
Overview of the 2018 Workshop on Iterative
Errors in Unsteady Flow Simulations

L. Eça∗

MARIN Academy and IST ULisboa
Wageningen Netherlands and Lisboa Portugal

Email: luis.eca@ist.utl.pt

G. Vaz
WaVEC Offshore Renewables

Lisboa Portugal
Email: guilherme.vaz@wavec.org

M. Hoekstra
Consultant

Voorthhuizein The Netherlands

S. Pal
ASME Member

Herndon, U.S.A.

E. Muller, D. Pelletier
Ecole Polytechnique Montreal

Montreal Canada

A. Bertinetti, R. Difonzo, L. Savoldi, R. Zanino and A. Zappatore
Dipartimento Energia “Galileo Ferraris” Politecnico di Torino

Torino Italy

Y. Chen, K.J. Maki, H. Ye
University of Michigan
Michigan U.S.A.

Jernej Drofelnik, Benjamin Moss, Andrea Da Ronch
University of Southampton

Southampton United Kingdom

ABSTRACT

Two Workshops were held at the ASME V&V Symposiums of 2017 and 2018 dedicated to
Iterative Errors in Unsteady Flow Simulations. The focus was on the effect of iterative errors on
numerical simulations performed with implicit time integration, which require the solution of a
non-linear set of equations at each time step. The main goal of these Workshops was to create
awareness to the problem and to confirm that different flow solvers exhibited the same trends.

The test case was a simple two-dimensional, laminar flow of a single-phase, incompressible,
Newtonian fluid around a circular cylinder at the Reynolds number of 100. A set of geometri-
cally similar multi-block structured grids was available and boundary conditions to perform the
simulations were proposed to the participants. Results from seven flow solvers were submitted,
but not all of them followed exactly the proposed conditions. One set of results was obtained with
adaptive grid and time refinement using triangular elements ( CADYF) and another used a com-
pressible flow solver with a dual time stepping technique and a Mach number of 0.2 (DLR-Tau).
The remaining five submissions were obtained with five different incompressible flow solvers
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(ANSYS CFX 14.5, pimpleFoam, ReFRESCO, SATURNE, STAR CCM+ v12.06.010-R8) using
implicit time integration in the proposed grids.

The results obtained in this simple test case showed that iterative errors may have a signif-
icant impact on the numerical accuracy of unsteady flow simulations performed with implicit
time integration. Iterative errors can be significantly larger (one to two orders of magnitude)
than the residuals and/or solution changes used as convergence criteria at each time step. The
Courant number affected the magnitude of the iterative errors obtained in the proposed exercise.
For the same iterative convergence criteria at each time step, increasing the Courant number
tends to increase the iterative error.

1 Introduction
Simulation of (statistically) unsteady flows is no longer an exceptional task in Engineering appli-

cations of Computational Fluid Dynamics (CFD). For wall-bounded (turbulent) flows at high Reynolds
numbers it is usual to apply implicit techniques for time integration1, i.e. a non-linear system of partial
differential equations must be solved at each time step. It should be pointed out that implicit time inte-
gration is not restricted to the use of the Reynolds-Averaged Navier Stokes (RANS) equations. It is also
usually applied in Large-Eddy Simulations (LES) and with hybrid RANS/LES or bridging models, as
for example Detached Eddy-Simulation (hybrid) or Partially-Averaged Navier Stokes equations (PANS,
bridging). Therefore, when implicit time integration is adopted, a convergence tolerance is needed to
decide on when having solved this non-linear system well enough. Any iterative error propagates to the
next time step and so the numerical error of a given solution may not be dominated by the numerical
error inherent to the space and time discretization. In fact, it has been recently shown using a one-
dimensional manufactured solution [1] that in an unsteady flow simulation dominated by iterative errors
it is pointless to refine the grid and/or the time step.

Two Workshops dedicated to Iterative Errors in Unsteady Flow Simulations were held at the ASME
V&V Symposiums of 2017 and 2018 [2,3]. The main goal of these Workshops was to create awareness
to the problem and to confirm that different flow solvers exhibited the same trends. The simple two-
dimensional, laminar flow of a single-phase, incompressible, Newtonian fluid around a circular cylinder
is sufficient to illustrate the challenges posed by iterative errors in unsteady flow simulations. There is
no attempt to perform Validation (comparison with experimental results) or derive a reference solution
for the selected test case to estimate discretization errors (Solution Verification).

