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Abstract: In conformal field theories (CFTs) of dimension d > 3, two-dimensional (2d)

conformal defects are characterised in part by central charges defined via the defect’s

contribution to the trace anomaly. However, in general for interacting CFTs these central

charges are difficult to calculate. For superconformal 2d defects in supersymmetric (SUSY)

CFTs (SCFTs), we show how to compute these defect central charges from the SUSY

partition function either on Sd with defect along S2, or on S1 × Sd−1 with defect along

S1 × S1. In the latter case we propose that defect central charges appear in an overall

normalisation factor, as part of the SUSY Casimir energy. For 2d half-BPS defects in

4d N = 2 SCFTs and in the 6d N = (2, 0) SCFT we obtain novel, exact results for

defect central charges using existing results for partition functions computed using SUSY

localisation, SUSY indices, and correspondences to 2d Liouville, Toda, and q-deformed

Yang-Mills theories. Some of our results for defect central charges agree with those obtained

previously via holography, showing that the latter are not just large-N and/or strong-

coupling limits, but are exact. Our methods can be straightforwardly extended to other

superconformal defects, of various codimension, as we demonstrate for a 4d defect in the

6d N = (2, 0) SCFT.
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1 Introduction

Defect operators are essential for classifying Quantum Field Theories (QFTs) [1–4]. For

example, two gauge theories with the same gauge algebra but different gauge groups can

have identical correlators of all local operators, but different spectra of 1d (line) operators,

such as Wilson and ’t Hooft lines [2]. Furthermore, such 1d operators are the order pa-

rameters classifying vacua as confining, Higgs, Coulomb, etc. Similarly, higher-dimensional
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defect operators are order parameters classifying phases in which higher-dimensional ob-

jects, such as strings, condense [3, 4].

A fundamental question in QFT is therefore how to characterise and classify defect

operators. A formidable obstacle to answering this question is in dealing with (strongly)

interacting degrees of freedom of the ambient QFT and/or on the defect. To overcome this

obstacle we will employ a common strategy: impose highly restrictive symmetries. Specif-

ically, we will require both conformal symmetry and SUperSYmmetry (SUSY). Further-

more, we will focus exclusively on 2d defects, which in 4d are also called surface operators.

In short, we will focus on 2d superconformal defects in SuperConformal Field Theories

(SCFTs).

We use conformal symmetry to provide order in the space of QFTs. In particular,

Conformal Field Theories (CFTs) occupy privileged places in the space of QFTs, as fixed

points of Renormalisation Group (RG) flows, and c-theorems then imply irreversibility

along those RG flows, providing a hierarchy among QFTs. More specifically, c-theorems

state that certain central charges must decrease monotonically along RG flows. As a

result, these central charges can count degrees of freedom, which we expect to decrease

along RG flows as the UltraViolet (UV) physics becomes more coarse grained and massive

modes decouple. Proofs exist for c-theorems in 2d [5–8], 3d (F -theorem) [9, 10], and 4d

(a-theorem) [8, 10–15].

How to extend c-theorems to defect CFTs remains an open question. Currently only

two defect c-theorems have been proven. The first is for RG flows along 1d interfaces sep-

arating 2d CFTs. In these systems the “g-theorem” [16–18] requires the interface entropy,

denoted ln(g), to decrease monotonically along the RG flow. Intuitively, ln(g) measures

the ground state degeneracy of the 1d quantum system and thus counts the number of de-

grees of freedom localised at the interface. Often ln(g) can be computed, even in (strongly)

interacting systems, using powerful methods available to 2d CFT.1

The second defect c-theorem is for 2d defects in CFTs of dimension d ≥ 3, with an

RG flow on the defect [19, 20]. To be precise, let M denote the background manifold

for a d-dimensional Euclidean CFT with coordinates {xµ}, with µ = 1, 2, . . . , d, and let

Σ ↪→M with coordinates {ξa}, with a = 1, 2, be the 2d submanifold on which the defect

has support. In these cases the trace anomaly includes the usual contribution from the

ambient CFT, which can be non-zero only if d is even, plus a contribution delta-function

localised at Σ [21–24],

Tµµ

∣∣∣
Σ

= − 1

24π

(
bE2 + d1 I̊I

µ
abI̊I

ab
µ − d2Wab

ab
)
, (1.1)

where we use the sign and normalisation conventions of refs. [25, 26].2 In eq. (1.1), E2 and

I̊I
µ
ab are the Euler density and traceless second fundamental form of Σ, respectively, and

Wabcd is the pullback of the ambient Weyl tensor to Σ. In general, a 2d defect thus has three

1The g-theorem also applies to a 2d CFT with a boundary, interpreted as an interface with an “empty”

CFT on one side, and to a 2d CFT with a point-like impurity.
2For a surface defect in d = 4 that breaks parity, additional parity-odd terms may also appear in the

trace anomaly [26, 27]. These will play no role in this paper.
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possible central charges, b, d1, and d2. In the classification of ref. [28], b is type A while

d1 and d2 are both type B. Among other things, the classification means b cannot depend

on defect marginal couplings, while d1 and d2 can. In general, all three can depend on

marginal couplings of the ambient CFT [29, 30], unless the defect preserves 2d N = (2, 0)

SUSY, in which case b cannot depend on ambient marginal couplings either [31].

The central charge b obeys a c-theorem for defect RG flows [19, 20], sometimes called

the “b-theorem.” Whether d1 and d2 obey c-theorems still remains unknown. However,

proofs exist that in reflection-positive theories d1 ≥ 0 [29, 32], and if the average null energy

condition is obeyed in the presence of the defect then d2 ≥ 0 [26]. Free field computations

show that b can be negative, but whether b obeys a lower bound has not been proven. For

d = 3, a lower bound b ≥ −2
3d1 was conjectured in ref. [32].

In general, b, d1, and d2 are difficult to calculate, and indeed to our knowledge they have

been calculated only in free-field CFTs [22, 23, 33, 34] and holographic CFTs [21, 25, 26, 35–

45]. This is why we turn to SUSY, to provide tractable examples of interacting theories in

which we can calculate b, d1, and d2 without using holography.

In particular, we will consider 1/2-BPS 2d superconformal defects in 4d and 6d SCFTs.

In 4d we focus on N = 2 SCFTs of class S, which are obtained generically by wrapping a

stack of N coincident M5-branes on a genus-g n-punctured Riemann surface Cg,n [46]. The

torus, C1,0, is a special case where the 4d SUSY is enhanced, producing the maximally SUSY

SCFT in 4d, N = 4 SU(N) super Yang-Mills (SYM) theory. We consider superconformal

defects preserving 2d N = (2, 2) SUSY (enhanced to N = (4, 4) in N = 4 SYM theory)

arising as either M2-branes ending on the M5-branes, which sit at a point on Cg,n, or a

second stack of M5-branes intersecting the first stack over a codimension 2 surface, and

which wrap all of Cg,n [47–50].

In 6d we focus on the worldvolume theory of N coincident M5-branes (not wrapping

a Riemann surface), namely a 6d AN−1 N = (2, 0) SCFT. Our 2d superconformal defects

will arise from M2-branes ending on the M5-branes, producing a so-called “Wilson surface”

operator in the 6d SCFT, which preserves 2d N = (4, 4) SUSY [51].

Our goal is to use SUSY methods to compute b, d1, and d2 for these classes of 2d

superconformal defects. In fact, in a 4d SCFT with a 2d N = (2, 0) superconformal

defect, ref. [52] proved that the SUSY algebra requires d1 = d2. Ref. [52] further provided

compelling evidence for the conjecture that d1 ∝ d2 for 2d N = (2, 2) superconformal

defects in any d. All of these results extend equally well to 2d N = (4, 4) superconformal

defects. We will thus only explicitly compute b and d2.

We will compute b only for 2d superconformal defects in 4d N ≥ 2 SCFTs. To do so,

we will compute the partition function of the Euclidean CFT on M = S4, with the defect

wrapping an equatorial sphere Σ = S2, and then perform a re-scaling of the S4 radius,

with all other scales held fixed. The trace anomaly is the statement that the partition

function changes by an overall power of the sphere radius under Weyl re-scaling, fixed by

the central charge of the SCFT. We obtain b by calculating that power and subtracting

any contribution from the ambient SCFT’s type A central charge.

Luckily, many methods exist to compute the partition function of an N = 2 SCFT on

M = S4 with a superconformal defect along Σ = S2: holography [53–55], SUSY localisa-
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tion [50, 56–67], the AGT correspondence [47, 49, 68, 69], geometric engineering [49, 70],

and many others. We will use existing results from SUSY localisation and the AGT cor-

respondence (to 2d Liouville/Toda CFTs) to extract new results for b in several examples,

some of which provide non-trivial tests of the b-theorem.

We will compute d2 only for 2d N = (4, 4) superconformal defects in N = 4 SYM, and

for Wilson surfaces in the M5-brane theory. To do so, we will compute the SCFT’s SUSY

partition function on M = S1
R × S3 or S1

R × S5, where S1
R is a circle of radius R, with the

defect wrapping Σ = S1
R×S1, where the latter S1 is equatorial inside S3 or S5. Here again,

many methods exist to compute the S1 × Sd−1 SUSY partition function: holography [53–

55], SUSY localisation [71–74], correspondences to 2d topological QFTs [75, 76], characters

of modules in vertex operator algebras (VOAs) [77–80], and many others.

We will make a general argument for how to extract d2 from the SUSY partition

function on M = S1
R × Sd−1. These partition functions turn out to be a product of two

factors. One factor is the Schur index [81, 82]. By appealing to a growing body of evidence

from various perspectives [52, 71, 74, 83–85], we claim that the other factor is e−REc , where

Ec is the SUSY Casimir Energy (SCE). We propose that introducing the defect shifts Ec
by a term ∝ d2, and provide compelling evidence from our two examples.

Our first example is N = 4 SU(N) SYM, where we will use the fact that the Schur limit

of the 4d SUSY partition function is equivalent to the partition function of 2d SU(N) q-

deformed Yang-Mills (qYM) theory on a Riemann surface (Cg,n) in the zero area limit [75].

In this correspondence, the insertion of p 2d superconformal defects labelled by representa-

tions Ri of SU(N) deforms the 4d SUSY partition function [86] in a way that is captured

in 2d qYM as a p-point correlation function 〈OR1 . . .ORp〉 [86, 87]. Our second example

is the Wilson surface in the M5-brane theory, for which a form for the SUSY partition

function on S1
R×S5 was proposed in ref. [73]. In fact, we will obtain a more general result:

we will compute the shift in Ec due to two intersecting Wilson surfaces, which turns out to

be more than just a sum of the contributions from two individual Wilson surfaces, possibly

because of additional degrees of freedom arising at the 1d intersections along S1
R.

Holographic results for b and d2 exist for the 2d N = (4, 4) superconformal defects

in N = 4 SYM theory, in the ’t Hooft large-N limit with large ’t Hooft coupling [21,

26, 36, 88], and for Wilson surfaces in the M5-brane SCFT, in the large-N limit [21, 25,

26, 35]. Our results using SUSY methods agree perfectly with the holographic results,

whenever they overlap. However, the SUSY methods involve no approximations and are

valid at all couplings and for any N : they provide exact results for b and d2. We thus find

that the holographic results are exact, and not merely large-N or strong coupling limits.

Furthermore, the agreement with holography provides compelling evidence that Ec ∝ d2,

especially in the Wilson surface case, as we will discuss.

Ultimately, our main message is the methods themselves. For the classes of super-

conformal defects that we study, we find practical ways to obtain exact results for b and

d2. The various methods that we present also provide different perspectives on what b

and d2 are counting. Furthermore, these methods can be straightforwardly generalised to

superconformal defects of other (co-)dimension, such as SUSY interfaces or domain walls

between SCFTs [58, 89]. In fact, we further apply the method of computing d2 via the
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change in SCE to compute a putative central charge for 4d superconformal defects as the

character of a semi-degenerate module in a WN -algebra [73, 78]. In this case the form of

the trace anomaly remains unknown, so we cannot say exactly which (linear combination

of) defect central charges we obtain. Nevertheless, we believe the methods we develop in

this paper can play a crucial role in characterising and classifying defects quite generally.

This paper is organised as follows. In section 2 we review key facts we will need about

2d superconformal defects of SCFTs of class S. In section 3 we present our calculations

of b using SUSY localisation and the AGT correspondence. In section 4 we present our

calculations of d2 for superconformal defects in N = 4 SYM theory, using q-deformed YM,

and for Wilson surfaces in the M5-brane theory, using the S1 × S5 partition function. In

section 5 we conclude with a summary, and discuss possible directions for future research.

We collect in two appendices various technical results that we will use along the way.

2 Review: 2d superconformal defects

In this section, we will provide a short overview of the relevant features of 2d superconformal

defects that will be useful for our computations below. In particular, all of our work will

focus on deforming 4d and 6d SCFTs by the addition of such defects. Even for these

narrowly focused applications, there is a vast amount of extant literature, the surface of

which we will only scratch.

In general, surface operators in a 4d theory can be characterised in two distinct but

sometimes related ways [90]. One may either

(i) assign singular behaviour to ambient 4d fields at the 2d submanifold Σ, or

(ii) introduce an auxiliary 2d theory at Σ and couple it to the ambient 4d theory.

This is a broad partitioning of defects according to whether we are using only the behaviour

of ambient fields to describe a surface defect, or adding new degrees of freedom supported

only on Σ. They are sometimes related, for example, integrating out degrees of freedom

on Σ may produce singular behaviour of the ambient fields at Σ, or sometimes the two

descriptions can be related by dualities [62, 90–94].

2.1 2d Levi type-L defects

Approach (i) to describing surface defects is quite powerful and, by now, well-studied [4,

90, 91]. Here we briefly review the construction for N = 2 and N = 4 gauge theories.

Consider N = 4 SYM theory on M = R4 with coordinates {xµ}, with µ = 1, . . . , 4,

and a 1/2-BPS surface operator supported on Σ = R2 with coordinates {x1, x2}. Let us

write the coordinates on the normal bundle NΣ = C as x3 + ix4 = z = reiθ. To define

the surface defect [95], one needs to prescribe a singularity in the normal component of

the gauge field A = Az dz and the 1-form scalar in the adjoint N = 2 hypermultiplet

ϕ = (ϕ1 + iϕ2) dz. In preserving 2d N = (4, 4) SUSY along Σ, A and ϕ have to satisfy

a set of simple BPS conditions, which in the GL twist of N = 4 SYM take the form of

Hitchin’s equations [90, 96]. We will not consider the GL twist of N = 4 SYM in the
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following, except for this sub-section and the next, where the Hitchin moduli space, MH ,

provides an informative perspective of the defect. The leading singular behaviour of the

BPS solutions that additionally preserve defect conformal symmetry is given by

A = αdθ , ϕ =
1

2z
(β + iγ) dz , (2.1)

for constants (α, β, γ). Relaxing the constraint that the defect preserves conformal sym-

metry would allow for non-trivial dependence on the radial coordinate r.

If the ambient 4d theory has only N = 2 SUSY rather than N = 4, one constructs

a 1/2-BPS surface defect by prescribing a singularity in the 4d gauge field only. In these

cases the BPS conditions do not allow for a singularity in any scalar fields, so no analogue

of β or γ exists — those are special to N = 4 SYM.

The data (α, β, γ) describing the 1/2-BPS defect are valued in T × t × t, where T is

the maximal torus of the gauge group G and t is the associated Cartan subalgebra. Thus,

quantisation of the 2d-4d system requires the preserved gauge symmetry consistent with

solving the BPS equations to be a subgroup of G containing T, called the Levi subgroup

L ⊂ G. There are a number of ways to construct L, and choosing a particular L ⊂ G is

part of defining the defect. Thus, 2d defects of the types that we have been describing

are called Levi type-L. Unless otherwise specified, we will only consider G = U(N) or

SU(N) and Levi subgroups L =
[∏n+1

i=1 U(Ni)
]

or S
[∏n+1

i=1 U(Ni)
]
, respectively, with the

constraint
∑n+1

i=1 Ni = N .

