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Abstract: Dye-doped nematic liquid crystals support random lasing under optical pumping, 
as well as reorientational optical spatial solitons acting as all-optical waveguides. By 
synergistically combining these two responses in a collinear pump-soliton geometry, the 
resulting soliton-enhanced random laser exhibits higher conversion efficiency and better 
directional properties. After a short account on random lasers and solitons in nematic liquid 
crystals – nematicons – we describe our experimental results on nematicon-molded random 
lasers. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The last decades have witnessed substantial experimental and theoretical progress on random 
lasing in disordered systems, i. e., cavityless lasing via recurrent scattering [1]. The idea that a 
highly coherent process – such as laser action – can originate in disordered and diffusive 
systems has triggered several discussions about the fundamental mechanisms and the 
coherence of lasers. Nowadays, an overall consensus of possible random-lasing mechanisms 
has come forward and new challenges and opportunities in the area have been identified. At 
the same time, spatial optical solitons in nematic liquid crystals –nematicons- have reached a 
mature level of physical and technical understanding [2]. Hereby, after recalling the main 
features of reorientational nematicons and summarizing the state-of-the-art in the emerging 
field of random lasers, we describe how to mold and control the flow of random laser light by 
employing spatial solitons at a nonresonant wavelength in stimuli responsive complex fluids 
such as dye-doped nematic liquid crystals. We report our recent findings on demonstrating 
directional features and modulability of efficient random lasers which exhibit good beam 
quality and can be angularly steered via externally applied fields. 

2. Reorientational spatial solitons in nematic liquid crystals: nematicons 

Nematic liquid crystals (NLC) are uniaxial dielectric soft-matter in a fluid state, with their 
organic molecules exhibiting anisotropic polarizability, larger along their main axes than 
orthogonally. Therefore, their linear optical properties depend on the polarization of light and 
are easily affected by external stimuli perturbing the molecular distribution [3]. NLC can be 
prepared in planar cells with given boundary conditions, in order to ensure that the molecules 
are arranged in an ordered fashion, i. e., with average orientation along a direction named 
molecular director n despite positional randomness. When the order-parameter is close to 
unity, standard NLC respond as positive uniaxial crystals, with refractive indices / /n  and n⊥  

for electric fields parallel and orthogonal to the optic axis n, respectively, and 
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/ / 0.2n n n⊥Δ = − ≥ . When extraordinarily-polarized light waves propagate in such dielectric, 

electric dipoles are induced in the elongated molecules and tend to react (through an 
orientation-dependent torque) to the electric field E, increasing both the orientation angle θ 
with respect to the wave-vector k and the corresponding refractive index 
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. Such light-induced angular reorientation minimizes the system 

energy and balances the elastic intermolecular forces in the liquid and the restoring forces 
from the boundaries. Since / /en n n⊥ ≤ ≤  in positive uniaxials, the change of ne versus θ 

provides a self-focusing Kerr-like response [4], which is saturable and nonlocal as it extends 
beyond the disturbance size [5]. 

If a finite light beam, in the extraordinary polarization, propagates in NLC, light induced 
reorientation yields a graded-index transverse profile which can confine the beam itself into a 
non-diffracting optical spatial soliton, so called nematicon [6,7]. Nematicons are stable 
nonlinear 2D + 1 wavepackets thanks to the NLC nonlocal and saturable responses [4]; they 
oscillate in amplitude and width as they propagate, and are walking solitons with Poynting 
vector S angularly displaced by the walk-off angle 

( ) ( )
( )

2 2
/ /

2 2 2 2
/ / / /

( ) sin 2
arctan

( )cos 2

n n

n n n n

θ
δ θ

θ
⊥

⊥ ⊥

 −
=  + + −  

 with respect to the wave-vector k [8]. 

Nematicon waveguides can guide other co-polarized signals [9–11], can be routed/steered in 
the presence of external voltages or beams [12–18], other solitons [19,20], refractive index or 
birefringence perturbations [21–23], etc [2,6,7,24,25]. In the highly nonlinear regime 
nematicons can self-route [26–28], enhance spontaneous symmetry breaking [29] and exhibit 
beam bistability [30,31]. In guest-host material systems, such as dye-doped NLC, 
reorientational nematicons can coexist with other nonlinearities and nonlinear effects, 
including frequency tripling [32], spatio-temporal localization [33], thermo-optic response 
[34–36]. Hereby we address and describe another remarkable example of synergy between 
nonlinear responses. 

