was for when it was combined with a non-dynamic SGS LES model mainly due to
issues related to overdissipation13. Ribert et al.14 extended the WENO-SOL scheme and also the WENO scheme developed by
Jiang and Shu (WENO-JS)6 for real fluids in order to perform LES of turbulent channel flows under supercitical conditions.
Under such conditions, where tiny variations in main flow parameters could significantly alter the fluid properties and impose
considerable gradients, applying a shock capturing scheme could greatly improve the stability of the solution. A comparison
of some 5tℎ and 6tℎ order shock capturing schemes of the WENO family to model low Mach (M = 0.01, 0.1 and 0.3) TCFs
has also been reported by Matsuyama15. Various schemes including WENO-JS, WENO-Z16, Linear WENO (LWENO)17 and
WENO with a relative limiter (WENO-RL)18 were investigated15. Again, the dissipative behaviour of the WENO scheme was
highlighted and the use of its modified versions, such as the WENO-RL scheme, which could noticeably reduce the dissipation,
was emphasised.

In addition to channel flows, the performance of various high-order shock capturing schemes, mainly from the WENO family,
to resolve compressible turbulent flows have been investigated in the context of turbulent boundary layers, isotropic decaying
turbulence and Shock-Boundary Layer Interactions (SBLIs). Similarly to the aforementioned TCF cases, different modifications
were also applied to overcome the destructive dissipative behaviour of the WENO scheme. Lagha et al.19 successfully performed
DNS of turbulent boundary layers with Mach number values up to M = 20 using a 5tℎ order WENO scheme. Specifically, the
authors used the WENO scheme at high gradient regions and a 5tℎ order upwind scheme for smooth regions with global Lax-
Friedrichs flux splitting. Supersonic turbulent boundary layers were also studied by Duan et al.20 using a 7tℎ order WENO scheme
with limiters to reduce the numerical dissipation. Johnsen et al.21 studied the performance of various high resolution shock
capturing schemes on a variety of problems including the Taylor-Green Vortex (TGV) and shock-dominated problems such as
the Shu-Osher problem, a shock-vorticity interaction and the Noh problem all on under-resolved grids. The authors applied and
compared several methods including WENO, hybrid WENO/central, artificial diffusivity, an adaptive characteristic-based filter
and a shock fitting method. It was concluded that the WENO and the artificial diffusivity method (which used the magnitude
of the strain-rate to activate the artificial viscosity) were not suitable for high-fidelity modelling of compressible turbulence.
However, modified artificial diffusivity methods which use dilatation to activate the artificial viscosity were found to be able
to resolve compressible turbulence. The hybrid WENO/central method was effective in reducing the numerical dissipation but
quite challenging with respect to developing effective shock sensors21.

Brehm et al.22 also compared the performance of various high-order shock capturing schemes on a variety of problems
including the Shu-Osher problem, the isentropic vortex convection problem, double Mach reflection and a TGV problem. The
authors used central finite difference schemes with explicit artificial dissipation, a compact central finite difference scheme with
localised artificial diffusivity and various modified WENO schemes (a 6tℎ order WENO by Hu et al.23, a 5tℎ order WENO by
Ghosh and Baeder24 and WENO-Z) in both explicit and compact finite difference forms and on different grid resolutions. Based
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on their decaying isotropic turbulence case, the authors reported that the 5tℎ order compact WENO and the 6tℎ order WENO
resolved the small scale flow structures better compared to a 5tℎ order WENO-Z. It was also noted that the highest spectral
resolution was obtained by the localised scheme followed by the 5tℎ order compact WENO and the the 6tℎ order WENO22.
Karami et al.25 used a hybrid 5tℎ order WENO/6tℎ order central scheme to perform LES of various flow configurations including
a compressible round jet and an underexpanded impinging jet. The authors proposed a new shock sensor based on a WENO
smoothness indicator. A comprehensive study on the performance of various shock sensors for hybrid WENO-based schemes
was recently conducted by Zhao et al.26. The authors also proposed a new shock sensor for WENO-based hybrid schemes which
was not affected by the numerical dissipation caused by the WENO scheme. Hoffmann et al.27 used a hybrid Summation-By-
Parts (SBP) central scheme and a 5tℎ order WENO scheme to perform LES of transitional flow over a flat plate with an impinging
shock and also turbulent flow over a compression corner. The blending approach of the abovementioned upwind/central-WENO
hybrid schemes requires a great care to ensure numerical conservation and stability at the interface of different schemes used.
Non-linear filter schemes28,29,30,31 are developed to avoid this interface deficiency of high-order hybrid schemes. Specifically, a
hybrid scheme is applied to the inviscid fluxes and the non-linear fluxes are typically evaluated by central discretisation of an
entropy conservative formulation.

In a prework to the present contribution, Lusher and Sandham8 conducted a study of the performance of various high-order
shock capturing schemes to model a compressible TGV and a transitional supersonic SBLI. The authors used 4tℎ order central,
5tℎ and 7tℎ order WENO-Z, 5tℎ order WENO-JS and also various orders and formulations of the Targeted Essentially non-
Oscillatory (TENO) family scheme32,33,34,35. A significant improvement was obtained with the TENO schemes over the WENO
schemes.

It is evident that there are limited works available in the literature that provide direct comparisons of the performance of
various high-order shock capturing schemes to accurately resolve turbulence in compressible high-speed wall-bounded flows.
Also, the majority of the earlier works are based on schemes from the WENO family which have shown significant dissipative
behaviours and failed to accurately resolve turbulent structures. The present work aims to compare and quantify the performance
of the existing high-order shock capturing schemes, including the TENO family schemes, to model fully-turbulent supersonic
flows. The focus is on the capability of those schemes to resolve turbulent structures and predict statistical quantities. Therefore,
a channel flow configuration is used to decouple the effect of flow discontinuities and turbulence. Specifically, it extends the
earlier work of Lusher and Sandham8 to supersonic TCFs. Additionally, the present study evaluates the performance of such
high-order schemes in the context of ILES by making direct comparisons against DNS and explicit LES approaches.