There are two types of 2d Levi type-L defects commonly encountered in the literature

that are given special names and will be considered below. For gauge group G = SU(N), if

L = S[U(N − 1)× U(1)] then the surface defect is called simple, and if L = T = U(1)N−1

then the surface defect is called full.

Lastly, in addition to L and (α, β, γ), one can turn on a quantum 2d theta angle

parameter, η, along the defect. The importance of η can be seen in studying the behaviour

of Levi type-L defects under dualities. Under, say, S-duality (α, η) → (η,−α), and so

for a generic 2d N = (4, 4) superconformal defect in 4d N = 4 SYM theory, specifying

(L;α, β, γ, η) completely describes the defect. The parameters (β, γ) are together valued

in the L-invariant part of t, while α is valued in T and η is valued in the maximal torus
LT of the Langlands dual LG of G. All of the parameters grouped together transform in

the part of (T× t× t× LT) invariant under the Weyl group of L [90, 91].

Unless otherwise stated, the Levi type-L surface defect examples considered below will

have β = γ = 0. This is particularly relevant for the computation of superconformal indices

or twisted partition functions for N ≥ (2, 2) defects. The parameter β+ iγ being non-zero

is generally incompatible with the necessary symmetries for computing the defect index.

In particular, non-zero β and/or γ breaks rotational symmetry in the plane normal to Σ.3

Having set the basis to describe Levi type-L defects, it is useful to understand the

physical meaning of the parameters (α, β, γ, η). 2d N = (4, 4) superconformal defects

defined by eq. (2.1) are elements of Hitchin’s moduli space, MH , arising in the GL-twist

3We thank L. Bianchi and M. Lemos for pointing this out to us.
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of N = 4 SYM theory. As mentioned, the η parameter is a 2d theta angle, but the

other “classical” parameters (α, β, γ) encode geometric information about MH . MH is

constructed by a hyper-Kähler quotient [97], and as such there are both complex structure

— one of three labelled I, J, K — and Kähler parameters that describe the local geometry.

By making a choice of which parameters go into the solution for ϕ in eq. (2.1), we are in

effect picking a complex structure, while the parameter controlling the singular behaviour

of the 4d gauge field A is the Kähler parameter. In ref. [90], the combination β + iγ

was identified with complex structure I, and in this complex structure α was the Kähler

parameter. Cyclicly permuting the roles of the parameters, one may identify γ + iα and

α+ iβ with complex structures J and K with Kähler parameters β and γ, respectively

2.2 2d defects from 2d QFTs

In approach (ii), we begin with a 4d theory and add 2d degrees of freedom localised on

Σ. We will consider cases where the latter are a Gauged Linear Sigma Model (GLSM)

or a Non-Linear Sigma Model (NLSM). The 4d and 2d degrees of freedom can be cou-

pled in various ways, for example by superpotential couplings and/or by gauging a shared

symmetry group [62, 65, 90, 91, 98].

We will consider 4d SCFTs that enjoy at least N ≥ 2 SUSY. To engineer a 1/2-BPS

surface defect, consider the GLSM with N ≥ (2, 2) SUSY and gauge group G2d described

by the quiver in figure 1. The ith circular node denotes a 2d gauge multiplet with gauge

group U(Ki), the arrows connecting the ith and (i+1)th node represent chiral multiplets in

the bifundamental representation (Ki,Ki+1) or (Ki,Ki+1) of U(Ki)×U(Ki+1), depending

on the direction of the arrow. We collectively denote the fields in the bifundamental

by φbif

i(i+1) and φbif

(i+1)i, respectively. The dashed arrows starting and ending on the same

node are adjoint chiral multiplets Xi. In what follows our quivers will always have the

bifundamental fields, but may or may not have the adjoint chirals, depending on the type

of defect we wish to study. For each gauge node, we may also turn on an FI parameter

and a 2d theta angle for its U(1) factor. The square nodes on the left indicate the number

of flavours of the (anti-)fundamental chiral multiplets under the U(Kn) gauge group. We

denote these fundamental and anti-fundamental chirals by φfund
n and φ̃anti-fund

n , respectively.

If we set the (real) twisted masses of all matter fields to zero, and provided that the FI

parameters do not run, then such a GLSM may flow to an interacting InfraRed (IR) fixed

point [99]. To the best of our knowledge, it is unknown whether such an IR fixed point

exists, but whenever it does the 2d SCFT has central charge c2d given by

c2d

3
=
∑
R

(1− qR) dimR− dimG2d , (2.2)

where R are the 2d fields’ representations of G2d and qR are their R-charges. The repre-

sentation data and dim G2d can be expressed in terms of the ranks of the gauge groups,

Ki. We will compute several explicit examples in section 3, but an important illustrative

example is 1/2-BPS surface defects in N = 4 SU(N) SYM. In this case c2d can be written

more usefully in terms of the difference of adjacent ranks, Ni = Ki −Ki−1, with K0 ≡ 0

– 7 –
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Figure 1. Linear quiver diagram corresponding to a 2d N = (2, 2) GLSM. Its field content con-

sists of U(Ki) 2d vector multiplets for i = 1, . . . , n, N fundamental φfund
n and N anti-fundamental

φ̃anti-fund
n chiral multiplets coupled to the U(Kn) vector, one chiral multiplet φbif

i(i+1) in the bi-

fundamental representation of (Ki,Ki+1), and one chiral multiplet φbif
(i+1)i in the bifundamental

representation (Ki,Ki+1) for each 1 ≤ i ≤ n− 1. Additionally, depending on the particular details

of the 2d N = (2, 2) gauge theory, there can be one adjoint chiral Xi of U(Ki) for each node. This

quiver diagram can be used to construct a surface operator whenever the 4d N = 2 gauge theory

has at least an S[U(N)×U(N)] flavour or gauge symmetry group.

and Kn+1 ≡ N . In particular, for an N = (4, 4) GLSM,

c2d

3
= N2 −

n+1∑
i=1

N2
i , (2.3)

a result that we will find again in several different ways in the following.

To obtain a 1/2-BPS superconformal defect, one couples the ambient 4d theory to a

GLSM, and flows to the IR fixed point, if it exists. Typically, the Vacuum Expectation

Values (VEVs) of the 4d fields enter as twisted mass parameters in the 2d partition func-

tion [65–67]. A planar 1/2-BPS superconformal defect then breaks the 4d superconformal

algebra to a subalgebra: su(2, 2|2)→ su(1, 1|1)⊕ su(1, 1|1)⊕ u(1) for an N = 2 SCFT, or

psu(2, 2|4)→ psu(1, 1|2)⊕ psu(1, 1|2)⊕ u(1) for an N = 4 SCFT.

An alternative description of a 1/2-BPS surface defect can be obtained by coupling a

2d NLSM to the ambient field theory [4, 90, 91, 98]. The NLSM description is obtained

from the GLSM above by a defect RG flow: the gauge group is generically Higgsed, and

the 2d vector multiplets become massive. By taking the gauge coupling in the GLSM to

be parametrically large, the massive modes decouple and one obtains the NLSM as an

effective theory. The moduli space of the GLSM becomes the target space of the NLSM.

As mentioned above, under certain conditions the two ways (i) and (ii) of introducing

a surface defect are equivalent. One may suspect that integrating out the 2d degrees of

freedom produces the delta-function singularities in the 4d fields on the support of the

defect. Indeed, this is the case for a 1/2-BPS surface defect in 4d N = 4 SYM theory

with gauge group G = SU(N) [90, 91, 98]. In order to obtain a Levi type-L defect from a

GLSM, the latter needs to have N = (4, 4) SUSY and global symmetry G, which we gauge

to couple the GLSM to the 4d theory. The Levi subgroup L is captured by the gauge

symmetry in the linear quiver: consider the linear quiver of figure 1 whose gauge group

U(K1)× . . .×U(Kn) is such that Ki > Ki−1 for all i = 2, . . . , n. Then, the Levi subgroup

is L = S[
∏n+1
i=1 U(Ni)] where Ni = Ki−Ki−1 with K0 ≡ 0 and Kn+1 ≡ N . The parameters

(α, β, γ, η) are encoded in the GLSM as follows. The linear combination αk + iηk, with
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k = 1, . . . , n + 1, corresponds to the complexified FI parameters of the GLSM, and the

complex structure moduli βk + iγk characterise the 2d superpotentials.

In the NLSM description, the requirement of N = (4, 4) SUSY and global symmetry

G translate to requiring the target space to be hyper-Kähler and to admit a G-action. In

terms of the NLSM description, (α, β, γ) are encoded in the moduli of the target space,

whereas η is associated with the 2-form B-field. The authors of ref. [98] conjecture that

the NLSM target space is T ∗(G/L), which agrees with the moduli space MH of the Levi

type-L defect. The complex dimension of the target space is

dimC T
∗(G/L) = N2 −

n+1∑
i=1

N2
i , (2.4)

which holds for general values of the parameters (α, β, γ, η). Note that this agrees with

c2d/3 of the associated N = (4, 4) GLSM in eq. (2.3).

In the case of an ambient N = 2 theory, there is a similar but weaker statement. A 2d

GLSM with N = (2, 2) SUSY — or NLSM whose target space admits a Kähler structure —

coupled to a 4d N = 2 theory, is equivalent in the IR to the N = 2 theory with prescribed

singularities in the gauge field on the support of the defect [92].

2.3 2d defects in theories of class S

A large class of 4d N = 2 SCFTs are the theories of ref. [100], often called class S. These

come from the 6d N = (2, 0) SCFT of type AN−1 on a product manifold M4 ×Cg,n where

M4 is a four-manifold and Cg,n is a genus-g Riemann surface with n punctures. A SUSY

twist makes the corresponding partition function independent of the size of both M4 and

Cg,n (though still dependent on their shape). Thus, one can shrink either M4 or Cg,n to

zero without affecting the value of the partition function onM4×Cg,n. By definition, class

S theories are those obtained by shrinking Cg,n. WhenM4 = S4 and the class S theory has

a known Lagrangian description, then its partition function can be computed exactly via

SUSY localisation [57]. The AGT correspondence is the statement that the S4 partition

function is equivalent to a Liouville/Toda correlator on Cg,n [68, 69].

Within M-theory, these 4d theories can be found by wrapping M5-branes onM4×Cg,n
and shrinking Cg,n to zero size. SUSY defects in the 4d SCFT can then be engineered

by introducing a stack of either M2- or M5-branes ending on or intersecting the initial

stack of M5-branes. In the 6d SCFT these M2- or M5-branes describe a 2d or 4d defect,

respectively. To obtain a 2d defect in the 4d SCFT obtained by reducing on Cg,n, we must

either place the M2-branes at a point on Cg,n or let the M5-branes wrap all of Cg,n.

The M2-branes localised at a point on Cg,n were discussed in detail in ref. [62] and

refined in ref. [65]. In the 4d SCFT, the 2d defect arising from M2-branes is described

by the n-node quiver GLSM of figure 1 with Ki < Ki+1, an adjoint chiral multiplet on

every node except the nth one, and non-vanishing FI parameter only for the nth node. The

information encoded in the quiver can be summarised by a Young tableau of width n which

labels a representation of AN−1. The length of the jth column is the difference in the ranks

of the jth and (j − 1)th node, i.e. Kj − Kj−1. Furthermore, the authors of refs. [62, 65]
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show that in the AGT correspondence to Liouville/Toda theory on Cg,n, this surface defect

corresponds to the insertion of a degenerate Toda primary labelled by the Young tableau.

Its position on Cg,n is specified by the FI parameter of the nth node. The FI parameters of

all other nodes of the quiver are turned off.

The M5-branes wrapping Cg,n were studied in refs. [50, 101]. After compactifying on

Cg,n, one obtains a different type of surface defect in a 4d N = 2 SCFT which can be

described by a Wess-Zumino-Novikov-Witten (WZNW) model on Cg,n.

In the 4d SCFT, the authors of refs. [90–93] proposed a Seiberg-like duality between the

2d defects that arise from these M2- and M5-branes in 6d. More specifically, the duality is

a particular type of integral transform between the partition functions of the corresponding

Liouville/Toda and WZNW theories living on Cg,n. We will not need any details of this

duality except that, like any duality, it is a mapping between physical observables of the

two cases. Of importance to us is the fact that under the duality the metric on M4 and

the submanifold Σ are invariant, and the stress tensor maps to itself. As a result, the Weyl

anomaly is invariant under the duality, and hence the defect central charges are also. We

will see that this is the case in our examples below.

2.4 Holographic results

Refs. [26, 102] showed that for a 2d conformal defect in a higher-d CFT, the entanglement

entropy of a sphere centred on the defect includes a logarithmic term with a universal

coefficient given by a linear combination of three central charges: the ambient CFT’s

type A central charge (when d is even), b, and d2. Furthermore, d2 determines the stress

tensor one-point function in the presence of the defect. By calculating this entanglement

entropy and stress tensor one-point function, holographic calculations of b and d2 have

been performed for Levi type-L defects in 4d N = 4 SU(N) SYM [26, 88, 103] and for

Wilson surfaces in the 6d N = (2, 0) AN−1 SCFT [25, 26, 103, 104]. One of our goals is to

reproduce these results using purely field theory means, so let us review them in detail.

For the Levi type-L surface defect in 4d N = 4 SU(N) SYM theory, the holographic

results for b and d2 are

b = 3

(
N2 −

n+1∑
i=1

N2
i

)
, (2.5a)

d2 = 3

(
N2 −

n+1∑
i=1

N2
i

)
+

24π2N

λ

n+1∑
i=1

Ni

∣∣β2
i + γ2

i

∣∣ , (2.5b)

where λ is the ’t Hooft coupling of N = 4 SYM.

As mentioned in section 1, in this case ref. [52] proved that d2 = d1, so in fact the

holographic calculations provide all three defect central charges. As also mentioned in

section 1, these defects preserve enough SUSY that b cannot depend on defect or ambient

marginal couplings, while d1 and d2 can. The b in eq. (2.5a) indeed does not depend

on defect or ambient marginal couplings, and in fact depends only on the choice of Levi

subgroup L. On the other hand, d2 = d1 manifestly depends on the defect marginal

parameters βi and γi and on the ambient marginal coupling λ.
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The S-duality of N = 4 SYM sends N/λ → λ/N , under which d2 = d1 appears to

change. However, as mentioned at the end of the previous subsection, Weyl anomaly coef-

ficients are invariant under any duality that leaves the metric on M4 and the submanifold

Σ invariant, and maps the stress tensor to itself. This includes the S-duality of 4d N = 4

SYM. Indeed, after accounting for the S-duality transformations of βi and γi, described in

ref. [90], the combination of N , λ, βi, and γi in eq. (2.5b) is invariant under S-duality.

Our first result is simply the observation that b/3 from eq. (2.5a) agrees exactly with

c2d/3 from eq. (2.3) for the GLSM construction of the 2d Levi type-L defect, and thus

also with the complex dimension of the target space of the NLSM construction, eq. (2.4).

Moreover, the expression in eq. (2.4) was conjectured to hold for arbitrary values of the

parameters (α, β, γ, η), which strongly suggests that we can uniquely identify c2d/3 =

dimCX with b/3 and not d2/3 = d1/3, since the latter depend on βi and γi.

As mentioned above, however, in all that follows we will take βi = 0 and γi = 0.

In that case, the holographic results of eq. (2.5) have b = d2 = d1, so we will not be

able to distinguish these three central charges from one another. This will be important in

section 4, where we will make a proposal for how to extract a defect central charge from the

SUSY partition function of N = 4 SYM on S1
R×S3 with the Levi type-L defect on S1

R×S1.

We will only perform an explicit calculation with βi = 0 and γi = 0, so strictly speaking

we will not be able to identify uniquely which central charge we calculate, although we will

provide multiple arguments that we almost certainly compute d2 = d1.