3. Random lasing 

Since firstly proposed by Letokhov in 1968 [37], random lasers have been intensely studied - 
both theoretically and experimentally - in a plethora of disordered systems (nanopowders, 
ceramics, liquid crystals, polymers and biological tissues, among others). Letokhov predicted 
that the combination of recurrent scattering and light amplification would lead to a new form 
of laser, spurring the creativity of scientists all over the world. The arbitrary walk of light 
waves inside random media, in fact, results in the confinement and localization of light within 
the material over distances long enough for optical amplification to overcome losses. While 
wave propagation in disordered media and light localization were described by P. Anderson 
with reference to vanishing propagation of electrons due to interference effects under very 
strong multiple scattering in disordered electronic lattices [38], this concept served as a model 
for metal-insulator transitions and has been widely adopted in optics to account for wave 
propagation in random media. In particular, when diffusive photon transport in completely 
disordered systems satisfies the condition kt ≤ 1 (where k is the magnitude of the local wave-

vector and t is the transport mean free path of photons), almost complete localization of light 

waves occurs, termed strong localization. In this limit, light is brought to a stand still and 
engenders an inherent and cavity-free feedback mechanism. Conversely, weak optical 
localization is considered to be a particular case of interference, predicted and observed in 
random media and in partially ordered systems when kt>1 (Mott-Ioffe-Regel criterion 

[39,40]). Because of the bosonic nature of the light quanta, the possibility of coherent 
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amplification or coherent absorption (attenuation) of light arises, as these are absent in the 
electronic (fermionic) case. Indeed, coherent amplification is a non-conservative scattering 
process where the temporal phase coherence of a wave is preserved despite gain. Active 
random media have repeatedly proven to be suitable candidates for diffusive laser action, 
mainly because the resonant feedback in conjunction with multiple scattering eliminates the 
need for an external cavity as in regular lasers. Light localization and interference effects, 
which survive multiple scattering, have been invoked to explain the random laser action 
observed in quite a few exotic and complex active systems [41–48]. 

Initial experimental investigations on the Letokhov prediction reported strong 
amplification at the transition frequency of the gain medium, albeit no discrete line narrowing 
was observed [41,42,49]. Later measurements, performed by tightly focusing the pump beam 
on smaller disordered systems, allowed observing discrete and narrow-band lasing lines 
[43,44,50–53]. In these experiments, typical gain saturation was observed by analyzing the 
photon statistics, whereas the emission distribution was found to be random in time and in 
space. In the search for a mechanism that could explain the origin of these discrete laser peaks 
[54], various scenarios have been proposed. An early picture suggested that feedback arises 
from multiple random scattering events leading to the spontaneous formation of closed optical 
paths within the disordered medium [54,55]. As an alternative to this early picture, loop 
resonators with large refractive index contrast were proposed and it was found that finite size 
scatterers could substantially increase the refractive index in these resonators because of 
disorder correlation [56,57]. Lately, single shot experiments in weakly scattering systems 
provided another interesting point of view: in fact, the appearance of random spikes suggested 
that spontaneously emitted photons accumulate gain along extended paths [58,59]. These 
“providential photons” -generated at a given point in space- were thought to acquire enough 
gain by returning to the point where they were originated, activating a new lasing mode at 
each pump shot. Using time resolved spectroscopy, aiming to evaluate the decay rates of the 
modes, anomalous diffusion was found and confirmed the existence of long-lived modes [60]. 
More recently, Fallert et al also reported experimental evidence of coexisting extended and 
localized modes in diffusive systems characterized by L/t>>1, being L the size of the 

specimen [61]. Although extended and long lived modes appear to be responsible for random 
laser action, they can only be obtained in specific configurations and cannot explain the 
experimental observations in their entirety. The next natural step in order to evaluate the role 
of extended and localized modes was to study their structure and distribution in disordered 
systems without gain; when gain is then introduced, the modes with the longest lifetime and 
lasing threshold become discrete and intense laser lines [62]. 