2 COMPUTATIONAL METHODOLOGY

2.1 Governing equations

The dimensionless governing equations of a compressible Newtonian fluid flow that conserve mass, momentum and energy are
given as:
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where � denotes the dynamic viscosity, T is the temperature, Pr is the Prandtl number. Also, Re∗
�

and M∗
�

denote the Reynolds
and Mach numbers based on a friction velocity defined as u∗

�
=

√
⟨�wall⟩∕⟨�⟩ where �wall denotes the wall shear stress and ⟨�⟩

is the bulk-averaged density. Angle brackets ⟨⟩ denote averages over the homogeneous spatial directions and time throughout
this paper. The dynamic viscosity, if required, is calculated as � = T 0.7. Also, since the governing equations are solved for the

conserved variables (�ui and �E), then the velocity field is obtained by ui =
�ui

�
and the temperature is calculated as T =

p
M∗
�
2

�
.

Here the pressure of an ideal Newtonian fluid is obtained using an equation of state as:

p = (
 − 1)(�E −
1

2
�uiui). (6)

All quantities are non-dimensionalised by the bulk-averaged density, the friction velocity (u∗
�
) and the wall temperature. It is

worth mentioning that the governing equations with the WENO and the TENO schemes are solved as presented in equations
1–3 and when central schemes are used a skew-symmetric formulation is applied to the convective terms36.

2.2 Flux reconstruction and shock capturing schemes

In the present work the governing equations are discretised by applying finite differencing within OpenSBLI, a high-order Com-
putational Fluid Dynamics (CFD) framework37. Comprehensive discussions on the WENO and TENO schemes implemented in
OpenSBLI can be found in8,38. However, a brief discussion on the flux reconstruction and the aforementioned shock capturing
methods in OpenSBLI is provided here for completeness.

To discretise the governing equations, their fluxes need to be reconstructed at each discrete grid point. With the finite difference
approach, the flux reconstruction can be performed in each direction independently. For example, a 1D hyperbolic equation of
the form Ut + f (U )x = 0 can be discretised by reconstructing the flux term f (U )x over mid-point (half-node) locations with
grid spacing Δx as follows:

)U

)t
+

1

Δx
(f̂

i+
1

2

− f̂
i−

1

2

) = 0, (7)

where i− 1

2
and i+

1

2
denote mid-point locations between grid point i and grid points i−1 and i+1 in the x direction, respectively.

The full numerical stencil is reconstructed from a convex combination of lower order stencils as shown for WENO in38 and
TENO in8. Mid-point fluxes in equation 7 are calculated as a weighted sum of Essentially Non-Oscillatory (ENO) interpolations
over a set of r candidate stencils as:
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where f̂
(r)

i±
1

2

are evaluated using the classical ENO scheme of Shu7 and !r are the non-linear weights. The order of the WENO

scheme is equal to 2K − 1 and for instance K = 3 for a 5tℎ order scheme which results in r = 0, 1, 2 candidate stencils38.
One difference between WENO and TENO schemes stems from the way that the non-linear weights of equation 8 are

calculated. In WENO schemes !r is defined as:

!r =
�r∑k−1

s=0
�s

, r = 0, ..., k − 1, (9)

where �r for the WENO-JS and the WENO-Z schemes are defined as �r =
dr

(�+�r)
2

and �r = dr(1 +
�k

�r+�
), respectively. The

polynomial smoothness indicator �r ensures that stencils containing shocks are weighted close to zero. The optimal linear weights
for the smooth (shock-free) regions is denoted by dr. Also, �k is a global smoothness indicator over the full numerical stencil. It
should be noted that � is typically considered to be 1 × 10−6 to avoid division by zero8.

The TENO scheme also introduces a discrete cut-off function that removes non-smooth candidate stencils from the flux
reconstruction. Smooth candidate stencils are included in the reconstruction with their ideal linear weight to reduce the numerical
dissipation compared to the WENO scheme8. For the TENO schemes !r is defined as:

!r =
dr�r∑K−3

s=0
dr�r

, �r =

{
0 if � < CT

1 otherwise
(10)

where CT is a adjustable cut-off parameter and � denotes the smoothness measure defined as � =

r∑K−3

r=0

r

with 
r = (C +
�K

�r+�
)q and r = 0, ..., K − 38. The parameters C and q control the levels of dissipation invoked by the non-linear weights and
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typically have values of 1 and 6, respectively32,8. It is worth mentioning that reducing the value of CT reduces the numerical
dissipation (which is desirable for compressible turbulence) at the cost of increased spurious oscillations in the vicinity of flow
discontinuities. Values of 1 × 10−5 and 1 × 10−7 are suggested for the 5tℎ order and 6tℎ order TENO, respectively8,32.

A shock sensor (Φ) can be added to the TENO scheme to adjust the threshold of the CT parameter in different regions of
the domain and discard fewer stencils from the reconstruction in smooth regions 8,34,35. In this work, a modified version of the
Ducros sensor39 is used to develop an adaptive TENO scheme (TENO-A) as discussed in8. This sensor, which was designed
to distinguish between dilatation rate (at shocks) and vorticity (in turbulence), was found to be more robust in the OpenSBLI
framework8. Nevertheless, the sensor type would not have a noticeable effect on the results of the present study due to the

absence of shocks and flow discontinuities. CT is dynamically adjusted by the shock sensor Φ as CT = 10
−
⌊
�1−�2(1−g(Φ))

⌋
, where

g(Φ) = (1 − Φ)4(1 + 4Φ) and
⌊⌋

is the Gauss bracket35,8. The adjustable parameters �1 and �2 are taken as �1 = 10.5 and
�2 = 4.5 in the present study.

The viscous terms in equations 1–3 are computed with a 4tℎ order central scheme for the internal domain and over periodic
boundaries, for non-periodic boundaries a 4tℎ order one-sided boundary closure is used8,40. The solution is advanced in time
using a low-storage 3 stage explicit Runge-Kutta scheme41.