The determination of iterative errors does not require the knowledge of the experimental solution
or the exact solution of the Navier-Stokes equations. The best estimate of the iterative error, requires a
solution obtained for a given grid and time step with the non-linear residual at each time step reduced to
machine accuracy (using double precision) and a sufficient simulation time to reduce statistical errors
(effects of the initial condition) also to machine accuracy. This reference solution depends on the space
and time discretization techniques used by each flow solver and so it is not possible to generate a
solution valid for any CFD solver using the same grid and time step. On the other hand, even for the
simple flow proposed for this exercise, generating this reference solution is too expensive or sometimes
even impossible. Therefore, iterative errors are addressed by comparing the solution of selected integral
and local flow quantities (described below) obtained with the same simulation settings and with at least
three different levels of the iterative convergence criterion applied at each time step.

For both Workshops, a set of four geometrically similar multi-block structured grids was available
and boundary conditions to perform the simulations were proposed to the participants. However, in the
2017 edition two Reynolds numbers based on the velocity of the uniform incoming flow V∞, cylinder
diameter D and kinematic viscosity ν of Re = 100 and Re = 150 were proposed to the participants.

1If the fluid is incompressible a system of equations must be solved even for explicit time integration.



Furthermore, the time step was not imposed and so there were almost no simulations performed with
the same settings by different flow solvers. In the 2018 edition, only Re = 100 was addressed and
four different dimensionless time steps were proposed for each grid, corresponding to four grid/time
refinements at fixed Courant number. As a consequence, the submitted results obtained from seven
different flow solvers (ANSYS CFX 14.5 [4], CADYF [5], DLR-Tau [6], pimpleFoam [7], ReFRESCO
[8], SATURNE [9] and STAR CCM+ v12.06.010-R8 [10]) included plenty of cases with the same flow
conditions. Therefore, the present paper focuses only on the 2018 edition of the Workshop.

The remainder of this paper is organized in the following way: section 2 presents the proposed test
case including the computational domain, boundary conditions and selected quantities of interest; the
proposed grids and time steps are described in section 3, whereas section 4 contains a brief description
of the seven flow solvers used in this exercise together with the iterative convergence criteria used at
each time step; section 5 illustrates and discusses the results and the main conclusions of this Workshop
are summarized in section 6.

2 Test Case
2.1 Domain and boundary conditions

The selected test case is the two-dimensional, laminar flow around a circular cylinder at Reynolds
number (Re = V∞D

ν
) of Re = 100. It was suggested to assume that the fluid is incompressible (Mach

number equal to 0), but there was a submission using Mach number of 0.2 at the inlet.
The calculation domain is a rectangle with the distances of the boundaries to the cylinder centre equal

to 20D upstream for the inlet, 80D downstream for the outlet and 40D for top and bottom boundaries, as
illustrated in figure 1. The Cartesian (x,y) coordinate system adopted has the origin at the centre of the
cylinder and the x axis aligned with V∞. Since the focus of the exercise is on numerical errors (especially
on iterative errors) and not on comparisons with experiments, there is no need to make any sensitivity
study to justify these choices. Nonetheless, the boundaries must be sufficiently away from the cylinder
to ease the selection of boundary conditions.

The simulation of an unsteady flow requires the specification of an initial condition. In the present
test case, the flow becomes periodic with a period/frequency related to the vortex shedding in the wake
of the cylinder. The present exercise focus on the periodic part of the flow and so the initial condition
will only affect the simulation time required to attain a periodic flow.

The proposed boundary conditions are the following: no-slip and impermeability conditions at the
cylinder surface (

√
x2 + y2 = D/2) and normal derivative of the pressure set equal to zero (∇p ·~n = 0);

uniform flow at the inlet boundary (x =−20D) with horizontal velocity component Vx =V∞ and vertical
velocity component Vy = 0; pressure imposed at the outlet boundary2 (x = 80D) and derivatives of the
two velocity components in the streamwise direction (x) equal to zero (∂Vx

∂x =
∂Vy
∂x = 0); free-slip at the

top and bottom boundaries (y = ±40D), i.e. normal velocity component equal to zero (Vy = 0) and
derivatives of the velocity component in the horizontal direction and pressure in the normal direction
equal to zero (∂Vx

∂y = ∂p
∂y = 0).

