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Abstract 
 
As the demand for the transmission of electric power and communication signals in automotive 
and aerospace vehicles increases, so does the number of structures comprising simplified one-
dimensional attachments, such as electrical cabling, affixed to a host plate like primary structure. 
These attachments are typically uncertain in their geometric or material properties, potentially 
affecting the response of the built-up structure. Difficulties then arise in the prediction of the 
response of the assembly. This study shows how the variability, due to the uncertain attachments, 
might be reduced by considering flexible connections. A mobility analysis compares systems 
connected with either rigid links or elastic springs. A frequency is identified at which the assembly 
dynamically uncouples; the effect on the host response variability due to the uncertain attachment 
decreases above this frequency with a reduction of the order of 60 dB in the coefficient of 
variation. This uncoupling or effective isolation frequency can be simply estimated from the 
mobility of the elastic connection and the properties of the nominal structural attachment. For 
design purposes, this frequency can be adjusted to achieve a more predictable response above a 
given frequency. 
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1. Introduction 
Vibration analysis requires the dynamic characteristics of a structure to be known, so geometry 
and mechanical properties, boundary conditions and connections between the structural 
components are necessary input parameters1. One issue for estimating the structural response is 
the manufacturing process variability in the nominal material and geometric properties, leading 
to different dynamic responses of nominally identical components2. This paper proposes an 
approach to reduce the variability in coupled structures comprising a one-dimensional waveguide 
connected to a two-dimensional waveguide through a finite number of point connections. The 
one-dimensional waveguide can represent structures such as cable bundles, hydraulic pipes, 
reinforcement ribs, etc., whilst the host structure can be an aircraft fuselage, a satellite body or a 
car body-in-white.  

Aerospace electrical cable or wiring harnesses are often 10% of the total mass, but they could 
be as much as3 30%. The current standard method of modelling these as lumped masses at 
connection locations is not sufficiently accurate. Therefore, a model is required that goes beyond 
considering the attachment as lumped masses taking into account the structural dynamic 
interaction of structures such as electrical wiring, or determining when this interaction is relevant 
for the forced response3. The effects of adding light (harness-to-host mass ratio up to 8%) 
untensioned cabling to a structure can be divided into two frequency ranges. At low frequencies, 
due to mass loading, the natural frequencies of the host structure are lowered and the positions of 
the modelled point masses could be optimised to minimise the response over a frequency band4. 
At high frequencies, wiring cables increase the system modal damping ratios; strongly coupled 
modes can result in a dramatic reduction in the system quality factors5. This damping benefit 
contrasts to uncertainty due to the variability at higher frequencies being sensitive to relatively 
small changes in the cables, i.e. cross-section geometry, additional taping or sheathing5. 
Assuming that the source of variability in the response of the connected structure is largely due 
to uncertainty in the wiring represented as a one-dimensional waveguide, the use of nominally 
identical elastic connections could be used to reduce this uncertainty and identify an isolation 
frequency. The uncertainties in the one-dimensional waveguide could be due to variation in the 



geometry, density, etc. but herein it is considered that the Young’s modulus is uncertain and 
varyies along the length of the wiring represented by a low stiffness beam. 

 
2. Mobility analysis and formulation 
 

Mobility methods can be used for describing the behaviour of continuous or simple lumped 
parameter systems6 and for the dynamic behaviour of both a directly excited structure and one 
connected to it in a coupled system7. For the point connection,  it is assumed that coupling is only 
through the transverse out-of-plane deflections with small displacements in both the host plate 
and the attached beam, hence linearity is assumed. A typical automotive wiring has a non-
negligible bending stiffness8, therefore for later beam to plate models it is assumed that the cable 
is represented by a low stiffness linear beam, with no contact other than at discrete point 
connections. It is important to note that the shear deformation and rotary inertia of the beam are 
also neglected in the study. 
 