2.3 WALE LES model

In the present study the performance of an explicit LES model, specifically the Wall-Adapting Local Eddy-viscosity (WALE)
SGS model, is evaluated against those of DNS as well as ILES approaches. The original WALE formulation developed by
Nicoud and Ducros42 is implemented in OpenSBLI. The WALE model considers the effects of the strain and rotation rates of
the resolved flow field. Specifically, in this model the turbulent (eddy) viscosity is evaluated as:
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gradient tensor defined as gij =
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. Moreover, Δ is the subgrid characteristic length scale, which in this study is defined as

Δ = V
1∕3 where V is proportional to the local grid spacing as V = ΔxΔyΔz. Cw is the SGS model constant which has a value

of Cw = 0.325 in the present study. It should be noted that overbar here denotes the resolved flow quantities.
To conduct LES simulations using the WALE model in OpenSBLI, the same governing equations as presented in equations 1

– 3 are solved for the resolved flow field. However, the effect of the turbulent viscosity is added to the viscous stress tensor and
the heat flux (equations 4 and 5) as �ij = (

�
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. The turbulent

Prandtl number has a value of Prt = 1.0 in the present study. It is worth mentioning that it was found that the results reported
here were almost insensitive to the value of Prt, at least within the range of values found in the literature for similar studies.

2.4 OpenSBLI framework

OpenSBLI is a Python-based automatic source code generation and parallel computing framework for finite difference discreti-
sation37. It generates C codes for the Oxford Parallel library for Structured mesh solver (OPS), an embedded Domain Specific
Language (DSL) with associated libraries and preprocessors to generate parallel executables for applications on multi-block
structured meshes43,44. OPS can target various computational architectures based on CUDA or OpenCL for GPUs, MPI or
OpenMP for CPUs and CUDA-MPI for multiple GPUs44. A comprehensive discussion on the automatic derivation Python
interface of OpenSBLI and the automatic procedure of the OPS C code generation can be found in37,38. The results presented in
this paper are obtained using various backends including a single GPU (CUDA), multiple GPUs (MPI+CUDA) and distributed
computing with CPUs (MPI).
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3 PROBLEM SPECIFICATIONS

DNS and LES of subsonic and supersonic plane channel flows with a domain size of 4�H × 2H ×
4�

3
H are conducted. H

denotes the channel half height and is set to H = 1 in the present study. The streamwise (x0), normal (x1) and spanwise (x2)
directions are denoted as x, y and z as shown in figure 1. Also, u, v and w denote the velocity components in x, y and z directions,
respectively. Streamwise and spanwise boundaries are periodic and isothermal no-slip walls are assigned to the boundaries in
the normal direction. The grid is stretched in the y direction in order to accurately resolve the near wall region. A hyperbolic
tangent stretching function45 is used as follows:

y = 0.5Ly

⎧⎪⎨⎪⎩
1.0 −

⎡
⎢⎢⎢⎣

tanh
[
fs

(
1.0 − 2.0

(
j

ny−1.0

))]

tanh(fs)

⎤⎥⎥⎥⎦

⎫
⎪⎬⎪⎭
− 1.0, (12)

where Ly denotes the domain length in the y direction (here Ly = 2), fs is the stretching factor and governs the distance ratio
between two adjacent grid points, j is the grid point number (starts from 0) and ny is the total number of grid points in the y

direction. In this study a stretching factor of fs = 1.7 is used for TCF simulations unless otherwise stated. It should be noted
that the centre of the channel is at y = 0 as shown in figure 1.

The test cases studied here are based on an incompressible channel flow with a friction velocity Reynolds number of Re� =
18046 and a compressible channel flow with a friction velocity Reynolds number of Re� = 222 and a friction Mach number of
M� = 0.08247. As mentioned earlier the bulk-averaged density ⟨�⟩ and its corresponding friction velocity (u∗

�
=
√

⟨�wall⟩∕⟨�⟩, where
�wall denotes the wall shear stress defined here as ⟨�wall⟩ = ⟨�∗

wall
⟩( d⟨u0⟩

dx1
)x1=0) are used to normalise the governing equations.

Therefore, the Reynolds number in equations 4 and 5 is defined as Re∗
�
=

⟨�⟩u∗
�
H

⟨�∗
wall

⟩ while the friction Reynolds number is defined

as Re� =
⟨�wall⟩u�H
⟨�∗

wall
⟩ where u� =

√
⟨�wall⟩∕⟨�wall⟩. This leads to Re∗

�
= Re�

√
⟨�⟩∕⟨�wall⟩ and M∗

�
= M�

√
⟨�wall⟩∕⟨�⟩. The compressible case

has ⟨�wall⟩
⟨�⟩ = 1.35547 which gives Re∗

�
= 190.71 and M∗

�
= 0.0955 for the governing equations in the present study. For the

incompressible case Re∗
�
= 180 and M∗

�
= 0.01 are used. It is clear that for a fully-resolved DNS after collecting sufficiently

enough statistical samples one should recover u∗
�
= 1.0.

All simulations are initialised by superimposing a random fluctuation over a mean velocity profile in the streamwise direction
and imposing random fluctuations in other directions. Specifically, the initial mean streamwsie velocity (u) is a piecewise function
as:

u =

{
(1− ∣ y ∣)Re∗

�
, (1− ∣ y ∣)Re∗

�
< 10

� ln
(
(1− ∣ y ∣)Re∗

�

)
+ b

(13)

where b = 5.5, � is the von Karman constant and has a value of 2.5. Amplitude of the fluctuations is defined as:

A = 0.1 ×
(
� ln(Re∗

�
) + b

)
, (14)

and sine and cosine disturbances are applied to the velocity profile in all directions. For the x, y and z directions the sine
disturbances are defined as sx = sin

(
4�x

Lx

)
, sy = sin (�y) and sz = sin

(
2�z

Lz

)
. Similarly, the cosine disturbances are defined as

cx = cos
(

4�x

Lx

)
, cy = 1 + cos (�y) and cz = cos

(
2�z

Lz

)
. Lx, Ly and Lz are the domain dimensions in the x, y and z directions,

respectively as shown in figure 1. Finally, the initial values for the velocity components (specified with the subscript 1) are
defined as:

u1 = u + Acxsysz(
Lx

2
), (15)

v1 = −Asxcysz, (16)

w1 = −Asxsycz(
Lz

2
). (17)

The initial density is �1 = 1 throughout the domain and the initial energy field is imposed as (�E)i =
p1