2.2 Quantities of interest

Integral/functional and local flow quantities on the cylinder surface were selected for the assessment
of the iterative errors. The selected quantities of interest are related to the time history of the lift CL and

2Pressure streamwise derivative equal to zero may also be used as a boundary condition, but in that case pressure level
must be fixed at a point.



drag CD coefficients or to the time-averaged pressure Cp and skin friction C f coefficients on the cylinder
surface. The lift and drag coefficients are obtained from

CL(t) =
FL(t)
1
2ρV 2

∞

, CD(t) =
FD(t)
1
2ρV 2

∞

. (1)

where the vertical L and horizontal D forces are calculated from the integration of the pressure p and
shear-stress τw on the cylinder surface and ρ is the density of the fluid. The pressure and skin friction
coefficients are obtained from

Cp(θ, t) =
p(θ, t)− p∞

1
2ρV 2

∞

, C f (θ, t) =
τw(θ, t)
1
2ρV 2

∞

, (2)

where p∞ is the maximum pressure at the inlet boundary and θ= atan(y/x)+π (θ = 0 ≡ (x =−0.5D,y = 0)).
The integral/functional quantities of interest are:

- The average3 drag (CD)avg coefficient

(CD)avg =

∫ nT
0 CD(t)dt

nT
, (3)

where T is the period of the lift time history and n is the number of cycles (n ≥ 4) used to determine
the average value. The beginning of the cycle corresponds to the instant where CL = 0 when the lift
coefficient is increasing.

- The maximum drag (CD)max and lift (CL)max coefficients.

- The standard deviation of the drag (CD)std and lift (CL)std coefficients.

(CD)std =

√∫ nT
0 (CD(t)− (CD)avg)

2 dt
nT

,(CL)std =

√∫ nT
0 (CL(t)− (CL)avg)

2 dt
nT

. (4)

3(CL)avg is supposed to be zero.

Fig. 1. Illustration of the calculation domain and boundary conditions for the flow around a circular cylinder.



Fig. 2. Illustration of the grids for the calculation domain of the flow around a circular cylinder.

Also derived from CL(t), the Strouhal number St

St =
D

TV∞

=
D f
V∞

, (5)

where f is the frequency of the vortex shedding, f = 1/T .
The local flow quantities are the time-averaged base pressure coefficient (Cpb)avg and the angle of

flow separation (θsep)avg, obtained from

(Cpb)avg =

∫ nT
0 Cpb(θb, t)dt

nT
,(θsep)avg =

∫ nT
0 θsep(t)dt

nT
, (6)

where θb = π and θsep is the θ-coordinate of the point on the upper surface of the cylinder where the
wall shear-stress vanishes, τw = 0.

3 Grids and time step

There are four geometrically similar multi-block structured grids available, one of them being il-
lustrated in figure 2. The grids have clustering of grid nodes in the block of the near-wake. As a
consequence, there is a sudden change of cell size at the edge of the inner block, but several prelimi-
nary tests were done to guarantee that these grids are suitable for the determination of the quantities of
interest. Furthermore, these tests showed that it was important to include a significant increase of the
cell-size towards the outlet, top and bottom boundaries to avoid pressure reflections. Table 1 presents the
total number of cells, the number of faces on the cylinder surface and the grid and time refinement ratios
ri = hi/h1 = ∆ti/∆t1 of the four grids as well as the dimensionless time steps with the corresponding
maximum values of the Courant number Comax.

One of the submissions (CADYF) did not use the proposed grids, because this flow solver relies on
grid (and time) adaptive refinement [5]. Simulations were performed using a fixed isotropic grid for all
simulated times or with mesh adaptation cycles at user-supplied times. However, as discussed below,
the iterative convergence criterion used at each time step will affect the adaptive time step. Therefore, its
effect on the numerical error of the simulations will be significantly different from the remaining flow
solvers that use a fixed time step. In the presentation of CADYF results we will restrict ourselves to those
obtained in the adapted fixed isotropic grid, illustrated in figure 3. The final grid is composed of 184884
elements and 370638 nodes with the ratio between the largest and smallest elements approximately
equal to 1000.



Fig. 3. Illustration of the adapted fixed isotropic grid used with CADYF for the calculation domain of the flow around a circular cylinder.

4 Flow solvers and iterative convergence criteria

Seven flow solvers were used to obtain the results submitted to this Workshop: ANSYS CFX 14.5
[4], CADYF [5], DLR-Tau [6], pimpleFoam [7], ReFRESCO [8], SATURNE [9] and STAR CCM+
v12.06.010-R8 [10]. A brief description of the main features of each solver is given below including the
iterative convergence criteria used to perform the simulations.

ANSYS CFX 14.5 [4] is a commercial CFD package based on a finite volume discretization with a
fully-coupled solution and Picard linearization. The present simulations using implicit time integration
and a fixed time step were performed with second-order space and time discretization schemes. Linear
systems of equations were solved with an algebraic multigrid method for linear solvers. Iterative con-
vergence criteria at each time step was controlled by the RMS of normalized residuals, “conservation
imbalance” and a maximum of 10 iterations per time step.