Wave-based methods such as the Wave Based Method9,10 (WBM), the spectral element 
method11,12, the Semi-Analytical FE method13 and the Wave and Finite Element14–16 (WFE) 
usually require the structures to be homogeneous; this paper deals with uncertain one-dimensional 
structural attachments. They are assumed to have slowly varying properties along their length, 
i.e. there are no sudden changes in the properties along their length. This condition is met if17 
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ฬ ≪ 1, where ݇௕ is the beam flexural wavenumber. The Wentzel, Kramers and Brillouin 

(WKB) approximation is suitable to find the waveguide mobility, rather than attempting to predict 
the uncertain modes shapes and natural frequencies. WKB allows modifications of plane-wave 
propagating solutions in media slowly varying when compared to the wavelength18. The 
fundamental assumption is that the properties of the waveguide along the propagation axis vary 
slowly enough and do not lead to internal reflections due to local changes or that they can be 
neglected19. It also retains the interpretation of positive-going and negative-going travelling 
waves, so allowing the use of a wave approach similar to the homogeneous waveguide case and 
the inclusion of random fields to treat variability2. If the travelling or propagating wave reaches a 
local cut-off, or cut-on, region, the WKB approximation fails. Those are known as turning points 
and they lead to internal reflection, when the main assumption of the method breaks down2. 
Generalising the work by Fabro2, one can find the condition that the random field has to fulfil in 
order for the WKB approximation to be valid20 and the subsequent expressions for the mobility 
of a finite beam with slowly varying properties at an arbitrary point20. 

Figure 1 shows the waves necessary to derive the beam mobility. The point mobility at an 
arbitrary point Y() (in ms-1N-1) is given by: 
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where  ࢉ૛
ା and ࢉ૛

ି are the right-going and left-going waves derived in Appendix A including the 
evanescent, respectively.   
 
 
 



 
Figure 1 – Waves required to derive the mobility at an arbitrary point. The superscripts + and ‐ denote waves 
propagating or decaying from the left to right or right to left respectively. The subscript denote the waves at a 

particular point with N denoting an evanescent or near field decaying wave. Symbol  refers to a reflection matrix 
where the subscript L or R correspond to the left or right hand end of the waveguide.  

The variability of the mechanical properties can be treated as random fields21 and can be 
modelled using spatially correlated variability22–24. One can describe a random field ܪሺݔሻ as a set 
of random variables described by a continuous parameter ݔ	 ∈  describes the system ܦ where ,ܦ
geometry or domain22.  The Karhunen-Loève (KL) expansion is used2 to treat strongly correlated 
random fields. The KL is the optimal expansion in the sense that the mean-square error associated 
by approximating the infinite series with a finite number of terms is minimized25–27. If only the 
mean value and a finite variance of a process are known, a Gaussian distribution has the maximum 
entropy23 and it is the one that best describes the knowledge about the process. Hence it will be 
used to describe the random field. 

The KL expansion is used for the zero-mean random field, truncating the series at ௞ܰ௟ 
terms2,24, in the domain 0	 ൑ ݔ ൑  is the length of the beam. For simplicity, this paper ܮ where ,ܮ
assumes that only the Young’s modulus of the connected structure is uncertain. The Young’s 
modulus is expressed by ܧሺݔሻ ൌ ଴ሾ1ܧ ൅  is a ߪ ଴ is the nominal value andܧ ሻሿ, whereݔሺܪߪ
dispersion term to quantify the influence of ܪሺݔሻ in the mean nominal value ܧ଴. Assuming small 
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where ߦଶ௝ is Gaussian zero-mean, unit standard-deviation, independent random variable, ߚ௝ ൌ
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 are the eigenvalues of the Fredholm integral equation involving the 

covariance function, ܮ is the length of the domain, i.e. the beam, 	
ܿ ൌ

ଵ

௕ಽ
, ܾ௟ is the correlation length and ݓଶ௝ are the ݆௧௛ roots of the transcendental equation 

ଶݓ tanݓଶ െ ܿ ൌ 0.  
  
3. Coupling structures using a mobility approach 

Once the input and transfer mobilities are known, it is possible to couple the structures using 
the continuity and equilibrium conditions expressed in terms of the mobility matrices. Abolfathi 
et al.28 used mobilities to connect plates with only one connection point to investigate the 
connected structure variability. Uncertain parameters for the mount and the plates were 
considered, considering the properties of the mount and modal damping being more likely to be 



uncertain than the plate properties. Here the uncertain attachment, cable wiring with slowly 
varying properties represented by low bending stiffness beams, are connected to a host plate 
through multiple rigid connection points. Subsequently, identical elastic springs20,29 are used to 
represent massless elastic mounts. When the elastic spring stiffness is significantly higher than 
the point dynamic stiffness of the two connected structures, then the relative displacement of the 
spring ends is negligible and a rigid link assumption is valid. Physically this might occur with 
stiff metal fastening connections. 