−1
+

1

2
�
(
u2
1
+ v2

1
+w2

1

)
with the initial pressure field defined as p1 =

1


M∗
�
2
.
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The incompressible case is solved using the 4tℎ order central scheme on a grid with a 129 × 129 × 129 resolution. The
compressible case is solved with the 4tℎ and 6tℎ order central schemes, 5tℎ WENO-JS and WENO-Z schemes, 5tℎ and 6tℎ order
TENO scheme, and the 6tℎ order TENO-A scheme. In addition to the grid with 129 × 129 × 129 resolution, the compressible
case is also solved on various finer grids as shown in table 1 which summarises the DNS channel flow test cases studied here.
Subscript s denotes the actual values obtained from simulations. Based on the earlier discussion in this section one could write

u∗
�s

=

√
⟨�⟩
Re∗

�

d⟨u0⟩
dx1

and u�s =

√
⟨�wall⟩
Re∗

�

d⟨u0⟩
dx1

which gives Re∗
�s

= ⟨�⟩u∗
�s
Re∗

�
and Re�s = ⟨�wall⟩u�sRe∗� . Graphs in this work are

plotted against the y+ values obtained in simulations (y+
s

) calculated as y+
s

= yRe�s . The normalised cell sizes in different
directions, Δx+

s
, Δy+

s
(the height of the first grid point above the wall) and Δz+

s
, are evaluated in a similar way to y+

s
.It is worth

mentioning that the reference data for the compressible test case as reported by Coleman et al.47 are adjusted in this work to
reflect the differences in the normalisation approach used. Specifically, the velocity components (and their fluctuating parts) of

the reference data are multiplied by a factor of
∫ 1

−1
⟨�u0⟩dx1

∫ 1

−1
⟨�⟩dx1

≈ 16.1.

Various time steps fromΔt = 5×10−5 to 2×10−4 are used based on the stability of the solution as provided in table 1. Statistics
are collected after a fully turbulent flow is established (at t = 50) and for a duration of T = 1000 (around 1500 flow-through
times).

No-Slip Wall

Periodic BC

Periodic BC

FIGURE 1 Turbulent channel flow geometry, boundary conditions and dimensions. Based on the instantaneous streamwise
velocity (u) of the case with Re� = 180 at t = 1050.

4 RESULTS AND DISCUSSION

In the following subsections, first the performance of the OpenSBLI computational framework with the central scheme
is compared against two incompressible and compressible test cases from the literature46,47 on a baseline grid resolution
(129 × 129 × 129). Also, a comparison is provided on the performance of various central, WENO and TENO schemes on the
baseline grid as shown in table 1. Then the effect of the grid resolution is explored for the central and the TENO schemes as also
shown in table 1. Finally, a comparative study is conducted on DNS and LES modelling (explicit and implicit) based on the test
cases shown in table 5.

4.1 Subsonic channel flow

DNS of incompressible turbulent channel flows with friction Reynolds number values around Re� = 180 have been reported by
several authors since it was first investigated by Kim, Moin and Moser48. A review of the earlier simulations of this test case is
provided by Vreman and Kuerten46. The authors also conducted DNS on a similar channel flow case using two different codes,
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TABLE 1 Turbulent channel flow DNS test cases.

Case Re∗
�

Re∗
�s

M� Re� Re�s Scheme (Ord.) Grid Δt ⟨uc⟩
×10−4

1 180 179.836 0.01 180 180.188 Central(4) 129×129 × 129 0.5 18.295
Ref.1 – – – 180 180 Spectral 576×577 × 385 – 18.262
2 190.71 189.336 0.082 222 221.814 Central(4) 129×129 × 129 2.0 18.876
2b 190.71 190.036 0.082 222 223.000 Central(4) 257×257 × 257 0.5 18.826
3 190.71 189.333 0.082 222 222.248 Central(4) 257×129 × 129 2.0 18.917
4 190.71 189.997 0.082 222 222.614 Central(4) 129×257 × 129 0.5 18.893
5 190.71 189.365 0.082 222 221.921 Central(4) 129×129 × 257 2.0 18.821
6 190.71 189.367 0.082 222 222.199 Central(6) 129×129 × 129 2.0 18.891
7 190.71 190.136 0.082 222 223.737 TENO(6) 129×129 × 129 2.0 19.045
8 190.71 190.508 0.082 222 223.174 TENO(6) 257×129 × 129 2.0 18.737
9 190.71 190.155 0.082 222 223.805 TENO(6) 129×257 × 129 1.0 19.074
10 190.71 190.524 0.082 222 223.920 TENO(6) 129×129 × 257 2.0 18.903
11 190.71 190.274 0.082 222 226.891 WENO-Z(5) 129×129 × 129 2.0 19.867
12 190.71 188.865 0.082 222 227.144 WENO-JS(5) 129×129 × 129 2.0 20.435
13 190.71 189.561 0.082 222 224.337 TENO(5) 129×129 × 129 2.0 19.382
14 190.71 189.496 0.082 222 223.153 TENO-A(5) 129×129 × 129 2.0 19.058
15 190.71 189.837 0.082 222 222.807 TENO-A(6) 129×129 × 129 2.0 18.897
16 190.71 189.645 0.082 222 222.082 TENO-A(6) 257×129 × 129 2.0 18.693
Ref.2 – – 0.082 222 221.6 Spectral 144×119 × 80 – 18.925
Ref.1: Vreman and Kuerten(2014).
Ref.2: Coleman et al.(1995).

Case Re� Re�s Scheme (Ord.) Grid Δx+
s

Δy+
s

Δz+
s

1 180 180.188 Central(4) 129×129 × 129 17.552 0.655 5.850
2 222 221.814 Central(4) 129×129 × 129 21.607 0.807 7.202
2b 222 223.000 Central(4) 257×257 × 257 10.903 0.400 3.634
3 222 222.248 Central(4) 257×129 × 129 10.867 0.808 7.216
4 222 222.614 Central(4) 129×257 × 129 21.685 0.400 7.228
5 222 221.921 Central(4) 129×129 × 257 21.618 0.807 3.617
6 222 222.199 Central(6) 129×129 × 129 21.645 0.808 7.215
7 222 223.737 TENO(6) 129×129 × 129 21.795 0.814 7.265
8 222 223.174 TENO(6) 257×129 × 129 10.912 0.812 7.246
9 222 223.805 TENO(6) 129×257 × 129 21.801 0.402 7.267
10 222 223.920 TENO(6) 129×129 × 257 21.812 0.814 3.649
11 222 226.891 WENO-Z(5) 129×129 × 129 22.102 0.825 7.367
12 222 227.144 WENO-JS(5) 129×129 × 129 22.127 0.826 7.375
13 222 224.337 TENO(5) 129×129 × 129 21.853 0.816 7.284
14 222 223.153 TENO-A(5) 129×129 × 129 21.738 0.812 7.246
15 222 222.807 TENO-A(6) 129×129 × 129 21.704 0.810 7.234
16 222 222.082 TENO-A(6) 257×129 × 129 10.859 0.808 7.211