For Wilson surfaces in the 6d N = (2, 0) AN−1 SCFT we will be able to distinguish

b from d2, since in that case generically b 6= d2. A Wilson surface defect is labelled by

a Young tableau corresponding to a representation of su(N) with highest weight ω. The

holographic results for b and d2 for a Wilson surface are [25, 26, 103, 104]

b = 24(ρ, ω) + 3(ω, ω) , (2.6a)

d2 = 24(ρ, ω) + 6(ω, ω) , (2.6b)

where ρ is the Weyl vector of su(N). Clearly in these cases d2 = b + 3(ω, ω), so that

generically b 6= d2, at least at large N . In section 4 we will extract a defect central charge

from the SUSY partition function of the 6d N = (2, 0) AN−1 SCFT on S1
R × S5 with a

Wilson surface along S1
R × S1. Since b 6= d2, we can unambiguously say the defect central

charge we obtain is ∝ d2. However, in this case ref. [52] provided compelling evidence,

though not a rigorous proof, that d2 = d1, so the defect central charge we obtain could in

fact be a linear combination of d2 and d1.

3 Partition function on S4

In this section, we extract defect central charges from partition functions of N ≥ 2 SCFTs

on M = S4 with 1/2-BPS superconformal defects along an equatorial Σ = S2. For

arbitrary M and Σ an infinitesimal Weyl transformation δgµν = 2gµν δω of the partition

function Z gives rise to an integrated Weyl anomaly of the general form, including the
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defect contribution eq. (1.1),

δω lnZ = − 1

16π2

∫
M
d4x
√
g (a4dE4 − c4dWµνρσW

µνρσ) δω

+
1

24π

∫
Σ
d2x
√
γ
(
bE2 + d1 I̊IµabI̊I

ab
µ − d2Wab

ab
)
δω ,

(3.1)

where E4 and E2 are the Euler densities for M and Σ, respectively, γab is the induced

metric on Σ, and a4d and c4d are the central charges of the 4d CFT. When M = S4 and

the defect wraps an equatorial Σ = S2, all the type B terms above vanish. In particular,

M = S4 is conformally flat, so its Weyl tensor vanishes, hence WµνρσW
µνρσ = 0 and

Wab
ab = 0. The second fundamental form for S2 ↪→ S4 is pure trace, so I̊IµabI̊I

ab
µ = 0 as

well. Thus, the full integrated Weyl anomaly reduces to a linear combination of the A-type

anomaly coefficients a and b,

δω lnZ = −4a4d +
b

3
. (3.2)

In other words, under a global Weyl re-scaling of M = S4, Z → e(−4a4d+ b
3

)ωZ. Hence, we

may extract the linear combination of central charges in eq. (3.2) from the transformation

of the partition function Z under a global Weyl re-scaling, and if we know a4d for the 4d

SCFT, then we can identify b. Below we exploit two methods for computing Z that make

use of this idea to obtain b if the CFT enjoys enough SUSY, namely SUSY localisation and

the AGT correspondence.

3.1 SUSY localisation

In this subsection, we use existing results for Z computed via SUSY localisation [56, 57]

to extract novel results for b.

SUSY localisation is usually performed on the Ω-background, R4
ε1,ε2 , or on an S4

deformed by the ratio of equivariant parameters ε2/ε1 ≡ b2. The two ultimately give

equivalent results, and we will follow the latter approach. The dimensionless parameter b

determines how the sphere is “squashed,” which we denote as S4
b . Viewed as a hypersurface

in R5, S4
b is defined by

x2
0 + (rε1)2 (x2

1 + x2
2) + (rε2)2 (x2

3 + x2
4) = r2 , (3.3)

where {xi}, with i = 0, . . . , 4, are the Euclidean coordinates on R5, and r is the equatorial

radius. Note that the mass dimensions of ε1,2 are 1, which we denote by [ε1,2] = 1. The

round S4 of radius r is recovered in the limit ε1 = ε2 = 1
r . The deformation parameters

ε1,2 break the isometry group of the 4-sphere to U(1) × U(1). An N = 2 theory on this

background preserves an su(1|1) ⊂ osp(2|4) SUSY subalgebra of the round S4.

Generically, the localised partition function of a 4d N ≥ 2 gauge theory without a

defect factorises into three contributions [57]: a classical part Zclass, a 1-loop part Z1-loop,

and an instanton part Zinst. Each of these is parametrised by the VEV of the adjoint scalar

〈Φ〉 = a which is valued in the Cartan subalgebra h ⊂ g. The full partition function is

obtained by integrating a over h. Schematically,

ZS4
b

=

∫
h
daZclassZ1-loop|Zinst|2 . (3.4)
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We implement global Weyl re-scalings by taking ε1 = ε2 = 1
r and then re-scaling r. If

the theory is a SCFT, the 4d Weyl anomaly implies ZS4 → r−4a4dZS4 . The only contribu-

tions to a4d come from the integration measure da and Z1-loop, since the other factors are

Weyl-invariant. More specifically, Z1-loop is a product of one-loop determinants of Lapla-

cians for fields of different spins. Each such one-loop determinant is an infinite product

of eigenvalues that diverges, and needs to be regulated. As explained in appendix A, we

use zeta-function regularisation, which, crudely speaking, means that via analytic con-

tinuation we replace each infinite product with special functions, usually combinations of

(multiple) Gamma functions. From that point of view, the “quantum” contribution to

the Weyl anomaly of ZS4
b

comes from the “anomalous” scaling properties of these special

functions, while the “classical” contribution comes from da. We provide more details of

this in appendix A, and we will see explicit examples below.

Now consider a surface defect wrapping Σ = S2
ε1 ↪→ S4

b located at x3 = x4 = 0 in R5

such that it preserves the U(1) ×U(1) isometry. Its embedding into R5 is

x2
0 + (rε1)2 (x2

1 + x2
2) = r2 . (3.5)

A 2d N = (2, 2) theory on Σ preserves the same su(1|1) ⊂ osp(2|2) SUSY subalgebra as

above. Thus one can introduce couplings between the 2d N = (2, 2) theory to the ambient

4d N = 2 theory on Σ without breaking any further SUSY. As mentioned in section 2.2,

we can couple the ambient 4d fields to the 2d fields on Σ by introducing superpotential

couplings on Σ to couple the 2d and 4d matter multiplets and/or by gauging a global

symmetry on Σ and identifying it with an ambient 4d global/gauge symmetry [62, 65].

Some of the examples of 2d superconformal defects considered below are constructed

from 2d N = (2, 2) GLSMs in the UV before flowing to the putative IR superconformal

fixed point. The S2
ε1 partition function ZS2 of a purely 2d GLSM with gauge group G2d

can also be computed through SUSY localisation. This is most conveniently done on the

Coulomb branch of the moduli space [60, 61]. The field configurations on the locus are

parametrised by a GNO-quantised 2d gauge flux m = 1
2π

∫
F on S2

ε1 and the VEV of a

real vector multiplet scalar σ. Schematically, combining the 1-loop and non-perturbative

partition functions yields

ZS2 =
1

|Wg2d |
∑

m∈hZ2d

∫
h2d

dσ ZclassZ
gauge
1-loopZ

matter
1-loop , (3.6)

whereWg2d is the Weyl group of the associated gauge Lie algebra g2d, and hZ2d is the GNO-

lattice.4 Note that the kinetic term of σ in the vector multiplet action is normalised such

that [σ] = 1. We emphasise that the localised partition function is independent of the 2d

Yang-Mills coupling g, and only depends on the S2 (or S2
ε1) through its equatorial radius.

We will again implement a global Weyl re-scaling by re-scaling r, in which case the

2d Weyl anomaly implies ZS2 → rc2d/3ZS2 . Similarly to ZS4 , the quantum contribution

to the 2d Weyl anomaly comes from zeta-function regularisation of the infinite products

4In practical terms, m ∈ hZ2d has integer eigenvalues on any representation of the gauge group G2d.
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in Zgauge
1-loopZ

matter
1-loop , while the classical contribution comes from dσ. For more details, see

appendix A. We will also see explicit examples in the following.

As explained in section 1 and above, our aim in this subsection is to extract b from

the Weyl anomaly of the localised partition function of 2d-4d coupled systems. For such

systems many SUSY localised partition functions have been computed, but we will focus on

cases where the 4d ambient theory is conformal, namely N2 free massless hypermultiplets,

N = 4 SU(N) SYM theory, and N = 2 SU(N) SQCD with 2N flavours with 1/2-BPS

N = (2, 2) surface operators, enhanced to N = (4, 4) for N = 4 SYM.

3.1.1 Free massless hypermultiplets with a generic surface defect

To start, we consider the theory of N2 free massless hypermultiplets on S4
b , which arises in

the AN−1 class S construction where Cg,n is an S2 with two full punctures and one simple

puncture. This theory enjoys global USp(2N2) flavour symmetry. To this ambient theory

we couple the 2d GLSM in figure 1, which we put on Σ = S2
ε1 . The GLSM enjoys an

SU(N)× SU(N) symmetry acting on the (anti-)fundamental chirals, whereas the bifunda-

mental and adjoint chirals enjoy a U(1) symmetry. We couple the ambient free hypers to

the GLSM via cubic and quintic superpotential couplings that identify the shared 2d-4d

flavour symmetry SU(N)× SU(N)×U(1) ⊂ USp(2N2) [62, 65].

Absent an ambient 4d vector multiplet to couple to the GLSM, the saddle points of

the 2d-4d theory are parametrised by independent contributions from decoupled 2d and

4d loci, and so the SUSY localised partition function of this theory factorises [62, 65]

ZΣ↪→S4
b

= Z free
S4
b
ZΣ . (3.7)

We denote by ZΣ the partition function of the GLSM on S2
ε1 , and

Z free
S4
b

=

(
Υ

(
ε1 + ε2

2

∣∣∣∣ε1, ε2))−N2

(3.8)

is the partition function of the N2 free massless hypers in zeta-function regularisation. The

Upsilon function is defined as

Υ(z|a1, a2) ≡ 1

Γ2(z|a1, a2)Γ2(a1 + a2 − z|a1, a2)
, (3.9)

where Γ2(z|a1, a2) is the double Gamma function. For more details about these special

functions, see appendix A. However, the only information we currently need about the

Upsilon function is its behaviour under re-scaling of its arguments, eq. (A.17),

Υ

(
z

r

∣∣∣∣a1

r
,
a2

r

)
= r−2ζ2(0;z|a1,a2)Υ(z|a1, a2) , (3.10)

where ζ2(s; z|a1, a2) is the Barnes double zeta-function defined in eq. (A.1).

Since the 2d-4d partition function factorises, it is sufficient to just consider the scaling

of ZΣ in order to compute b. Hence, b is identified with c2d.

However, to be clear, we hasten to add that this c2d is not (necessarily) the central

charge of a 2d CFT, because the 2d stress tensor of our defect degrees of freedom is not
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necessarily conserved, due to the coupling to the ambient 4d fields. This implies various

differences from a 2d CFT: no lower bound on our b = c2d is currently known, the usual

2d c-theorem does not necessarily apply (although the b-theorem does), and so on. In

practical terms, however, the upshot is that we still compute c2d from eq. (2.2), which in

particular requires identifying the representations and R-charges of the 2d fields.

Let us consider the three contributions to eq. (3.6) separately and explicitly study their

scaling behaviour. If the 2d gauge group G2d has n U(1) factors, the classical part of the

localised partition function takes the form

Zclass =
n∏
j=1

zj
Trj(irσ+m

2
)z̄j

Trj(irσ−m
2

) , (3.11)

where zj ≡ e−2πξj+iθj , ξj are FI parameters, θj are theta-angles, and Trj denotes a

projection to the jth U(1) factor [99]. Writing the measure in eq. (3.6) as
∫
h2d

dσ =

r−rank G2d
∫
h2d

d(rσ), it is clear that rσ in eq. (3.11) is just a dimensionless dummy variable

in the integration over the locus. Hence, the classical part Zclass is trivial under Weyl

re-scalings, as advertised. The measure, however, contributes factors of the S4 radius r,

which transform under Weyl re-sclaings with weight −rank G2d.

The 1-loop contribution coming from the gauge sector takes the form

Zgauge
1-loop = e2πiρ2d(m)

∏
α∈∆+

[
1

r2

(
α(m)2

4
+ α(rσ)2

)]
, (3.12)

where ∆+ is the set of positive roots and ρ2d is the Weyl vector of g2d, the Lie algebra

associated to G2d. Collecting the overall factors of r, we see that under Weyl re-scalings

eq. (3.12) transforms with weight −dim G2d + rank G2d.

After zeta-function regularisation, the 1-loop partition function of the matter sector

— composed of massless chiral multiplets in the R representation of G2d — becomes

Zmatter
1-loop =

∏
R

∏
{hR}

Γ
(
qR
2 − ihR(rσ)− hR(m)

2

)
Γ
(

1− qR
2 + ihR(rσ)− hR(m)

2

) r1−qR+2ihR(rσ) , (3.13)

where qR is the 2d R-charge of the multiplet, and {hR} denotes the set of weights of R.

Counting the factors of r that appear in eq. (3.13), we see that Zmatter
1−loop transforms with

weight
∑
R(1− qR)dim R under Weyl re-scaling. For g2d a direct sum of semi-simple Lie

algebras and u(1)’s, the remaining term in the Weyl re-scaling
∑
R
∑
{hR} 2ihR(rσ) reduces

to a sum over the charges under the U(1) factors of G2d, which vanishes.

Combining the weights from the gauge sector, the matter sector, and the measure, one

finds that the partition function is scale-invariant up to an overall factor of rc2d/3, with c2d

given in eq. (2.2). Hence, b = c2d in the round sphere limit ε1 = ε2 = 1
r , as argued above.

Even though the 4d theory is very simple, considering the case of N2 free massless

hypers with a surface defect illustrates the important point that the non-trivial contribution

to the central charge comes from the scaling of the 1-loop partition function. The simplicity
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of the above example stems from the factorisation in eq. (3.7), which immediately led to

identifying b = c2d.

For a more generic 2d-4d system, one might suspect that matter charged under both 2d

and 4d gauge groups would spoil the factorisation of ZΣ↪→S4 and possibly alter b. However,

that is not the case, if the system enjoys enough SUSY. It is now understood that a 1/2-BPS

surface defect engineered in a generic 4d N = 2 gauge theory by gauging symmetries [67]

or through Higgsing [66] mixes ambient and defect degrees of freedom in only two ways.

Firstly, any 4d adjoint hypermultiplet scalars frozen at their VEVs enter as twisted mass

parameters in ZΣ, while keeping its functional form unchanged. Secondly, any coupling

of 2d and 4d degrees of freedom leads to an extra factor in the partition function that is

entirely non-perturbative: it arises from the interactions of instantons and vortices. The

1-loop part of the partition function receives no modifications. Hence, central charges

extracted from Weyl re-scalings of the partition function are unchanged. In other words,

we expect b = c2d to be the case always. Indeed, we will see examples of this below.

Let us point out that the scaling behaviour of the partition function can often be

obtained in a more straightforward, yet ad hoc way by using three facts: only the 1-

loop partition function (and the measure of the integration over the VEV of the adjoint

scalar) contributes, factors of 1/r arise in the evaluation of 1-loop determinants, and special

functions are the result of zeta-function regularisation.

The explicit dependence on the scale r is often left implicit. If one was given the par-

tition function ZΣ without any scale factors, one could still deduce the scaling behaviour

by re-instating the correct r-dependence, dealing with special functions appropriately and

accounting for the measure. For example, if one encounters the Euler Gamma-function

Γ
( qR

2 − ihR(σ) − hR(m)
2

)
, one first needs to insert appropriate factors of r to make its ar-

gument dimensionless, i.e. σ → rσ. The natural function that appears in the zeta-function

regularisation of the matter sector 1-loop partition function is the Barnes single Gamma-

function Γ1(z|a, b) defined in eq. (A.2). To obtain the scaling behaviour one should interpret

the Euler Gamma-function as Γ1

(
1
r

( qR
2 − ihR(rσ)− hR(m)

2

)∣∣∣ 1
r

)
. Using the properties

Γ1

(
z

r

∣∣∣∣1r
)

= r
1
2
−z Γ1 (z| 1) , Γ1(z|1) =

1√
2π

Γ(z) , (3.14)

one correctly recovers the partition function ZΣ with appropriate scale factors. We refer

to appendix A for more details and definitions of these special functions.