CADYF [5] uses a finite element approach with a fully-coupled solution and Newton lineariza-
tion. The space discretization uses P2-P1 Taylor-Hood elements and the linear systems of equations
are solved with the direct solver PARDISO [11]. The implicit time-integrators of order 1 to 5 use an
adaptive procedure to update both the time-step size and the order of the integration method at the end
of each time iteration. This means that time integration is performed with a variable time step and a
variable order of time convergence. Iterative error is controlled by relative changes of solution variables
and residuals. It must be pointed out that the iterative error is embedded in the error estimation of the
time adaption. Therefore, its effect leads to changes in the time integration scheme due to contributions
of the iterative error to the estimated error.

Table 1. Grids available for the Workshops on Iterative Errors in Unsteady Flow Simulations and recommended time steps.

Grid Number Number of Faces on hi/h1 Dimensionless time step, ∆tiV∞/D

of Cells Cylinder Surface Comax=0.8 Comax=1.6 Comax=6.2 Comax=15

4 125910 960 2 0.0025 0.005 0.02 0.05

3 196266 1200 1.6 0.002 0.004 0.016 0.04

2 282174 1440 1.3(3) 0.0016(6) 0.003(3) 0.013(3) 0.03(3)

1 503640 1920 1. 0.00125 0.0025 0.01 0.025



DLR-Tau [6] is a compressible flow solver based on a finite volume discretization that uses a dual-
time step approach. With this solver, Mach = 0.2 has been imposed at the inlet of the computational
domain and the fluid is assumed to be a perfect gas. Simulations are performed with second-order
time and space discretization techniques. Time integration is performed with an explicit 4-stage Runge-
Kutta scheme using a fixed time step. Iterative errors are related to the convergence of the dual time-
step technique and is controlled by the normalized ρ residual using the reference value from the initial
approximation at each time step.

pimpleFoam is part of the OpenFoam library [7]. It uses a finite volume discretization with Picard
linearization and a segregated solution using a combination of the PISO and SIMPLE algorithms. Simu-
lations were performed with second-order space and time schemes and an implicit time integration with
imposed Courant number, which means that the time step changes along the simulation. Linear systems
of equations are solved with Bi-CG with ILU preconditioning for momentum, combined with diagonal-
based incomplete Cholesky and Gauss-Seidel solver along with a geometric agglomerated algebraic
multigrid method for pressure. Iterative errors are controlled by the number of iterations performed at
each time step.

ReFRESCO [8] is a community-based CFD solver based on a finite volume discretization and Picard
linearization. It can use segregated or coupled approaches and mass conservation is ensured using the
SIMPLE algorithm. Simulations were performed with second-order schemes in space and with implicit
time integration using second and first-order schemes. Linear systems of equations are solved with
GMRES for the momentum equations and CG for the pressure using Jacobi preconditioning in both
cases. Iterative error is controlled by the maximum of normalized residuals, which are equivalent to
dimensionless dependent variables changes in a simple Jacobi iteration.

SATURNE “is the free, open-source software developed and released by EDF to solve computa-
tional fluid dynamics (CFD) applications” [9] that uses a finite volume discretization and Picard lin-
earization. In the present simulations, a coupled solution is used for the velocity components and the
SIMPLEC algorithm is applied to ensure mass conservation. Second-order schemes in space are applied
and implicit time integration is performed with a first-order scheme and a fixed time step. Linear sys-
tems of equations are solved using Jacobi solver for momentum, and AMG method based on CG solver
with Jacobi preconditioning for pressure. Iterative errors are controlled by the global sum of the squares
of residuals.

STAR CCM+ v12.06.010-R8 is a commercial CFD package [10] based on a finite volume dis-
cretization and Picard linearization. Simulations were performed with a segregated approach and a
SIMPLE-type algorithm. Space discretization is based on second-order schemes and implicit time in-
tegration uses second-order schemes and a fixed time step. An AMG method is used in the solution of
the linear systems of equations. As for pimplefoam, iterative errors are controlled by the fixed number
of iterations performed at each time step.

5 Results
5.1 General

As presented in table 1, there were 16 cases proposed to the participants: four grids with four dif-
ferent time steps corresponding to four different values of the maximum Courant number. The number
of submissions differed per case, as presented in table 2. Not surprisingly, the largest number of sub-
missions refers to the coarsest grid with the largest time step, the least number to the finest grid with the
smallest time step. Table 2 also includes the designation of the time steps proposed for the simulations.
For example, case G2TB corresponds to results obtained in grid 2 with time step B (hi/h1 = 1.3(3))
with ∆tV∞/D = 0.003(3) (see table 1).

As mentioned above, there was one submission (CADYF) that used grid and time adaptivity which



Table 2. Submissions for each of the four grids and time steps proposed for the simulation of the flow around a circular cylinder at Re =
100.