Nonetheless, the most debated arguments about random lasing remain the role of 
interference effects, whether the distinction between diffusive and random lasers is needed 
and whether coherent feedback is required to produce random lasing. The distinction between 
diffusive and coherent random lasers is hampered by the fact that multiple scattering can be 
regarded as an elastic process, thus interference effects are inherent to it. A simplified 
diffusive model enters the problem when interference effects are averaged out during long 
excitation pulses compared to the characteristic time of the scattering dynamics. However, 
narrow-band spectra in random laser materials need be modeled accounting for interference 
effects. On a different note, coherent feedback is not required for random lasing as optical 
cavities are not essential for obtaining coherent random laser emission. The characteristic 
‘Poissonian’ photon statistics that characterizes the coherent emission of a laser source is 
observed when light is first-order (field) and second-order (intensity) coherent. Any 
mechanism that selects a specific narrow banded mode (for example a band-pass filter) gives 
rise to first-order coherence, whereas second-order coherence is obtained by gain saturation. 
A random laser can exhibit coherent emission irrespective of the localization of the modes 
and the amount of ‘coherent’ feedback because of the amplification of spontaneously emitted 
photons by stimulated emission. When the gain is large, the intensity will grow until the gain 
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medium is saturated. In general, this tends to suppress the intensity fluctuations and give rise 
to second-order coherence. To these extents, after the first studies on micro and nano-powders 
dissolved in gain media [43,44], a plethora of other experiments followed on ceramic random 
laser [63], biological tissues and bovine semen [47,64], nano-imprinted DNA [65], 
conjugated polymers [66], semiconductor polycrystalline films [67], disordered photonic 
crystals [68], perovskites [69], and thermotropic liquid crystals [70–75], among many others. 
Liquid crystals, in particular, are stimuli responsive complex fluids, turbid in appearance, 
characterized by a scattering cross section up to six orders of magnitude larger than 
conventional isotropic fluids [76]. The external stimuli responsiveness of this class of 
materials makes them very promising for controlling the flow of random laser light. The 
spontaneous fluctuations of the molecular director in nematic liquid crystals lead to 
fluctuations in the local dielectric tensor, which is the main responsible for the (recurrent 
multiple) scattering in these systems, which can also be doped with active molecules to 
provide amplification. 

The main challenges for the development of random lasing applications are: i) the 
electrical excitation; ii) the directional control of a collimated beam, since the light is usually 
emitted in an unpredictable way and over a broad range of angles. Meeting the first challenge 
would allow applications in display and lighting technology, the main issue being the 
electrical conductance of the used materials because of their intrinsic disorder and often-
porous character; Williams et al performed initial studies of rare-earth-doped oxide powders 
that can be excited electrically [77]. The directional control is crucial for a wide range of 
random laser applications, from imaging to security scanning. Various solutions have been 
tried over the years, including fibers [78–81], microchannels [82], tailored pump [83], and 
nanostructures [84]. 

4. Random lasing with collinear near-infrared soliton and visible pump 

In order to face the limitations about directionality and transverse profile of random laser 
emission in liquid crystals, we resorted to a configuration encompassing both a reorientational 
nonlinear response and random laser action under optical pumping; such combination, in 
which reorientation supports spatial solitons, could provide suitable solutions to the lack of 
beam-like features by the presence of an optical spatial soliton. At variance with the 
configuration demonstrated in Ref. [85] with orthogonal wave-vectors for pump and 
nematicon beams, we used a collinear geometry: a pulsed pump laser at wavelength within 
the absorption region of the guest-host and a continuous-wave (cw) near-infrared (NIR) 
source were both injected with wave-vectors along the z-axis of a 100μm thick glass cell 
containing the soft matter. 

In such planar configuration, illustrated in Fig. 1, light propagated in the bulk of a thick 
sample of dye-doped NLC with optic axis n pre-oriented by mechanical rubbing at π/4 with 
respect to the input wave-vectors kg // kNIR // z in the principal plane yz [86]. The guest-host 
was the commercial E7 (Merck) doped with 0.3 wt % Pyrromethene 597 dye (Exciton), with 
refractive indices ||n  = 1.71 and n⊥  = 1.52 for electric field parallel and perpendicular to n, 

respectively. 
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thermal effects, as well as bleaching, would have to be carefully accounted for. Saturating 
effects versus pump energies were observed and reported by us in earlier experiments and the 
same collinear configuration [90]. 

5. Transistor-laser operation 

As noted above, when pumping the system with pulses above the lasing threshold, the 
presence of a collinear NIR-soliton modifies the output spectra through improved photon 
collection and interactions, as well as modified scattering. This is apparent not only in the 
characteristics graphed in Fig. 3(c), but also form single-pulse spectra collected at the output. 
Figure 4 displays several examples of individual RL spectral realizations versus near-infrared 
soliton power and for three values of input pump energy above threshold. It is clear that, at a 
given pumping level, a higher-power collinear soliton tends to enhance the random 
occurrence of sharp and intense lasing peaks over the background consisting of fluorescence 
and amplified spontaneous emission. Such trend can be interpreted in terms of better 
confinement of emitted light afforded by nematicon waveguides induced by higher NIR 
power. 