Examples of defects coupled to free massless hypermultiplets. Having deter-

mined b = c2d for superconformal surface defects coupled to 4d free massless hypers, we

can now consider some specific defect models. All that needs to be done to compute b is

to determine the 2d R-charges qR of the matter fields.

Due to the su(1|1)-invariant coupling between the 2d N = (2, 2) GLSM and the hyper-

multiplets, the 2d R-symmetry generators are linear combinations of the U(1)N generator of

rotations in the normal bundle to Σ and U(1)R ⊂ SU(2)R of the ambient R-symmetry [65].

The coefficients determining the exact 2d R-symmetry depend on b. The 2d R-charges of

the 4d hypermultiplet scalars restricted to Σ can be found in terms of their 4d charges
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under U(1)N × U(1)R. Requiring that the 2d-4d superpotentials have 2d R-charge q = 2

together with constraints from the identified flavour symmetry then fixes the R-charges of

the 2d fields and sets their twisted masses to zero.

The precise superpotential terms depend on the particular quiver diagram, and were

found in refs. [62, 65]. In particular, they depend on whether the jth node has an adjoint

chiral Xj . If it does, we define ηj ≡ +1, and if it does not, ηj ≡ −1. Further let us define

εi ≡
∏n
j=i ηj . One finds that the hypermultiplet scalars restricted to Σ have 2d R-charge

qhyper = 1+b2, the fundamental and anti-fundamental chirals have qfundn + qanti-fundn = 1−b2,

the adjoint chirals have

qXj =

{
2 + 2b2 if εj+1 = εj = −1

−2b2 if εj+1 = εj = +1 ,
(3.15)

and the bifundamentals have R-charges

qbifj(j−1) + qbif(j−1)j =

{
−2b2 if εj = −1

2 + 2b2 if εj = +1 ,
(3.16)

where we have a total of n nodes and εn+1 ≡ +1. Notice that in a 2d SCFT, with

a conserved stress tensor, unitarity and the BPS bound require positive R-charges. In

contrast, our 2d defect fields do not have a conserved 2d stress tensor, and so can have

negative R-charges.

Example 1: N = (2, 2) SQCD. As a first example consider N = (2, 2) SQCD with

gauge group G2d = U(K) and N fundamental and N anti-fundamental chiral multiplets

coupled to N2 ambient free massless hypers. Note that qfundn + qanti-fundn = 0 in the round

sphere limit b = 1. Thus, using eq. (2.2) we find

b

3
= 2NK −K2 = K(2N −K) . (3.17)

Example 2: N = (2, 2) SQCDA. We now add an adjoint chiral to the previous

example, where qX = −2 in the limit b = 1. Using eq. (2.2), this “extra” field thus

contributes an additional (1− qX)dimR = 3K2 to the value of b of the previous example,

b

3
= 2NK −K2 + 3K2 = 2K(N +K) . (3.18)

These two examples clearly obey the b-theorem [19]. If we start in the UV with SQCDA,

with b in eq. (3.18), and deform the theory by a mass term for the adjoint chiral, then in

the IR we will find SQCD [62], with b in eq. (3.17). In this case, bUV − bIR = 9K2 ≥ 0.

Example 3: N = (2, 2) quiver with n adjoint chirals. We can also consider more

general quiver gauge theories. For example, consider the n-node quiver depicted in figure 1

with gauge group G2d = U(K1) × . . . × U(Kn), N fundamental and N anti-fundamental

chirals of U(Kn) and adjoint chirals on each node, coupled to N2 free hypers. Using
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qXj = −2, qbifj(j−1) + qbif(j−1)j = 4 and qfundn + qanti-fundn = 0, and eq. (2.2) we find after a bit of

algebra that

b

3
= 2

n∑
i=1

(Ki −Ki−1)Ki + 2KnN , (3.19)

where we have defined K0 ≡ 0.

Example 4: N = (2, 2) quiver with (n − 1) adjoint chirals. Consider the same

quiver as the previous example, but with adjoint chirals on all nodes but the nth one. In

this case, qXj = 4, qbifj(j−1) + qbif(j−1)j = −2, and qfundn + qanti-fundn = 0, so that

b

3
= −4

n∑
i=1

(Ki −Ki−1)Ki + 2KnN + 3K2
n . (3.20)

These two examples also obey the b-theorem [19]. If we start in the UV with an N = (2, 2)

quiver with n adjoint chirals, with b in eq. (3.19) and deform by a mass term for the nth

adjoint chiral, then in the IR we will find an N = (2, 2) quiver with n−1 adjoint chirals [62],

with b in eq. (3.20). We thus have

bUV

3
− bIR

3
= −3K2

n + 6

n∑
i=1

(Ki −Ki−1)Ki = 3

n∑
i=1

(Ki −Ki−1)2, (3.21)

where the final equality holds because K0 ≡ 0. Clearly in this case bUV − bIR ≥ 0, and so

the b-theorem is satisfied.

To our knowledge all four of the examples above, and indeed the general statement

b = c2d, are novel results for b of 2d superconformal defects. Notice that in all of our

examples b ≥ 0: for eqs. (3.17), (3.18), and (3.19) this is manifest, while for eq. (3.20) this

can be checked straightforwardly, for example by considering limiting cases.

3.1.2 N = 4 SYM with a generic surface defect

To construct a 1/2-BPS superconformal surface defect in N = 4 SYM, one can couple

a 2d N = (4, 4) GLSM to the ambient theory [98]. N = (4, 4) SUSY requires the ith

node in figure 1 to have an adjoint chiral multiplet Xi for all i. The N = (2, 2) adjoint

chiral recombines with the N = (2, 2) vector multiplet into an N = (4, 4) vector multiplet.

Similarly, the bifundamentals φbif

i(i+1) and φbif

(i+1)i regroup into bifundamental hypers, and

the N (anti-)fundamental chirals φfund
n and φ̃anti-fund

n recombine into N fundamental hyper-

multiplets. The N hypers enjoy SU(N) flavour symmetry such that the GLSM can be

coupled to 4d N = 4 SU(N) SYM theory by gauging the 2d flavour group. As argued

in the previous subsection, b = c2d as there is no perturbative 2d-4d contribution to the

partition function. We may thus calculate b through yet another counting exercise.5

Assuming the GLSM flows to an IR fixed point, the central charge of the 2d SCFT is

given by eq. (2.2). To determine the 2d R-charges, one considers the allowed superpotential

5We thank B. Le Floch for pointing this out to us, and for discussions directly related to this computation.

– 18 –



J
H
E
P
0
5
(
2
0
2
0
)
0
9
5

terms which schematically look like W = φXφ̃ in N = (2, 2) language. The R-charge

assignments are easily deduced by looking at the U(1)R action on the mesons built from

fundamental chirals, which combine into non-compact scalars at the IR fixed point. The

exact low-energy U(1)R symmetry cannot act as a rotation on the mesons due to chiral

factorisation of the R-symmetry in a CFT. This gives the assignment that matter sector

chiral multiplets in the (anti-)fundamental and bifundamental representations have q = 0,

while the adjoint chiral multiplets carry q = 2. Thus, eq. (2.2) gives

b

3
=
c2d

3
= 2

n∑
i=1

Ki(Ki+1 −Ki) = N2 −
n+1∑
i=1

N2
i , (3.22)

as quoted in eq. (2.3), which is in agreement with the complex dimension of the moduli

space of the Levi type-L defect in eq. (2.4), and with the holographic result in eq. (2.5a),

thus proving that the latter is not merely the large-N limiting value.

3.1.3 N = 4 SYM with a full Levi defect

A useful check of the previous result eq. (3.22) can be performed in special cases. In

refs. [59, 63], the authors consider N = 2∗ SYM with gauge group G = SU(N) and a full

surface defect (L = T) engineered by putting the theory on the orbifold C × C/ZN .6 By

taking the mass of the 4d adjoint hyper to zero, the N = 2∗ SUSY enhances to N = 4.

Let us now compute b for this system. The non-trivial contribution comes from the

1-loop partition function,

ZN=4
1-loop[1N ] =

N∏
i,j=1
i 6=j

Υ
(
ai − aj +

⌈
j−i
N

⌉
ε2|ε1, ε2

)
Υ
(
ai − aj + ε1+ε2

2 +
⌈
j−i
N

⌉
ε2|ε1, ε2

) , (3.23)

where ai are the components of the VEV of the 4d adjoint scalar 〈Φ〉 = diag(a1, . . . , aN ),

and dxe denotes the ceiling of x.

The arguments of the Upsilon-functions in eq. (3.23) have mass dimension one. To

make the overall scale factor explicit, we should factor out 1/r from their arguments.

Define the dimensionless quantities ε̃1,2 ≡ rε1,2 and Q ≡ ε̃1 + ε̃2. Under a re-scaling, the

Upsilon-function transforms according to eq. (3.10), which means eq. (3.23) becomes

ZN=4
1-loop[1N ] =

N∏
i,j=1
i 6=j

Υ (xij |ε̃1, ε̃2)

Υ (xij +Q/2|ε̃1, ε̃2)
rκij , (3.24)

6In ref. [59], the authors found the following equivalence: instanton moduli space of a 4d N = 2 gauge

theory with full surface defect ⇐⇒ instanton moduli space without defect but on the orbifold C×C/ZN .

This allows one to compute the instanton partition function of the coupled 2d-4d system by instead working

on the orbifold. It was then conjectured in ref. [63] that this equivalence should hold more generally for

the full partition function. The author of ref. [63] computes the 1-loop determinants on the orbifold and

goes on to check that the partition function obtained in this way correctly encodes the coupled 2d-4d and

2d degrees of freedom.
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where

xij = r

(
ai − aj +

⌈
j − i
N

⌉
ε2

)
,

κij = −2 ζ2(0;xij |ε̃1, ε̃2) + 2 ζ2(0;xij +Q/2|ε̃1, ε̃2) ,

(3.25)

and ζ2(s; z|a, b) is the Barnes double zeta-function defined in eq. (A.1). Using eq. (A.3)

and taking b→ 1, one finds

N∑
i,j=1
i 6=j

κij =

N∑
i,j=1
i 6=j

(2xij − 1) = 2
N2 −N

2
− (N2 −N) = 0 . (3.26)

In other words, the 1-loop determinant in the presence of the full Levi defect is scale-

invariant. Hence,

− 4a4d +
b

3
= −(N − 1) , (3.27)

where the right-hand side is the contribution of the measure in eq. (3.4).

The central charge a4d for N = 4 SU(N) SYM theory is well-known, 4a4d = N2 − 1,

and so we find
b

3
= N2 −N , (3.28)

which agrees with eq. (3.22) in this special case, as advertised.

This agreement may seem surprising, given the different M-theory origins of this surface

defect and the defects that lead to eq. (3.22). This full surface defect comes from the

compactification on a torus of the 6d N = (2, 0) theory with a codimension-two defect [59,

63]. This arises in M-theory from a stack of coincident M5-branes wrapping the torus

and a second stack of M5-branes intersecting the first stack and also wrapping the torus,

thus producing the orbifold in 4d, i.e. a codimension-two singular surface. On the other

hand, the surface defects that lead to eq. (3.22), namely the GLSM quivers reviewed in

section 2, come from a codimension-four defect in the 6d theory. This arises in M-theory

from M2-branes ending on M5-branes, localised at a point on the torus. In these two

descriptions b agrees because of the duality of refs. [90–93], mentioned in section 2, which

leaves invariant the S4, the Σ = S2 wrapped by the defect, and the stress tensor, and

hence leaves invariant b. Of course, also crucial is the fact that b depends only on the Levi

subgroup of each defect: if b depended on more detailed information, then the equivalence

would not be possible.

3.1.4 N = 2 SQCD with 2N flavours and a full Levi defect

A large class of SCFTs are the theories of class S introduced in ref. [100]. One of the

simplest, yet non-trivial examples of such theories is massless N = 2 SQCD with 2N

flavours. A full surface defect in this theory is considered in ref. [63].

The 1-loop determinant with a full surface defect is

ZSQCD
1-loop [1N ] (3.29)

=

∏
α∈∆+ Υ(α(a) + ε2|ε1, ε2)Υ(−α(a)|ε1, ε2)∏N

i,j=1 Υ
(
hi(a)+ ε1+ε2

2 +
⌈
N−i−j+1

N

⌉
ε2|ε1, ε2

)
Υ
(
−hi(a)+ ε1+ε2

2 +
⌈
i−j
N

⌉
ε2|ε1, ε2

) ,
where hi are the weights of the fundamental representation of SU(N).
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Following the same strategy as above, we factor out 1/r to write the arguments of the

special functions in terms of dimensionless quantities ε̃1,2. Let us consider the numerator

first. The scaling behaviour of the Upsilon-functions in eq. (3.10) in the b→ 1 limit gives

a scaling weight of the numerator of the form

− (N2 −N)

3
− 4ρ(ra)−

∑
α∈∆

(α(ra))2 , (3.30)

where ρ is the Weyl vector, and ∆ is the set of all (positive and negative) roots. The

denominator contributes to the overall scaling weight a factor

2

3
N2 −N + 4ρ(ra) + 2N

N∑
i=1

(hi(ra))2 . (3.31)

A vanishing beta function implies (see e.g. ref. [57])

∑
α∈∆

(α(a))2 = 2N

N∑
i=1

(hi(a))2 . (3.32)

Hence, upon summing the contributions of the numerator and denominator one finds that

all terms that depend on the VEV a cancel, giving an overall scaling weight for eq. (3.29)

of the form
1

3
N2 − 2

3
N . (3.33)

Finally, to account for a4d, we normalise by the partition function without the defect:

ZSQCD
1-loop =

∏
α∈∆+ Υ(α(a)|ε1, ε2)Υ(−α(a)|ε1, ε2)∏N

i,j=1 Υ
(
hi(a) + ε1+ε2

2 |ε1, ε2
)

Υ
(
−hi(a) + ε1+ε2

2 |ε1, ε2
) , (3.34)

which scales with weight

− 7

6
N2 +

5

6
N , (3.35)

where we have again used eq. (3.32). Thus subtracting eq. (3.35) from eq. (3.33), we find

that b for a full Levi type-L defect in N = 2 conformal SQCD is given by

b

3
=

3

2
(N2 −N) . (3.36)

3.2 AGT correspondence

In the seminal work [68], Alday, Gaiotto and Tachikawa (AGT) proposed a remarkable

correspondence between the partition function of a class of 4d asymptotically conformal

N = 2 SUSY SU(2) quiver gauge theories on S4
b and Liouville theory on a genus-g Riemann

surface with n punctures, Cg,n. This AGT correspondence has been further extended to

SU(N) quiver gauge theories and AN−1 Toda field theories [69].

In this section, we will employ an extension of the methods originally used in ref. [105]

to compute the type A anomaly coefficients in a number of 4d class S theories in order to
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Figure 2. Left: quiver diagram corresponding to the Liouville four-point function on the sphere.

Right: quiver diagram corresponding to the AN−1 Toda four-point function on the sphere. The

two SU(N) flavour groups correspond to full punctures on the Riemann surface, while the two U(1)

factors correspond to simple punctures.

extract the central charge b of a certain type of surface operators, via the AGT correspon-

dence. To begin with, we give a very brief review of the AGT correspondence, and then

discuss its modification for taking into account the insertion of a certain class of surface

operators in the 4d theory. In appendix B, we establish our notation, briefly review AN−1

Toda field theories, and report all the formulae that we will need in this section.

The object of interest on the 4d side of the AGT correspondence is the SUSY localised

partition function ZS4
b

of an N = 2 gauge theory on S4
b discussed in some detail above

in section 3.1 and displayed in eq. (3.4). In general, ZS4
b

depends on some complexified

couplings denoted by {q}, some masses {m} and VEVs of the adjoint scalars {a} in the

vector multiplets. Hence, in most of the examples considered below the ambient theories

are not strictly 4d SCFTs but rather are SUSY gauge theories that are conformal in

certain limiting regimes. However, we will explicitly compute b only for 4d massless free

hypermultiplets, which are a CFT. We will of course reproduce the results of section 3.1.1,

but now from the perspective of the Liouville/Toda theory.