Grid Dimensionless time step, ∆tiV∞/D

TA (Comax=0.8) TB(Comax=1.6) TC(Comax=6.2) TD(Comax=15)

G4 4 4 6 7

G3 2 3 6 5

G2 2 3 4 5

G1 1 1 3 4

Table 3. Range of iterative convergence criteria eit used in the simulation of the flow around a circular cylinder at Re = 100. Ns is the

number of levels tested. ANSYS-CFX simulations also included a maximum number of iterations at each time step Nit = 10.

Solver eit Ns εmin Test cases

ANSYS-CFX 10−5 −10−1 5 10−4 G4TD

CADYF 10−10 −10−5 4 10−5 “G3TC”

DLR-Tau 10−5 −10−2 3 10−3 All except G1

ReFRESCO S2 10−8 −5×10−3 9 2×10−6 All

ReFRESCO C2 10−8 −5×10−3 8 or 9 2×10−6 All grids for TD and TC

ReFRESCO S1 10−6 −5×10−3 8 2×10−5 All grids for TD

SATURNE 10−10 −10−7 4 10−3 All grids for TC

is therefore not included in the submissions presented in table 2. The results of this submission will be
presented with case G3TC. This choice was based on the total number of cells of the final grid and the
large number of submissions for G3.

For each of these test cases, each submission includes the results using at least three different levels
of the iterative convergence criteria. However, as described above, the seven flow solvers use different
techniques to control the iterative error which makes direct comparison difficult. Nevertheless, we
have tried to define a strategy that allows to check if all the flow solvers (except CADYF) exhibit the
same trends for the influence of the iterative error on the selected quantities of interest. However, the
interaction between the convergence of the linear systems equations solved at each non-linear iteration
and the non-linear convergence is out of the scope of this study.

The two submissions using the fixed number of iterations at each time step to control the iterative
error (pimpleFoam and STAR-CCM+) were asked to determine the average value of the maximum
residuals at the end of each time step. This allowed the conversion of number-of-iterations-at-each-
time-step to a representative residual.

For the comparisons of data obtained with different flow solvers, the independent variable ε that
represents the iterative convergence criteria is given by

ε =
eit

(eit)max
, (7)



Table 4. Minimum value of the ratio εmin of the average residuals obtained with different number of iterations at each time step Nit
(pimpleFoam simulations).

pimpleFoam G4TD G3TD G2TD G1TD

Nit 4,6,8,20 3,4,6,8,20 2,3,4,6,8 2,3,4,6,8

εmin 0.037 0.094 0.0016 0.002

Table 5. Minimum value of the ratio εmin of the average residuals obtained with different number of iterations at each time step Nit (STAR

CCM+ simulations).

STAR CCM+ Grid TD TC TB TA

Nit 4 10,50,100,200 10,50,100 10,50,100 10,50,100

εmin 1.9×10−5 1.2×10−4 1.1×10−5 2.1×10−5

Nit 3 10,50,100,200 10,50,100 10,50,100 —

εmin 3.3×10−5 1.4×10−4 1.2×10−3 —

Nit 2 10,50,100,200 — 10,50,100 —

εmin 2.1×10−5 — 5.8×10−6 —

Nit 1 10,50,100 — — —

εmin 4.4×10−4 — — —

where eit stands for any of the residuals used to control the iterative error in the flow solvers.
ReFRESCO simulations were performed with three different flow settings: segregated solution with

second-order schemes (S2); coupled solution with second order-schemes (C2) and first-order time in-
tegration with the segregated solver (S1). All the remaining flow solvers used only one set of settings
described above. Table 3 presents the values of eit used by the solvers that do not limit the number
of iterations at each time step together with the number of level tested Ns. The table also includes the
minimum value of εmin and the test cases included in the submission. It is recalled that the ANSYS-CFX
simulations also included a maximum number of iterations at each time step Nit = 10.

Tables 4 and 5 present the values of εmin for the pimpleFoam and STAR CCM+ simulations after
the conversion of Nit to the average value of the maximum residuals, taken as eit . For the pimpleFoam
simulations, the decrease of the residuals for the larger time steps (TD and TC) is significantly smaller
than for the smaller time steps (TB and TA). On the other hand, the STAR CCM+ results do not show
the same trend for all the grids. Therefore, it is not easy to control iterative errors using the number
of iterations performed at each time step. In the worst scenario, increasing Nit does not decrease the
iterative error if the residual stagnates. Therefore, the values of εmin obtained for ANSYS-CFX can be
misleading because it is not guaranteed that the residual criterion is satisfied due to Nit = 10.