For simplicity, an external harmonic point force is applied to the plate at one of the N 
connections. The number of points of interest on the plate and the beam are set equal to N. If this 
is not the case, the dimensions of the mobility matrices for the host plate and connected beam are 
different, with additional points others than the connections considered.  The present analysis 
neglects the offset of the beam neutral axis from the plate, with both the beam and plate vibrating 
in flexure only.  
 

3.1. Infinite structures 
Infinite structures are considered, because they can represent the general behaviour of finite 
structures. At higher frequencies, finite structures tend to the behaviour of an infinite structure. 
Moreover, the frequency-averaged response of a finite structure tends to that of an infinite 
structure7,30.  

For rigid links, the velocity continuity implies that at the connection points: 

 ሶ࢝ ௣ ൌ ሶ࢝ ௕ 
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where ሶ࢝ ௣ and ሶ࢝ ௕ are the vectors for the out-of-plane velocities at the plate and beam, 
respectively. 

The separate beam and plate velocities can be calculated using: 
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where ࢅ௣ is the matrix comprising the required plate mobilities, ࢅ௕ is the matrix for the beam 
mobilities ࢌ is the vector of external forces applied to the plate and ࢌ′ is the vector of transmitted 
internal forces between the beam and plate. A proportion of this applied force ࢌ is transmitted 
from the plate to the beam through the rigid link connecting them and, as a reaction, the beam 
applies the same transmitted force ࢌ′on the plate in the opposite direction. 
From the previous set of equations, one can determine the vector for the transmitted forces: 

ᇱࢌ  ൌ ൫ࢅ௣ ൅ ൯	௕ࢅ
ି૚
 ࢌ௣ࢅ

 
(7) 

Equation (7) can be used in Equations (5) and (6) calculate the forced response of the plate 
or beam when they are connected due to an external force vector ࢌ. 

 
When using linear elastic translational springs as the connection, at each connection, an 

internal force is produced by the spring on the beam and plate. These forces, being given by 
Hooke’s Law at the ends of the spring, are equal in magnitude but opposite in direction. This 
extension is the difference in the displacements of the beam and plate at the respective points. 

Figure 2 shows the forces on a system comprising an infinite plate connected to an infinite 
beam through a finite number of spring connections. In this diagram the external force is applied 
at the second of the N connection points, but in principle could be at any alternative location thus 
requiring suitable equation reformulation.  



 
 

Figure 2 – Infinite beam connected to an infinite plate through an arbitrary finite number N elastic springs.  ௞݂ are 
the reaction forces acting on the beam and plate with other reaction forces at the other springs not shown. 

Analogous to the rigid link: 
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where ࢌ is the vector of external forces applied to the plate and ࢌ௞ is the vector of the internal 
forces due to the compression of all of the springs. 

Rewriting  ࢌ௞: 
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By Hooke’s Law, one can evaluate all of the spring forces in terms of the velocities at the 
spring ends:  
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 ࡷ is a diagonal matrix containing the stiffness of the connecting springs. After rearranging 
equations (8-11), in matrix form one then has: 
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Numerical results are now introduced, first considering a single rigid link between an infinite 
plate and the infinite beam. The mechanical properties used throughout this paper are summarised 
in Table 1. Souza and Ferguson8 and Abolfathi et. al29 estimated the bending stiffness of a typical 
automotive cable wiring bundle and door panel plastic clips respectively.  

 
Table 1 – Nominal properties of the infinite and finite modelled beams, plates and connection stiffnesses. 