In order to discuss the 2d side of the AGT correspondence, consider the class S theory

constructed by an n-node linear quiver [100] where the gauge sector of the ith node is

described by the gauge group SU(2)i, the coupling τi, the “sewing parameter” qi = e2πiτi ,

and adjoint scalar VEVs ai. The matter sector of the quiver is described by two antifun-

damental hypermultiplets of mass µ1,2 at the first node, bifundamental hypermultiplets of

mass mi between the ith and (i+1)th nodes, and two fundamental hypermultiplets of mass

µ3,4 on the nth and final node (see e.g. the left side of figure 2 for the case n = 1). The

UV curve of the kind of quiver just described is given by the (n + 3)-punctured sphere

C0,n+3. Through the AGT correspondence, the partition function eq. (3.4) is equivalent to

the (n+ 3)-point correlation function of the Liouville field theory on S2, namely

ZS4
b
({q}, {m}; ε1, ε2) =

〈
V̂α0(∞)V̂rm0(1)V̂rm1(q1) . . . V̂rmn(q1 . . . qn)V̂αn+1(0)

〉
, (3.37)

where

α0 = Q/2 + r(µ1 − µ2)/2 , αn+1 = Q/2 + r(µ3 − µ4)/2 ,

m0 = µ1 + µ2 , mn = µ3 + µ4 , (3.38)

and V̂α is the suitably normalised Liouville exponential (see eq. (B.8)). Since all Liou-

ville/Toda correlation functions going forward will be of the form 〈V̂αa(∞)V̂rm0(1)V̂αb(0) . . .〉,
we will omit position unless clarity is needed. Expanding the right hand side of eq. (3.37)
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using OPEs, the resulting conformal blocks correspond to the classical and instanton par-

tition functions in eq. (3.4), while the one-loop contribution corresponds to the coefficient

of the three-point function and structure constants.

As an example, let us consider the four-punctured sphere in Liouville theory corre-

sponding to the SU(2) quiver diagram in figure 2 (and to eq. (3.37) with n = 1). The

correlator can be decomposed in terms of s-channel conformal blocks F (s) as [106, 107]〈
V̂α0(∞)V̂rm0(1)V̂rm1(q)V̂α2(0)

〉
=

∫
dα

2π
Ĉ(α0, rm0, α)Ĉαrm1,α2

∣∣∣F (s)
α (q)

∣∣∣2 , (3.39)

where the integral is taken along the Q/2 + iR line, Ĉ(·, ·, ·) denotes the coefficient of

the Liouville three-point function and Ĉ ··,· the structure constants which correspond to the

fusion of two primaries. Both Ĉ(·, ·, ·) and Ĉ ··,· are defined in terms of the primary oper-

ators normalised as in eqs. (B.8) and (B.9). In ref. [68], the authors showed by explicit

computations that the combination Ĉ(·, ·, ·)Ĉ ··,· provides the one-loop part of the partition

function together with the Vandermonde determinant, while the conformal blocks Fα give

the instanton and classical contributions. Finally, the integration over the internal Liou-

ville/Toda momentum α corresponds to the integration over the VEV of the adjoint scalar

of the SU(2) gauge group.

When the rank of the gauge group N > 2 the situation is slightly different. In par-

ticular, many types of punctures are possible on Cg,n, each of which corresponds to a

hypermultiplet with some flavour symmetry: see for example ref. [108]. We will only con-

sider punctures corresponding to SU(N) flavour nodes, called full punctures, and U(1)

flavour nodes, called simple punctures [69]. In the Toda theory picture, a full puncture

corresponds to the insertion of a Toda primary operator with unconstrained momentum

α. A simple puncture corresponds to a semi-degenerate Toda primary operator, i.e. with

momentum either of the form α = κh1 or α = −κhN with h1 (−hN ) being the highest

weight of the (anti-)fundamental representation of SU(N) and κ a numerical factor. The

standard example is 4d N = 2 conformal SQCD whose quiver is depicted in figure 2. The

partition function corresponding to this quiver can be expressed as the Toda four-point

function on the sphere with two full and two simple punctures.

3.2.1 Surface operators and Toda degenerate primaries

In refs. [47, 58, 109] the Toda/gauge theory dictionary was enlarged to describe the addition

of 1/2-BPS line and surface operators. It has been shown that 1/2-BPS surface operators

in 4d class S theories descending from 2d superconformal defect operators in the 6d N =

(2, 0) SCFT correspond to the insertion of one or more degenerate Toda primary operators

in eq. (3.37) [47, 61, 70, 110–112].7 As opposed to the punctures giving rise to semi-

degenerate primary insertions described above, a generic degenerate Toda primary operator

has momentum α = −bω1 − 1/bω2 where ω1 and ω2 are highest weight vectors of two

7For surface operators descending from 4d defect operators in 6d, the correspondence is a bit different

in that the legs of the 4d defect wrapping the Riemann surface deform the Toda theory on Cg,n to another

2d CFT, e.g. a WZNW model. We will not consider such operators in this section.
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representations R1 and R2 of AN−1. Note that the parameter b is mapped to the squashing

parameter of S4
b in the AGT correspondence.

In ref. [62] the authors found that inserting degenerate operators of the type α = −bω,

i.e. R2 is a trivial rep, corresponds to engineering an N = (2, 2) surface operator whose

field content is described by the quiver in figure 1.8 The representation R is described by

a Young tableau consisting of n columns with Nj boxes for 1 ≤ j ≤ n, which corresponds

to an n-node quiver with adjoint chiral multiplets on every node except the nth node.

The number of boxes of each column is related to the ranks of the 2d gauge nodes as

Nj ≡ Kj −Kj−1 with K0 = 0. The surface defect in the 4d theory sits at a marked point

(x, x) on Cg,n, which corresponds to a non-trivial FI parameter and theta angle only in the

nth node. This kind of surface operator has an M-theory realisation in terms of M2-branes

labelled by the representation R of AN−1 ending on the wrapped M5-branes. Considering

multiple degenerate primary insertions with appropriate representations, one could turn on

additional FI parameters or, alternatively, add an adjoint chiral on the nth node or remove

them from other nodes [62].9

In the following, we will focus only on rank-k totally (anti-)symmetric representa-

tions. We will denote by RNj ,εj the rank-Nj totally symmetric (εj = +) or anti-symmetric

(εj = −) representation of AN−1. The type of representation determines if an adjoint chiral

occurs on a given node or not: for RNn,+ there is an adjoint chiral on U(Kn), while for

RNn,− there is not. Then, if εj = εj+1 there is an adjoint chiral on U(Kj), otherwise not.

Consider coupling N2 free 4d hypermultiplets to a surface operator through a cu-

bic superpotential involving the ambient hypermultiplets and the chiral multiplets in the

(anti-)fundamental representation of U(Kn). As discussed in section 3.1, the partition func-

tion for this 2d-4d system factorises as ZΣ↪→S4 = ZS4ZΣ, and the precise correspondence

with the Toda theory reads [62]

Z
{RNj,εj }
Σ↪→S4 =

〈
V̂α∞ V̂m̂V̂α0

n∏
j=1

V̂−bω(Nj,εj)
(xj , x̄j)

〉
, (3.40)

where ω(Nj ,εj) is the highest weight of the representation RNj ,εj , and

α0 = Q− 1

b

N∑
s=1

imshs , α∞ = Q− 1

b

N∑
s=1

im̃shs , (3.41)

m̂ = (κ +Nnb)h1 , κ =
1

b

N∑
s=1

(1 + ims + im̃s) . (3.42)

Let r1 = 1/ε1 be the equatorial radius of Σ = S2
ε1 , and denote the complexified

twisted masses of the fundamental chiral multiplets mfund ≡ m = r1m̄ + iq/2 where m̄

8Even though in the present work we will focus on degenerate insertions parametrised by only one

representation of AN−1, we mention that a generic degenerate operator, with α = −bω1−1/bω2, corresponds

to two surface defects supported on two (squashed) 2-spheres that intersect at the north and south pole

of S4
b . These can be engineered by intersecting M2-branes ending on N M5-branes wrapping the Riemann

surface Cg,n [65].
9As shown in ref. [62], the insertion of an arbitrary degenerate operator V̂bω can be recovered from

multiple degenerate insertions of the anti-symmetric type with fine-tuned FI parameters and theta angles.
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is the (real) twisted mass and q is its 2d R-charge. Similarly, let manti-fund ≡ m̃ be the

complexified twisted masses of the anti-fundamental chirals. The R-charges are constrained

by the superpotentials and are given in eqs. (3.15) and (3.16) and the text above them.

Similarly, the superpotential and the global symmetry SU(N) × SU(N) × U(1) relate the

hypermultiplet complexified twisted masses of the 4d theory to the (anti-)fundamental

chiral masses as Mst = i(1 − b2)/2b − 1/b (ms + m̃t) for s, t = 1, . . . , N [62, 65]. Finally,

the normalisation of the semi-degenerate and degenerate primaries is given in eq. (B.9).

3.2.2 b from Toda correlators

Before considering specific examples, let us explain the strategy for computing b from the

2d CFT correlators through the AGT correspondence. First of all, as observed above,

b is computed by the scaling weight of Z1-loop and the measure of the integral over the

locus. This means that, via the AGT dictionary, we should be able to extract b solely

from the scaling behaviour of the three-point function coefficient and structure constants

appearing in the Toda correlators and, in principle, the integration measure over internal

Toda momenta in the conformal block expansion. In particular, we will not need the

explicit form of the conformal blocks since, as summarised above, they correspond to the

instanton part of the partition function, which does not contribute to the Weyl anomaly.

To isolate b from the scaling behaviour of the Toda correlator, we remove the contribu-

tion from the 4d ambient theory by dividing the Toda correlator with degenerate insertions

by the same correlator without them. Crucially, since the fusion rule eq. (B.7) prevents the

degenerate insertion from adding more integrals, the normalisation by the correlator with-

out the degenerate operator insertion eliminates the contribution from the integration mea-

sure over internal Toda momenta. Thus, the only contributions to b should come from the

scaling behaviour of three-point function coefficients and structure constants themselves.

From the gauge theory side we know that the special functions in the structure con-

stants arise from the zeta-function regularisation of some infinite product. In particular,

the structure constants can be expressed in terms of γ1(x|1/b), which is defined in eq. (A.7),

and Υ(x) ≡ Υ(x|b, 1/b). Following the same logic as above eq. (3.14), one re-introduces the

factors of r by interpreting γ1(x|1/b) as γ1(x/r|1/r) where we set b = 1. From eqs. (A.16)

and (A.17), we arrive at the following substitution rules under Weyl re-scaling:

γ1(x|1/b)→ r1−2xγ1(x|1/b) , Υ(x)→ r−2ζ2(0;x|b,1/b)Υ(x) . (3.43)

We stress that this approach can be applied whenever the special functions come from the

zeta-function regularisation of infinite products.

Before moving on to more complicated examples, let us illustrate the method in the

simplest non-trivial case: one degenerate insertion of the type V−bω(N1,ε)
in the theory of

N2 free hypermultiplets, i.e. the correlator eq. (3.40) with n = 1. In the case of a single

degenerate primary insertion, the fusion rule eq. (B.7) allows us to write the four-point

function in the s-channel decomposition as [107, 113]〈
V̂α∞ V̂m̂V̂−bω(N1,ε1)

(x, x̄)V̂α0

〉
=

∑
{h(N1,ε1)

}

Ĉ(α∞, α0 − bh(N1,ε1), m̂)Ĉ
α0−bh(N1,ε1)

−bω(N1,ε1)
,α0
|F (s)
α0−bh(N1,ε1)

|2 , (3.44)
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where |F|2 = F(x)F(x̄) denotes the conformal blocks, the sum runs over the weights

{h(N1,ε1)} of the representation RN1,ε, and Ĉ(·, ·, ·) and Ĉ·
·,· are the appropriately nor-

malised coefficient of the Toda three-point function eq. (B.6) and the structure constants,

respectively. Now, we need the structure constant part of the Toda correlator without any

degenerate insertion. This is given by the three-point function [62]

Ĉ(α∞, α0,κh1) =
1∏N

s,t=1 Υ
( κ
N + (Q− α∞, hs) + (Q− α0, ht)

) , (3.45)

which can easily be found by using eq. (B.6) together with the normalisations eqs. (B.8)

and (B.9). Notice that this corresponds to the partition function of the N2 free hyper-

multiplets with the masses Mst defined in the text below eq. (3.42). Thus, the quantity to

study is

Ĉ(α∞, α0 − bh(N1,ε1), m̂)Ĉ
α0−bh(N1,ε1)

−bω(N1,ε1)
,α0

Ĉ(α∞, α0,κh1)
≡ CN1,ε1(h(N1,ε1)) , (3.46)

which in this case reduces to a combination of γ-functions. Note that the function CN1,ε1

depends on the particular weight h(N1,ε1). However, its weight under Weyl re-scaling is

independent of it. This is important because it ensures that the correlator (3.44) has a

well-defined scaling behaviour from which the charge b can be extracted.

Examples of defects coupled to free massless hypermultiplets. We will now com-

pute b for defects coupled to 4d free massless hypers, reproducing our SUSY localisation

results from section 3.1.1 and illustrating what those calculations look like in the corre-

sponding Toda theory.

Example 1: N = (2, 2) SQCD. Let us consider the case of a single rank-N1 anti-

symmetric insertion corresponding to 2d N = (2, 2) SQCD with gauge group U(K1)

(K1 = N1). In eq. (3.17), b was found in the limit where the chiral multiplets are massless

by using the formula eq. (2.2). Here, we are interested in finding b by considering the struc-

ture constant part of the Toda correlator in eq. (3.44), which corresponds to the quantity

defined in eq. (3.46).

CN1,ε1 in this case is easily constructed from eqs. (B.10) and (B.6) and by employing the

property eq. (A.8) to rewrite the Υ-functions in terms of γ1-functions. Using the explicit

values of α0 and α∞ given in eqs. (3.41) and (3.42), eq. (3.46) takes the form

CN1,−

(
h(N1,−),{p}

)
= A1

∏
t∈{p}

[ ∏N
s/∈{p} γ1

(
imt − ims| 1

b

)∏N
s=1 γ1

(
1 + im̃s + imt| 1

b

)] , (3.47)

where {p} labels the weights of the representation as explained in appendix B. The constant

A1 contains factors of b coming from the form of the structure constants eq. (B.10). We

observe that those factors, being independent of the Toda momenta, are unaffected by the

Weyl re-scaling, so they can be ignored.
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By performing the replacement eq. (3.43) first, then setting the (anti-)fundamental

chiral twisted masses to zero and leaving the R-charges generic, we find an overall prefactor

expressible as a power of r. The exponent is given by

b

3
=
∑
t∈{p}


N∑

s/∈{p}

[1− (qs − qt)]−
N∑
s=1

[1− 2 + (q̃s + qt)]


= K1(2N −K1)−K1

N∑
s=1

(qs + q̃s) .

(3.48)

Recall from above eq. (3.15) that qs + q̃s = 0 (q̃ ≡ qanti-fund) for b = 1. Thus, the last term

vanishes, and one finds agreement with eq. (3.17).

Example 2: N = (2, 2) SQCDA. Now consider a single symmetric insertion that

corresponds to 2d N = (2, 2) SQCD with gauge group U(K1) (K1 = N1) and an adjoint

chiral on U(K1). The structure constant part of the Toda correlator is [62]

CN1,+

(
h(N1,+),[n]

)
= A1

N∏
s,t=1

nt−1∏
ν=0

[
γ1

(
imt + νb− ims − nsb| 1

b

)
γ1

(
1 + im̃s + imt + νb| 1

b

) ] , (3.49)

where ns are non-negative integers that label the weights h(N1,+),[n] as explained in ap-

pendix B. Also in this case, the constant A1 contains factors independent of the momenta,

and it does not play any role in the scaling behaviour of the structure constants. Thus, by

applying again the substitution eq. (3.43) and setting the twisted masses to zero, we find

that the exponent of the overall factor of r in the structure constants is

b

3
=

N∑
s,t=1

nt−1∑
ν=0

[2 + 2ns − (qs + q̃s)] = 2K1(N +K1) , (3.50)

which agrees with b given in eq. (3.18).