a finite difference code and a spectral code, and provided a comprehensive discussion and comparison against the literature data.
In the present work the channel flow case with Re� = 180 is used to evaluate the performance of OpenSBLI as a preliminary
validation. This is test case 1 of table 1 and is compared against the spectral results of Vreman and Kuerten46. Figure 2 shows
a direct comparison between OpenSBLI results obtained with the 4tℎ order central scheme and the spectral results of46 based
on the mean streamwise velocity and the root mean square (rms) of the fluctuations of the velocity components. OpenSBLI is
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a compressible solver therefore a friction Mach number of M∗
�
= 0.01 is used to mimic incompressible conditions. Also, to

maintain a stable solution the solver requires a smaller time step (Δt = 5 × 10−5) compared to incompressible solvers which
typically require a time step that ranges from 10−4 to 10−3 depending on the numerical method and spatial resolution46. Figure
2 includes OpenSBLI results for statistics collection duration T = 500 and T = 1000. It is evident that statistical convergence
is obtained even with T = 500. Nevertheless, in the present work all results are evaluated at T = 1000.

With respect to the mean streamwise velocity a very good agreement is found between OpenSBLI and the spectral DNS of46.
The mean centreline velocity is calculated to be ⟨uc⟩ = 18.295 which is around 0.18% higher than that of the reference data46.
However, there are slight deviations in the rms of velocity fluctuations, particularly close to the channel centreline, as shown in
figure 2. Specifically, the rms of velocity fluctuations at the channel centreline are urms = 0.738, vrms = 0.588 and wrms = 0.575

which are 7.28%, 3.90% and 6.35% lower than those of the spectral DNS of46, respectively. Also, the peak of the rms of velocity
fluctuations are urms = 2.558, vrms = 0.841 and wrms = 1.084 which are 3.94%, 0.11% and 0.36% lower than those of the
spectral reference data, respectively. These slight differences are mainly attributed to the spatial resolution, particularly in the
streamwise direction, which will be discussed again later in this paper.

FIGURE 2 Mean streamwise velocity and normal Reynolds stresses for the incompressible case with Re� = 180.

4.2 Supersonic channel flow

4.2.1 Scheme comparison

Various high-order shock capturing schemes, including central, WENO and TENO schemes, are used to perform DNS of the
compressible turbulent channel flow case with Re� = 222 and M� = 0.082 (M = 1.5). Figure 3 shows a comparison based on
various mean flow parameters, including the streamwise velocity, Mach number, density and temperature between the present
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DNS, using various high-order schemes and a spectral reference DNS conducted by Coleman et al.47. Values of the obtained
friction Reynolds numbers (Re∗

�s
and Re�s) and the mean streamwise velocity at the channel centreline (⟨uc⟩) are tabulated in

table 1. The central schemes show the closest agreement to the reference data for all mean flow parameters presented in figure
3. Also, the TENO schemes show a much better performance compared to the WENO schemes, with the 6tℎ order TENO-A
scheme showing the closest agreement to the reference data along with the central schemes. For instance, the 4tℎ and 6tℎ order
central schemes give 0.258% and 0.179% lower mean streamwise velocities at the channel centreline compared to the reference
data (⟨uc⟩ = 18.925), respectively. The 6tℎ order TENO scheme and the 6tℎ order TENO-A scheme give a 0.634% higher and
0.147% lower mean streamwise velocity at the channel centreline compared to the reference data, respectively. On the other
hand, the 5tℎ order WENO-JS and after that the 5tℎ order WENO-Z exhibit the worst performance in predicting the mean flow
quantities shown in figure 3. The latter schemes give 7.98% and 4.97% higher mean streamwise centreline velocities compared
to the reference data, respectively.

A direct comparison based on the mean Reynolds stresses between various high-order schemes studied here on the 129×129×
129 grid and the reference solution of Coleman et al.47 is shown in figure 4. Moreover, corresponding peak values of the stresses
shown in figure 4 are provided in table 2. A similar trend to what observed for the mean flow parameters is also seen for the
Reynolds stresses. Specifically, the central schemes exhibit the closest behaviour to the references data, followed by the 6tℎ order
TENO-A scheme. The WENO schemes perform poorly again compared to the other schemes. The central schemes give very
close trends to the reference data for the ⟨u′u′⟩ and ⟨v′v′⟩ stresses. The 6tℎ order TENO-A also exhibits a good performance for
these stresses. Comparing against the reference data, it is found that the peak ⟨u′u′⟩ stress is 1.69% lower, 0.55% higher, 3.37%
higher and 33.57% higher with the 4tℎ order central, 6tℎ order central, 6tℎ order TENO-A and 5tℎ order WENO-JS schemes,
respectively.

With respect to the shear stress ⟨u′v′⟩ all schemes exhibit a similar behaviour except for the WENO schemes which give
noticeably lower peak values. WENO-JS gives 4.25%, 3.26% and 6.31% lower values for the ⟨u′v′⟩ stress compared to the
4tℎ order central, the 6tℎ order TENO-A scheme and the spectral reference DNS, respectively. A comparable trend to what is
observed here in figures 3 and 4 is also reported by Lusher and Sandham8. Particularly, the 6tℎ order TENO-A scheme performed
very well in predicting statistical quantities on relatively coarse grids8.

TABLE 2 Peak mean Reynolds stresses for the current DNS simulations with different high-order schemes on the 129×129×129
grid compared to those of the spectral reference data.