The results from all these submissions are assumed to have a sufficient simulation time to obtain
a periodic solution with a negligible contribution of the initial condition. However, it was reported
that simulations performed with only one or two iterations at each time step may not lead to vortex
shedding and so the flow will not become periodic. Naturally, those simulations were not included in
the submissions. Plots with all the selected quantities of interest of all the submissions are available



at [3]. The main trends found in the data are illustrated in the following subsections using (CD)avg and
(CL)max.

5.2 Iterative errors

The values of (CD)avg for G4TD and G3TC are plotted in figure 4 as a function of ε. For these
settings, there is at least one simulation from each flow solver. The figure contains two plots for each
case: one with (CD)avg (left plots) and one with the difference to the solution obtained with the most
demanding iterative convergence criterion (εmin) given in percentage of (CD)avg calculated with εmin
(right plots).

The data exhibit similar trends for most flow solvers using implicit time integration except CADYF.
As mentioned above, CADYF uses an adaptive time step technique that is influenced by the iterative
convergence criteria at each time step and so there is a negligible influence of eit on the results obtained
with this flow solver. On the other hand, the ANSYS-CFX simulations that use several iterative conver-
gence criteria exhibit almost no change of (CD)avg for the first three levels of eit , but there is a change
of around 3% for the two lowest levels of eit . However, the existence of a limit of iterations at each time
step for these simulations makes the determination of eit uncertain. For ReFRESCO and STAR CCM+,
the values of ∆(CD)avg are larger for the settings that correspond to the largest Courant number (G4TD).
The same trend is exhibited by the data obtained in G2TB and G1TA.

The results obtained for the maximum lift coefficient (CL)max are depicted in figure 5. Although
the trends are similar to those for (CD)avg, there is a significantly stronger influence of the iterative
convergence criteria on (CL)max than on (CD)avg. A significant amount of results obtained from different
flow solvers exhibit ∆(CL)max larger than 10%, as for example the STAR CCM+ results with 10 iterations
in each time step and the pimpleFoam solution with 8 or less iterations per time step. Furthermore,
the ReFRESCO data with ε = 10−1 also show the same level of iterative errors in (CL)max. In these
simulations, the maximum normalized residual of all equations is reduced to values below 5× 10−4,
which corresponds to levels below 5× 10−5 for the L2 norm of the residuals. It is worth mentioning
that such convergence criterion is more demanding than that used in many unsteady simulations found
in the open literature.

The results obtained with DLR-Tau show a weak dependence on eit . However, this compressible
flow solver uses an explicit time integration with a dual time step. Therefore, the iterative convergence
criterion is less important than in the implicit time integration solvers.

In general, the trends illustrated for (CD)avg and (CL)max apply to the remaining quantities of interest
as well (data available at [3]). The time-averaged base pressure coefficient (Cpb)avg is a good example,
revealing almost the same trends as for (CD)avg. The quantities with the smallest influence of the iterative
convergence criteria are the Strouhal number St and the time-averaged angle of flow separation (θsep)avg.
However, as mentioned above, very loose iterative convergence criteria may not lead to vortex shedding
in the solution, especially for the largest Courant numbers tested.

5.3 Influence of iterative errors on the estimation of discretization errors

The contamination of unsteady flow simulations with iterative errors can also make the estimation
of discretization errors troublesome. In the present exercise, it is possible to estimate the exact solution
using power series expansions [12] and the data from four grids and time steps that have the same
Courant number. Strictly, these data should only be applied when the order of discretization is equal for
space and time. However, we will also apply it to the two submissions that used second-order accuracy
in space and first-order in time.



G4TD

ε

(C
D
) a
v
g

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
01.25

1.3

1.35

1.4
ANSYS CFX

DLR­Tau

pimpleFoam

ReFRESCO S2

ReFRESCO C2

ReFRESCO S1

STAR CCM+

ε

∆
(C

D
) av

g
 (

%
)

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
010

­2

10
­1

10
0

10
1

ANSYS CFX

DLR­Tau

pimpleFoam

ReFRESCO S2

ReFRESCO C2

ReFRESCO S1

STAR CCM+

G3TC

ε

(C
D
) a
v
g

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
01.28

1.3

1.32

1.34

1.36

CADYF

DLR­Tau

ReFRESCO S2

ReFRESCO C2

SATURNE

STAR CCM+

ε

∆
(C

D
) av

g
 (

%
)

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
010

­3

10
­2

10
­1

10
0

10
1

10
2

CADYF

DLR­Tau

ReFRESCO S2

ReFRESCO C2

SATURNE

STAR CCM+

Fig. 4. Time-averaged drag coefficient as a function of the iterative convergence criteria ε= eit/(eit)max. Right plots present differences

to the solution obtained with εmin given in percentage of (CD)avg calculated with εmin. Coarsest grid G4 with largest time step TD (G4TD)

and grid G3 with time step TC (G3TC).