Property Numerical value 
Plate density ߩ௣ (kgm-3)  7850 
Plate thickness ݄௣	(m) 0.002 

Plate Young’s modulus ܧ௣ (GPa) 200 
Nominal bending stiffness beam8 ܫܧ (Nm2) 1.006 

Density beam ߩ௕ (kgm-3) 8960 
Nominal spring stiffness29 ܭ (kNm-1) 1250 

Beam cross section ܣ (m2) 0.01x 0.01 
Poisson’s ratio 0.30 ߥ 

Material hysteretic loss factor ߟ (for beam and plate) 0.001 
Rectangular plate length y (m) 0.69 
Rectangular plate width x (m) 1.5 

Finite beam length (m) 1.0 
Spacing between elastic spring connections (m) 0.21875 

Correlation length for the beam bending stiffness, ܾ௅ (m) 1 

௞݂ 

௞݂ 

݂ 



Number of modes in the KL expansion20 16 
Spreading factor, 0.1 ߪ 

Frequency range [Hz] 1-10,000 

 
Figure 3 – The magnitude of the point mobilities for the uncoupled beam and plate and when a single connection is 
introduced. The frequency where the minimum of the response on the plate occurs is 868 Hz.   

Figure 3 shows the magnitude of the point mobilities for the infinite beam, plate and for an 

elastic spring. The expressions for those are respectively6: ܻ ௕ ൌ
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, where ܭ is the spring stiffness. It also shows that the response of the rigidly coupled system 

at low frequencies tends to the response of the plate, whilst at high frequencies it tends to that of 
the connected beam. When a spring connects the structures, there is a response minimum seen for 
the excited plate when coupled. A frequency exists above which the response of the elastically 
coupled system tends to follow the response of the uncoupled plate, whilst there is a sharp drop 
in the response of the beam. This is when the two components effectively uncouple. One can 
estimate this approximate frequency by equating the magnitude of the point mobilities of the 

beam and spring.  Hence the estimated uncoupling frequency is   ߱௨ ൌ
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However, it is not computational costly to use the separate mobilities to calculate the actual 
coupled system response and then find the exact frequency, identifying the point of inflexion in 
the coupled response.  

 
3.2. Finite structures – multiple rigid connections 

The reflections due to the boundaries of the structures leads to resonances. Here a finite 
homogenous plate is connected to different simulated beams, which represent cables with the 
same nominal properties. The beams have a slowly varying Young’s modulus to represent the 
variability. Error! Reference source not found.1 gives the properties used in the finite system 
numerical calculations. Figure  4 shows schematically the coupled finite system. To avoid any 
effects related to symmetry, the beam is connected off the symmetry axes of the rectangular plate. 
For simplicity, an external force is applied at the central connection, point 3, acting on the plate. 
This is a unit magnitude force with a constant spectrum from 1 Hz to 10 kHz. Equally spaced 
connections and springs with identical nominal stiffness are considered. Multiple force excitation 
points could be considered, with the appropriate transformation matrices to map it to the 
connection points.  



 

 
Figure 4 – Geometry of the coupled system. A one metre long beam connected to a rectangular homogeneous plate 
through 5 point connections (〇). An external transverse force is applied to the plate at the central connection point. 

The slowly varying low bending stiffness for the 10 different beams are shown in Figure 5. 
Figure 6(a) shows the convergence of the KL expansion. The KL expansion has converged2 when 
௝௄௅ߣ ⁄ଵ௄௅ߣ ൏ 0.1, in other words the truncated series has already enough terms to represent the 
random field accurately. Figure 6(b) shows a typical result for the slowly varying condition.  The 
colour map shows that at any given frequency along the length of the beam, the condition for 

slowly varying property ฬ
ଵ

௞್
మ
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ฬ ≪ 1 is met.  One can see that the maximum amplitude, occurring 

at lower frequencies, are still limited to around 0.3 and the WKB approximation holds. 

 
Figure 5 – Bending stiffness for the ten different slowly varying beams compared to the nominal bending stiffness. 

(a) 
(b) 

Figure 6 – Convergence of the KL expansion and validity of the field for the WKB approximation for a typical beam 

sample. Figure (a) shows the relative size of the KL eigenvalues. (b) shows the slowly varying condition17 ฬ
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Figure 7(a) shows the point mobility of the nominal beam and plate along with the coupled 
system comprising a nominal beam connected to a host plate. A slight mass loading effect is seen 
on the plate at lower frequencies with the corresponding resonance frequencies reduced. Figure 
7(b) shows the mobility for the 10 different beams alone.  
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(a) 

 
(b) 

Figure 7 – The point mobilities for the finite systems using rigid links. In (a) the system with nominal properties and 
in (b) the magnitude for the beam mobilities, considering the 10 different slowly varying cases. The dotted‐dashed 
line is the limits of the region which cover the  95%  response bounds and the triangles through the maximum values 
of the peaks30. 