Table 1. Measured RL energy output Eout and conversion efficiency η corrected for 
Fresnel losses and transmission of the optical elements for various pump energies/pulse E 

and NIR input beam powers PNIR. Extrapolated (Eout)max and ηmax for a 130 μm long 
sample, assuming NLC scattering and absorption losses amounting to 6.95 cm−1 [89]. 

E(µJ) PNIR(mW) Eout(nJ) η(%) (Eout)max(nJ) ηmax(%) 

0.48 

0 0.01 0.003 0.04 0.010 

2 0.42 0.091 1.55 0.336 
4 1.13 0.245 4.14 0.898 
6 1.65 0.358 6.05 1.313 

0.50 

0 0.04 0.009 0.15 0.031 

2 0.83 0.173 3.05 0.635 
4 2.60 0.542 9.54 1.988 
6 3.85 0.803 14.14 2.945 

0.55 

0 0.11 0.020 0.39 0.075 

2 2.60 0.493 9.54 1.807 
4 5.77 1.093 21.16 4.007 
6 9.15 1.733 33.57 6.358 

0.60 

0 0.16 0.028 0.59 0.102 

2 4.73 0.822 17.36 3.014 
4 9.48 1.645 34.76 6.035 
6 15.10 2.622 55.39 9.617 

 
Such behavior can be exploited for all-optical modulation of the random laser, i. e., the 

control of the RL operation by means of low-power (mW) non-resonant input beams collinear 
with the pump but in the extraordinary-wave polarization. Unlike previous reports where 
random lasing was modulated via light-induced absorption or heating [91] or via trans-cis 
light-induced isomerization [92], the soliton control entails the possibility of a non-dissipative 
NIR-driven transistor random laser, a random trans-laser [93,94]. 

Figure 5 shows the operation of such random trans-laser when switching on or off a 6 mW 
NIR soliton. As the soliton is formed, the RL in-out characteristic shifts to a lower pump 
threshold, promoting either the turn-on of the random laser or its increased efficiency, 
depending on the bias point represented by the pumping level. This mechanism is illustrated 
by extracting the peak intensity counts after either averaging over a large number (N = 200) 
of single-shot spectra or taking the average of the whole spectra. In either case the trans-laser 
can be switched-on by the presence of a collinear soliton (cases “α” in Fig. 5) or its efficiency 
substantially enhanced (cases “β” in Fig. 5). Below RL threshold, conversely, the nematicon 
changes the input-output conversion of the system in a negligible manner. Remarkably, the 
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emission spot shifted with the yz plane of observation, as shown for the limiting cases in Fig. 
9(a-b). 

Typical averaged RL spectra, obtained at pumping levels above threshold and with a 7 
mW nematicon, are displayed in Fig. 9(c) together with measured and calculated walk-off of 
the RL-beam versus magnetic field orientation [97]. Spectra acquired for opposite angles θm 
are similar, demonstrating that the magnetic reorientation was quite efficient within the NLC 
volume of interest, despite the initial (boundary defined) anchoring of the optic axis n. 

 

Fig. 9. (a-b) Photographs of output profiles (plane xy) of RL emission above threshold (E = 0.6 
μJ) for a 7 mW nematicon and magnetic field along (a) θm = + 50° and (b) θm = −50°. The scale 
bars measure 100 μm. (c) Calculated (solid red line) and measured (symbols) walk-off versus 
θm, with examples of RL output spectra averaged over N = 200 pump pulses (see also [97]). 

9. Conclusions and future work 

The synergy of two nonlinear optical responses, namely self-focusing through reorientation 
and light-matter interaction for optical amplification, in conjunction with randomness and 
scattering has been demonstrated in a soliton-aided and soliton-controlled random laser to 
improve the overall performance and add novel features to this cavityless light source. Such 
device is able to “beam” random laser emission, improving its conversion efficiency and 
adding modulation capabilities in transistor-like operation driven by a small non-resonant 
continuous-wave input. Moreover, the emitted RL beam can be steered at will within the 
active medium itself, using e. g., an external voltage or magnet. 

Several questions, however, remain to be answered and will require extensive future 
work. A model accounting for anisotropic scattering and feedback in a spatially non-
homogeneous and birefringent gain medium is a formidable theoretical (and numerical) task 
to be undertaken. On the experimental side, the spectral features of each point within the 
emitted RL profile need be investigated, both in forward and in backward propagation, 
addressing the role of mode evolution in the graded-index light-induced channel. In terms of 
applications, a thorough study of time responses and their optimization when modulating the 
nematicon-assisted RL with electric or magnetic fields could open perspectives in sensing and 
speckle-free imaging. 
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