Scheme ⟨u′u′⟩ ⟨v′v′⟩ ⟨w′w′⟩ -⟨u′v′⟩
4tℎ Order Central 7.312 0.624 1.016 0.682
6tℎ Order Central 7.479 0.626 1.026 0.678
5tℎ Order WENO-Z 9.069 0.506 0.843 0.651
5tℎ Order WENO-JS 9.935 0.482 0.797 0.653
5tℎ Order TENO 8.397 0.557 0.918 0.669
6tℎ Order TENO 7.895 0.587 0.963 0.669
5tℎ Order TENO-A 7.976 0.589 0.965 0.673
6tℎ Order TENO-A 7.689 0.607 0.992 0.675
Spectral (Coleman et al.) 7.438 0.645 1.102 0.697

There are various methods for vortex identification which can be used to visualise vortical structures in turbulent flows49.
Among them, Q criterion is one of the widely used methods to visualise complex vortical features. Q identifies vortex cores in
a three-dimensional flow as connected regions where the vorticity 
 prevails over the strain rate S49,50,51. Specifically, based on
its definition there exists a vortex core where Q =

1

2
(∥ 
 ∥2 − ∥ S ∥2) > 0. However, this is only valid for incompressible flows

where Q is directly related to the second invariant of the velocity gradient (II∇u
). For compressible flows the divergence of the

velocity field is non-zero, hence II∇u
≠ Q. Therefore, as discussed in50,51, the extension of Q to compressible flows suffers

from ambiguity and fails as a correct vortex identification criterion. Recently, Kolář and Šístek51 suggested a modification to
Q which introduces compressibility and kinematic corotational aspects required for vortex identification in compressible flows.
This approach is named QM and defines as QM = Q + IIS∕2 where IIS is the second invariant of S51.
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FIGURE 3 Mean streamwise velocity, Mach number, density and temperature for the compressible case with Re� = 222.

In the present study QM is used to make a qualitative comparison of the accuracy of the aforementioned high-order schemes
to predict vortical turbulent structures. Specifically, iso-surfaces of QM with an iso-value of QMiso

= 30 are visualised for the
DNS cases of table 1 with the 129 × 129 × 129 grid resolution as shown in figure 5. It should be noted that figure 5 only shows
the iso-surfaces which are located within the lower half of the channel to provide a more clear presentation. Large vortical
structures which are mainly elongated in the streamwise direction are seen in the flow field of all schemes studied here. However,
the schemes with a higher order of accuracy and/or an inherently lower dissipation capture a higher number of such elongated
structures and noticeably more medium and small size structures. Specifically, the non-dissipative central schemes show a dense
field with a wide range of vortex sizes. The TENO-A and TENO schemes show slightly less features compared to the central
schemes, but still capture a wide range of structures. Nevertheless, the TENO-A schemes seem to better capture the medium
and small size vortices compared to their baseline TENO counterparts with the same order of accuracy. On the other hand,
the WENO schemes perform poorly by failing to capture a wide range of structures compared to the central and TENO family
schemes. In fact, the WENO schemes generally only capture the large elongated vortical structures. The performance shown
in figure 5 supports the earlier discussion provided based on figures 3 and 4 for the accuracy of the high-order schemes. The
elongated structures are formed when near-wall vortices are stretched by shear forces. The near-wall structures are created when
the vortices formed in the viscous layer are ejected into the outer layers. This vortex ejection mechanism can be seen in all
snapshots of figure 5 in locations where the vortical structures are almost attached to the wall. A comparable behaviour and
sensitivity to the numerical scheme and the discretisation order, to what is shown in figure 5, are reported in52 for a weakly-
compressible TCF with various schemes including WENO. Specifically, with the WENO scheme, 5tℎ order of accuracy was not
enough to capture the vortical structures and the flow statistics with an acceptable level of accuracy and only a 9tℎ order WENO
scheme exhibited a reasonable performance52.
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FIGURE 4 Mean Reynolds stresses for the compressible case with Re� = 222.

4.2.2 Computational cost

The computational cost associated with a high-order scheme is of great importance particularly for high fidelity DNS. Table 3
provides the total wall time for 250000 iterations of the compressible TCF DNS case on the 129×129×129 grid for all the high-
order schemes studied here. The wall time is for one NVIDIA Tesla P100 GPU of Imperial College London’s High Performance
Computing facility.

The central schemes are the most efficient ones in terms of the computational cost. The 4tℎ order central scheme, which has
the lowest cost, is selected as the reference to calculate the relative costs provided in table 3. The 6tℎ order central scheme is only
8.2% more expensive than its 4tℎ order counterpart. The high-order central schemes, considering their excellent performance
(as shown in figures 3 and 4) and noticeably lower computational costs compared to the other schemes, are the most attractive
schemes for DNS of compressible turbulent flows where shockwaves and flow discontinuities do not exist. However, when
shock-capturing is required the WENO schemes are the most efficient ones in terms of the computational cost, with 17.2%

and 17.8% relative costs for the WENO-JS and WENO-Z schemes, respectively. The WENO-Z scheme is preferred over the
WENO-JS since it has only 0.52% higher computational cost but exhibits a much better performance as seen in figures 3 and 4.
The 5tℎ order TENO scheme has only around 5% higher relative cost compared to the 5tℎ order WENO-Z scheme but it shows
a much better performance and should be considered if an average accuracy and a moderate computational cost are required.
The adaptive schemes evaluate the sock sensor and therefore have a relatively higher computational costs compared to their
standard counterparts. Nevertheless, the 6tℎ order TENO-A scheme is recommended for when shock capturing is required and
the priority is to obtain a more precise solution with respect to the turbulent structures. A similar computational cost trend as
discussed here for the WENO and TENO schemes is also reported for a TGV problem using the OpenSBLI framework in8.

It is worth mentioning that the computational efficiency of WENO/TENO based schemes can be noticeably increased by using
a hybrid approach in which a corresponding optimal linear scheme is applied in smooth regions53,54. For instance, Fu54 reported
a near 4 times speedup for a hybrid TENO scheme compared to a pure TENO scheme for a 2D Riemann problem. Nevertheless,
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4th Order Central 6th Order Central

6th Order TENO 6th Order TENO-A

5th Order TENO 5th Order TENO-A

5th Order WENO-Z 5th Order WENO-JS

FIGURE 5 QM iso-surfaces on the 129 × 129 × 129 grid with an iso-value of QMiso
= 30 coloured by the streamwise velocity

for different schemes at t = 50 (the compressible case with Re� = 222). The iso-surfaces are only visualised for the lower half
of the channel.

as shown in table 3, the most computationally expensive TENO scheme used here has only around 45% higher cost compared to
the baseline central scheme which has significantly fewer operations in comparison to the aforementioned hybrid TENO scheme.
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This indicates that obtaining a significant speedup by applying a similar hybrid approach is not plausible here and the TENO
scheme used in this study is relatively well optimised (also, further modifications may cause load balancing issues).