Example 3: multiple degenerate insertions. Finally, we consider the insertion of n

degenerate primary fields in totally symmetric or totally anti-symmetric representations. In

this case, we can use the fusion rule eq. (B.7) to determine the allowed momenta which run

between the degenerate insertions. The non-trivial part in writing the (n+3)-point function

in terms of three-point functions is finding the conformal blocks. This has been discussed

in ref. [62] by employing the correspondence with the four-dimensional gauge theory and

the localisation results. However, to obtain b it suffices to consider the following quantity

Ĉ
(
α∞, m̂, α0 − bh[nn]

)
Ĉ(α∞,κh1, α0)

n∏
j=1

Ĉ
α0−bh[nj ]
−bω(Nj,εj)

,α0−bh[nj−1]
. (3.51)

In the equation above, h[nj ] =
∑N

t=1 n
j
tht for integers njt ≥ 0 such that h[nj ] − h[nj−1] is a

weight of the representation RNj ,εj . For RNj ,+ (symmetric), njt − n
j−1
t ∈ Z>0, while for

RNj ,− (anti-symmetric), njt − n
j−1
t ∈ {0, 1}. In both cases, we have

∑N
t=1 n

j
t − n

j−1
t = Nj ,

from which it follows
∑N

t=1 n
j
t =

∑j
i=1Ni.
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The form of the first contribution does not depend on the type of representation

(symmetric or anti-symmetric), and it can be found from eq. (3.45):

Ĉ
(
α∞, m̂, α0 − bh[nn]

)
Ĉ(α∞,κh1, α0)

=

N∏
t,s=1

nnt −1∏
ν=0

1

γ1

( κ
N + (Q− α∞, hs) + (Q− α0, ht) + νb

∣∣ 1
b

) , (3.52)

where we employed the shift property eq. (A.8).

Let us start with the symmetric case where we need the structure constants in

eq. (B.11). It is convenient to compute the scaling weight of the structure constants (de-

noted in the following with square brackets) involving only a single symmetric degenerate

insertion. By setting b = 1 and the (anti-)fundamental chiral masses to zero, we obtain[
Ĉ
α0−bh[nj ]
−bω(Nj,+),α0−bh[nj−1]

]

= −
N∑

s,t=1

njt−n
j−1
t −1∑

ν=0

[
2(ν − (njs − n

j−1
t ))− 1 + (qs − qt)

]

= −
N∑

s,t=1

[
(njt )

2 − (nj−1
t )2

]
+ 2

j∑
i=1

NjNi + 2NNj +N

N∑
t=1

qt(n
j
t − n

j−1
t )−Nj

N∑
t=1

qt .

(3.53)

Then, by adding the contribution of eq. (3.52) to eq. (3.53) we get

bsym

3
= 2

n∑
j=1

j∑
i=1

NjNi + 2N
n∑
j=1

Nj −
N∑
s=1

(q̃s + qs)
n∑
j=1

Nj

= 2
n∑
j=1

(Kj −Kj−1)Kj + 2KN N,

(3.54)

where in the second step we used that Ni = Ki − Ki−1 and
∑j

i=1Ni = Kj . Again, this

result reproduces eq. (3.19) found by employing the formula eq. (2.2).

Before we move on to study a generic combination of symmetric and anti-symmetric

degenerate insertions let us first obtain the contribution due to a single anti-symmetric

insertion. The structure constants for this case are given by eq. (B.10). By using repeti-

tively the fact that njt − n
j−1
t ∈ {0, 1} (since the jth rep is anti-symmetric), we obtain the

corresponding contribution to the central charge b, namely[
Ĉ
α0−bh[nj ]
−bω(Nj,−),α0−bh[nj−1]

]
= (2N −Nj)Nj + 2

j−1∑
i=1

NjNi −N
N∑
t=1

[
(njt )

2 − (nj−1
t )2

]
+N

N∑
t=1

qt(n
j
t − n

j−1
t )−Nj

N∑
t=1

qt .

(3.55)

By comparing the above with eq. (3.53), we find that the difference between the con-

tributions of a single symmetric and anti-symmetric insertion is simply given by

sym− anti-sym = 3N2
j = 3 (Kj −Kj−1)2 . (3.56)
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With this result, we can compute b for free massless hypermultiplets coupled to the GLSM

of figure 1 with any combination of ε = ± (and thus any number of adjoint chirals). In

particular, we can compute b when all the insertions are anti-symmetric. We find

banti-sym

3
=
bsym

3
− 3

n∑
j=1

(Kj −Kj−1)2

= 4
n∑
j

Kj−1Kj + 2NKn −
n∑
j=1

K2
j − 3

n∑
j=1

K2
j−1 ,

(3.57)

which reduces to eq. (3.48) for n = 1, and agrees with eq. (3.20).

4 SUSY partition function on S1 × Sd−1

In an SCFT with at least a single U(1)R symmetry, the twisted partition function Z of

the theory on M ≡ S1
R × Sd−1 is identified with the superconformal index [81], up to a

normalisation factor (that will be important in what follows!). Here S1
R is a temporal circle

of radius R. The superconformal index is, like other indices, functionally a count of a certain

set of degrees of freedom obeying specific shortening conditions. After affecting the sum

over multiplets obeying the shortening condition, the remaining non-trivial contributions to

the superconformal index come from multiplets that are protected under RG flow. Further,

the superconformal index is itself invariant under continuous deformations that preserve

the supercharge used to define the index. Thus, Z is a likely candidate to capture putative

defect central charges. Indeed, as we will demonstrate below in certain cases, an overall

prefactor in Z depends explicitly on defect Weyl anomaly coefficients.

Specifically, in this section we will first argue for the appearance of the central charge d2

in Z in the presence of a 2d superconformal defect wrapping Σ = S1
R×S1. After setting the

general framework in section 4.1, we will examine two models where d2 has been calculated

holographically [26]: Levi type-L defects in N = 4 U(N) SYM theory (section 4.2) and the

Wilson surface operator in the AN−1 6d N = (2, 0) SCFT (section 4.3). We will see that

upon deformation of Z by these specific 2d defects the exponent in the normalisation, i.e.

the SUSY Casimir energy (SCE)10 [72, 74, 84], changes by a factor proportional to d2.

Actually, in the 6d N = (2, 0) SCFT we obtain a more general result: we compute

the change in the SCE due to a pair of Wilson surfaces wrapping Σ1 = S1
R × S1

1 and

Σ2 = S1
R × S1

2 , where S1
1 and S1

2 intersect only at the poles of the S5. Taking the limit

of a single Wilson surface on, say, Σ1, we will find that the change in the SCE reduces to

a term ∝ d2. Interestingly, for two intersecting Wilson surfaces the change in the SCE is

not merely the sum of results for two lone Wilson surfaces, but also contains contributions

purely from their intersections at the poles. A detailed interpretation of this result would

require knowledge of the algebra of intersecting surface operators and the degrees of freedom

intrinsic to the 1d submanifold they share, which is beyond the scope of this paper.

10The first place to identify a similar quantity to the SCE was ref. [71] referring to it as an “index Casimir

energy”, but we will refer to this quantity by the more frequently used term “SUSY Casimir energy”.
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In the final part of this section, we will propose the form of a type B anomaly coefficient

(or possibly a linear combination thereof) of a 1/2-BPS codimension two defect wrapping

S1
R × S3 in the AN−1 6d N = (2, 0) SCFT, our eq. (4.34) below. Despite the lack of an

explicit form of the defect Weyl anomaly for a 4d defect in a 6d CFT, the logic of the

construction that computed d2 in the two examples considered below is straightforward to

extend to superconformal defects of arbitrary codimension. We thus claim that eq. (4.34)

must be proportional to type B defect central charges.

4.1 Anomalies and SUSY Casimir energy

In this subsection we are concerned with setting up a general framework for arguing that

the change of the SCE due to a defect on Σ is proportional to d2. To begin, consider the

twisted partition function of a SCFT, Z(R, µj), on M = S1
R × Sd−1 for even d, where

µj are chemical potentials for superconformal Cartan generators that commute with the

supercharge used to define the index. The main argument in refs. [72, 74, 83] is that by

utilising SUSY localisation to compute Z(R, µj), one finds a general form proportional to

the superconformal index I:

Z(R, µj) = e−REc(µj)I(Rµj) , (4.1)

where Ec is the SCE. The understanding here is that, as an object counting protected

operators starting from the identity operator, I is an ascending polynomial in non-negative

powers of fugacities, qj , start at one, i.e. I = 1 + q#
j + . . ., i.e. # > 0.

In the presence of a defect preserving the supercharge used to define the index, I will

generically pick up negative powers in an expansion in q, which will need to be compensated

in order to maintain the normalisation that the index begins counting with the identity

operator [80, 86]. That is, the superconformal index in the presence of a surface defect is

still counting states, in a similar sense as in the ambient theory, but now including defect

states in radial quantisation around the defect.

A form of the SCE as an integrated anomaly has been conjectured, but to our knowl-

edge not rigorously proven. Here we will briefly present the existing pieces of evidence for

this conjecture, which we will then use to motivate the appearance of defect type B anomaly

coefficients in the SCE. We will subsequently show in the examples of sections 4.2 and 4.3

that d2 indeed appears in the SCE, providing compelling evidence for our arguments.

In ref. [72], for 4d SCFTs on S1
R × S3, Ec was computed by SUSY localisation to be

proportional to the Weyl anomaly coefficients a and c as

Ec(µj) ≡ − lim
R→∞

∂R logZ(R, µj) =
4π

3
(|µ1|+ |µ2|)

(
(a− c) +

(|µ1|+ |µ2|)2

|µ1||µ2|
(3c− 2a)

)
,

(4.2)

where µ1,2 are chemical potentials for SO(2)1,2 rotations preserved in squashing the S3.

This connection between Ec and Weyl anomaly coefficients was refined in ref. [84].

The authors of ref. [84] draw a direct relationship between the Weyl anomaly and the

SCE explicitly by reducing Z(R, µi) on the squashed three-sphere S3
ε1,ε2 , with squashing
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parameters ε1 and ε2, to SUSY Quantum Mechanics (SQM) on S1
R. The expectation value

of the 1d theory’s Hamiltonian, 〈HSQM〉, in the limit R→∞ was identified with the SCE

in a manifestly scheme independent way, unlike directly computing
∫
Sd−1

√
g〈Tττ 〉, which

is scheme dependent. In the end, 〈HSQM 〉 was found to be given by eq. (4.2) where the

role of the chemical potentials µ1,2 is played explicitly by the squashing parameters ε1,2.

In ref. [85] the above arguments of refs. [72, 83] were extended to more general back-

grounds, of the form M = S1
R × Md−1, where for example in d = 4 Md−1 is a circle

bundle over a Riemann surface. In d = 4 examples, it was demonstrated that in terms of

U(1)f “flavour parameters” collectively referred to as ν and the “geometric parameter” τ̂ ,

which is related to complex structure moduli, the twisted partition function has a Casimir

contribution of the form

Ec(ν, τ) =
1

6τ̂3
Aabcνaνbνc −

1

12τ̂
Aaνa , (4.3)

where Aabc and Aa are cubic U(1)f and mixed gravitational anomalies respectively.

The authors of ref. [74] made a more general conjecture, that the SCE in a SCFT is

given by the equivariant integration of the anomaly polynomial, Ad+2(M),

Ec =

∫
Ad+2(M) , (4.4)

which, if true, obviously means Ec can depend on Weyl anomaly central charges. However,

we reiterate that eq. (4.4) remains a conjecture, albeit one strongly supported by evidence

from a number of examples in various dimensions [74].

Now, we would like to outline how we conjecture a 2d surface defect wrapping Σ ↪→M
modifies Ec. One line of reasoning starts from eq. (4.4), and requires that we make two

assumptions from the start: (i) the deformed anomaly polynomial factorises into ambient

and defect localised contributions

Ad+2(Σ ↪→M)→ Ad+2(M) + δΣA4(Σ) , (4.5)

(ii) there is a sufficient amount of superconformal symmetry preserved by the defect such

that the defect Weyl anomaly sits in a multiplet with other global defect localised anomalies,

e.g. defect chiral anomalies. In addition to finding a general proof of Ec being given by∫
Ad+2(M), proving the validity of these assumptions is the focus of on-going work.

If both assumptions (i) and (ii) hold, then the result of the equivariant integration of

A4(Σ) is related to the integrated defect Weyl anomaly. That is, the anomaly coefficients

that can appear in
∫
A4(Σ) are controlled by coefficients appearing in the non-vanishing

contributions to the integrated defect Weyl anomaly.

From the form of the defect Weyl anomaly reviewed in section 1, it is immediately

clear in eq. (1.1) that the type A term will not contribute to the integrated anomaly: the

Euler character of Σ = S1
R × S1, and its squashings, vanishes. However, the integrated

type B contributions coming from I̊I2 and Wab
ab do not necessarily vanish on a squashed

sphere. Moreover, for our 2d superconformal defects d1 = d2 has been proven in d = 4 and

conjectured in other d > 4 [52]. Thus, if assumptions (i) and (ii) hold, then the change in
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Ec due to the presence of a superconformal defect wrapping Σ must be proportional to d2

when d = 4, and, supported by evidence in the following subsections, we conjecture that

it is proportional to d2 in other d as well.

It should be mentioned that there could be another, possibly more direct, way to

show that the defect induced change in Ec is related to d2 following the logic in ref. [84].

Since S1
R ⊂ Σ, the reduction of the defect on Sd−1 will change the SUSY Hamiltonian

HSQM on S1
R by additional chiral and Fermi multiplets, as well as possible superpotential

deformations due to the reduction of couplings between defect and ambient degrees of

freedom. In the cases where there is an explicit defect action, the computation would

amount to the regulated counting done in ref. [84]. However, this would not in general be

a constructive proof of the connection between defect central charges and the SCE, but if

demonstrated to hold in a number of examples, could provide a useful computational tool

to try to predict d2 in novel models.

Finally, while not directly related to anomalies, a different line of reasoning also sug-

gests the appearance of d2 in the SCE. From the point of view of constructing VOAs from

4d SCFTs [77, 79] and 6d SCFTs [78], the Schur limit of the SUSY partition function of

an N ≥ 2 SCFT on S1×S3 or N ≥ (1, 0) SCFT on S1×S5 is the character of the vacuum

module of the VOA, see e.g. ref. [114]. As shown in ref. [80], the SUSY partition function

in the presence of a superconformal surface defect inserted normal to the VOA plane in-

stead computes in the Schur limit the character of some non-vacuum module. Crucially,

the dimension of the defect identity in the module is given by −d2 [52]. This is precisely

the statement that introducing the defect shifts Ec by a term ∝ d2. This VOA perspective

will be especially useful in our 6d computation below.

4.2 4d SUSY Casimir energy

In this subsection we consider the SUSY partition function of N = 4 SU(N) SYM theory

on M = S1
R × S3 with a Levi type-L defect along Σ = S1

R × S1. Crucially, for the reasons

mentioned in section 2, we need to set βi = γi = 0 in eq. (2.5b), so we can only study

cases where b = d2. Nevertheless, from the arguments above and our evidence in 6d in

section 4.3, we believe the SCE obtained from the SUSY partition function is proportional

to d2 alone.

To compute the twisted partition function, Z, onM = S1
R×S3, we will use the corre-

spondence between its Schur limit and correlators in 2d q-deformed YM theory (qYM) on a

genus-g Riemann surface with n-punctures in the zero-area limit, Cg,n [75]. Ref. [87] showed

that the deformation of the 4d twisted partition function by surface defects corresponds in

the qYM theory to local operator insertions ORi , where Ri is a label descending from the

representation data of the ith defect. In the description of qYM as Chern-Simons theory

on S1 × Cg,n, these local operators arise from Wilson lines in representations Ri extended

along the S1, and hence localised at a point on Cg,n.