It should be stated that the goal of using the fitting techniques reported in [12] is not to determine
the observed order of grid/time convergence or to estimate the exact solution. The aim is to illustrate
that discretization error estimation is not independent of iterative errors.

Figures 6 to 9 present the convergence with grid/time refinement of the time-averaged drag coeffi-
cient (CD)avg for the different submissions. Left plots correspond to the results obtained with the least
demanding iterative convergence criteria εmax (largest value of eit) yet leading to vortex shedding. On
the right, the results obtained with the most demanding iterative convergence criteria εmin are shown.
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Fig. 5. Maximum lift coefficient as a function of the iterative convergence criteria ε = eit/(eit)max. Right plots present differences to the

solution obtained with εmin given in percentage of (CL)max calculated with εmin. Coarsest grid G4 with largest time step TD (G4TD) and

grid G3 with time step TC (G3TC).

The influence of the iterative error on the estimation of the discretization error (estimate of the
solution for hi/h1 = ∆ti/∆t1 = 0.) is evident and tends to increase for increasing Courant numbers. All
the incompressible flow solutions are converging monotonically to similar results in the right plots (the
exception is the STAR CCM+ data for Comax = 15, but in that case the finest grid solution is most likely
still contaminated by iterative errors), whereas the lines fitted to the data obtained with εmax exhibit
almost an erratic behaviour. The extrapolated solutions to hi/h1 = ∆ti/∆t1 = 0 are very similar to the
solution obtained with CADYF using grid and time adaptivity.
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Fig. 6. Time-averaged drag coefficient (CD)avg as a function of the grid size hi/h1 and time step ∆ti/∆t1. Left plots obtained with the

least demanding iterative convergence criteria εmax and right plots with the most demanding iterative convergence criteria εmin. Comax =
15.
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Fig. 7. Time-averaged drag coefficient (CD)avg as a function of the grid size hi/h1 and time step ∆ti/∆t1. Left plots obtained with the

least demanding iterative convergence criteria εmax and right plots with the most demanding iterative convergence criteria εmin. Comax =
6.

As expected, the DLR-Tau results (explicit time integration) show the smallest influence of eit .
Nonetheless, for the highest Courant number (Comax = 15, figure 6), there is an awkward difference
between the line fits for εmax and εmin respectively that does not appear for the other three cases.

Figures 10 to 13 present the grid/time convergence of the maximum lift coefficient (CL)max corre-
sponding to the values of εmax and εmin of the different submissions. The main trends are similar to
those observed for the time-averaged drag coefficient, but with the change of (CL)max with ε signifi-
cantly larger than that observed for (CD)avg. In this case, the extrapolated solutions of all flow solvers
(including DLR-Tau) are very similar.

There was one flow solver (ReFRESCO S2) that was used for all the proposed test cases which
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Fig. 8. Time-averaged drag coefficient (CD)avg as a function of the grid size hi/h1 and time step ∆ti/∆t1. Left plots obtained with the

least demanding iterative convergence criteria εmax and right plots with the most demanding iterative convergence criteria εmin. Comax =
1.5.
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Fig. 9. Time-averaged drag coefficient (CD)avg as a function of the grid size hi/h1 and time step ∆ti/∆t1. Left plots obtained with the

least demanding iterative convergence criteria εmax and right plots with the most demanding iterative convergence criteria εmin. Comax =
0.75.

makes it possible to illustrate directly the influence of the Courant number on the iterative and discretiza-
tion errors of (CD)avg and (CL)max. Figures 14 and 15 present the results. The differences between the
convergence behaviour obtained with εmax and εmin increase significantly for the highest Courant num-
bers. In fact, especially due to the (CL)max for the two finest grids (G1 and G2) and the largest Courant
number (TD), it is questionable if the iterative convergence criterion is sufficient to obtain a negligible
effect on the estimation of the discretization error for these settings. The interaction between ε and the
Courant number is not unexpected, because in an implicit time integration scheme the initial approx-
imation at a given time step is the solution of the previous time step. Therefore, the reduction of the
Courant number improves the initial approximation at a given time step.



6 Conclusions

The present paper presents an overview of the 2018 Workshop on Iterative Errors in Unsteady Flow
Simulations. The focus of the Workshop was on incompressible flow solvers that typically use implicit
time integration, but there was also a submission from a compressible flow solver at a Mach number of
0.2.