TABLE 3 Total wall time for 250000 iterations of the compressible TCF DNS with different high-order schemes on the 129 ×

129 × 129 grid using one 16GB NVIDIA Tesla P100 GPU (CUDA 8.0). The relative computational cost is compared against
the 4tℎ order central scheme.

Scheme Total Wall Time [s] Relative Cost [%]
4tℎ Order Central 10503 0.0
6tℎ Order Central 11365 8.2
5tℎ Order WENO-JS 12310 17.2
5tℎ Order WENO-Z 12375 17.8
5tℎ Order TENO 12987 23.6
5tℎ Order TENO-A 14025 33.5
6tℎ Order TENO 14242 35.6
6tℎ Order TENO-A 15260 45.3

4.2.3 Grid refinement study

In this section the effect of the spatial resolution is studied by increasing the grid resolution from 129 to 257 in each direc-
tion separately for the 4tℎ order central scheme and the 6tℎ order TENO and TENO-A schemes. Also, a central test case on a
257 × 257 × 257 grid is examined. Figures 6 and 7 show the mean streamwise velocity and the mean normal stresses for the
aforementioned schemes with different spatial resolutions. Corresponding peak values of the normal stresses are also tabulated
in table 4. The mean streamwise velocity is calculated fairly well with the central and TENO schemes as discussed earlier and
therefore increasing the grid resolution does not provide a noticeable improvement as seen in figures 6 and 7. On the other hand,
with respect to the normal stresses, increasing the resolution in the streamwise direction significantly enhances the performance
of all schemes studied here, particularly the TENO schemes.

With the central scheme, increasing the resolution in the streamwise direction noticeably improves the performance for y+
s
≥

80 where comparable values to those of the spectral reference data are obtained. However, it results in the overprediction of
the peak ⟨u′u′⟩ stress by 3.17% compared to the reference data. On the other hand, refining the spatial resolution in the y and
z directions results in lower peak values of the ⟨u′u′⟩ stress by 1.55% and 2.03%, respectively. The central scheme produces
similar results on the 257 × 257 × 257 grid to those of the 257 × 129 × 129 grid and no significant improvements are gained by
refining the spatial resolution in all directions at once as can be seen in figure 6 and table 4.

With the 6tℎ order TENO and TENO-A schemes, increasing the grid resolution in the streamwise direction has a significant
effect on the ⟨u′u′⟩ stress and the ⟨v′v′⟩ stress. Specifically, it results in around 4.5% and 6.0% improvements in the peak ⟨u′u′⟩ and
⟨v′v′⟩ stresses, respectively. The ⟨w′w′⟩ stress also benefits from increasing the resolution in the streamwise direction, however
mainly for y+

s
≥ 90. It can be concluded that a grid resolution of 257 × 129 × 129 with the central and TENO schemes produces

satisfactory results for this compressible TCF case within a relatively affordable computational time. The TENO scheme requires
81.5% higher total wall time (for 250000 iterations) on the 257 × 129 × 129 grid compared to the 129 × 129 × 129 grid.

4.3 Implicit and explicit LES

The main concept of an implicit LES approach is to use the numerical dissipation, arising from discretisation schemes (such
as TENO), as a kind of turbulent viscosity comparable to that of an explicit SGS LES model. In this section, we evaluate the
possibility of using the central, TENO and TENO-A schemes of OpenSBLI to perform ILES of compressible turbulent channel
flows. Also, a direct comparison is conducted between the ILES approach and the WALE LES model which is implemented in
OpenSBLI in the present work.

The compressible turbulent channel flow test case with Re� = 222 and M� = 0.082 is modelled on relatively coarser grids
compared to those used for the DNS studies discussed earlier in this paper. specifically, various combinations of grid resolutions
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FIGURE 6 Mean streamwise velocity and Reynolds stresses for the compressible case simulated with the 4tℎ order central
scheme on various spatial resolutions.

TABLE 4 Peak mean normal Reynolds stresses for different schemes and grid resolutions studied compared to the spectral
reference DNS.

Scheme Grid ⟨u′u′⟩ ⟨v′v′⟩ ⟨w′w′⟩
4tℎ Order Central 129×129 × 129 7.312 0.624 1.016
4tℎ Order Central 257×129 × 129 7.674 0.626 1.017
4tℎ Order Central 129×257 × 129 7.322 0.623 1.013
4tℎ Order Central 129×129 × 257 7.287 0.625 1.020
4tℎ Order Central 257×257 × 257 7.676 0.630 1.026
6tℎ Order TENO 129×129 × 129 7.895 0.587 0.963
6tℎ Order TENO 257×129 × 129 7.590 0.620 1.01
6tℎ Order TENO 129×257 × 129 7.960 0.591 0.969
6tℎ Order TENO 129×129 × 257 7.813 0.587 0.965
6tℎ Order TENO-A 257×129 × 129 7.563 0.625 1.022
Spectral (Coleman et al.) 144×119 × 80 7.438 0.645 1.102

including 32×129×32 and 64×64×64, high-order schemes and the WALE SGS model are used as presented in table 5. Figures
8 and 9 show direct comparisons based on the mean streamwise velocity and the normal Reynolds stresses of the test cases
presented in table 5. It should be noted that with explicit LES modelling some of the turbulent energy is held in the SGS model.
Therefore, when making comparison against DNS, it might be more appropriate to also filter the DNS solution and compare the
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FIGURE 7 Mean streamwise velocity and Reynolds stresses for the compressible case simulated with 6tℎ order TENO and
TENO-A schemes on various spatial resolutions.

respective rms fluctuations. However, since in this study ILES modelling is also investigated and compared against DNS and
WALE, such filtering is avoided.