While the authors of ref. [87] consider an arbitrary number of defect insertions, for us

it will suffice to consider the 2d qYM one-point function corresponding to a single surface
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operator in representation R of the 4d gauge symmetry. This takes the form

〈OR〉g,n =
∑
S

S
2−2g−n
S,0

SS,R
SS,0

n∏
i=1

χS(~a(i)) , (4.6)

where the sum is over partitions of N schematically of the form S = [s1, s2, . . . , sN−1, 0] and

“0” labels the trivial representation. Each ~a(i) for i = 1, . . . , n is the holonomy around one

of the n punctures, and each χR(~a) is the Schur polynomial for a partition [`1, . . . , `N−1, 0]

defining the representation R.

Explicitly, the Schur polynomial is computed as a ratio of determinants

χR(~a) =
detA(~a, `)

detA(~a, 0)
, (4.7)

where the matrix A has components Aij(~a, `) = a`i+N−ij . The modular-S matrix, S, ap-

pearing in eq. (4.6) is defined by

SR,R′ = S0,0χR̄(qρ+κ)χR′(q
ρ) . (4.8)

Here, we are using the form of the Weyl vector ρ = (ρ1, . . . , ρN ) in a particular orthogonal

basis

ρ =
1

2
(N − 1, N − 3, . . . , 1−N) . (4.9)

The original partition data ` = [`1, . . . , `N−1, 0] re-expressed in the orthogonal basis is

denoted κ = [κ1, . . . , κN ], where

κi = `i −
1

N

N−1∑
j=1

j(`j − `j+1) . (4.10)

The notation adopted in the arguments of the Schur polynomials in eq. (4.8) is then to be

interpreted as, e.g. qρ+κ = (qρ1+κ1 , . . . , qρN+κN ).

The case that we are interested in is a single N = (4, 4) Levi type-L defect labelled

by a representation R, specified by a partition ` of N , inserted in 4d N = 4 SU(N) SYM

theory. This corresponds to computing the one-point function of OR on a torus with no

punctures (g = 1, n = 0), in which case eq. (4.6) completely collapses to

〈OR〉1,0 = χR(qρ) . (4.11)

From eq. (4.11), we can read off the defect SCE from the overall power of q that needs to

be stripped off in order to match the “start-at-one” normalisation of the index. Explicitly,

the Schur polynomial χR(qρ) can be expanded in q as an overall prefactor multiplying an

ascending polynomial in non-negative powers of q,

χR = q−
∑
i ρi`i

(
1 + q# + . . .

)
. (4.12)
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Defining the transpose (or conjugate) partition ˜̀ = [˜̀1, . . . , ˜̀
N ],11 we can easily show for

Levi type-L defects that

N∑
i=1

ρi`i =
1

2

N∑
i=1

(N + 1− 2i)`i =
1

2

(
N2 −

N∑
i=1

˜̀2
i

)
. (4.14)

Comparing to the holographic result for d2 in eq. (2.5b), with βi = γi = 0, we thus identify

the Levi type-L defect contribution to the SCE encoded in the 2d qYM one-point function:

〈OR〉1,0 = q−d2/6
(

1 + q# + . . .
)
, (4.15a)

d2 = 3

(
N2 −

N∑
i=1

˜̀2
i

)
. (4.15b)

Crucially, this calculation involved no approximations, relying only on SUSY and the

equivalence of the twisted partition function with qYM correlators. This calculation thus

strongly suggests that the holographic results in eq. (2.5b) are in fact exact, and not merely

large-N and/or strong-coupling limits.

To repeat once again, in these cases where βi = γi = 0 the Levi-type defect in N = 4

SYM has b = d2, so that our identification of d2 alone in eq. (4.15a) is ambiguous. In other

words, how do we know we obtain d2 alone, rather than b alone, or a linear combination of

b and d2? If our arguments in section 4.1 for the connection between the integrated defect

Weyl anomaly and the defect contribution to the SCE hold, then the exponent in eq. (4.15a)

is d2 and not b. Moreover, in the following subsection we will study Wilson surface defect

indices in 6d, and in that case b and d2 in eq. (2.6a) are distinct, allowing us to identify d2

unambiguously, which will provide compelling evidence for our arguments more generally.

4.3 6d SUSY Casimir energy

In this subsection, we are concerned with the twisted partition function of the 6d N = (2, 0)

AN−1 SCFT on the squashed S1
R×S5 in the presence of 2d or 4d superconformal defects.12

In M-theory this SCFT arises as the low-energy theory on the worldvolume of N coincident

M5-branes, and we are interested in the defects arising from either M2- or M5-branes that

end on this initial stack of M5-branes. The M2-branes give rise to a 2d defect (codimension

four), namely a Wilson surface operator, which we place along Σ = S1
R×S1. The M5-branes

give rise to a 4d defect (codimension two), which we place along S1
R×S3. Ref. [73] carried

out a systematic study of the twisted partition function of this 6d SCFT with both types of

11Formally, one starts with a partition ` = [`1, . . . , `N ] and constructs the transpose partition as

˜̀
i = #{j

∣∣∣`j ≥ i}. (4.13)

Put more plainly, ˜̀
i is given by the number of entries in ` that are greater than or equal to i. The Young

tableau of ˜̀ is obtained from the tableau of ` by exchanging columns and rows. Thus, if ` is a partition of

N , then so is ˜̀.
12The metric on the squashed S1

R × S5 can be found in, e.g. appendix B in ref. [73]. Our calculations,

however, will not require specific details about the ambient geometry.
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defects. Using the results of ref. [73] and our arguments from section 4.1, we will calculate

central charges for both types of defects. For the Wilson surfaces, we will unambiguously

find d2 in the SCE. For the 4d defects, we do not yet know their contribution to the trace

anomaly, so we cannot say exactly which central charge(s) we are computing. Our result

serves as a prediction for such putative central charge(s).

Let us briefly review the 6d N = (2, 0) superconformal index and its unrefined

limit. Let εi be the squashing parameters of the S5. The bosonic part of the super-

conformal algebra of the theory is so(6, 2) ⊕ usp(4)R ⊂ osp(8∗|4) with Cartan genera-

tors (E, R1, R2, h1, h2, h3). The generators hi rotate the planes R2
εi ⊂ R6 into which

the squashed S5 is embedded. Among the SUSY generators QR1R2
h1h2h3

, where the indices

are all ±1
2 , the privileged supercharge used to construct the index is Q ≡ Q++

−−−. The

states contributing to the superconformal index obey the shortening condition in saturat-

ing the bound

E ≥ 2(R1 +R2) + h1 + h2 + h3 . (4.16)

Assuming saturation of eq. (4.16), the index can be expressed as

I = TrHQ(−1)F pR1−R2

3∏
i=1

q
hi+

R1+R2
2

i , (4.17)

where HQ is the subspace of the Hilbert space annihilated by Q and Q†. The fugacities are

qi ≡ e−Rεi and p ≡ e−Rµ, where µ is the chemical potential for the R-symmetry generator

R1 − R2. The unrefined limit of I, defined by µ → 1
2(ε1 + ε2 − ε3), has an additional

supercharge Q′ ≡ Q+−
++− that commutes with the Cartan generators, and so the unrefined

index collapses to

Iunref = TrHQ,Q′ (−1)F qE−R1sh1+R2 , (4.18)

where q ≡ q3 and s ≡ q1/q2. Note the privileged status of rotations in the plane R2
ε3 , which

is identified with the VOA plane of the 6d theory [78]. The index Iunref is then interpreted

as the character of the vacuum module of the VOA.

Due to the lack of a Lagrangian description of this 6d SCFT, the authors of ref. [73]

compute its twisted partition function by dimensionally reducing on S1
R and computing the

twisted partition function of the 5d U(N) N = 2 SYM theory with coupling g2 = 2πR [115]

on the squashed S5, ZS5 . The codimension four and two defects wrapping S1
R in 6d reduce

to Wilson lines or certain 3d defects in the 5d SYM theory on the squashed S5. Further,

the authors of ref. [73] argue that both the perturbative and non-perturbative contributions

to the partition function of the localised theory on the squashed S5 are sufficient to count

the states contributing to the 6d index, and hence to defect indices. Although this is far

from a proven fact about the dimensional reduction to 5d, we will adopt the same working

assumption. The fact that for Wilson surfaces we will recover precisely the holographic

result for d2 provides some evidence for this assumption.
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In the absence of defects, the localised partition function of the 5d U(N) N = 2 SYM

theory on a squashed S5 takes the form

ZS5 =

∫
dN−1a

N !
iN−1e

2π2

ε1ε2ε3
Tra2

Z1Z2Z3 , (4.19)

where Z1 is the Nekrasov partition function [56] on S1
1 ×R4

ε2, ε3 , with Z2 and Z3 obtained

from Z1 by cyclic permutation of the labels {1, 2, 3}, and a is a constant adjoint-valued

scalar parametrising the locus.

Without any defects, the localised partition function of the 6d N = (2, 0) AN−1 theory

in the unrefined limit computes the character of the vacuum module in the WN algebra.

Defining 2πiτ = −Rε3 so that q = e2πiτ , and defining ε1ε2 = 1 and b2 = ε1/ε2,13 the

partition function sees contributions in the unrefined limit from the three fixed points on

the S1
i of the form

Z1 =
∏
e∈∆+

2 sin
π

b
(e, a) , Z2 =

∏
e∈∆+

2 sin bπ(e, a) , Z3 = η
(
−τ−1

)1−N
, (4.20)

where η(·) is the Dedekind η function. Let Q = ρ(b + b−1) with ρ being the Weyl vector

of su(N), and let Wg be the Weyl group of g = AN−1. After integrating over a, eq. (4.19)

becomes

ZS5 =
q−

1
2

(Q,Q)

η(τ)N−1

∑
σ∈Wg

ε(σ)q−(σ(ρ),ρ)+(ρ,ρ) , (4.21)

where ε(σ) = (−1)`(σ) and `(σ) is the length of the Weyl group element σ. The exponent

of the prefactor is related to the central charge c of the VOA as q−
c
24 . Recalling that

η(τ) ∝ q1/24, we thus have

c = (N − 1) + 12(Q,Q) = (N − 1) +N(N2 − 1)(b + b−1)2 , (4.22)

where we identify c/24 as the chiral limit of the 6d SCE found in ref. [74].

4.3.1 2d defects

Adding two surface operators wrapping S1
R × S1

1 or S1
R × S1

2 will deform the index to

compute the character of degenerate modules of the associated WN -algebra in the VOA

plane. The reduction to 5d yields Wilson loop operators with winding n1 and n2 on S1
1 and

S1
2 , respectively, and carrying irreducible representations of su(N) with highest weights ω1

and ω2, respectively. The fixed point contributions on S1
1 and S1

2 are modified from those

in eq. (4.20) to

Z1 =
∏
e∈∆+

2 sin
π

b
(e, a)Trω1e

2πia
b , Z2 =

∏
e∈∆+

2 sinπb(e, a)Trω2e
2πiab , (4.23)

13Note that in this section we adopt a different convention for b compared to section 3. Moreover, in

contrast to section 3, the squashing parameters ε1,2,3 of the S5 are chosen to be dimensionless, i.e. they

come with appropriate factors of the equatorial radius of the S5, which we take to be the identity in this

section.
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where Trω is a trace over the representation specified by ω. Again, the plane R2
ε3 is

designated as the VOA plane and so the Wilson lines cannot wrap S1
3 and also preserve

the necessary nilpotent charge needed to define the VOA,14 hence Z3 remains unchanged

compared to eq. (4.20). Plugging Z1 and Z2 from eq. (4.23) into the partition function and

integrating over a gives

Zω1, ω2

S5 = q−Cω1, ω2/24
∑

σ∈W(g)

ε(σ)e−(σ(ρ+ω2),ρ+ω1)+(ρ+ω2,ρ+ω1) , (4.24)

where the new “central charge” is

Cω1,ω2 = (N − 1) + 12(Q+ b−1ω1 + bω2, Q+ b−1ω1 + bω2) . (4.25)

To isolate the defect contribution to the partition function, we divide eq. (4.24) by the

ambient theory result in eq. (4.21), which gives the change in the central charge,

Cω1,ω2 − c = 24(Q, b−1ω1 + bω2) + 12(b−1ω1 + bω2, b
−1ω1 + bω2) . (4.26)

Eq. (4.26) is our most general result for 2d defects in the N = (2, 0) 6d SCFT, for two

intersecting Wilson surfaces.

However, to compare to the holographic result for a single Wilson surface in section 2,

we restrict to a single defect wrapping, say, S1
1 , in which case eq. (4.26) becomes

Cω1 − c =
24

b
(Q,ω1) +

12

b2
(ω1, ω1) . (4.27)

Taking b → 1, so that Q = ρ(b + b−1) → 2ρ, and using d2 = 24(ρ, ω) + 6(ω, ω) from

eq. (2.6b), we find

Cω1 − c = 48 (ρ, ω1) + 12 (ω1, ω1) = 2 d2 . (4.28)

We have thus shown that a single defect changes the normalisation factor from q−c/24 to

q−Cω1/24, or recalling that q = e2πiτ = e−Rε3 , the defect shifts the SCE from Ec = − c
24 ε3

to Ec = −Cω1
24 ε3. Our result eq. (4.28) then shows that the change in Ec is ∝ d2, as

advertised.

Crucially, as mentioned above, for a Wilson surface in the 6d N = (2, 0) theory at

large N we can distinguish d2 and b, namely d2 = b + 3(ω, ω), as opposed to the Levi

defect in 4d. The comparison thus leaves no doubt: d2 controls the defect contribution to

the SCE.

However, similar to the Levi defect of section 4.2, the calculation here involved no

approximations, relying only on SUSY and the assumptions about the reduction on S1
R

mentioned above. Our result eq. (4.28) thus provides strong evidence that the holographic

result for d2 in eq. (2.6b) is in fact exact, and not just the leading large-N limiting value.

14It is also true for 2d N = (4, 4) defects in 4d N = 4 SYM theory that the surface operators must

be inserted orthogonal to the chiral algebra plane. Note, though, that a 2d chiral (e.g. N = (0, 8) or

(0, 4)) superconformal defect could be inserted along the chiral algebra plane while preserving the nilpotent

supercharge used to define the VOA. We thank W. Peelaers for pointing this out.
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Our result for two intersecting Wilson surfaces, eq. (4.26), is not merely the sum of two

copies of the result for the single Wilson surface, eq. (4.28), due to a cross term 2(ω1, ω2).

This difference could potentially arise for various reasons: some special contributions to

the Weyl anomaly from the intersections, some 1d degrees of freedom at the intersection

points, and so on. We leave this as an important question for future research.

4.3.2 4d defects

In 6d N = (2, 0) AN−1 SCFTs, there is another class of superconformal defects that one

could construct: 4d defects. In the M-theory description, these types of defects arise from

1/2-BPS M5-M5-brane intersections. The authors of ref. [73] also constructed the index

for these 4d defects, using arguments similar to the 2d case.

Codimension 2 operators in 6dN = (2, 0) AN−1 SCFTs, in particular, are in one-to-one

correspondence with homomorphisms % : su(2)→ AN−1, and in the unrefined limit corre-

spond to a deformation of the VOA by the insertion of a semi-degenerate operator labelled

by a partition of N, i.e. [N1, . . . , Nn+1] where
∑n+1

i=1 Ni = N . That is, 4d superconformal

operators preserve the Levi subalgebra l = s
[⊕n+1

i=1 u(Ni)
]
.

In the reduction along S1
R, which the intersecting M5-branes wrap, such a codimension

2 defect has an equivalent description as a prescribed singularity in the gauge field of the

resulting 5d N = 2 SYM theory. Given a Levi subalgebra l, the monodromy parameters

are ~m = ⊕n+1
i=1 ~mi with each ~mi being a rank Ni vector whose components are all identically

mi, and the Weyl vector of l is ρl = ⊕n+1
i=1 ρNi with each ρNi being the Weyl vector of su(Ni).

The SUSY vacua of the localised theory are labelled by σ ∈ Wg/Wl — where Wg and Wl

are the Weyl groups of g = AN−1 and l, respectively — which also labels a permutation of

the monodromies, i.e. different inequivalent choices of embeddings of l in AN−1.