Figure 8 shows the envelope, covering 95% of the range of the point response of the coupled 
system calculated at the excitation point on the plate when the ten different beams are separately 
considered. At lower frequencies the variability due to the uncertain beams do not affect the 
response of the coupled system, since it is dominated by the less mobile plate element at these 
frequencies. At higher frequencies, the 95% bounds for the response spreads out around the 
response of the nominal case, showing that the variability due to the different beams start to affect 
the response of the built-up structure.  

 
Figure 8 – Response of the coupled finite system at the plate considering rigid connections. The 95% envelope is the 
range of response when the different beams are considered separately and triangles for the theoretical maximum 
envelope for the peaks of the response of the plate30.  

3.3. Finite structures – multiple flexible transverse spring connections 
 
Figure 9 shows that at lower frequencies the uncertain attached structure does not affect the 

response of the coupled system calculated on the host plate. At higher frequencies, instead of the 
spread in the response around the response of the nominal system the envelope of the point 
response converges to the predicted response when the nominal uniform properties are 
considered. In this case, from the analysis of the infinite structure, the response is actually 
governed again by the host plate. The response of an equivalent infinite built-up system 
considering the nominal properties is also shown in order to infer the frequency where the 
uncoupling occurs.  



 
Figure 9 – Response of the coupled finite system using elastic spring connections. The 95% envelope is the range of 
response when the different beams are considered separately.  

Comparing the previous results, introducing flexible links reduces the variability of the 
coupled system response. Figure 10 shows a direct comparison of the effects of considering 
flexibility in the connections. It is possible to see that, in this case, above the first three resonances, 
where the response was governed by the response of the host plate, the change in the stiffness of 
the coupled uncertain beam introduces a spread around the response for the nominal case. 
However, above the uncoupling frequency this spread is reduced. This can be seen by the collapse 
of the envelope for the response of the uncertain system to that for the response of the nominal 
uniform coupled system. The coefficient of variation (CoV) is given by the division of the 
standard deviation of a population by the mean of said population using the response at each 
frequency. The higher the coefficient of variation, the more variability that exists. Below the 
uncoupling frequency, around 860 Hz, the two CoV values for the rigid and elastic connections 
have similar behaviour. Above said frequency, the CoV of the elastically coupled system starts 
to reduce, producing extremely low statistical variation at higher frequencies, i.e. there is no 
noticeable variability in the coupled response. At these higher frequencies, differences of up to 
around 60 dB occur comparing the CoV for rigid and flexible links. In comparison with the simple 
isolation effectiveness of connected systems, typically used for a single point connection and 
expressed in terms of the response velocity ratio of the secondary system without and with the 
isolation being present, a similar reduction in the secondary system response (in this case the 
beam) of 40 dB per decade is observed above the isolation frequency. Therefore, if one needs to 
reduce the variability of the response above a given frequency of a built-up structure, such as a 
satellite,  due to an uncertain attachment, one can design an appropriate connection, i.e., with a 
given stiffness, that would uncouple the system in the desired range.  

The CoV values for the point mobility of the uncertain beams rigidly connected are also 
shown in Figure 10(a). They are slightly higher than the CoV values for the rigidly coupled 
nominal system, except at lower frequencies when the coupled system is governed by the response 
of the host plate. At these frequencies, there is virtually no variability in the coupled system. Figure 
10 (b) shows that the same trend is followed at the other connection points and shows that using 
flexible links is a reliable way of controlling the variability of the host structure response.  



 

(a) 

(b) 
Figure 10 – Nondimensional Coefficient of Variation comparison for the response of the coupled systems with rigid 
links, flexible connections and for the uncertain beam ensemble. The point mobility is used for (a), Point 3 in Figure 4  
and the transfer mobility to the beam for (b); the numbers in the upper left corner of the plots relate to the connection 
points shown in Figure 4. The vertical solid line marks the frequency for the minimum of the magnitude of the coupled 
infinite system occurs (868 Hz), whilst the vertical dashed line uses the approximate expression for the uncoupling 
frequency from the properties of the spring and infinite beam. (935 Hz).  