The proposed test case was the two-dimensional flow of an incompressible, Newtonian, single-phase
fluid around a circular cylinder at the Reynolds number of 100. Sixteen conditions were proposed in-
cluding four grid refinement levels and four time steps per grid, thus implying four grid/time refinement
studies at constant Courant number. Participants were requested to simulate each case with at least three
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Fig. 10. Maximum lift coefficient (CL)max as a function of the grid size hi/h1 and time step ∆ti/∆t1. Left plots obtained with the least

demanding iterative convergence criteria εmax and right plots with the most demanding iterative convergence criteria εmin. Comax = 15.
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Fig. 11. Maximum lift coefficient (CL)max as a function of the grid size hi/h1 and time step ∆ti/∆t1. Left plots obtained with the least

demanding iterative convergence criteria εmax and right plots with the most demanding iterative convergence criteria εmin. Comax = 6.
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Fig. 12. Maximum lift coefficient (CL)max as a function of the grid size hi/h1 and time step ∆ti/∆t1. Left plots obtained with the least

demanding iterative convergence criteria εmax and right plots with the most demanding iterative convergence criteria εmin. Comax = 1.5.
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Fig. 13. Maximum lift coefficient (CL)max as a function of the grid size hi/h1 and time step ∆ti/∆t1. Left plots obtained with the least

demanding iterative convergence criteria εmax and right plots with the most demanding iterative convergence criteria εmin. Comax =
0.75.

different levels of the iterative convergence criteria used at each time step.
Simulations were performed with seven different flow solvers, including five finite volume incom-

pressible solvers using implicit time integration (ANSYS CFX 14.5, pimpleFoam, ReFRESCO, SAT-
URNE, STAR CCM+ v12.06.010-R8), one finite element incompressible flow solver using implicit time
integration with grid and time adaptivity (CADYF) and one compressible flow solver using explicit time
integration (DLR-Tau).

Quantities of interest included integral/functional and local flow quantities. In this paper, illustra-
tive results are shown for the time-averaged drag coefficient (CD)avg and the maximum lift coefficient
(CL)max. The complete set of plots of all data gathered is available at [3].
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ReFRESCO with second-order schemes in time and space.
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demanding iterative convergence criteria εmax and right plots with the most demanding iterative convergence criteria εmin. ReFRESCO

with second-order schemes in time and space.

The main conclusions of this study are summarized below.

• There were two “exceptional” codes among those participating in the Workshop, viz. DLR-Tau and
CADYF.

- As expected, DLR-Tau (explicit time integration) exhibited a much weaker dependence on the
iterative convergence criteria than the flow solvers using implicit time integration;

- CADYF did not use the proposed grids and time steps due to the grid and time adaptivity tech-
niques included in this flow solver. Its results show a much smaller dependence of the final
solution on the iterative convergence criteria than the other incompressible flow solvers. In



CADYF, iterative errors influence the error estimation performed at each time step; hence the
use of a loose iterative convergence criterion reduces the time step (Courant number), decreas-
ing the influence of iterative errors.

• The five flow solvers using implicit time integration with a fixed time step or fixed maximum Courant
number exhibited similar trends. However, some of these codes control the iterative error using
residuals (ReFRESCO, SATURNE) and others use a fixed number of iterations at each time step
(pimpleFoam, STAR CCM+ v12.06.010-R8) or a combination of both (ANSYS CFX 14.5). For
the solvers that use a fixed number of iterations, the average value of the maximum residuals at
each time step were also reported. Therefore, iterative convergence criteria influence on the solution
is illustrated using the ratio between the residuals achieved in a given simulation and the largest
residuals used as iterative convergence criteria. The data showed that this simple flow is sufficient
to demonstrate the influence of the iterative convergence criteria used at each time step eit on the
numerical error of unsteady flow simulations performed with implicit time integration. Naturally,
the influence of eit on the selected quantities of interest is not always the same. In the present test
case:

- The effect of eit on (CL)max is significantly stronger than on (CD)avg;
- For the same level of eit , the influence of the iterative error diminishes when the Courant number

is decreased;
- Although statistical convergence is not illustrated in the present paper, several participants re-

ported that it is possible to statistically converge solutions to levels significantly smaller than
the iterative error of the same solutions.

The main goal of these Workshops on Iterative Errors in Unsteady Flow Simulations has been
achieved. Iterative errors must be carefully addressed in unsteady flow simulations performed with
implicit time integration. The use of loose iterative convergence criteria, often justified by the cost of
the simulation time, may lead to misleading results, even though apparently acceptable statistical and/or
discretization convergence levels were achieved. In such cases, the numerical error may be dominated
by the iterative error, which may exhibit levels dependent on the selected quantity of interest.
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