To compute the index in the presence of the defect, we need to use the form of the

localised partition function in eq. (4.19) supplemented by the classical action from the

monodromies given by e−2πi(σ(~m),a) and the Nekrasov partition functions corresponding to

the particular % and choice of σ

Z%,σ1 =

n+1∏
i=1

∏
e∈∆+

i

2 sin
π

b
(e, σ(a)) , Z%,σ2 =

n+1∏
i=1

∏
e∈∆+

i

2 sinπb(e, σ(a)) , (4.29)

where ∆+
i is the space of positives roots of the ith summand of l and as above Z3 =

η(−τ−1)1−N . Summing over all σ and integrating over the locus parametrised by a gives

Z%
S5 = q−C%/24

∑
σ

ε(σ)q−(σ(ρl)−ρl, ρl) . (4.30)

Dividing Z%
S5 by the ambient theory partition function changes the normalisation factor to

q−(C%−c)/24, where

C% − c = −24(Q,µ%) + 12(µ%, µ%) , (4.31)

and

µ% = Q+ ~m− (b + b−1)ρl . (4.32)
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Using Q = ρ(b + b−1) and (~m, ρl) = 0, we find

C% − c = 12(b + b−1)2 [(ρl, ρl)− (ρ, ρ)] + 12(~m, ~m) . (4.33)

We can easily compute (ρl, ρl) = 1
12(
∑n+1

i=1 (N3
i −Ni)) by considering each individual su(Ni)

summand in l. In the limit b→ 1 we thus find

C% − c = −4

(
N3 −

n+1∑
i=1

N3
i − 3(~m, ~m)

)
. (4.34)

As mentioned above, we do not have a sufficient understanding of the form of the Weyl

anomaly of a 4d defect in a 6d CFT to state definitively which central charge(s) the above

expression might be. For now, eq. (4.34) serves as a prediction for 4d superconformal

defects in the 6d N = (2, 0) SCFT.

Our result in eq. (4.34) bears a resemblance, modulo overall sign and powers of N and

Ni, to d2 for the N = (4, 4) Levi type-L surface operator in 4d N = 4 SYM theory in

eq. (2.5b). Given the connection between the two constructions via dimensional reduction,

this superficial resemblance is perhaps not surprising. Beyond the scope of the current

work, but the focus of on-going investigation, is finding the behaviour of the defect Weyl

anomaly of the 4d Levi type-L defect in 6d under dimensional reduction to a 2d Levi type-L

defect in 4d N ≥ 2 SCFTs.

5 Summary and outlook

We have illustrated a variety of techniques for computing the central charges b and d2 of

2d superconformal defects in SCFTs. These techniques rely only on a sufficient amount of

SUSY, with no approximations. In particular, we used existing results for SUSY localisa-

tion, the AGT correspondence, and superconformal indices to extract new results for b and

d2. Some of these results agreed perfectly with existing holographic results, proving that

the latter were not merely large-N or strong-coupling limits, but were in fact exact.

Our results pave the way for many fruitful generalisations. Obviously, a variety of other

existing results for SUSY partition functions on Sd and S1×Sd−1 could be mined for further

novel results for b and d2. This includes twist field defects relevant for calculations of SUSY

Rényi entropy [116–118], where information theoretic constraints may imply bounds on the

defect’s central charges [119]. Additionally, to our knowledge a variety of 2d superconformal

defects have yet to be described using any of the SUSY methods we have discussed. A

prominent example is chiral defects, such as defects with 2d N = (0, 4) SUSY. Chiral defects

break parity, producing parity-odd terms in the trace anomaly that define two parity-odd

central charges [26, 27]. These could in principle be calculated using the methods we

have described. Furthermore, as deformations of the superconformal index, 2d N = (0, 4)

defects can preserve the nilpotent supercharge used in the cohomological construction of

chiral algebras from 4d SCFTs [77], and so their central charges may appear in the vacuum

character of a deformed chiral algebra.

Other approaches to computing SUSY partition functions on Sd and S1 × Sd−1 could

also be developed along similar lines as useful tools to extract defect central charges in
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novel systems. Examples include geometric engineering [70, 120], or computing a 5d SUSY

partition function on S1×S4 with a 3d SUSY defect along S1×S2 [121] and then reducing

on the common S1 to obtain a 4d SUSY partition function on S4 with a 2d defect along

S2 ↪→ S4 [4]. More importantly, studying how the defect trace anomalies and associated

central charges behave under dimensional reduction could provide a new window into how

defect physics changes under RG flows across dimensions [122].

All the above methods could also be straightforwardly generalised to defects of other

dimensions. For example, in 4d SCFTs various 1/2-BPS interfaces and domain walls

have been studied using holography [123–125], SUSY localisation [58], and other meth-

ods [126]. In these cases the interface contribution to the trace anomaly defines two central

charges [127–131] that could in principle be calculated from existing results. In 5d and

6d SCFTs, higher-dimensional defects are possible, such as the 4d defect in the M5-brane

theory that we discussed at the end of section 4. However, in these cases the defect con-

tribution to the trace anomaly, and in fact many other quantities are unknown, so what

(linear combination) of central charges the SUSY methods could compute is unclear.

Indeed, more generally the contributions of defects to trace anomalies as in eq. (1.1),

entanglement entropy [41], and other quantities are clearly crucial for characterising and

classifying defects, including for proving c-theorems [19, 102], positivity [26] or other lower

bounds [32], and other constraints on defect central charges. We hope our methods provide

useful tools for addressing such issues.
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A Special functions and Zeta-function regularisation

In this appendix, we give a quick overview of the special functions appearing in this paper

and explain how they arise from zeta-function regularisation of infinite products. For more

details on some of these functions we refer to refs. [132, 133].

By meromorphic continuation to the complex s-plane, the Barnes multiple-zeta func-

tion ζN (s; z|a1, . . . , aN ) and the multiple Gamma-function are defined as follows

ζN (s; z|a1, . . . , aN ) ≡
∑

n1,...,nN≥0

(z + n1a1 + . . . nNaN )−s , (A.1)

ΓN (z|a1, . . . aN ) ≡ exp

(
d

ds
ζN (s; z|a1, . . . , aN )

∣∣∣∣
s=0

)
. (A.2)
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The cases of particular interest to us are N = 1, 2, which include the single ζ1(s; z|a) and

double zeta-function ζ2(s; z|a1, a2). In particular, we will need their values at s = 0

ζ1(0; z|a) =
1

2
− z

a
,

ζ2(0; z|a1, a2) =
1

4
+

1

12

(
a1

a2
+
a2

a1

)
− z

2

(
1

a1
+

1

a2

)
+

z2

2a1a2
.

(A.3)

From the definition above, the single Gamma-function Γ1(z|a) is related to the ordinary

Euler Gamma-function Γ(z) via

Γ1(z|a−1) =
a

1
2
−az
√

2π
Γ(az) . (A.4)

Further, the double Gamma-function is used in defining the special function

Υ(z|a1, a2) ≡ 1

Γ2(z|a1, a2)Γ2(a1 + a2 − z|a1, a2)
, (A.5)

which frequently appears in Liouville/Toda theory. This Upsilon-function obeys

Υ(z + a2|a1, a2) = γ1(z|a1)Υ(z|a1, a2) , (A.6)

where

γ1(z|a) ≡ Γ1(z|a)

Γ1(a− z|a)
, (A.7)

and a similar relation for the shift Υ(z + a1|a1, a2) replacing a1 → a2. This can be recast

in the more familiar form

Υ(z + a2|a1, a2) = a
2z/a1−1
1 γ(z/a1)Υ(z|a1, a2) , (A.8)

where

γ(z) ≡ Γ(z)

Γ(1− z)
. (A.9)

The special functions above appear in the evaluation of 1-loop determinants as al-

luded to in section 3. One usually encounters infinite products that diverge and require

regularisation. Zeta-function regularisation instructs us to replace a diverging product

∞∏
k=0

λk → exp

(
− d

ds
Z(s)

∣∣∣∣
s=0

)
, (A.10)

where Z(s) is the associated zeta-function defined as the meromorphic continuation to the

complex s-plane of the series
∞∑
k=0

λk
−s . (A.11)

For the divergent products of the form

∞∏
k=0

(
k

r
+ z

)
, (A.12)
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the associated zeta function is ζ1

(
s; z

∣∣r−1
)
, and hence zeta-function regularisation gives

∞∏
k=0

(
k

r
+ z

)
→ 1

Γ1(z|r−1)
=

√
2π rrz−

1
2

Γ(rz)
. (A.13)

Most importantly for our analysis, we need to understand the behaviour of the multi-

ple Gamma-function appearing in 1-loop determinants under a constant Weyl re-scaling.

Generically,

ΓN

( z
r

∣∣∣ a1

r
, . . . ,

aN
r

)
= rζN (0;z|a1,...,aN ) ΓN (z|a1, . . . , aN ) . (A.14)

For N = 1 this reduces to

Γ1

( z
r

∣∣∣ a
r

)
= r

1
2
− z
a Γ1(z|a) , (A.15)

such that

γ1

( z
r

∣∣∣ a
r

)
= r1− 2z

a γ1(z|a) . (A.16)

For N = 2 one finds

Υ
(z
r

∣∣∣a1

r
,
a2

r

)
= r−2ζ2(0;z|a1,a2)Υ(z|a1, a2) . (A.17)

B AN−1 Toda field theory

In this appendix we review the essential features of the AN−1 Toda field theory needed for

the computations in section 3.2. For more details see for example refs. [113, 134].

The action for AN−1 Toda field theory is given by

S =

∫
d2σ

[
1

8π
gµν(∂µφ, ∂νφ) +

(Q,φ)

4π
R+ µ

N−1∑
i=1

eb(ei,φ)

]
, (B.1)

where gµν is the metric of the Riemann surface, R the corresponding scalar curvature, b is

the dimensionless coupling constant, ei and ρ are respectively the simple roots and Weyl

vector of the AN−1 Lie algebra, and (·, ·) denotes the scalar product on the weight space.

The requirement of conformal invariance fixes Q = (b + 1/b)ρ. In terms of Q, the central

charge is given by

c = N − 1 + 12(Q,Q) . (B.2)

Besides the conformal symmetry, the theory of eq. (B.1) is invariant under higher-spin

symmetry transformations generated by the (n − 1) holomorphic currents W k(z) with

spins k = 2, . . . , N , whose algebra is called WN -algebra. These currents can be written in

terms of the field φ as

N−1∏
i=0

(q∂ + (hN−i, ∂φ)) =

N∑
k=0

WN−b(z) (q∂)k , (B.3)

where hi = h1−e1−· · ·− ek with k = 1, . . . , i are the weights of the fundamental represen-

tation of the AN−1 with highest weight h1. Their scalar product reads (hi, hj) = δij−1/N .

– 42 –



J
H
E
P
0
5
(
2
0
2
0
)
0
9
5

We observe that W 2(z) = T (z). It is not difficult to see that for N = 2, the Toda field

theory reduces to the Liouville theory.

Primary fields with respect to the WN -algebra are the vertex operators

Vα = e(α,φ) , (B.4)

with quantum numbers ω(k)(α) and conformal dimension ∆(α) = ω(2)(α) = (α,2Q−α)
2 .

The three-point functions of WN primaries can generically be expressed as

〈Vα1(z1, z̄1)Vα1(z2, z̄2)Vα3(z3, z̄3)〉 =
C(α1, α2, α3)

|z12|2(∆1+∆2−∆3)|z13|2(∆1+∆3−∆2)|z23|2(∆2+∆3−∆1)
.

(B.5)

While the z-dependence is fixed by conformal symmetry, all the non-trivial information

about the three-point function is encoded in the coefficient C(α1, α2, α3). In the Liouville

case, this coefficient has been found for generic values of the momenta α [107, 135]. On the

other hand, for N > 2 the structure of the three-point function is more complicated and a

general expression is not available. However, there are useful limiting cases where analytic

results can be obtained. For example, a simplification occurs if one of the primaries is

semi-degenerate, i.e. it satisfies the special condition α = κh1 where κ is a real number.

In this case, the coefficient in eq. (B.5) can be expressed in a closed form

C(α1, α2,κh1) =
[
πµγ(b2)b2−2b2

] (2Q−
∑
i αi,ρ)

b

× (Υ(b))N−1Υ(κ)

∏
e>0 Υ ((Q− α1, e)) Υ ((Q− α2, e))∏

ij Υ
( κ
N + (Q− α1, hi) + (Q− α2, hj)

) , (B.6)

where the function Υ(x) ≡ Υ(x|b, 1/b) (see eq. (3.9)).

Another remarkable case is when the field is fully degenerate. Degenerate fields are

parametrised by α = −bω1−1/bω2 where ω1 and ω2 are highest weights of two representa-

tions R1 and R2 of AN−1. The operator product expansion of a degenerate primary with

a generic primary field Vα consists of a finite number of primaries. Precisely, we have

V−bω1−1/bω2
Vα =

∑
s,p

C
α′s,p
−bω1−1/bω2,α

[
Vα′s,p

]
, (B.7)

where the square brackets denotes all the descendants and α′s,p = α− bh(ω1),s− 1/bh(ω2),p,

h(ω1),s and h(ω2),s being the weights of the representation R1 and R2, respectively. In this

work we only consider the case α = −bω1.

In the computations performed in section 3.2, we will employ the following normalisa-

tion for the generic WN -primary fields [62]:

V̂α =

[
πµγ(b2)b2−2b2

](α−Q,ρ)/b

∏N
s<t Υ((Q− α, hs − ht))

Vα , (B.8)
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while for semi-degenerate and degenerate vertex operators we define

V̂κh1 =

[
πµγ(b2)b2−2b2

] (κh1,ρ)
b

Υ(b)N−1Υ(κ)
Vκh1 , V̂−bω =

[
πµγ(b2)b4

] (−bω,ρ)
b V−bω . (B.9)

With these choices of normalisation, the three-point function eq. (B.6) simplifies to

eq. (3.45) of the main text with α1 = α∞, α2 = α0.

For reference and use in section 3.2, we list here the results for the structure constants

in the cases that R1 is the rank-k totally antisymmetric or totally symmetric representation

of AN−1.

The rank-k antisymmetric representation denoted as Rk,− has highest weight given

by ω(k,−) =
∑k

s=1 hs while all the other weights can be expressed in terms of the weights

of the fundamental representation as h(k,−),{p} =
∑
{p} hp where the set {p} consists of k

numbers such that 1 ≤ p1 < · · · < pk ≤ N . The number of distinct weights is given by

the number of ways in which one can choose such a set {p}. Using the normalisations in

eqs. (B.8) and (B.9), the structure constants take the form [113]

Ĉα−bh−bω(k,−),α
= b−N(2(Q−α)+bh,bh)

N∏
s/∈{p}

N∏
t∈{p}

γ (b(Q− α, ht − hs))

= b−(h,h)(1+b2)
N∏

s/∈{p}

N∏
t∈{p}

γ1

(
(Q− α, ht − hs)

∣∣∣∣1b
)
,

(B.10)

where in the last step we employed that γ(bx) = b2bx−1γ1(x|1/b), which can be deduced

from the definitions in eqs. (A.7), (A.9) and the property in eq. (A.4).

The rank-k symmetric representation is denoted Rk,+, its highest weight is ω(k,+) =

kh1, and all of its other weights are h(k,+),[n] =
∑N

s nshs with
∑N

s=1 ns = k. The corre-

sponding structure constants have been found in refs. [62, 113]:

Ĉα−bh−bkh1,α =
b−N(2(Q−α)+bh,bh)∏k

ν=1 γ(−νb2)

N∏
s,t=1

nt−1∏
ν=0

γ
(
b(Q− α, ht − hs) + (ν − ns)b2

)
=

b−k(N+k)(1+b2)+k2∏k
ν=1 γ(−νb2)

N∏
s,t=1

nt−1∏
ν=0

γ1

(
(Q− α, ht − hs) + (ν − ns)b

∣∣∣∣1b
)
.

(B.11)
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