The 32 × 129 × 32 grid resolution is used to decouple the effect of the wall y+ and as given in table 5 the test cases with this
resolution have relatively similar Δy+

s
values to that of the DNS case with 129 × 129 × 129. From figure 8 it is evident that, the

WALE model improves the performance of the 4tℎ order central scheme to predict the mean streamwise velocity. However, the
central scheme with the WALE model overpredicts the peak ⟨u′u′⟩ stress and underpredicts the peak of the other two normal
stresses in comparison to when it is used without the SGS model. This is a well-known behaviour and has been reported in
the literature55. Although the TENO-A scheme improves the prediction of the mean streamiwse velocity as shown in figure 8,
it does not show a satisfactory performance in predicting the normal Reynolds stresses on the 32 × 129 × 32 grid resolution.
Moreover, from figure 8 it is clear that by reducing CT of the TENO scheme, from 10−7 to 10−9, its ability to predict the mean
statistical parameters noticeably improves. In fact, by reducing CT the numerical dissipation of the scheme reduces. However,
this results in a reduced ability to produce a non-spurious stable solution at the location of shockwaves and flow discontinuities.

Similarly to the 32× 129×32 grid resolution, the combination of the WALE model and the central scheme also improves the
performance of the code to predict the mean streamwise velocity on the 64 × 64 × 64 resolution as shown in figure 9. A similar
trend also exists for the normal stresses as shown in figures 8 and 9. However, since the central scheme without the WALE model
underpredicts the ⟨u′u′⟩ stress on the 64 × 64 × 64 grid, adding the WALE model results in a very close prediction of ⟨u′u′⟩ to
that of the reference DNS as shown in figure 9. Comparing against the central scheme with the WALE model, it is evident that
the TENO-A scheme exhibits a similar trend for the grid resolutions studied here. From figures 8 and 9 it can be concluded that
the combination of the TENO-A scheme and the WALE model is not beneficial and should be avoided. However, the results
show that the TENO-A scheme alone may be used as an ILES model for compressible TCFs. From table 5 it is evident that with
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the 64 × 64 × 64 resolution, increasing the stretching factor fs in equation 12 from 1.7 to 1.9 reduces Δy+
s

by around 24.5%.
However this improvement in the wall y+ value does not seem to noticeably improve the performance as seen in figure 9.

TABLE 5 TCF implicit and explicit LES test cases.

Case Scheme (Ord.) Turb. Grid fs CT Re∗
�s

Re� s Δy+
s

⟨uc⟩
2 Central(4) DNS 129×129 × 129 1.7 – 189.336 221.814 0.807 18.876
17 Central(4) ILES 32×129 × 32 1.7 – 189.210 216.652 0.788 18.042
18 Central(4) WALE 32×129 × 32 1.7 – 188.339 217.463 0.791 18.654
19 Central(4) ILES 64×64 × 64 1.7 – 185.335 216.503 1.642 18.098
20 Central(4) WALE 64×64 × 64 1.7 – 184.641 217.824 1.652 18.602
7 TENO(6) DNS 129×129 × 129 1.7 10−7 190.136 223.737 0.814 19.045
21 TENO(6) ILES 32×129 × 32 1.7 10−7 189.156 234.029 0.851 22.516
22 TENO(6) ILES 32×129 × 32 1.7 10−9 189.306 226.856 0.825 20.408
15 TENO-A(6) DNS 129×129 × 129 1.7 – 189.837 222.807 0.810 18.897
23 TENO-A(6) ILES 32×129 × 32 1.7 – 189.445 222.448 0.809 19.076
24 TENO-A(6) WALE 32×129 × 32 1.7 – 189.133 223.515 0.813 19.538
25 TENO-A(6) ILES 64×64 × 64 1.7 – 185.574 221.110 1.677 19.024
26 TENO-A(6) ILES 64×64 × 64 1.9 – 186.734 221.951 1.270 19.017
27 TENO-A(6) WALE 64×64 × 64 1.7 – 185.367 222.316 1.686 19.449

5 CONCLUSIONS

The performance of a selection of low-dissipative high-order shock capturing schemes to model compressible turbulent flows
was quantified and investigated. The focus was on the capability of those schemes to resolve turbulent structures. Therefore,
a channel flow configuration was used to decouple the effect of flow discontinuities and turbulence. Specifically, DNS studies
were conducted on subsonic (Re� = 180) and supersonic (M = 1.5 and Re� = 222) turbulent channel flows using OpenSBLI,
a Python-based automatic source code generation and parallel computing framework for finite difference discretisation. The
schemes studied here were 4tℎ and 6tℎ order central, 5tℎ order WENO-Z and WENO-JS, and 5tℎ and 6tℎ order TENO and
adaptive TENO (TENO-A) schemes. Also, a comprehensive study was conducted to evaluate the effect of the spatial resolution
on the performance of the central and TENO schemes. Moreover, the accuracy of the TENO family schemes as ILES models
was evaluated against DNS and the WALE SGS model.

Significant improvements were achieved using the TENO scheme, and particularly the TENO-A scheme, over the WENO
schemes with respect to the mean and fluctuating flow quantities in DNS of the compressible TCF. Also, the TENO schemes
captured the three-dimensional vortical structures very close to the non-dissipative central schemes and much better than the
WENO schemes that failed to resolve a wide range of structures particularly the medium and small size vortices.

It was observed that using the WALE model in conjunction with the WENO and TENO schemes resulted in undesirable
additional dissipation and should be avoided. However, the TENO family schemes were found to be appropriate for ILES. For
instance, reducing the value of the CT constant in the TENO scheme, from 10−7 to 10−9, improved its performance as an ILES
model. However, it was still more dissipative than the TENO-A scheme on a similar coarse grid. A further reduction in the CT

value would be required to be able to appropriately use the TENO scheme as an ILES model for the compressible TCF case. On
the other hand, the TENO-A scheme exhibited a reasonable performance, particularly for the mean streamwise velocity (⟨u⟩)
and the ⟨u′u′⟩ normal stress. This scheme showed the best potential to be applied as an ILES model, with only modest increases
in computational costs, for shock-containing turbulent flows.
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FIGURE 8 Mean streamwise velocity and normal Reynolds stresses for the WALE and ILES TCF cases on the 32 × 129 × 32

grid.
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FIGURE 9 Mean streamwise velocity and normal Reynolds stresses for the WALE and ILES TCF cases on the 64×64×64 grid.
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