4. Concluding remarks 
 

In this work, a potential methodology for controlling the propagation of variability in connected 
structures comprising of uncertain beam structures connected to a host plate structure was 
investigated using an equivalent set of simplified models. The uncertain structures, representative 
of cable bundles, were modelled as beams with slowly varying properties. Different beams were 
connected to a plate to illustrate the variability in the response of the built-up structure when 
uncertain structural attachments are considered. The multiple point structural couplings were 
assembled using a mobility approach. For that, the mobility of a beam with slowly varying 
properties at any arbitrary point was derived using the WKB approximation.  

3 
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Rigid links and flexible links in the form of transverse elastic springs were considered. 
The approach could be extended for other models of connections provided that the mobility 
matrices for the actual links are known. No variability in the stiffness of the springs, the spacing 
between the connections or the host structure were considered. At lower frequencies, the 
connected beam produces a mass load effect on the response of the coupled system. The presence 
of flexible links result in an uncoupling of the two connected structures above a much higher 
frequency. This uncoupling frequency can be calculated using the equivalent nominal properties 
infinite system, which is a system comprising an infinite plate connected to an infinite beam 
through a single elastic spring.  

A comparison between the responses of the coupled system when rigid links were considered 
versus flexible links is quantified using the Coefficient of Variation. For frequencies above the 
uncoupling frequency, the response of the coupled system is governed by the response of the 
excited host plate and the variability due to the uncertain structure has no effect on the built-up 
structure when flexible links were considered. A reduction of the order of 60 dB in the CoV can 
be seen when flexible links are used. In both the point and transfer response this uncoupling 
phenomenon occurs. This uncoupling frequency could be a target to be optimised or tuned 
accordingly for vibration control requirements. 
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Appendix A: Mobility of a beam with slowly varying properties at an arbitrary point 

Generalising the work done by Fabro et al.2, a wave approach is used to derive the mobility of a 
beam with slowly varying properties at any point. Assuming that the condition for the WKB 
approximation to be valid is met, there are no reflections due to the small local changes in 
properties even if the net change is large. However, the waves are reflected at the ends of the 
beam. Figure A.1 shows schematically the waves present in a beam.  

Figure A.1 – Propagating waves and waves reflected by the boundaries on a finite beam. In (a), the propagating 
waves from the excitation point and reflected waves by the boundaries, whilst (b) also includes the propagating 
waves at an arbitrary position ݔଶ.  

The point harmonic excitation force ܨ creates the directly excited positive and negative going 
waves ࢗേ ൌ 	 ሾݍേ	ݍே

േሿ் and the expression for the input mobility2, can be generalised to find the 
amplitude of the waves ࢉଶ

േ ൌ 	 ሾܿଶ
േ	ܿଶே

േ ሿ் at an arbitrary position from ࢇଶ
േ ൌ 	 ሾܽଶ

േ	ܽଶே
േ ሿ் and ࢈ଶ

േ ൌ
	ሾܾଶ

േ	ܾଶே
േ ሿ். 
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where ઩ࡶ ൌ ൤
઩ࡶ૚૚ ૙
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in phase is given by the integral of the wavenumber, ߠሺݔሻ ൌ ׬ ቂ
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where  ઩, ઩′ and ઩ࡾ૚૚ are propagating matrices and ડࡾ is the reflection matrix at the right end of 
the beam. 
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Thus: 
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Combining Equations (A.5) and (A.7): 
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where ડࡸ is the reflection matrix at the left end of the beam. 
 
From equilibrium of forces and continuity of displacement the infinite beam wave amplitudes are: 

 
ାࢗ ൌ ିࢗ ൌ ࢗ ൌ 	

െ1

ଵሻ݇௕ݔሺܫܧ4
ଷሺݔଵሻ

ቂ݅
1
ቃ  ܨ

 
(A.16) 

Thus: 
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where ࡵ is the identity matrix. 
 
 Finally: 
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Once, the wave amplitudes ࢉ૛
ା ൅ ૛ࢉ

ି at an arbitrary position are known, the generalised mobility 
at any point is given by: 
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 In the particular case of a free end, the reflection matrices ડࡸ and ડࡾ are given by31: 
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